EP3782869B1 - Procédé de commande d'un train dans un système de protection des trains, système de protection des trains - Google Patents

Procédé de commande d'un train dans un système de protection des trains, système de protection des trains Download PDF

Info

Publication number
EP3782869B1
EP3782869B1 EP19193069.2A EP19193069A EP3782869B1 EP 3782869 B1 EP3782869 B1 EP 3782869B1 EP 19193069 A EP19193069 A EP 19193069A EP 3782869 B1 EP3782869 B1 EP 3782869B1
Authority
EP
European Patent Office
Prior art keywords
train
accident
risk assessment
reservation
res
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19193069.2A
Other languages
German (de)
English (en)
Other versions
EP3782869A1 (fr
Inventor
Gerhard WIPPLINGER
Maria de los Ángeles DE LA SIERRA APARICIO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTS Deutschland GmbH
Original Assignee
GTS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES19193069T priority Critical patent/ES2958734T3/es
Application filed by GTS Deutschland GmbH filed Critical GTS Deutschland GmbH
Priority to EP19193069.2A priority patent/EP3782869B1/fr
Priority to DK19193069.2T priority patent/DK3782869T3/da
Priority to KR1020227008740A priority patent/KR20220044842A/ko
Priority to PCT/EP2020/072897 priority patent/WO2021032638A1/fr
Priority to CA3147820A priority patent/CA3147820A1/fr
Priority to AU2020332749A priority patent/AU2020332749A1/en
Publication of EP3782869A1 publication Critical patent/EP3782869A1/fr
Priority to IL289872A priority patent/IL289872A/en
Application granted granted Critical
Publication of EP3782869B1 publication Critical patent/EP3782869B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0062On-board target speed calculation or supervision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/10Operations, e.g. scheduling or time tables
    • B61L27/16Trackside optimisation of vehicle or train operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/20Trackside control of safe travel of vehicle or train, e.g. braking curve calculation
    • B61L2027/202Trackside control of safe travel of vehicle or train, e.g. braking curve calculation using European Train Control System [ETCS]

Definitions

  • the invention relates to a method for controlling a train within a train protection system and a train protection system for carrying out the method.
  • Track protection and train sequence control for a railway system is currently carried out by technical systems, in particular by signal boxes, electronic train control systems such as ETCS (European Train Control System) and operational rules [2].
  • ETCS European Train Control System
  • [2] discloses the use of a Bayesian network for probabilistic safety analysis (PSA) of railway lines.
  • PSA probabilistic safety analysis
  • Bayesian network also called: Bayesian network, decision network, Bayes(ian) model or probabilistic directed acyclic graph model
  • Bayesian network is a probabilistic graph model (statistical model) that represents a set of variables and their conditional dependencies via a directed acyclic graphs (DAG).
  • DAG directed acyclic graphs
  • Bayesian networks are also used in IT to carry out risk assessments as part of security management [3][4][5][6].
  • [3][4] describes a real-time safety assessment to perform a dynamic assessment of occupational health and safety conditions on the construction site using a hidden Markov model.
  • the safety risk of the workers is linked to the local locations.
  • safety integrity level SIL4 safety integrity level
  • the measured procedure uses a statically created accident model to understand and describe railway accidents.
  • the accident modeling preferably takes place outside of the operation of the train protection system.
  • the following accident classes can be defined, for example: “Derailment”, “Collision with other trains”, “Collision with people/objects”, “Accidents at level crossings”.
  • Accident influencing factors are factors (elements) that can contribute to the events contained in the accident classes, i.e. influence the accident risk, e.g. B. environment, driver, driver decision, train, infrastructure, speed, monitoring).
  • the description of the infrastructure and the train must be determined reliably (SIL4).
  • a predefined route is not released, but an individual route reservation is created, i. H. the route reservation is determined specifically for a selected train at a specific location at a specific time.
  • a route reservation includes a route section selected/determined individually for a specific train on the route to be traveled by the train, but is not pre-configured, i.e. it does not relate to a predetermined route section.
  • the route reservation can be requested directly from the train, from the dispatcher or from an operational entity.
  • the dispatcher/operational facility first determines the extent of the route reservation for the selected train and the route profile.
  • the route profile includes a route description for the extension of the route reservation, in particular a gradient profile (altitude meter of the reservation area as a function of the distance), a speed profile (maximum speed permitted within the reservation area as a function of the distance, axle load permitted, curve superelevation, etc.).
  • the maximum permitted speed in the reservation area depends in particular on the maximum route speed (permitted maximum speed), the maximum train speed (depending e.g. on the axle load, freight train, passenger train, braking capacity, ...), curve radius and superelevation in the curves, temporary speed restrictions.
  • the expansion of the route reservation is influenced, for example, by whether/where there are other trains, workers, construction sites, etc. on the route to be traveled.
  • the request is sent to the risk assessment facility, which carries out a risk assessment for the requested (individually determined) route reservation in real time.
  • the risk assessment is preferably carried out for all accident classes previously determined within the scope of the method.
  • the real-time risk assessment involves determining a risk factor for the movement of the selected train within the route reservation. The risk (risk factor) is therefore determined and evaluated individually for each train in real time.
  • the risk assessment facility uses the real-time risk assessment to assess whether the commands necessary for route reservation (changeover of switches, permission to run trains, ...) are permissible.
  • the risk assessment device can, in the event of fault reports from field elements or position/speed reports from the train, assess whether the current situation leads to a hazard and, if necessary, take safety measures.
  • the method according to the invention adapts dynamically to the traffic situation and the operator's commands, calculates all individual risks and guarantees the highest safety integrity (SIL4) with the highest throughput within a monitored control area before issuing commands to field elements and driving authorizations to trains.
  • SIL4 highest safety integrity
  • the method according to the invention describes a generic solution that does not require any specific configuration and significantly simplifies the approval procedure. It requires no operative rules and no planning of routes or driving licenses.
  • a current position of the train is preferably determined in order to determine the route reservation.
  • the position is preferably determined by means of satellites (GNSS).
  • the integrity of the train is preferably determined to determine the route reservation.
  • the real-time risk assessment is exclusively based on physical and/or geometric parameters of the accident influencing factors and error probabilities of the accident influencing factors is carried out. This is advantageous since the physical and geometric parameters can be determined easily or are known anyway.
  • the error probability of an accident influencing factor influences the error probability of the other accident influencing factors.
  • a probabilistic graph model (graphic model) is used for the real-time risk assessment, which describes the previously created accident model, a graph with nodes and edges being constructed/instantiated, with conditional probabilities being stored for each node.
  • Probabilistic Graphical Models are graphs with nodes and edges, where the nodes represent probability variables. The absence of edges between nodes of the graph indicates their independence.
  • a graph is instantiated/generated that represents the topology of the railway system. The instantiated graph thus describes the train and the geometric infrastructure of the railway system.
  • the graph is preferably a directed and/or acyclic graph, for example a graph according to a Bayesian network (directed and acyclic) or according to a Markov model.
  • the graph model used according to the invention is a statistical model that represents a set of variables (accident influencing factors/nodes) and their dependencies via a directed, in particular acyclic graph (DAG).
  • the dependencies of the nodes are modeled using conditional probabilities.
  • the graph generically describes the previously created accident model.
  • the graph can be viewed as a dynamic network set up to calculate accident probability rates to be calculated (probability network).
  • the generic graph is generated dynamically, ie depending on the current situation, the route reservation and the geometric description of the route and the train.
  • BN Bayesian Network
  • Bayesian Networks are ideal for capturing an event that occurred and predicting the probability that one of several possible known causes was the determining factor.
  • the probability distribution of all accident influencing factors involved is represented compactly using known conditional probabilities.
  • the conditional probabilities for each node are stored in a probability table.
  • the structure of this graph and its probability tables are determined by the accident model.
  • the probability tables include physical and/or geometric parameters of the respective accident influencing factor and their error probabilities.
  • the physical and/or geometric parameters of the train (axle load, braking capacity, ...) can be determined from the train mechanics, for example
  • STAMP Systems-Theoretic Accident Model and Processes
  • STPA Systems Theoretic Process Analysis
  • the nodes are preferably accident class nodes and element nodes, with an element node representing an accident influence factor and with an accident class node representing one of the accident classes.
  • a conditional probability distribution (probability table) of the random variables (accident influence factor) represented by the node is stored for each node.
  • the probability distribution assigns random variables to the parent nodes.
  • the route reservation can include a number of route reservation subareas, with a (preferably directed, in particular acyclic) subgraph being constructed/instantiated for each route reservation subarea, which represents a subnetwork.
  • the route reservation sections are preferably defined (limited) by changes on the route. This means that if a route parameter changes (e.g. due to a new gradient profile, branching of the route by a switch, change of the slope of the route%), the previous route reservation section ends and the next route reservation section begins. This is particularly advantageous since changing the route parameters can affect the accident risk (risk factor).
  • a partial risk factor is therefore calculated for each route reservation sub-area.
  • the accident risk of the various route reservation sections can depend on different accident influencing factors.
  • the subnets of the different route reservation sections can thus include different types and numbers of nodes.
  • the route reservation is only released if the accident risk (sub-risk factor) is less than the acceptable risk factor in each route reservation section.
  • the risk factor for the entire route reservation is calculated as the sum of the partial risk factors.
  • Position reports of the train are preferably determined at time intervals and transmitted to the risk assessment device. After of each position report, data obtained from the position reports for route reservation sections are entered in the graph.
  • a position report preferably includes position data, train information (e.g. train integrity, train length) and speed information.
  • train information e.g. train integrity, train length
  • speed information e.g. speed information
  • the subnets are interconnected, forming a dynamic network so that a change in one subnet can lead to changes in the other subnets.
  • the risk assessment device is set up to use a graph model to calculate a risk factor for a specific route reservation at SIL4 level, to compare this risk factor with a previously defined acceptable risk factor and, if necessary, to release the route reservation if the calculated risk factor is less than the acceptable risk factor.
  • the transmission device is preferably arranged in the train.
  • the risk assessment device preferably has interfaces to field elements of the train protection system.
  • the field elements can be controlled and monitored via these interfaces in order to create the prerequisites for releasing the route reservation (e.g. by changing points, switching signals, etc.).
  • an operative device for determining the individual route reservation for the train, with the route reservation including a route reservation area and a route profile, with the operative device having an interface to the risk assessment device.
  • the operational device is preferably a device with an interface to a train management system.
  • the train management system is set up to provide a timetable, to control and monitor train traffic according to the timetable, to optimize the current timetable, to identify and solve conflicts in the event of problems in the current train traffic.
  • the operational facility creates the route reservations with current train and route parameters (train length, braking capacity, route properties, track condition) at SILO level.
  • the risk assessment facility does not take any decision as to where the train should go and at what speed profile the train is allowed to move, so it has no influence on the design of the route reservation.
  • the operational facility is preferably also responsible for requesting the route reservation from the risk assessment facility.
  • a request for a route reservation can also be made by the train itself, for example.
  • the device for transmitting train information can be, for example, an on-board unit (OBU) of the train or a trackside device.
  • OBU on-board unit
  • the on-board unit preferably includes a position determination device.
  • figure 1 shows the essential components of the train protection system according to the invention.
  • the core of the control system according to the invention is a risk assessment device MAXd.
  • the risk assessment device MAXd includes elements for route protection and train safety.
  • the risk assessment system can include elements for protecting gangs and securing level crossings.
  • the risk assessment device MAXd receives train information I Z relating to a train for which a route reservation RES is to be released (selected train) from a transmission device OBS via an interface.
  • the train information I Z can include, for example, train position, speed, train length, mass, . . .
  • the train position is determined using a train detection device VD .
  • the train detection device VD and the transmission device OBS can (but do not have to) be arranged in the train.
  • the transmission device OBS can be, for example, a control device on the vehicle act.
  • the risk assessment device MAXd receives information I FE from field elements FE relating to the current states of the field elements FE via a further interface.
  • the risk assessment device MAXd is set up to forward commands K to the field elements in order to create the prerequisites for releasing a route reservation (RES).
  • the risk assessment device MAXd can be set up to transmit driving licenses MA to trains.
  • the MA driving license can also be communicated to the train via trackside signals (not shown).
  • the transmission device OBS is arranged within the train, so that the transmission device OBS can also receive the driver's license MA.
  • the route reservation RES is created outside the SIL 4 area of the train protection system according to the invention.
  • This can be done by an operative device OP , as in figure 2 shown.
  • a computer with business logic for motion control, in particular with decision support software (decision support system), can serve as the "operative device". Instead, however, a dispatcher can also take over part of the tasks of the operational unit.
  • the operational facility OP is responsible for operational optimization (optimization of train journeys). This operational optimization takes place at the SILO level with current parameters (train length, braking capacity, route properties, track condition).
  • the operating facility OP knows the national requirements and the operating rules.
  • the system status is determined by the risk assessment device MAXd SYS (ie field element states, position, speed of trains stc.) transmitted to the operative facility OP.
  • the operative device OP can generate a route reservation RES individually for a special train, ie define the extension of the route reservation RES individually, determine a route profile including a speed profile MP and bring the points into the correct position for the route reservation RES.
  • the operative device OP thus creates a route reservation RES individually for a selected train.
  • a query A of the route reservation (request for the release of a previously created route reservation RES) is sent to the risk assessment device MAXd, also via the operational device OP.
  • the operative device communicates with a train management unit TMS, which is responsible for planning the train journeys.
  • the system status SYS is transmitted to the train management unit TMS, since this is required so that the train management unit TMS can possibly intervene dispositively; e.g. B. to divert following trains in case of disruption of a train on the route.
  • the main task of the risk assessment device MAXd is to calculate a risk assessment for a requested route reservation RES based on a previously set up accident model AccM and on the basis of the train information I Z and the field element information I FE . Based on the risk assessment, the risk assessment device MAXd decides whether the requested route reservation RES is released and the train in question receives the corresponding driving license MA. The real-time risk assessment takes place at SIL4 level.
  • figure 3 shows the sequence of the method according to the invention: If the risk assessment device MAXd receives a request A for a route reservation RES for a specific train, the risk assessment device calculates MAXd uses the accident model AccM and the available train information I Z and field element information I FE in real time a risk factor RF for the requested route reservation RES, or several partial risk factors for route reservation sections of the route reservation RES. If the risk factor RF is below a previously defined acceptable limit value Lim, the risk assessment device MAXd transmits commands K to the field elements FE for setting the field element settings necessary for the route reservation RES. As soon as the necessary field element settings have been made (ie the route reservation RES is “passable”), the risk assessment device issues the driving license MA. If the determined risk factor RF is above the acceptable limit value Lim, no commands K and no driving license MA are issued. Instead, information regarding the rejection of request A can be transmitted to the operational unit OP, so that it can create an alternative route reservation.
  • the risk assessment device MAXd uses the accident model
  • Accident classes e.g. derailments, collisions with other trains, collisions with people/objects, accidents at level crossings
  • AccM accident model
  • the accident model is represented by a directed graph G of a graph model, for example by a Bayesian network.
  • figure 4 shows a corresponding graph for the accident class "derailment" D.
  • the accident class D represents a node (accident class node - shown oval) of the graph G.
  • the graph G also includes element nodes (shown round), each element node representing an accident influencing factor (here: Driver VD, driver decisions VDDE, on-board system (monitoring) S, speed V, infrastructure INF, train RS, environmental influences E ).
  • the accident influencing factors considered in the present case have the following associated geometric/physical parameters/error rates, which are taken into account when creating the probability tables:
  • Accident Impact Factor Network Node
  • Geometric/physical parameters/ error rate ETCS mode Probability for different security modes (route observation by driver (staff responsibility SR), driving on sight (OS), full supervision (FS) driver Error rate of the corresponding driver driver decision Probabilities for braking, accelerating, no action Train Error rate of the train, speed, axle load, curve radius, superelevation in curves Environment Probability of landslides, avalanches, falling rocks speed Braking performance of the train, Acceleration ability of the train infrastructure Error rate of track, type of train, speed of train Monitoring (OBU) probability of surveillance mode (SR, OS, FS); depends on the availability rates of the onboard system
  • the edges of the graph G indicate which accident influencing factors influence other accident influencing factors.
  • a probability table is stored for each node, with the probability table not containing "trained data” but route data, train data and error rates of elements and their conditional probabilities (depending on other accident class nodes).
  • the graph forms a "probability network" which depends on the topology of the railway system (i.e. on the geometric description the infrastructure and the train).
  • a change in the train or line properties eg maximum allowed speed also changes the probability table.
  • the calculation of the probabilities stored in the probability table is deterministic.
  • figure 5 shows a speed profile MP of a train with a train length LT within a 260 m long route reservation RES.
  • the route reservation RES is divided into route reservation sections, with a subnetwork in the form of a partial graph for each route reservation section, analogous to figure 4 , is created.
  • a multiplicity of partial graphs/subnets are thus created for a route reservation RES, which together form a graph for the route reservation RES to be assessed.
  • a subnet is in figure 5 shown as an example with nodes filled in black.
  • the individual subnets are in figure 5 drawn on the respective route sections (distance d) within the route reservation RES.
  • the route reservation sub-areas are defined by changes on the route (e.g. change of switch position, change of maximum permitted speed). Due to these changes on the route, the probabilities of the accident influencing factors change and thus the influence of the individual accident influencing factors on the accident probability of the accident class to which the accident influencing factors are linked. In areas where the train is to be braked, the subnets are therefore lined up closer together.
  • the subnets are interconnected (Dynamic Bayesian Network), so that a change in one subnet can also lead to changes in the other subnets.
  • An accident influencing factor of a reservation partition influences i.e. the corresponding accident influencing factor of a subsequent reservation sub-area.
  • the probability table for a specific accident influencing factor therefore differs for different reserved sub-areas, so that the probability tables for the different reserved sub-areas and thus also the risk factors must be calculated separately.
  • the subnets can differ in the number and type of nodes and/or in the probability tables stored for the nodes.
  • the subdivision into partial reservation areas is preferably carried out in such a way that the length of a partial reservation area is at most as long as the length LT of the train for which the route reservation RES applies.
  • the probability of the nodes can be updated/recalculated, for example as soon as there is a current report of the train's position.
  • a position report includes z. B. position data, train data, speed information, information regarding train integrity.
  • the data of the new position report is entered in the graph and the data is newly entered for all reservation sub-areas (relative to the current train position ahead). This means that, for example, at a speed node that previously only had a probability of a certain speed, the specific reported speed is entered. Of course, this influences the probabilities of the following nodes. These probabilities are calculated using the probability tables.
  • a node can either represent a probability (e.g. for a specific speed) or have entered a specific value (e.g. a specific speed).
  • the invention enables a holistic view of all relevant elements of the SIL4 safety logic to evaluate the risk for each train individually and in real time, in particular whether the current situation does not lead to a hazard and whether safety measures must be taken.
  • a Bayesian network is used as a mathematical approach, which is generated dynamically depending on the current situation.
  • the geometric description of the infrastructure and the train is used for the structure of this network and its probability tables.
  • the train dynamics are calculated using known physical laws.
  • the safety concept according to the invention adapts dynamically to the traffic situation and the commands of the operators, calculates all individual risks and guarantees the highest safety integrity (SIL4) while at the same time the highest throughput for all relevant elements within the control area before issuing commands to field elements and authorizations to move trains.
  • the approach according to the invention is a generic solution that does not require any specific configuration and significantly simplifies the approval process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Claims (15)

  1. Procédé de commande d'un train au sein d'un système de sécurité des trains, comprenant les étapes de procédé suivantes
    • création d'un modèle d'accident (AccM), dans lequel des classes d'accident et des facteurs d'influence d'accident sont déterminés ;
    • détermination d'une réservation de voie (RES) individuelle pour le train, en ce qu'une zone de réservation de voie et un profil de voie sont déterminés ;
    • envoi d'une demande (A) pour l'approbation de la réservation de voie (RES) déterminée à un dispositif d'évaluation des risques (MAXd) ;
    • réalisation d'une évaluation des risques en temps réel pour la réservation de voie (RES) au moyen du dispositif d'évaluation des risques (MAXd) pour au moins une partie des classes d'accident différentes déterminées, dans lequel un facteur de risque (RF) pour la réservation de voie (RES) est déterminé et, comme résultat, il est déterminé si le facteur de risque (RF) est acceptable ;
    • approbation ou rejet de la réservation de voie (RES) en fonction du résultat de l'évaluation des risques.
  2. Procédé selon la revendication 1, caractérisé en ce que pour la détermination de la réservation de voie (RES), une position actuelle du train est déterminée.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que pour la détermination de la réservation de voie (RES), l'intégrité du train est déterminée.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'évaluation des risques en temps réel est réalisée exclusivement sur la base de paramètres physiques et/ou géométriques et de probabilités d'erreur des facteurs d'influence d'accident.
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que pour l'évaluation des risques en temps réel, un modèle de graphique probabiliste est utilisé, lequel décrit le modèle d'accident (AccM) créé précédemment, dans lequel un graphique (G) est construit/instancié avec des noeuds et des arêtes, dans lequel pour chaque noeud, des probabilités conditionnelles sont enregistrées
  6. Procédé selon la revendication 5, caractérisé en ce que les noeuds comprennent des noeuds de classe d'accident et des noeuds d'élément, dans lequel un noeud d'élément représente un des paramètres physiques et/ou géométriques d'un des facteurs d'influence de risque et un noeud de classe d'accident représente une des classes d'accident.
  7. Procédé selon l'une des revendications 5 ou 6, caractérisé en ce que, pour le graphique (G), il s'agit d'un graphe (G) orienté et/ou acyclique.
  8. Procédé selon l'une des revendications 5 à 7, caractérisé en ce que les noeuds comprennent des noeuds de classe d'accident et des noeuds d'élément, dans lequel un noeud d'élément représente un des facteurs d'influence de risque et un noeud de classe d'accident représente une des classes d'accident.
  9. Procédé selon l'une des revendications 5 à 8, caractérisé en ce que la réservation de voie (RES) comprend plusieurs zones partielles de réservation de voie, dans lequel pour chaque zone partielle de réservation de voie, un graphe partiel est construit/instancié, lequel représente un sous-réseau.
  10. Procédé selon l'une des revendications 5 à 9, caractérisé en ce que des rapports de position du train sont déterminés à intervalles de temps et transmis au dispositif d'évaluation des risques (MAXd) et en ce que après chaque rapport de position, des données obtenues à partir des rapports de position sont entrées dans les graphiques (G) pour les zones partielles de réservation de voie.
  11. Système de sécurité des trains pour la réalisation du procédé selon l'une quelconque des revendications précédentes comportant
    • un dispositif d'évaluation des risques (MAXd) pour la création d'une évaluation des risques en temps réel pour une réservation de voie (RES) déterminée précédemment pour un train à l'aide d'un modèle d'accident (AccM) et pour la transmission de commandes (K) à un élément de terrain (FE) ;
    • un dispositif de transmission (OBS) pour la transmission d'informations de train (IZ) concernant le train, dans lequel le dispositif de transmission (OBS) présente une interface vers le dispositif d'évaluation des risques (MAXd).
  12. Système de sécurité des trains selon la revendication 11,
    caractérisé en ce que le dispositif d'évaluation des risques (MAXd) présente des interfaces vers des éléments de terrain (FE).
  13. Système de sécurité des trains selon la revendication 11 ou 12,
    caractérisé en ce qu'un dispositif opérationnel (OP) est prévu pour la détermination de la réservation de voie (RES) individuelle pour le train, dans lequel la réservation de voie (RES) comprend une zone de réservation de voie et un profil de voie, dans lequel le dispositif opérationnel (OP) présente une interface vers le dispositif d'évaluation des risques (MAXd).
  14. Système de sécurité des trains selon l'une des revendications 11 à 13, caractérisé en ce que comme dispositif de transmission, il s'agit d'une unité embarquée du train ou d'un dispositif côté voie.
  15. Système de sécurité des trains selon la revendication 14,
    caractérisé en ce que l'unité embarquée comprend un dispositif de détermination de position.
EP19193069.2A 2019-08-22 2019-08-22 Procédé de commande d'un train dans un système de protection des trains, système de protection des trains Active EP3782869B1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP19193069.2A EP3782869B1 (fr) 2019-08-22 2019-08-22 Procédé de commande d'un train dans un système de protection des trains, système de protection des trains
DK19193069.2T DK3782869T3 (da) 2019-08-22 2019-08-22 Fremgangsmåde til styring af et tog inden for et togsikringssystem samt togsikringssystem
ES19193069T ES2958734T3 (es) 2019-08-22 2019-08-22 Sistema de control de un tren y procedimiento para el control de un tren dentro de un sistema de control de trenes
PCT/EP2020/072897 WO2021032638A1 (fr) 2019-08-22 2020-08-14 Procédé de commande d'un train mis en œuvre à l'intérieur d'un système de commande de train, et système de commande de train
KR1020227008740A KR20220044842A (ko) 2019-08-22 2020-08-14 열차 제어 시스템 내에서 열차를 제어하는 방법, 및 열차 제어 시스템
CA3147820A CA3147820A1 (fr) 2019-08-22 2020-08-14 Procede de commande d'un train mis en ?uvre a l'interieur d'un systeme de commande de train, et systeme de commande de train
AU2020332749A AU2020332749A1 (en) 2019-08-22 2020-08-14 Method for controlling a train within a train control system, and train control system
IL289872A IL289872A (en) 2019-08-22 2022-01-16 A method for controlling a train within a train control system and a train control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19193069.2A EP3782869B1 (fr) 2019-08-22 2019-08-22 Procédé de commande d'un train dans un système de protection des trains, système de protection des trains

Publications (2)

Publication Number Publication Date
EP3782869A1 EP3782869A1 (fr) 2021-02-24
EP3782869B1 true EP3782869B1 (fr) 2023-07-12

Family

ID=67742162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19193069.2A Active EP3782869B1 (fr) 2019-08-22 2019-08-22 Procédé de commande d'un train dans un système de protection des trains, système de protection des trains

Country Status (8)

Country Link
EP (1) EP3782869B1 (fr)
KR (1) KR20220044842A (fr)
AU (1) AU2020332749A1 (fr)
CA (1) CA3147820A1 (fr)
DK (1) DK3782869T3 (fr)
ES (1) ES2958734T3 (fr)
IL (1) IL289872A (fr)
WO (1) WO2021032638A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4098508A1 (fr) * 2021-06-03 2022-12-07 Siemens Mobility AG Procédé d'accès optimisé à une section de destination par détermination dynamique de la vitesse de libération
CN114355941A (zh) * 2022-01-04 2022-04-15 北京石油化工学院 基于改进Stanley控制的车辆路径跟踪方法
CN115729210A (zh) * 2022-11-17 2023-03-03 华侨大学 基于通信的轨道交通列车控制系统危险分析方法及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140257659A1 (en) * 2013-03-11 2014-09-11 Honda Motor Co., Ltd. Real time risk assessments using risk functions
DE102016203695A1 (de) * 2016-03-07 2017-09-07 Siemens Aktiengesellschaft Bahntechnische Anlage und Verfahren zum Betreiben einer bahntechnischen Anlage
EP3323693A1 (fr) * 2016-11-21 2018-05-23 Siemens Schweiz AG Logique de sécurité de voies orientée train pour installations de sécurité ferroviaire

Also Published As

Publication number Publication date
EP3782869A1 (fr) 2021-02-24
KR20220044842A (ko) 2022-04-11
ES2958734T3 (es) 2024-02-14
AU2020332749A1 (en) 2022-03-10
IL289872A (en) 2022-03-01
WO2021032638A1 (fr) 2021-02-25
DK3782869T3 (da) 2023-10-02
CA3147820A1 (fr) 2021-02-25

Similar Documents

Publication Publication Date Title
DE19726542B4 (de) Verfahren zur Steuerung und Sicherung eines fahrplangebundenen Verkehrssystems
EP3782869B1 (fr) Procédé de commande d'un train dans un système de protection des trains, système de protection des trains
DE102014210190A1 (de) Fahrerlaubnis für ein Schienenfahrzeug
WO2018091186A1 (fr) Logique de sécurité des voies côté train pour installations de sécurité ferroviaire
EP2870047B1 (fr) Fonctionnement d'un véhicule ferroviaire
EP3782870B1 (fr) Procédé et poste de commande centrale destinés au fonctionnement d'une voie ferrée
EP1147966A1 (fr) Système de protection de train à base radio pour un réseau de voies de chemin de fer avec une pluralité de trains
EP3787950B1 (fr) Procédé et dispositif de détection de véhicules suivant un véhicule
DE102016217902A1 (de) Überwachung eines Schienenfahrzeugs
EP2619067B1 (fr) Procédé pour commander automatiquement une pluralité de véhicules guidés
EP4079600A1 (fr) Procédé d'évaluation optimisée d'affectation pour la délivrance d'un permis de conduire pour un véhicule ferroviaire / train pour un train circulant devant
EP2088051B1 (fr) Procédé et dispositif destinés au réglage sécurisé d'une voie de circulation pour un véhicule sur rail
EP3795451B1 (fr) Procédé de localisation d'un véhicule dans une station destinée à un arrêt du véhicule
EP3312073B1 (fr) Procédé de contrôle d'un système ferroviaire et système ferroviaire
EP3768567B1 (fr) Procédé pour préparer ou commander les déplacements d'une pluralité de véhicules dans un réseau de voies de circulation
DE112016002303T5 (de) Signalsicherheitssystem
WO2018210475A1 (fr) Procédé pour faire fonctionner une voie ferrée ainsi que poste d'aiguillage pour voie ferrée
EP4116170A1 (fr) Procédé permettant de faire fonctionner un système de commande des trains
DE102016217913A1 (de) Überwachung eines Schienenfahrzeugs
DE102016217905A1 (de) Überwachung eines Schienenfahrzeugs
WO2017045863A1 (fr) Dispositif de communication et procédé d'échange automatisé d'informations dans une installation technique ferroviaire
DE102016217900A1 (de) Überwachung eines Schienenfahrzeugs
EP4071028A1 (fr) Prévention d'une collision d'un véhicule ferroviaire à une intersection dans un systeme cbtc
EP4098509A1 (fr) Procédé d'accès optimisé à une section cible par détermination dynamique de la vitesse de libération
EP4331943A1 (fr) Réseau de transport et procédé de fonctionnement de véhicules ferroviaires dans un réseau de transport comprenant une combinaison de sections de voie avec et sans protection contre les trains

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200909

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAV Requested validation state of the european patent: fee paid

Extension state: TN

Effective date: 20210203

Extension state: MA

Effective date: 20210203

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20210203

Extension state: ME

Payment date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019008467

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B61L0003000000

Ipc: B61L0027160000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B61L0003000000

Ipc: B61L0027160000

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 3/00 20060101ALI20221207BHEP

Ipc: B61L 27/20 20220101ALI20221207BHEP

Ipc: B61L 27/16 20220101AFI20221207BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230201

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GTS DEUTSCHLAND GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008467

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230728

Year of fee payment: 5

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20230928

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230713

Year of fee payment: 5

Ref country code: ES

Payment date: 20230907

Year of fee payment: 5

Ref country code: CH

Payment date: 20230902

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230721

Year of fee payment: 5

Ref country code: DE

Payment date: 20230718

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231012

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231016

Year of fee payment: 5

Ref country code: DK

Payment date: 20231207

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230728

Year of fee payment: 5

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2958734

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019008467

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230822

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230822

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A