EP3780268B1 - Antennenvorrichtung und endgerät - Google Patents
Antennenvorrichtung und endgerät Download PDFInfo
- Publication number
- EP3780268B1 EP3780268B1 EP19804293.9A EP19804293A EP3780268B1 EP 3780268 B1 EP3780268 B1 EP 3780268B1 EP 19804293 A EP19804293 A EP 19804293A EP 3780268 B1 EP3780268 B1 EP 3780268B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- slot
- frequency band
- radiator
- ground plate
- electromagnetic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 103
- 238000004088 simulation Methods 0.000 description 91
- 230000005855 radiation Effects 0.000 description 51
- 238000004891 communication Methods 0.000 description 14
- 230000005404 monopole Effects 0.000 description 13
- 230000005684 electric field Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 230000007423 decrease Effects 0.000 description 6
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/36—Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/30—Resonant antennas with feed to end of elongated active element, e.g. unipole
- H01Q9/32—Vertical arrangement of element
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/32—Adaptation for use in or on road or rail vehicles
- H01Q1/325—Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
- H01Q1/3275—Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/48—Earthing means; Earth screens; Counterpoises
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/50—Structural association of antennas with earthing switches, lead-in devices or lightning protectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/02—Details
- H01Q19/021—Means for reducing undesirable effects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/378—Combination of fed elements with parasitic elements
- H01Q5/392—Combination of fed elements with parasitic elements the parasitic elements having dual-band or multi-band characteristics
Definitions
- the present disclosure relates to the field of communications antenna technologies, and in particular, to an antenna apparatus and a terminal.
- a horizontal plane gain index of an antenna is a main index for measuring a vehicle-mounted antenna.
- a maximum radiation direction of the antenna is on a floor plane (referred to as a horizontal plane below).
- the size of the floor cannot be infinite, therefore the maximum radiation direction of the antenna is tilted, and a gain on the horizontal plane is worse than that on the infinite floor.
- US2014/071013 relates to multiband monopole antenna apparatus with ground plane aperture.
- WO 2017/096420 relates to an antenna.
- US 2005/206573 relates to array antenna capable of controlling antenna characteristic.
- EP1562259 relates to radio communication apparatus.
- US6188366 relates to monopole antenna.
- Implementations of this application provide an antenna apparatus, to improve a radiation pattern of an antenna and increase a horizontal plane gain.
- an implementation of this application provides an antenna apparatus, including a ground plate, a radiator, and a signal source, where the radiator is disposed on the ground plate, the signal source is configured to feed an electromagnetic wave signal of a first frequency band into the radiator, a first slot and a second slot are disposed on the ground plate, both the first slot and the second slot are closed slots and surround the radiator, and the first slot and the second slot are used to restrain current distribution on the ground plate, so that a current generated by the electromagnetic wave signal of the first frequency band is confined in and around the first slot and the second slot.
- the first slot and the second slot surrounding the radiator are disposed to prevent a current from flowing to an edge of the ground plate, and the current is confined in and around the first slot and the second slot, to change a radiation pattern of the radiator, so that a maximum radiation direction of the radiator moves towards a horizontal plane. This improves a horizontal plane gain of the radiator.
- the first slot and the second slot are symmetrically disposed by using a joint between the radiator and the ground plate as a center.
- the first slot and the second slot that are symmetrically centered may enable that current distribution almost the same is generated on the ground plate around the radiator, so that shapes of radiation patterns of an antenna in all directions around the radiator are almost the same.
- a radial distance from the radiator to the first slot ranges from 0.2x ⁇ 1 to 0.3x ⁇ 1 , and ⁇ 1 is a wavelength of the electromagnetic wave signal of the first frequency band.
- the distance between the first slot and the radiator is set to 0.2x ⁇ 1 to 0.3x ⁇ 1 , and a current flows from the radiator to the first slot.
- the current flows through the distance of 02x ⁇ 1 to 0.3x ⁇ 1 , the current is relatively weak, an electric field is relatively strong, resonance is generated, and the current is confined in and around the first slot, so that resonance is generated at the first slot after a current of the electromagnetic wave signal of the first frequency band flows through the path, and the current is confined in and around the first slot.
- the first slot is arc shaped, a distance between an inner side of the first slot and a center of the radiator is a first radius, and the first radius is 0.25x ⁇ 1 .
- the first radius is 0.25x ⁇ 1 , so that resonance can be generated at the first slot after the current of the electromagnetic wave signal of the first frequency band flows through the path. Because at 0.25x ⁇ 1 , the current is the smallest, the electric field is the strongest, and a resonance effect is the best, the current is confined in and around the first slot.
- a length of the first slot extending in a circumference direction is a first electrical length, and the first electrical length is 0.5x ⁇ 1 .
- the first electrical length is set to 0.5x ⁇ 1 , so that resonance is generated at the first slot when the current of the electromagnetic wave signal of the first frequency band flows to the first slot.
- a length of the first slot in a radial direction is a first width, the first width is 0.05x ⁇ 1 , and the first frequency band is 5.9 GHz.
- the first width is set to 0.05x ⁇ 1 , to obtain the first frequency band 5.9 GHz meeting an operating frequency band range of the antenna.
- the signal source is further configured to feed an electromagnetic wave signal of a second frequency band into the radiator, the second frequency band is lower than the first frequency band
- the antenna apparatus further includes a third slot and a fourth slot that are located on peripheries of the first slot and the second slot, both the third slot and the fourth slot are closed slots, and the third slot and the fourth slot are used to restrain current distribution on the ground plate, so that a current generated by the electromagnetic wave signal of the second frequency band is confined in and around the third slot and the fourth slot.
- the signal source feeds the electromagnetic wave signal of the second frequency band, so that the antenna apparatus may be further configured to radiate the electromagnetic wave signal of the second frequency band, and the antenna apparatus may be used for a multi-frequency terminal.
- the current generated by the electromagnetic wave signal of the second frequency band is confined to the third slot and the fourth slot, so that a horizontal plane gain of the electromagnetic wave signal of the second frequency band can be improved.
- the third slot and the fourth slot are symmetrically disposed by using the joint between the radiator and the ground plate as the center.
- the third slot and the fourth slot that are symmetrically centered may enable that current distribution almost the same is generated on the ground plate around the radiator, so that the shapes of the radiation patterns of the antenna in all the directions around the radiator are almost the same.
- a radial distance from the radiator to the third slot ranges from 0.2x ⁇ 2 to 0.3x ⁇ 2 , and ⁇ 2 is a wavelength of the electromagnetic wave signal of the second frequency band.
- the distance between the third slot and the radiator is set to 0.2x ⁇ 2 to 0.3x ⁇ 2 , and a current flows from the radiator to the third slot.
- the current When flowing through the distance of 0.2x ⁇ 2 to 0.3x ⁇ 2 , the current is relatively weak, an electric field is relatively strong, resonance is generated, and the current is confined in and around the third slot, so that resonance is generated at the third slot after a current of the electromagnetic wave signal of the second frequency band flows through the path, and the current is confined in and around the third slot.
- the third slot is arc shaped, a distance between an inner side of the third slot and the center of the radiator is a second radius, and the second radius is 0.25x ⁇ 2 .
- the second radius is 0.25x ⁇ 2 , so that resonance can be generated at the third slot after the current of the electromagnetic wave signal of the second frequency band flows through the path. Because at 0.25x ⁇ 2 , the current is the smallest, the electric field is the strongest, and a resonance effect is the best, the current is confined in and around the third slot.
- a length of the third slot extending in the circumference direction is a second electrical length, and the second electrical length is 0.5x ⁇ 2 .
- the second electrical length is set to 0.5x ⁇ 2 . so that resonance is generated at the third slot when the current of the electromagnetic wave signal of the second frequency band flows to the third slot.
- a length of the third slot in the radial direction is a second width, the second width is equal to the first width, and the second frequency band is 2.45 GHz.
- the first width and the second width are set to be the same, to obtain the second frequency band 2.45 GHz meeting the operating frequency band range of the antenna.
- an implementation of this application provides an antenna apparatus, including a ground plate, a radiator, a signal source, a first filter, and a second filter, where the radiator is disposed on the ground plate, the signal source is configured to feed electromagnetic wave signals of a first frequency band and a second frequency band into the radiator, and the second frequency band is lower than the first frequency band, a third slot and a fourth slot are disposed on the ground plate, both the third slot and the fourth slot are closed slots and surround the radiator, the first filter is disposed in the third slot and divides the third slot into two slots, the second filter is disposed in the fourth slot and divides the fourth slot into two slots, and the first filter and the second filter enable the third slot and the fourth slot to each form two different electrical lengths, so that currents generated by the electromagnetic wave signals of the first frequency band and the second frequency band can be confined in and around the third slot and the fourth slot.
- the third slot and the fourth slot surrounding the radiator are disposed to prevent the current from flowing to an edge of the ground plate.
- the first filter and the second filter are disposed, so that two different electrical lengths are generated in the third slot and two different electrical lengths are generated in the fourth slot. Therefore, the radiator generates resonance in two modalities the first frequency band and the second frequency band, to meet a multi-frequency communication requirement.
- horizontal plane gains of the electromagnetic wave signals of the first frequency band and the second frequency band are increased.
- Both the first filter and the second filter are band-pass filters in which an inductor and a capacitor are connected in series, and are configured to enable the current generated by the electromagnetic wave signal of the second frequency band to pass and block the current generated by the electromagnetic wave signal of the first frequency band, so that an electrical length of the electromagnetic wave signal of the second frequency band is greater than an electrical length of the electromagnetic wave signal of the first frequency band.
- the first filter and the second filter are disposed as the band-pass filters, so that two electrical lengths are generated in the third slot, two electrical lengths are generated in the fourth slot, the entire third slot is the electrical length of the second frequency band with a lower frequency, and a part of the third slot is the electrical length of the first frequency band with a higher frequency.
- the other part is not used to confine the electromagnetic wave signal of the first frequency band because no current flows through the other part due to a blocking effect of the first filter.
- a specific location of the first filter disposed in the third slot and a specific location of the second filter disposed in the fourth slot are related to a wavelength ⁇ 1 of the electromagnetic wave signal of the first frequency band.
- the first filter is disposed at 0.5x ⁇ 1 away from an endpoint of the third slot
- the second filter is disposed at 0.5x ⁇ 1 away from an endpoint of the fourth slot.
- 0.5x ⁇ 1 is a first electrical length of the electromagnetic wave signal of the first frequency band
- 0.5x ⁇ 2 is a second electrical length of the electromagnetic wave signal of the second frequency band, where ⁇ 1 is the wavelength of the electromagnetic wave signal of the first frequency band, and ⁇ 2 is a wavelength of the electromagnetic wave signal of the second frequency band.
- the third slot and the fourth slot are symmetrically disposed by using a joint between the radiator and the ground plate as a center.
- the third slot and the fourth slot that are symmetrically centered may enable that current distribution almost the same is generated on the ground plate around the radiator, so that shapes of radiation patterns of an antenna in all directions around the radiator are almost the same.
- a radial distance from the radiator to the third slot ranges from 0.2x ⁇ 2 to 0.3x ⁇ 2 , and ⁇ 2 is the wavelength of the electromagnetic wave signal of the second frequency band.
- the distance between the third slot and the radiator is set to 0.2x ⁇ 2 to 0.3x ⁇ 2 , and a current flows from the radiator to the third slot.
- the current When flowing through the distance of 0.2x ⁇ 2 to 0.3x ⁇ 2 , the current is relatively weak, an electric field is relatively strong, resonance is generated, and the current is confined in and around the third slot, so that resonance is generated at the third slot after the currents of the electromagnetic wave signals of the first frequency band and the second frequency band flow through the path, and the current is confined in and around the third slot.
- the third slot is arc shaped, a distance between an inner side of the third slot and a center of the radiator is a first radius, and the first radius is 0.25x ⁇ 2 .
- the first radius is 0.25x ⁇ 2 , so that resonance can be generated at the third slot after the current of the electromagnetic wave signal of the first frequency band flows through the path. Because at 0.25x ⁇ 2 , the current is the smallest, the electric field is the strongest, and a resonance effect is the best, the current is confined in and around the third slot.
- a length of the third slot extending in a circumference direction is a first electrical length, and the first electrical length is 0.5x ⁇ 2 .
- the first electrical length is set to 0.5x ⁇ 2 , so that resonance is generated at the third slot when the current of the electromagnetic wave signal of the second frequency band flows to the third slot.
- a length of the third slot in a radial direction is a first width
- the first width is 0.05x ⁇ 1
- ⁇ 1 is the wavelength of the electromagnetic wave signal of the first frequency band
- the first frequency band is 5.9 GHz
- the second frequency band is 2.45 GHz.
- the first width is set to 0.05x ⁇ 1 , to obtain the first frequency band 5.9 GHz and the second frequency band 2.45 GHz meeting an operating frequency band range of the antenna.
- an implementation of this application provides a terminal, including a PCB board and the antenna apparatus, where the radiator of the antenna apparatus is disposed on the PCB board, the ground plate is a part of the PCB board, the signal source configured for feeding is disposed on the PCB board, and the signal source feeds power to the radiator.
- the terminal may be a mobile transportation vehicle such as a car or an airplane.
- a horizontal plane gain of an antenna apparatus of the terminal is improved, so that a wireless communication effect of the terminal is better.
- the terminal is a car.
- the antenna apparatus of the terminal may be a vehicle-mounted external antenna or a vehicle-mounted T-Box, and the antenna apparatus of the terminal may be disposed at a location such as the top of the car or an engine cover.
- the terminal includes a PCB board and the antenna apparatus provided in this implementation of this application.
- a radiator 20 of the antenna apparatus is connected to the PCB board, the ground plate 10 is a part of the PCB board, a signal source configured for feeding is disposed on the PCB board, and the signal source feeds power to the radiator 20.
- the radiation pattern of the radiator 20 on the PCB board 10 is tilted, causing a decrease in a horizontal plane gain.
- the radiation pattern of the radiator 20 may be pulled down by disposing a slot on the PCB board 10. In this way, a maximum radiation direction of the radiator 20 is close to a horizontal plane. This increases a horizontal plane gain of an antenna and improves a wireless communication effect of the terminal.
- an implementation of this application provides an antenna apparatus, including a ground plate 10, a radiator 20, and a signal source 30.
- the radiator 20 is disposed on the ground plate 10, and the signal source 30 is configured to feed an electromagnetic wave signal of a first frequency band into the radiator 20.
- the antenna apparatus may further include a matching circuit 40, where the matching circuit 40 is electrically connected between the radiator 20 and the signal source 30, and is configured to adjust a resonance state of the radiator 20.
- a first slot 11 and a second slot 12 are disposed on the ground plate 10, both the first slot 11 and the second slot 12 are closed slots and surround the radiator 20, and the first slot 11 and the second slot 12 are configured to restrain current distribution on the ground plate 10, so that a current generated by the electromagnetic wave signal of the first frequency band is confined in and around the first slot 11 and the second slot 12.
- the first slot 11 and the second slot 12 surrounding the radiator 20 are disposed to prevent a current from flowing to an edge of the ground plate 10, and the current is confined in and around the first slot 11 and the second slot 12, to change a radiation pattern of the radiator 20, so that a maximum radiation direction of the radiator 20 moves towards a horizontal plane. This improves a horizontal plane gain of the radiator 20.
- the ground plate 10 may be a PCB board, a copper-clad surface is disposed on the PCB board, and the radiator 20 is connected to the copper-clad surface to implement grounding.
- a size of the ground plate 10 may be set to be much greater than a size of the radiator 20, so that the ground plate 10 simulates an infinite ground as much as possible. This facilitates antenna design by referring to an antenna radiation theory of the infinite ground, and a difference between the ground plate 10 and the infinite ground is relatively small.
- the ground plate 10 may be in any shape such as a circle, a square, or a triangle, provided that a conductive surface that is approximately a plane can be provided as a horizontal plane of the ground plate 10.
- Both the first slot 11 and the second slot 12 disposed on the ground plate 10 are closed slots.
- the first slot 11 and the second slot 12 do not intersect, and are not connected to the edge of the ground plate 10, but are located in a middle part of the ground plate 10.
- both the first slot 11 and the second slot 12 are disposed around a center point of the ground plate 10.
- first slot 11 and the second slot 12 are disposed around the radiator 20 on the ground plate 10
- first slot 11 is disposed around one side of the radiator 20
- second slot 12 is disposed around another side of the radiator 20 opposite to the first slot 11
- an angle formed by connection lines connecting the radiator 20 and two ends of each of the first slot 11 and the second slot 12 is less than 180°.
- the first slot 11 and the second slot 12 are nested structures, the first slot 11 is located on an inner side of the second slot 12, that is, an included angle between connection lines connecting the radiator 20 and the two ends of the first slot 11 is greater than 180°, the second slot 12 is located on a side towards which an opening of the first slot 11 faces and does not overlap the first slot 11, and at least a part of the second slot 12 and at least a part of the first slot 11 are in a same direction radiating from the radiator 20.
- the ground plate 10 is enabled to have at least a partially connected area within and outside a slot area, to provide a support structure for the radiator 20.
- a current on the radiator 20 can flow from an inner part the slot area to an inner area of the first slot 11 and the second slot 12 and a surrounding area outside the slot area.
- the first slot 11 and the second slot 12 are in an arc shape.
- the first slot 11 and the second slot 12 are in a wave shape, a rectangle (that is, the first slot 11 and the second slot 12 each have a straight line segment and a corner, so that the two are combined to form the rectangle), a sawtooth shape, or the like.
- the first slot 11 and the second slot 12 need to be disposed around the radiator 20, and therefore the shapes of the first slot 11 and the second slot 12 cannot be two straight lines.
- the first slot 11 and the second slot 12 may be disposed by using a machining technology. Through grooves penetrating through an upper surface and a lower surface of the ground plate 10 are dug in the ground plate 10, to form the first slot 11 and the second slot 12.
- the radiator 20 may be an antenna structure such as a monopole antenna, an inverted F antenna (IFA), or a loop antenna.
- the radiator 20 may be vertical to the ground plate 10.
- a main body of the radiator 20 is a standing structure, and is not attached to a surface of the ground plate 10, and an extension direction of the main body of the radiator 20 may be perpendicular to a plane (that is, a ground or a horizontal plane) on which the ground plate 10 is located, or may have a relatively small tilt angle.
- an included angle between the extension direction of the radiator 20 and the plane on which the ground plate 10 is located ranges from 45° to 90°.
- an area occupied by a connection point between the radiator 20 and the ground plate 10 is the smallest, and the radiator 20 extends in a direction away from the ground plate 10, to simulate a radiation characteristic of the antenna in an ideal state (that is, on the infinite ground) as much as possible to obtain an approximate antenna radiation pattern.
- the first slot 11 and the second slot 12 are symmetrically disposed by using a joint between the radiator 20 and the ground plate 10 as a center.
- the first slot 11 and the second slot 12 that are centrally symmetric may enable current distribution on the ground plate 10 around the radiator 20 to be almost the same, so that shapes of radiation patterns of the antenna in all directions around the radiator 20 are almost the same.
- a radial distance from the radiator 20 to the first slot 11 ranges from 0.2x ⁇ 1 to 0.3x ⁇ 1 , and ⁇ 1 is a wavelength of the electromagnetic wave signal of the first frequency band.
- the distance between the first slot 11 and the radiator 20 is set to 0.2x ⁇ 1 to 0.3x ⁇ 1 , and a current flows from the radiator 20 to the first slot 11.
- the current flows through the distance of 0.2x ⁇ 1 to 0.3x ⁇ 1 , the current is relatively weak, an electric field is relatively strong, resonance is generated, and the current is confined in and around the first slot 11, so that resonance is generated at the first slot 11 after the current of the electromagnetic wave signal of the first frequency band flows through the path, and the current is confined in and around the first slot 11.
- the first slot 11 is arc shaped, a distance between an inner side of the first slot 11 and a center of the radiator 20 is a first radius R1, and the first radius R1 is 0.25x ⁇ 1 , The first radius R1 is 0.25x ⁇ 1 , so that resonance can be generated at the first slot 11 after the current of the electromagnetic wave signal of the first frequency band flows through the path. Because at 0.25x ⁇ 1 , the current is the smallest, the electric field is the strongest, and a resonance effect is the best, the current is confined in and around the first slot 11.
- a length of the first slot 11 extending in a circumference direction is a first electrical length, and the first electrical length is 0.5x ⁇ 1 .
- the first electrical length is set to 0.5x ⁇ 1 , so that resonance is generated at the first slot 11 when the current of the electromagnetic wave signal of the first frequency band flows to the first slot 11.
- a length of the first slot 11 in a radial direction is a first width W1, the first width W1 is 0.05x ⁇ 1 , and the first frequency band is 5.9 GHz.
- the first width W1 is set to 0.05x ⁇ 1 , to obtain the first frequency band 5.9 GHz meeting an operating frequency band range of the antenna.
- frequency bands preferred in various application scenarios. Some of these frequency bands are included in standards and are mandatory for use, and relevant qualifications and applications are required to obtain the right to use the relevant frequency bands. Some of these frequency bands are industry practices. For example, frequency bands used by a smartphone are a low frequency, an intermediate frequency, and a high frequency, and there is an upper limit and a lower limit of each frequency band. An antenna of the smartphone needs to work in these frequency bands. Likewise, a vehicle-mounted antenna also has a dedicated operating frequency band. In conclusion, when the structure of the antenna apparatus is designed, it needs to be ensured that the antenna works within a specified frequency band range. In this implementation, the first frequency band is within the specified frequency band range.
- the frequency 5.9 GHz is a common communication frequency
- the frequency 5.9 GHz obtained through the foregoing settings is within a preferred frequency band range of the vehicle-mounted antenna, so that a relatively good wireless communication effect can be implemented.
- Structures of the first slot 11 and the second slot 12 need to be disposed to obtain the first frequency band. More specifically, sizes of the first slot 11 and the second slot 12 need to be limited, and the sizes are related to the wavelength ⁇ 1 of the electromagnetic wave signal that is of the first frequency band and that is fed into the radiator 20. Therefore, when resonance of the first frequency band is achieved, different sizes of the first slot 11 and the second slot 12 may be obtained based on different ⁇ 1 , to meet arrangement requirements of antenna apparatuses of various terminals.
- the radiator 20 preferably uses a monopole antenna, and a height of the radiator 20 is preferably 0.25x ⁇ 1 .
- the monopole antenna has a dual feature. In an ideal state (that is, the ground plane is an infinite plane), a maximum radiation direction of the monopole antenna is a horizontal plane. However, when the monopole antenna is applied to a terminal, a size of the ground plane 10 cannot be infinite. Therefore, the first slot 11 and the second slot 12 are disposed to change a directivity pattern of the antenna.
- a height of the radiator 20 is 0.25x ⁇ 1
- the first radius R1 ranges from 0.2x ⁇ 1 to 0.3x ⁇ 1 , and is preferably 0.25x ⁇ 1 .
- a total length of a path through which the current flows on the radiator 20 and the ground plate 10 is 0.5x ⁇ 1 .
- the radiation pattern of the antenna is the closest to a radiation form of a dipole antenna, and a horizontal plane gain obtained is the highest.
- the first electrical length of the first slot 11 is set to 0.5x ⁇ 1 , and the signal source 30 feeds power to the radiator 20 and feeds power to the first slot 11, so that a resonance modal excited in the first slot 11 is the same as that of the radiator 20.
- the resonance is generated at the first slot 11, and the current no longer flows further.
- the structure in this implementation changes current distribution on the ground plate 10, so that the maximum radiation direction of the antenna moves towards the horizontal plane. This improves the horizontal plane gain.
- the ground plate 10 is a circle, a radius R ground of the ground plate 10 is 65 mm, the radiator 20 is a monopole antenna, a height H of the radiator 20 is 10 mm, a first radius R1 is 10 mm, a first electrical length is 20 mm, and a first width W1 is 2 mm.
- the antenna apparatus is simulated, and for a simulation result, refer to subsequent descriptions.
- FIG. 2c a diagram of an antenna return loss S11 shows that when there is no slot, no clear resonance point is included in an antenna return loss curve (shown by a dashed line), but in an antenna return loss curve (shown by a solid line) after the first slot 11 and the second slot 12 are disposed, it can be clearly seen that a resonance frequency is near a 6 GHz location, and the resonance is the first frequency band needed to be obtained in this implementation.
- An emulation result is basically the same as an expected resonance point 5.9 GHz. In this way, the antenna apparatus is designed.
- a left figure is a current distribution diagram when there is no slot
- a right figure is a current distribution diagram after a slot is disposed.
- current distribution on the ground plate 10 extends to an edge of the plate.
- most current on the ground plate is "confined” in and around the slot, a current outside the slot is relatively weak, and the slot changes the current distribution on the ground plate 10. This changes a directivity pattern and a horizontal plane gain of an antenna.
- FIG. 2e-1 is a top view of a simulation directivity diagram
- FIG. 2e-2 is a side view of the simulation directivity diagram
- FIG. 2e-3 is a side view of the simulation directivity diagram (vertical to a view angle of FIG. 2e-2 ).
- a maximum radiation direction of an antenna is tilted. Therefore, the maximum radiation direction deviates from a horizontal plane relatively far and a horizontal plane gain decreases.
- FIG. 2f-1 is a top view of a simulation directivity diagram
- FIG. 2f-2 is a side view of the simulation directivity diagram
- FIG. 2f-3 is a side view of the simulation directivity diagram (vertical to a view angle of FIG. 2f-2 ).
- connection line of dots of an inner circle in the figure is a horizontal plane gain when there is no slot
- a connection line of dots of an outer circle in the figure is a horizontal plane gain after a slot is disposed. It can be seen that the horizontal plane gain is increased by more than 2 dB after the slot is disposed.
- a signal source 30 and a matching circuit 40 are omitted in the figure. Similar to the foregoing implementation, a difference lies in that the signal source 30 is further configured to feed an electromagnetic wave signal of a second frequency band into the radiator 20, where the second frequency band is lower than the first frequency band, the antenna apparatus further includes a third slot 13 and a fourth slot 14 that are located on peripheries of the first slot 11 and the second slot 12, both the third slot 13 and the fourth slot 14 are closed slots, and the third slot 13 and the fourth slot 14 are used to restrain current distribution on the ground plate 10, so that a current generated by the electromagnetic wave signal of the second frequency band is confined in and around the third slot 13 and the fourth slot 14.
- the signal source 30 feeds the electromagnetic wave signal of the second frequency band, so that the antenna apparatus may be further configured to radiate the electromagnetic wave signal of the second frequency band, and the antenna apparatus may be used for a multi-frequency terminal.
- the current generated by the electromagnetic wave signal of the second frequency band is confined to the third slot 13 and the fourth slot 14, so that a horizontal plane gain of the electromagnetic wave signal of the second frequency band can be improved.
- both the first frequency band and the second frequency band are within specified frequency band ranges, and the specified frequency bands are two frequency ranges with different ranges, and the two frequency ranges do not overlap.
- the third slot 13 and the fourth slot 14 are symmetrically disposed by using a joint between the radiator 20 and the ground plate 10 as a center.
- the third slot 13 and the fourth slot 14 that are symmetrically centered may enable that current distribution almost the same is generated on the ground plate 10 around the radiator 20, so that shapes of radiation patterns of an antenna in all directions around the radiator 20 are almost the same.
- a radial distance from the radiator 20 to the third slot 13 ranges from 0.2x ⁇ 2 to 0.3x ⁇ 2 , and ⁇ 2 is a wavelength of the electromagnetic wave signal of the second frequency band.
- the distance between the third slot 13 and the radiator 20 is set to 0.2x ⁇ 2 to 0.3x ⁇ 2 , and a current flows from the radiator 20 to the third slot 13.
- the current When flowing through the distance of 0.2x ⁇ 2 to 0.3x ⁇ 2 , the current is relatively weak, an electric field is relatively strong, resonance is generated, and the current is confined in and around the third slot 13, so that resonance is generated at the third slot 13 after the current of the electromagnetic wave signal of the second frequency band flows through the path, and the current is confined in and around the third slot 13.
- the third slot 13 is arc shaped, a distance between an inner side of the third slot 13 and a center of the radiator 20 is a second radius R2, and the second radius R2 is 0.25x ⁇ 2 .
- the second radius R2 is 0.25x ⁇ 2 , so that resonance can be generated at the third slot 13 after the current of the electromagnetic wave signal of the second frequency band flows through the path. Because at 0.25x ⁇ 2 , the current is the smallest, the electric field is the strongest, and a resonance effect is the best, the current is confined in and around the third slot 13.
- a length of the third slot 13 extending in the circumference direction is a second electrical length, and the second electrical length is 0.5x ⁇ 2 .
- the second electrical length is set to 0.5x ⁇ 2 , so that resonance is generated at the third slot 13 when the current of the electromagnetic wave signal of the second frequency band flows to the third slot 13.
- a length of the third slot 13 in the radial direction is a second width W2, the second width W2 is equal to the first width W1, and the second frequency band is 2.45 GHz.
- the first width W1 and the second width W2 are set to be the same, to obtain the second frequency band 2.45 GHz meeting the operating frequency band range of the antenna.
- the frequency 2.45GHz is a common communication frequency, and the frequency 2.45GHz obtained through the foregoing settings is within a preferred frequency band range of the vehicle-mounted antenna, so that a relatively good wireless communication effect can be implemented.
- the radiator 20 preferably uses a monopole antenna, and a height of the radiator 20 is preferably 0.25x ⁇ 2 .
- Sizes of the first slot 11, the second slot 12, the third slot 13, and the fourth slot 14 are limited, and the sizes are set to be related to the wavelength ⁇ 1 of the electromagnetic wave signal of the first frequency band and the wavelength ⁇ 2 of the electromagnetic wave signal of the second frequency band that are fed into the radiator 20. Therefore, the first slot 11 and the second slot 12 are used to generate resonance of the electromagnetic wave signal of the first frequency band, and the third slot 13 and the fourth slot 14 are used to generate resonance of the electromagnetic wave signal of the second frequency band.
- Different sizes of the radiator 20, the first slot 11, the second slot 12, the third slot 13, and the fourth slot 14 may be obtained based on different ⁇ to meet arrangement requirements of antenna apparatuses of various terminals.
- the ground plate 10 is a circle, a radius R ground of the ground plate 10 is 100 mm, the radiator 20 is a monopole antenna, a height H of the radiator 20 is 20 mm, a first radius R1 is 8 mm, and a first electrical length is 20 mm, a first width W1 and a second width W2 are 2 mm, a second radius R2 is 20 mm, and a second electrical length is 40 mm.
- the antenna apparatus is simulated, and for a simulation result, refer to subsequent descriptions.
- a diagram of an antenna return loss S11 shows resonance points in an antenna return loss curve (shown by a solid line) when there is no slot, however, in an antenna return loss curve (shown by a dashed line) after the first slot 11, the second slot 12, the third slot 13, and the fourth slot 14 are disposed, it can be clearly seen that two resonance points are generated near locations of 2.5 GHz and 5.9 GHz.
- the resonance point near 2.5 GHz is the first frequency band expected to be obtained in this implementation
- the resonance point near 5.9 GHz is the second frequency band expected to be obtained in this implementation.
- An emulation result is basically the same as preset resonance points of 2.45 GHz and 5.9 GHz. In this way, the antenna apparatus is designed. It should be noted that resonance near a 4.5 GHz location is further generated, the resonance is generated by resonance of the first slot 11 and the second slot 12, and is different from a purpose of this implementation and may be ignored.
- a left figure is a current distribution diagram in a 2.45 GHz modal when there is no slot
- a right figure is a current distribution diagram in a 5.9 GHz modal when there is no slot. It can be seen that, when there is no slot, current distribution on the ground plate 10 extends to an edge of the plate.
- a left figure is a current distribution diagram in a 2.45 GHz modal after a slot is disposed
- a right figure is a current distribution diagram in a 5.9 GHz modal after a slot is disposed. It can be seen that most currents on the ground plate 10 are "confined” in and around the slot, a current outside the slot is relatively weak, the slot changes current distribution on the ground plate 10, and further changes a directivity pattern and a horizontal plane gain of the antenna.
- FIG. 3f-1 is a top view of a simulation directivity diagram
- FIG. 3f-2 is a side view of the simulation directivity diagram
- FIG. 3f-3 is a side view of the simulation directivity diagram (vertical to a view angle of FIG. 3f-2 ).
- a maximum radiation direction in a 2.45 GHz modal is tilted. Therefore, the maximum radiation direction deviates from a horizontal plane relatively far and a horizontal plane gain decreases.
- FIG. 3g-1 is a top view of a simulation directivity diagram
- FIG. 3g-2 is a side view of the simulation directivity diagram
- FIG. 3g-3 is a side view of the simulation directivity diagram (vertical to a view angle of FIG. 3g-2 ).
- a maximum radiation direction in a 5.9 GHz modal is tilted. Therefore, the maximum radiation direction deviates from a horizontal plane relatively far and a horizontal plane gain decreases.
- FIG. 3h-1 is a top view of a simulation directivity diagram
- FIG. 3h-2 is a side view of the simulation directivity diagram
- FIG. 3h-3 is a side view of the simulation directivity diagram (vertical to a view angle of FIG. 3h-2 ).
- a change of current distribution on the ground plate 10 brings a change of a radiation pattern of an antenna in a 2.45 GHz modal, and the radiation pattern of the antenna is pulled down, so that a degree of deviation of a maximum radiation direction of the antenna from a horizontal plane is reduced, and the maximum radiation direction of the antenna is closer to the horizontal plane. This increases a horizontal plane gain.
- FIG. 3i-1 is a top view of a simulation directivity diagram
- FIG. 3i-2 is a side view of the simulation directivity diagram
- FIG. 3i-3 is a side view of the simulation directivity diagram (vertical to a view angle of FIG. 3i-2 ).
- a change of current distribution on the ground plate 10 brings a change of a radiation pattern of an antenna in a 5.9 GHz modal, and the radiation pattern of the antenna is pulled down, so that a degree of deviation of a maximum radiation direction of the antenna from a horizontal plane is reduced, and the maximum radiation direction of the antenna is closer to the horizontal plane. This increases a horizontal plane gain.
- a connection line between dots of an inner circle indicates a horizontal plane gain in a 2.45 GHz modal when there is no slot
- a connection line between dots of an outer circle indicates a horizontal plane gain in the 2.45 GHz modal after a slot is disposed
- a solid line of an inner circle indicates a horizontal plane gain in a 5.9 GHz modal when there is no slot
- a dashed line of an outer circle indicates a horizontal plane gain in the 5.9 GHz modal after a slot is disposed. It can be seen that the horizontal plane gain in each of the two modalities is increased by more than 2 dB after the slot is disposed.
- an antenna apparatus including a ground plate 10, a radiator 20, and a signal source 30, where the radiator 20 is disposed on the ground plate 10.
- the antenna apparatus may further include a matching circuit 40, where the matching circuit 40 is electrically connected between the radiator 20 and the signal source 30, and is configured to adjust a resonance state of the radiator 20.
- the signal source 30 is configured to feed electromagnetic wave signals of a first frequency band and a second frequency band into the radiator 20, where the second frequency band is lower than the first frequency band, a third slot 13 and a fourth slot 14 are disposed on the ground plate 10, and both the third slot 13 and the fourth slot 14 are closed slots and surround the radiator 20.
- the antenna apparatus further includes a first filter 131 and a second filter 141, where the first filter 131 is disposed in the third slot 13 and divides the third slot 13 into two slots, the second filter 141 is disposed in the fourth slot 14 and divides the fourth slot 14 into two slots, and the first filter 131 and the second filter 141 enable the third slot 13 and the fourth slot 14 to each form two different electrical lengths, so that currents generated by the electromagnetic wave signals of the first frequency band and the second frequency band can be confined in and around the third slot 13 and the fourth slot 14.
- the third slot 13 and the fourth slot 14 surrounding the radiator 20 are disposed to prevent the current from flowing to an edge of the ground plate 10.
- the first filter 131 and the second filter 141 are disposed, so that two different electrical lengths are generated in the third slot 13 and two different electrical lengths are generated in the fourth slot 14. Therefore, the radiator 20 generates resonance in two modalities of the first frequency band and the second frequency band, to meet a multi-frequency communication requirement.
- horizontal plane gains of the electromagnetic wave signals of the first frequency band and the second frequency band are increased.
- the complete third slot 13 and the complete fourth slot 14 are used to confine the current generated by the electromagnetic wave signal of the second frequency band, and the first filter 131 and the second filter 141 are added, so that the current generated by the electromagnetic wave signal of the first frequency band can be also restrained by the antenna apparatus, and is confined to a part of the third slot 13 and a part of the fourth slot 14.
- the third slot 13 and the fourth slot 14 in this implementation are basically the same as those in the implementation shown in FIG. 3a and FIG. 3b . This is equivalent to canceling the first slot 11 and the second slot 12 in FIG. 3a and FIG. 3b , and the first filter 131 and the second filter 141 are added to the third slot 13 and the fourth slot 14.
- Both the first filter 131 and the second filter 141 are band-pass filters in which an inductor and a capacitor are connected in series, and are configured to enable the current generated by the electromagnetic wave signal of the second frequency band to pass and block the current generated by the electromagnetic wave signal of the first frequency band, so that an electrical length of the electromagnetic wave signal of the second frequency band is greater than an electrical length of the electromagnetic wave signal of the first frequency band.
- the first filter 131 and the second filter 141 are disposed as the band-pass filters, so that the two electrical lengths are generated in the third slot 13, the two electrical lengths are generated in the fourth slot 14, the entire third slot 13 is the electrical length of the second frequency band with a lower frequency, and a part of the third slot 13 is the electrical length of the first frequency band with a higher frequency.
- the other part is not used to confine the electromagnetic wave signal of the first frequency band because no current flows through the other part due to a blocking effect of the first filter 131.
- the fourth slot 14 is similar to this, and details are not described.
- a specific location of the first filter 131 disposed in the third slot 13 and a specific location of the second filter 141 disposed in the fourth slot 14 are related to a wavelength ⁇ 1 of the electromagnetic wave signal of the first frequency band.
- the first filter 131 is disposed at 0.5x ⁇ 1 away from an endpoint of the third slot 13
- the second filter 141 is disposed at 0.5x ⁇ 1 away from an endpoint of the fourth slot 14.
- 0.5x ⁇ 1 is the first electrical length of the electromagnetic wave signal of the first frequency band
- 0.5x ⁇ 2 is the second electrical length of the electromagnetic wave signal of the second frequency band, where ⁇ 1 is the wavelength of the electromagnetic wave signal of the first frequency band, and ⁇ 2 is the wavelength of the electromagnetic wave signal of the second frequency band.
- the third slot 13 and the fourth slot 14 are symmetrically disposed by using a joint between the radiator 20 and the ground plate 10 as a center.
- the third slot 13 and the fourth slot 14 that are symmetrically centered may enable that current distribution almost the same is generated on the ground plate 10 around the radiator 20, so that shapes of radiation patterns of an antenna in all directions around the radiator 20 are almost the same.
- a radial distance from the radiator 20 to the third slot 13 ranges from 0.2x ⁇ 2 to 0.3x ⁇ 2 , and ⁇ 2 is the wavelength of the electromagnetic wave signal of the second frequency band.
- the distance between the third slot 13 and the radiator 20 is set to 0.2x ⁇ 2 to 0.3x ⁇ 2 , and a current flows from the radiator 20 to the third slot 13.
- the current When flowing through the distance of 0.2x ⁇ 2 to 0.3x ⁇ 2 , the current is relatively weak, an electric field is relatively strong, resonance is generated, and the current is confined in and around the third slot 13, so that resonance is generated at the third slot 13 after currents of the electromagnetic wave signals of the first frequency band and the second frequency band flow through the path, and the current is confined in and around the third slot 13.
- the third slot 13 is arc shaped, a distance between an inner side of the third slot 13 and a center of the radiator 20 is a first radius R1, and the first radius is 0.25x ⁇ 2 .
- the first radius R1 is 0.25x ⁇ 2 , so that resonance can be generated at the third slot 13 after the current of the electromagnetic wave signal of the first frequency band flows through the path.
- the current is the smallest, the electric field is the strongest, and a resonance effect is the best, the current is confined in and around the third slot 13.
- a length of the third slot 13 extending in a circumference direction is a first electrical length, and the first electrical length is 0.5x ⁇ 2 .
- the first electrical length is set to 0.5x ⁇ 2 , so that resonance is generated at the third slot 13 when the current of the electromagnetic wave signal of the second frequency band flows to the third slot 13.
- a length of the third slot 13 in a radial direction is a first width W1, the first width W1 is 0.05x ⁇ 1 , ⁇ 1 is the wavelength of the electromagnetic wave signal of the first frequency band, the first frequency band is 5.9 GHz, and the second frequency band is 2.45 GHz.
- the first width W1 is set to 0.05x ⁇ 1 , to obtain the first frequency band 5.9 GHz and the second frequency band 2.45 GHz meeting an operating frequency band range of the antenna.
- the frequencies 2.45 GHz and 5.9 GHz are both common communication frequencies, and the frequencies 2.45 GHz and 5.9 GHz obtained through the foregoing settings are both within a preferred frequency band range of the vehicle-mounted antenna, so that a relatively good wireless communication effect can be implemented.
- the radiator 20 preferably uses a monopole antenna, and a height of the radiator 20 is preferably 0.25x ⁇ 2 .
- the ground plate 10 is a circle, a radius R ground of the ground plate 10 is 100 mm, the radiator 20 is a monopole antenna, a height H of the radiator 20 is 20 mm, a first radius R1 is 20 mm, and a first electrical length is 40 mm, a first width W1 is 2 mm.
- Both the first filter 131 and the second filter 141 are band-pass filters in which an inductor of 3.6 nH and a capacitor of 0.2 pF are connected in series.
- the antenna apparatus is simulated, and for a simulation result, refer to subsequent descriptions. Referring to FIG.
- a solid line is an S11 curve of an antenna when there is no slot
- a dashed line is an S11 curve of an antenna added with a filter after a slot is disposed. It can be seen that, after the slot is disposed and the filter is added, locations of two generated resonance points are close to the expected first frequency band 2.45 GHz and the expected second frequency band 5.9 GHz. In this way, the antenna apparatus is disposed.
- a left figure in the figure is a current distribution diagram in a 2.45 GHz modal when there is no slot
- a right figure in the figure is a current distribution diagram in a 5.9 GHz modal when there is no slot. It can be seen that, when there is no slot, current distribution on the ground plate 10 extends to an edge of the plate.
- FIG. 4e in the figure, a left figure is a current distribution diagram in a 2.45 GHz modal after a slot is disposed and a filter is added, and a right figure is a current distribution diagram in a 5.9 GHz modal after a slot is disposed and a filter is added.
- FIG. 4f-1 is a top view of a simulation directivity diagram
- FIG. 4f-2 is a side view of the simulation directivity diagram
- FIG. 4f-3 is a side view of the simulation directivity diagram (vertical to a view angle of FIG. 4f-2 ).
- a maximum radiation direction in a 2.45 GHz modal is tilted. Therefore, the maximum radiation direction deviates from a horizontal plane relatively far and a horizontal plane gain decreases.
- FIG. 4g-1 is a top view of a simulation directivity diagram
- FIG. 4g-2 is a side view of the simulation directivity diagram
- FIG. 4g-3 is a side view of the simulation directivity diagram (vertical to a view angle of FIG. 4g-2 ).
- a maximum radiation direction in a 5.9 GHz modal is tilted. Therefore, the maximum radiation direction deviates from a horizontal plane relatively far and a horizontal plane gain decreases.
- FIG. 4h-1 is a top view of a simulation directivity diagram
- FIG. 4h-2 is a side view of the simulation directivity diagram
- FIG. 4h-3 is a side view of the simulation directivity diagram (vertical to a view angle of FIG. 4h-2 ).
- a change of current distribution on the ground plate 10 brings a change of a radiation pattern of an antenna in a 2.45 GHz modal, and the radiation pattern of the antenna is pulled down, so that a degree of deviation of a maximum radiation direction of the antenna from a horizontal plane is reduced, and the maximum radiation direction of the antenna is closer to the horizontal plane. This increases a horizontal plane gain.
- FIG. 4i-1 is a top view of the simulation directivity diagram
- FIG. 4i-2 is a side view of the simulation directivity diagram
- FIG. 4i-3 is a side view of the simulation directivity diagram (vertical to the view of FIG. 4i-2 ).
- a connection line between dots of an inner circle indicates a horizontal plane gain in a 2.45 GHz modal when there is no slot
- a connection line between dots of an outer circle indicates a horizontal plane gain in the 2.45 GHz modal after a slot is disposed
- a solid line of an inner circle indicates a horizontal plane gain in a 5.9 GHz modal when there is no slot
- a dashed line of an outer circle indicates a horizontal plane gain in the 5.9 GHz modal after a slot is disposed.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Waveguide Aerials (AREA)
- Details Of Aerials (AREA)
- Aerials With Secondary Devices (AREA)
- Support Of Aerials (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Claims (12)
- Antennenvorrichtung, umfassend eine Masseplatte (10), einen Strahler (20) und eine Signalquelle (30), wobei der Strahler auf der Masseplatte angeordnet ist, wobei die Signalquelle dazu ausgebildet ist, ein elektromagnetisches Wellensignal eines ersten Frequenzbands in den Strahler einzuspeisen, einen ersten Schlitz (11) und einen zweiten Schlitz (12), die auf der Masseplatte angeordnet sind, wobei sowohl der erste Schlitz als auch der zweite Schlitz geschlossene Schlitze sind und den Strahler umgeben, und der erste Schlitz und der zweite Schlitz dazu ausgebildet sind, eine Stromverteilung auf der Masseplatte einzuschränken, so dass ein Strom, der durch das elektromagnetische Wellensignal des ersten Frequenzbands erzeugt wird, in und um den ersten Schlitz und den zweiten Schlitz herum begrenzt wird,wobei der erste Schlitz und der zweite Schlitz symmetrisch angeordnet sind unter Verwendung einer Verbindung zwischen dem Strahler und der Masseplatte als Zentrum, wobei der erste Schlitz bogenförmig ist,dadurch gekennzeichnet, dassein radialer Abstand von dem Strahler zu dem ersten Schlitz im Bereich von 0,2xλ1 bis 0,3xλ1 liegt, wobeiλ1 eine Wellenlänge des elektromagnetischen Wellensignals des ersten Frequenzbands ist,ein Abstand zwischen einer Innenseite des ersten Schlitzes und einem Zentrum des Strahlers 0,25xλ1 beträgt; und eine Länge des ersten Schlitzes, die sich in Umfangsrichtung erstreckt, 0,5xλ1 beträgt.
- Antennenvorrichtung nach Anspruch 1, wobei eine Länge des ersten Schlitzes in einer radialen Richtung 0,05xλ1 beträgt.
- Antennenvorrichtung nach Anspruch 1 oder 2, wobei die Signalquelle ferner dazu ausgebildet ist, ein elektromagnetisches Wellensignal eines zweiten Frequenzbands in den Strahler einzuspeisen, wobei das zweite Frequenzband niedriger als das erste Frequenzband ist, wobei die Antennenvorrichtung ferner einen dritten Schlitz und einen vierten Schlitz umfasst, die sich an Peripherien des ersten Schlitzes und des zweiten Schlitzes befinden, wobei sowohl der dritte Schlitz als auch der vierte Schlitz geschlossene Schlitze sind und der dritte Schlitz und der vierte Schlitz dazu ausgebildet sind, eine Stromverteilung auf die Masseplatte einzuschränken, so dass ein Strom, der durch das elektromagnetische Wellensignal des zweiten Frequenzbands erzeugt wird, in und um den dritten Schlitz und den vierten Schlitz herum begrenzt wird.
- Antennenvorrichtung nach Anspruch 3, wobei der dritte Schlitz und der vierte Schlitz symmetrisch angeordnet sind unter Verwendung einer Verbindung zwischen dem Strahler und der Masseplatte als Zentrum; wobei ein radialer Abstand von dem Strahler zu dem dritten Schlitz im Bereich von 0,2xλ2 bis 0,3xλ2 liegt, und λ2 eine Wellenlänge des elektromagnetischen Wellensignals des zweiten Frequenzbands ist.
- Antennenvorrichtung nach Anspruch 4, wobei der dritte Schlitz bogenförmig ist, wobei ein Abstand zwischen einer Innenseite des dritten Schlitzes und dem Zentrum des Strahlers 0,25xλ2 beträgt.
- Antennenvorrichtung nach Anspruch 4 oder 5, wobei eine Länge des dritten Schlitzes, der sich in der Umfangsrichtung erstreckt, 0,5xλ2 beträgt.
- Antennenvorrichtung nach einem der Ansprüche 4 bis 6, wobei eine Länge des dritten Schlitzes in radialer Richtung 0,05xλ1 beträgt.
- Antennenvorrichtung nach einem der Ansprüche 3 bis 7, wobei das erste Frequenzband bei 5,9 GHz liegt und das zweite Frequenzband bei 2,45 GHz liegt.
- Antennenvorrichtung nach Anspruch 1 oder 2, wobei die Antennenvorrichtung ferner ein erstes Filter und ein zweites Filter umfasst, wobeidas erste Filter in dem ersten Schlitz angeordnet ist und den ersten Schlitz in zwei Schlitze teilt, und das zweite Filter in dem zweiten Schlitz angeordnet ist und den zweiten Schlitz in zwei Schlitze teilt, und das erste Filter und das zweite Filter ermöglichen, dass der erste Schlitz und der zweite Schlitz jeweils zwei unterschiedliche elektrische Längen bilden; und wobeidie Signalquelle auch dazu ausgebildet ist, ein elektromagnetisches Wellensignal eines zweiten Frequenzbands in den Strahler einzuspeisen, wobei das erste Frequenzband höher als das zweite Frequenzband ist.
- Antennenvorrichtung nach Anspruch 9, wobei sowohl das erste Filter als auch das zweite Filter Bandpassfilter sind, in denen eine Induktivität und ein Kondensator in Reihe geschaltet sind, und dazu ausgebildet sind, zu ermöglichen, den durch das elektromagnetische Wellensignal des ersten Frequenzbands erzeugten Strom durchzulassen und den durch das elektromagnetische Wellensignal des zweiten Frequenzbands erzeugten Strom zu blockieren.
- Endgerät, umfassend eine PCB-Platine und die Antennenvorrichtung nach einem der Ansprüche 1 bis 10, wobei der Strahler der Antennenvorrichtung auf der PCB-Platine angeordnet ist, die Masseplatte ein Teil der PCB-Platine ist, die zum Einspeisen ausgebildete Signalquelle auf der PCB-Platine angeordnet ist, und die Signalquelle den Strom in den Strahler einspeist.
- Endgerät nach Anspruch 11, wobei das Endgerät ein Auto ist, wobei die Antennenvorrichtung eine fahrzeugmontierte Außenantenne ist.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810481642.6A CN110504526B (zh) | 2018-05-18 | 2018-05-18 | 天线装置和终端 |
PCT/CN2019/086635 WO2019218966A1 (zh) | 2018-05-18 | 2019-05-13 | 天线装置和终端 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3780268A1 EP3780268A1 (de) | 2021-02-17 |
EP3780268A4 EP3780268A4 (de) | 2021-05-26 |
EP3780268B1 true EP3780268B1 (de) | 2023-08-02 |
Family
ID=68539479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19804293.9A Active EP3780268B1 (de) | 2018-05-18 | 2019-05-13 | Antennenvorrichtung und endgerät |
Country Status (9)
Country | Link |
---|---|
US (1) | US11658401B2 (de) |
EP (1) | EP3780268B1 (de) |
JP (1) | JP7034335B2 (de) |
KR (1) | KR102463269B1 (de) |
CN (2) | CN110504526B (de) |
AU (1) | AU2019269823B2 (de) |
BR (1) | BR112020022178A2 (de) |
CA (1) | CA3098970A1 (de) |
WO (1) | WO2019218966A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112952361B (zh) * | 2019-11-26 | 2022-04-12 | 华为技术有限公司 | 电子设备 |
CN116266669A (zh) * | 2021-12-17 | 2023-06-20 | 华为技术有限公司 | 一种天线结构及电子设备 |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2651926B1 (fr) | 1989-09-11 | 1991-12-13 | Alcatel Espace | Antenne plane. |
DE69914528T2 (de) | 1998-06-04 | 2004-07-08 | Matsushita Electric Industrial Co., Ltd., Kadoma | Monopolantenne |
JP2001053530A (ja) * | 1999-08-05 | 2001-02-23 | Matsushita Electric Ind Co Ltd | アンテナ装置 |
FR2834837A1 (fr) | 2002-01-14 | 2003-07-18 | Thomson Licensing Sa | Dispositif pour la reception et/ou l'emission d'ondes electromagnetiques a diversite de rayonnement |
ITVI20030270A1 (it) | 2003-12-31 | 2005-07-01 | Calearo Antenne Srl | Antenna multibanda a fessure |
KR20050078991A (ko) * | 2004-02-03 | 2005-08-08 | 가부시키가이샤 고쿠사이 덴키 츠신 기소 기주츠 겐큐쇼 | 안테나 특성을 제어 가능한 어레이 안테나 |
JP4173453B2 (ja) | 2004-02-24 | 2008-10-29 | 株式会社国際電気通信基礎技術研究所 | アンテナ装置 |
JP3810075B2 (ja) * | 2004-02-06 | 2006-08-16 | 株式会社東芝 | 携帯無線通信装置 |
JP4280182B2 (ja) * | 2004-03-09 | 2009-06-17 | 富士通コンポーネント株式会社 | アンテナ装置 |
DE102005055345A1 (de) * | 2005-11-21 | 2007-05-24 | Robert Bosch Gmbh | Multiband-Rundstrahler |
US7427957B2 (en) * | 2007-02-23 | 2008-09-23 | Mark Iv Ivhs, Inc. | Patch antenna |
JP2010183348A (ja) * | 2009-02-05 | 2010-08-19 | Nippon Antenna Co Ltd | 阻止帯域を有する広帯域アンテナ |
JP5733156B2 (ja) * | 2011-11-01 | 2015-06-10 | 株式会社日本自動車部品総合研究所 | アンテナ装置 |
US9570799B2 (en) * | 2012-09-07 | 2017-02-14 | Ruckus Wireless, Inc. | Multiband monopole antenna apparatus with ground plane aperture |
CN102956968A (zh) | 2012-11-07 | 2013-03-06 | 山西大学 | 基于部分弧形地的宽带双频段微带天线 |
CN203134966U (zh) | 2013-01-04 | 2013-08-14 | 咏业科技股份有限公司 | 微带天线 |
CN203674376U (zh) | 2013-10-29 | 2014-06-25 | 广州杰赛科技股份有限公司 | 一种宽带全向天线 |
CN103746177B (zh) * | 2013-10-29 | 2016-05-18 | 广州杰赛科技股份有限公司 | 一种宽带全向天线 |
CN104134859B (zh) | 2014-08-18 | 2016-05-04 | 重庆大学 | 一种宽带高效率高方向性电小天线 |
CN106415926B (zh) | 2014-12-30 | 2021-01-05 | 华为技术有限公司 | 一种天线设备及终端 |
CN106329087A (zh) | 2015-06-17 | 2017-01-11 | 张家港贸安贸易有限公司 | 一种圆形贴片微带天线 |
AU2016101994A4 (en) * | 2015-12-09 | 2016-12-22 | Licensys Australasia Pty Ltd | An Antenna |
WO2017206074A1 (zh) | 2016-05-31 | 2017-12-07 | 华为技术有限公司 | 一种天线和电子设备 |
CN106602230B (zh) * | 2016-11-14 | 2019-06-18 | 广东通宇通讯股份有限公司 | 小型化增强型双极化全向吸顶天线 |
TWI679809B (zh) * | 2018-10-18 | 2019-12-11 | 啓碁科技股份有限公司 | 天線結構和電子裝置 |
-
2018
- 2018-05-18 CN CN201810481642.6A patent/CN110504526B/zh active Active
-
2019
- 2019-05-13 EP EP19804293.9A patent/EP3780268B1/de active Active
- 2019-05-13 BR BR112020022178-3A patent/BR112020022178A2/pt unknown
- 2019-05-13 CA CA3098970A patent/CA3098970A1/en active Pending
- 2019-05-13 AU AU2019269823A patent/AU2019269823B2/en active Active
- 2019-05-13 CN CN201980032882.0A patent/CN112219313B/zh active Active
- 2019-05-13 WO PCT/CN2019/086635 patent/WO2019218966A1/zh unknown
- 2019-05-13 KR KR1020207033304A patent/KR102463269B1/ko active IP Right Grant
- 2019-05-13 JP JP2020564519A patent/JP7034335B2/ja active Active
- 2019-05-13 US US17/056,253 patent/US11658401B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
AU2019269823A1 (en) | 2020-11-26 |
EP3780268A4 (de) | 2021-05-26 |
AU2019269823B2 (en) | 2022-03-17 |
JP2021523648A (ja) | 2021-09-02 |
BR112020022178A2 (pt) | 2021-02-02 |
KR20210002569A (ko) | 2021-01-08 |
US20210218133A1 (en) | 2021-07-15 |
EP3780268A1 (de) | 2021-02-17 |
JP7034335B2 (ja) | 2022-03-11 |
KR102463269B1 (ko) | 2022-11-03 |
CN110504526A (zh) | 2019-11-26 |
CA3098970A1 (en) | 2019-11-21 |
CN110504526B (zh) | 2022-03-04 |
WO2019218966A1 (zh) | 2019-11-21 |
CN112219313A (zh) | 2021-01-12 |
CN112219313B (zh) | 2022-10-18 |
US11658401B2 (en) | 2023-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10601117B2 (en) | Antenna and mobile terminal | |
US8928539B2 (en) | Antenna unit and radio communication device | |
WO2014080360A2 (en) | Miniaturized patch antenna | |
EP1372216A2 (de) | Mit einer Dachkapazität belastete Monopolantenne, deren Dachelektrode mit einem Kurzschlusselement mit der Masse verbunden ist | |
US20210184356A1 (en) | Antenna device | |
EP4030556A1 (de) | Elektronische vorrichtung | |
US10109926B2 (en) | Antenna radiator, antenna and mobile terminal | |
KR20130046494A (ko) | 평면형 역 에프 안테나용 방사체 및 이를 이용한 안테나 | |
US11456526B2 (en) | Antenna unit, antenna system and electronic device | |
JP2018530251A (ja) | 通信装置 | |
EP3780268B1 (de) | Antennenvorrichtung und endgerät | |
EP3480886B1 (de) | Vorrichtung zum drahtlosen senden/empfangen und basisstation | |
EP2830151A1 (de) | Verfahren und System für mehrfache Einspeisepunktantennen | |
CN109309284A (zh) | 天线装置和移动装置 | |
Verma et al. | A novel quad band compact meandered PIFA antenna for GPS, UMTS, WiMAX, HiperLAN/2 applications | |
TW201417399A (zh) | 寬頻天線及具有該寬頻天線的可攜帶型電子裝置 | |
US10374311B2 (en) | Antenna for a portable communication device | |
KR102246973B1 (ko) | 다중밴드 안테나 | |
CN114552191A (zh) | 天线装置和无人飞行器 | |
JP2022151068A (ja) | アンテナ装置、通信装置 | |
WO2021130844A1 (ja) | アンテナ装置および測定システム | |
Ikechiamaka et al. | MONOPOLE ANTENNA PERFORMANCE AT VARIED FEED POSITIONS | |
CN115548647A (zh) | 微带天线及电子设备 | |
JP2004112744A (ja) | エネルギー密度アンテナ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20201104 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20210423 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 1/48 20060101AFI20210419BHEP Ipc: H01Q 9/32 20060101ALI20210419BHEP Ipc: H01Q 5/307 20150101ALI20210419BHEP Ipc: H01Q 19/02 20060101ALI20210419BHEP Ipc: H01Q 5/392 20150101ALI20210419BHEP Ipc: H01Q 1/32 20060101ALN20210419BHEP |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602019034168 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: H01Q0001360000 Ipc: H01Q0001480000 Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: H01Q0001360000 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01Q 1/32 20060101ALN20230127BHEP Ipc: H01Q 5/392 20150101ALI20230127BHEP Ipc: H01Q 19/02 20060101ALI20230127BHEP Ipc: H01Q 5/307 20150101ALI20230127BHEP Ipc: H01Q 9/32 20060101ALI20230127BHEP Ipc: H01Q 1/48 20060101AFI20230127BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230310 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602019034168 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20230802 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1595870 Country of ref document: AT Kind code of ref document: T Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231204 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231102 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231202 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231103 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602019034168 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240404 Year of fee payment: 6 |
|
26N | No opposition filed |
Effective date: 20240503 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240403 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230802 |