EP3774807B1 - Verfahren zur herstellung bicyclischer guanidine - Google Patents

Verfahren zur herstellung bicyclischer guanidine Download PDF

Info

Publication number
EP3774807B1
EP3774807B1 EP18772759.9A EP18772759A EP3774807B1 EP 3774807 B1 EP3774807 B1 EP 3774807B1 EP 18772759 A EP18772759 A EP 18772759A EP 3774807 B1 EP3774807 B1 EP 3774807B1
Authority
EP
European Patent Office
Prior art keywords
optionally
weight
carbon atoms
monovalent
hydrocarbon radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18772759.9A
Other languages
English (en)
French (fr)
Other versions
EP3774807A1 (de
Inventor
Elke Fritz-Langhals
Uwe Scheim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wacker Chemie AG
Original Assignee
Wacker Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie AG filed Critical Wacker Chemie AG
Publication of EP3774807A1 publication Critical patent/EP3774807A1/de
Application granted granted Critical
Publication of EP3774807B1 publication Critical patent/EP3774807B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the invention relates to a process for the production of bicyclic guanidines and formulations containing bicyclic guanidines and their use as a catalyst.
  • Bases are used as catalysts in numerous industrial chemical processes. Especially in the field of polymer chemistry, organic bases are preferred because they are much more soluble in a non-polar environment than inorganic bases such as sodium or potassium hydroxide, which can also trigger undesirable side reactions.
  • bicyclic guanidines such as 1,5,7-triazabicyclo [4.4.0] -dec-5-en (TBD) are in principle preferred over the more common, but much weaker basic compounds tetramethylguanidine, DBU (diazabicycloundecene) or DBN (diazabicyclodecene).
  • TBD is a highly effective catalyst for the ring-opening polymerization of lactones and cyclic siloxanes, as well as in the production of polyurethanes.
  • the endcapping of hydroxypolysiloxanes can be efficiently catalyzed with TBD.
  • TBD can be produced, for example, by reacting dipropylenetriamine with the C1 building blocks carbon disulfide, carbodiimides and guanidines.
  • the carbon disulfide route described produces toxic hydrogen sulfide gas, minimizing the risk its unintentional release requires a great deal of technical effort.
  • Another safety risk is the low flash point of carbon disulfide.
  • the product TBD is isolated as a solid, either by removing the solvent and the product TBD is in the residue, or the product is crystallized out by adding a precipitant, for example a hydrocarbon.
  • the reaction mixture in the high-boiling ether is additionally mixed with a reagent for binding the water formed; examples of this are disilazanes and tetraethoxysilane (TEOS).
  • TEOS disilazanes and tetraethoxysilane
  • insoluble silica which can only be separated off by filtration of the dilute product solution, which makes the process even more expensive.
  • glycol ethers as solvents is problematic, since they tend to form thermally unstable ether peroxides in contact with air and are also toxic. These solvents must therefore be removed as completely as possible before use, which requires repeated recrystallization. This makes the production of the product considerably more expensive and its use ultimately uneconomical.
  • the crystalline bicyclic guanidine is not particularly suitable for applications in polymer chemistry, since it dissolves only very slowly in polymers, in particular in siloxanes.
  • the lengthy process of loosening increases the technical effort considerably, which can ultimately lead to the inefficiency of the process.
  • the object was therefore to provide a process for the preparation of bicyclic guanidines which does not have the disadvantages mentioned above and which is inexpensive and technically simple Production made possible.
  • Another object is to provide a liquid formulation of bicyclic guanidine which can be produced inexpensively in a simple manner and which can be used directly for catalytic purposes.
  • the invention relates to a process for the preparation of bicyclic guanidines by reacting (A) dialkylenetriamine with (B) dialkyl carbonate
  • the dialkylenetriamine (A) used according to the invention is preferably one of the general formula H 2 N- (CR a 2 ) m -CR a 2 -NH-CR a 2 - (CR a 2 ) n -NH 2 (II), whereby m and n are independently 1, 2, 3 or 4, preferably 1, 2 or 3, particularly preferably 1 or 2, and R a can be the same or different and represents a hydrogen atom or monovalent hydrocarbon radicals, individual methylene groups being represented by oxygen or by groupings -NH- or -NR d - can be replaced, where R d denotes monovalent, optionally substituted hydrocarbon radicals having 2 to 10 carbon atoms.
  • R a examples include alkyl radicals such as methyl, ethyl, n-propyl, iso-propyl, 1-n-butyl, 2-n-butyl, iso-butyl, tert-butyl, n -Pentyl, iso-pentyl, neo-pentyl, tert-pentyl radical; Hexyl radicals, such as the n-hexyl radical, the 2-methylpentyl radical; Heptyl radicals, such as the n-heptyl radical; Octyl radicals, such as the n-octyl radical and iso-octyl radicals, such as the 2,2,4-trimethylpentyl radical; Nonyl radicals, such as the n-nonyl radical; Decyl radicals, such as the n-decyl radical; Undecyl radicals such as the n-undecyl radical, dodec
  • the radicals R a are preferably a hydrogen atom or hydrocarbon radicals having 1 to 10 carbon atoms, individual methylene groups being represented by oxygen or by groupings -NH- or -NR d - can be replaced, where R d has the meaning given above, particularly preferably around a hydrogen atom or aliphatic linear or branched hydrocarbon radicals having 1 to 6 carbon atoms, in particular around a hydrogen atom.
  • n 1 or 2 being particularly preferred.
  • the triamine (A) used according to the invention is preferably bis (3-aminopropyl) amine, bis (2-aminoethyl) amine, 1-amino-3 - [(3-amino-2-hydroxypropyl) amino] propane -2-ol or N- (2-aminoethyl) -N- (3-aminopropyl) amine, bis- (3-aminopropyl) amine being particularly preferred.
  • the dialkyl carbonate (B) used according to the invention is preferably one of the general formula R b O-CO-OR b (III), whereby R b can be identical or different and represent mono- or divalent, aliphatically saturated hydrocarbon radicals.
  • R b has the meaning of divalent aliphatically saturated hydrocarbon radicals, these are preferably linked to one another and form a ring via the two oxygen atoms.
  • radicals R b are the examples given for radical R a for monovalent aliphatically saturated hydrocarbon radicals and divalent aliphatically saturated hydrocarbon radicals, such as -CH 2 - (CH 2 ) p -CH 2 - with p preferably equal to 0, 1, 2, 3 or 4, particularly preferably 0 or 1, where the divalent radicals R b are preferably connected to one another and form a ring via the two oxygen atoms.
  • the radical R b is preferably a mono- or divalent aliphatically saturated hydrocarbon radical having 1 to 10 carbon atoms, particularly preferably a mono- or divalent aliphatically saturated linear or branched hydrocarbon radical having 1 to 6 carbon atoms, in particular the methyl, ethyl, Propyl, ethylene or propylene radical, very particularly preferably the methyl or ethyl radical.
  • the carbonate (B) used according to the invention is preferably dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethylene carbonate or propylene carbonate, with dimethyl carbonate or diethyl carbonate being particularly preferred.
  • dialkyl carbonate (B) is used in molar amounts of preferably 0.5 to 2.0 mol, particularly preferably 0.8 to 1.5 mol, based in each case on 1 mol of the dialkylenetriamine (A) used.
  • the radical R x is preferably linear, branched or cyclic saturated or unsaturated hydrocarbon radicals with 2 to 6 carbon atoms, particularly preferably aliphatically saturated linear or branched hydrocarbon radicals with 2 to 6 carbon atoms, in particular the ethyl, n-propyl, i-Propyl, n-butyl or 2-butyl radical, very particularly preferably around the ethyl radical.
  • radicals R y are the examples given for radical R a.
  • the radicals R y are preferably linear, branched or cyclic saturated or unsaturated hydrocarbon radicals having 1 to 20 carbon atoms, particularly preferably aliphatic, linear or branched hydrocarbon radicals having 1 to 12 carbon atoms.
  • inventively used silanes (C) are i- octyl-Si (OEt) 3, methyltriethoxysilane, ethyltriethoxysilane, vinyltriethoxysilane, propyltriethoxysilane, butyltriethoxysilane, cyclohexyltriethoxysilane, 2-Methylpropyltriethoxysilan, pentyltriethoxysilane, methyltris (1-methylethoxy) silane, n-octyltriethoxysilane, phenyltriethoxysilane , Benzyltriethoxysilane, Si (O-2-Butyl) 4 , Si (OEt) (O-2-Butyl) 3 , Si (OEt) 2 (O-2-Butyl) 2 , Si (OiProp) 4 , Si (OEt) (OiProp) 3 , Si (OEt) (
  • the silanes (C) used according to the invention are particularly preferably i- octyl-Si (OEt) 3 , n-heptyl-Si (OEt) 3 , n-decyl-Si (OEt) 3 , phenyl-Si (OEt) 3 , Si (O-2-Butyl) 4 , Si (OEt) (O-2-Butyl) 3 , Si (OEt) 2 (O-2-Butyl) 2 , Si (OiProp) 4 , Si (OEt) ( OiProp) 3 or Si (OEt) 2 (OiProp) 2 and / or their partial hydrolysates, in particular around i- octyl-Si (OEt) 3 and / or its partial hydrolysates.
  • component (C) is a partial hydrolyzate of the silanes of the formula (IV), preference is given to those having 2 to 5 silicon atoms.
  • component (C) is used in amounts of preferably 30 to 1000 parts by weight, particularly preferably 100 to 500 parts by weight, based in each case on 100 parts by weight of dialkylenetriamine (A).
  • components (A), (B) and (C) in addition to components (A), (B) and (C), further substances can be used which are each different from components (A), (B) and (C), such as, for example, bases (D) or organic solvents (E).
  • optionally used bases (D) are inorganic or organic bases.
  • the optionally used bases (D) are nitrogen bases which are different from component (A), particularly preferably TBD, DBU, DBN, pyridine or dimethylamine pyridine, guanidine, tetramethylguanidine or tetraethylguanidine.
  • bases (D) are used in the process according to the invention, the amounts involved are preferably 0.01 to 20 parts by weight, particularly preferably 0.1 to 10 parts by weight, in particular 1 to 5 parts by weight, in each case based on 100 parts by weight of dialkylenetriamine (A. ). In the process according to the invention, preference is given to using no base (D).
  • the solvents (E) which may be used are preferably alcohols, phenols, nitriles, dialkyl or diaryl ethers or hydrocarbons, alcohols or hydrocarbons being preferred and alcohols being particularly preferred.
  • solvents (E) are used in the process according to the invention, amounts are preferably 0.1 to 200 parts by weight, particularly preferably 1 to 100 parts by weight, in particular 10 to 50 parts by weight, based in each case on 100 parts by weight of the dialkylenetriamine (A) used. In the process according to the invention, preference is given to using no solvent (E).
  • fillers (f), colorants (g) and polymers (h) described below in connection with the preparation according to the invention are not preferred.
  • the components used in the process according to the invention can each be a type of such a component as also be a mixture of at least two types of a respective component.
  • components (A) and (B) and optionally components (D), (E), (f), (g) and (h) are preferably mixed and allowed to react in a first stage and then in a second stage Stage component (C) and optionally components (D), (E), (f), (g) and (h) are added and the mixture is heated to a temperature greater than 200.degree.
  • component (A) and, if appropriate, components (D), (E), (f), (g) and (h) are initially charged, preferably at temperatures between room temperature and 120 ° C., and component (B) is added , whereby an exothermic reaction takes place, whereby the temperature of the reaction mixture rises further.
  • the temperature is preferably kept at 20 to 120 ° C., if appropriate by cooling or heating, the alcohol formed, preferably R b —OH, being separated off, preferably distilled off.
  • the alcohol formed can also be separated off after the reaction, preferably by distillation. During this reaction, a cyclic urea is formed by splitting off alcohol.
  • component (C) and, if appropriate, components (D), (E), (f), (g) and (h) are added to the reaction mixture obtained in the first stage and heated to a temperature of preferably 200 C. to 280.degree. C., particularly preferably from 210.degree. C. to 260.degree. C., in particular to a temperature from 220.degree. C. to 250.degree. C., and allowed to react, alcohol R x -OH being formed, which is preferably removed.
  • the alcohol is preferably removed by distillation, especially at pressures between 0.1 mbar and 50 bar, particularly preferably at pressures between 1 mbar and 20 bar, very particularly preferably at ambient pressure.
  • all components are mixed with one another in any order and allowed to react, the temperature preferably increasing to 220 to 10 hours, particularly preferably 1 to 5 hours, after the exothermic reaction has subsided 280 ° C is increased and is maintained in this temperature range for preferably 5 to 30 hours, particularly preferably 8 to 20 hours.
  • the method according to the invention is preferably carried out under protective gas, such as nitrogen.
  • the process according to the invention can be carried out continuously, batchwise or semicontinuously, the batchwise procedure being preferred.
  • the separated alcohols preferably R b -OH and R x -OH
  • the method according to the invention does not produce any waste products, which is a particular advantage of the method according to the invention.
  • reaction mixture obtained is mixed with water or monohydric or polyhydric alcohol after the end of the reaction. Work-up of the reaction mixture can thereby advantageously be completely dispensed with and the preparation thus obtained can be used directly.
  • the preparations according to the invention can contain reaction by-products (d) from the reaction according to the invention of (A) with (B), which are preferably present when the reaction mixture obtained by the process according to the invention is used without work-up to produce the preparations according to the invention, which is preferred.
  • Component (a) used according to the invention is preferably a compound of the formula (I), particularly preferably TBD.
  • the content of bicyclic guanidines (a) is preferably 2 to 35% by weight, particularly preferably 5 to 25% by weight.
  • Component (b) used according to the invention is preferably a silane of the formula (IV) in a mixture with their siloxanes formed by hydrolysis and condensation.
  • the content of silanes and / or siloxanes (b) is preferably 20 to 90% by weight, particularly preferably 30 to 70% by weight.
  • radical R c are the radicals given above for radical R y.
  • the radical R c is preferably a hydrogen atom or an aliphatically saturated or aliphatically unsaturated, linear or branched or cyclic, optionally substituted one Hydrocarbon radicals with 1 to 12 carbon atoms, which can be interrupted with oxygen, particularly preferably aliphatically saturated or aliphatically unsaturated, linear or branched, optionally substituted with hydroxyl groups, hydrocarbon radicals with 1 to 6 carbon atoms, which can be interrupted with oxygen atoms, in particular around hydrogen atoms Methyl, ethyl, 2-hydroxyethyl, n-propyl, i-propyl, 2-hydroxypropyl, 2,3-dihydroxypropyl, n-butyl or 2-butyl radical.
  • Component (c) is preferably water, methanol, ethanol, n-propanol, i-propanol, glycerol, ethylene glycol or propylene glycol, with ethanol being particularly preferred.
  • the content of component (c) is preferably 5 to 50% by weight, particularly preferably 10 to 30% by weight.
  • the proportion by weight of components (a), (b), (c) and optionally (d) in the compositions according to the invention is preferably at least 80% by weight, particularly preferably at least 90% by weight, in particular 100% by weight.
  • the amounts involved are preferably 1 to 20 parts by weight, particularly preferably 2 to 10 parts by weight, in each case based on 100 parts by weight of the total weight of components (a), (b) and (c).
  • optionally used component (e) examples are the examples given above for organic solvents (E), with the exception of alcohols.
  • the preparations according to the invention contain organic solvent (s), the amounts involved are preferably 0.01 to 100 parts by weight, particularly preferably 0.1 to 50 parts by weight, in particular 1 to 10 parts by weight, in each case based on 100 parts by weight of the total weight of the components ( a), (b) and (c).
  • the preparations according to the invention preferably do not contain any organic solvent (s).
  • fillers (f) are non-reinforcing fillers, that is fillers with a BET surface area of up to 50 m 2 / g, such as quartz, diatomaceous earth, calcium silicate, zeolites, silicon nitride, silicon carbide, boron nitride, glass powder; Reinforcing fillers, i.e. fillers with a BET surface area of at least 50 m 2 / g, such as pyrogenic silica, precipitated silica, and silicon-aluminum mixed oxides with a large BET surface area, with precipitated and pyrogenic silica being preferred and pyrogenic silica being particularly preferred.
  • BET surface area such as quartz, diatomaceous earth, calcium silicate, zeolites, silicon nitride, silicon carbide, boron nitride, glass powder
  • Reinforcing fillers i.e. fillers with a BET surface area of at least 50 m 2 / g, such as
  • the preparations according to the invention contain fillers (f), the amounts involved are preferably 0.1 to 100 parts by weight, particularly preferably 1 to 50 parts by weight, in particular 5 to 20 parts by weight, in each case based on 100 parts by weight of the total weight of components (a), (b) and (c).
  • the preparations according to the invention preferably contain no filler (f).
  • optionally used colorants (g) are dyes such as phthalocyanines, indanthrene dyes, azo dyes, optical brighteners and fluorescent dyes, and pigments such as carbon black or titanium dioxide, optical brighteners and carbon black being preferred and optical brighteners being particularly preferred.
  • the preparations according to the invention contain colorants (g), the amounts involved are preferably 0.0001 to 20 parts by weight, particularly preferably 0.001 to 5 parts by weight, in particular 0.01 to 1 part by weight, in each case based on 100 parts by weight of the total weight of the components (a), (b) and (c).
  • the preparations according to the invention preferably do not contain any colorants (g).
  • optionally used polymers (h) are polysiloxanes, polyethers, polyurethanes or polyureas free of organyloxy groups with preferably 15 to 1000 repeating units, preferably polysiloxanes or polyethers free of organyloxy groups, particularly preferably polysiloxanes free of organyloxy groups.
  • polymers (h) are contained in the preparations according to the invention, the amounts involved are preferably 0.1 to 500 parts by weight, particularly preferably 1 to 100 parts by weight, in particular 5 to 50 parts by weight, in each case based on 100 parts by weight of the total weight of the components (a ), (b) and (c).
  • the preparations according to the invention preferably do not contain any polymers (h).
  • the components contained in the preparations according to the invention can each be one type of such a component as well as a mixture of at least two types of a respective component.
  • the preparations according to the invention can be produced by any known method, such as by simply mixing the individual constituents.
  • the reaction mixture obtained by the process according to the invention is preferably which consists essentially of (a) bicyclic guanidine and (b) silane of the general formula (IV) and / or its partial hydrolysates and (d) reaction by-products, mixed with alcohol (c) and optionally components (e) to (h).
  • This mixing is preferably carried out at a temperature of 10 to 100 ° C. and the pressure of the surrounding atmosphere, that is to say about 900 to 1100 hPa.
  • the present invention also provides a process for producing the preparations according to the invention by mixing the individual components in any order.
  • the preparations according to the invention are preferably almost colorless to pale yellowish and homogeneous liquids at 20 ° C. and 1013 hPa.
  • bicyclic guanidines produced according to the invention and the preparations according to the invention can be used wherever bicyclic guanidines have also been used up to now, in particular as a liquid catalyst preparation in the reaction of hydroxysiloxanes with alkoxysilanes (so-called endcapping), in the ring-opening polymerization of lactones, lactams and cyclics Carbonates, for converting esters into amides and carbonates into ureas, for aldol condensation, and for the transalkoxylation of alkoxysilanes and alkoxysiloxanes.
  • the process according to the invention has the advantage that when alkoxysilanes are used as the reaction medium and at the same time as a means for removing water, bicyclic guanidines can be prepared in high yields.
  • Another advantage of the method according to the invention is that the use of the chemically and toxicologically problematic glycol ethers as solvents can be completely dispensed with.
  • the process surprisingly provides - in contrast to processes of the prior art with which dark-colored reaction mixtures are obtained - pale yellow reaction mixtures.
  • the method according to the invention also has the advantage that the alkoxysilanes used are surprisingly capable of dragging the alcohol formed by the reaction with water out of the reaction mixture and thus promoting the process of the formation of cyclic guanidines.
  • the product mixture which contains cyclic guanidines and alkoxysilane or the alkoxysilane condensation products formed by the reaction with water, can be liquefied by adding relatively small amounts of alcohol and the preparation obtained can therefore be used directly for catalytic purposes without further processing of the reaction mixture Processes can be used.
  • the preparations according to the invention have the advantage that they are liquid and are extremely suitable for catalytic purposes.
  • due to the siloxane content in the formulations according to the invention there is very good miscibility with siloxanes, as a result of which catalytic applications in this area are particularly advantageous.
  • Another economic advantage is that the preparation according to the invention of bicyclic guanidines and the further processing to give the liquid formulation according to the invention takes place without solids handling and no waste products have to be separated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung bicyclischer Guanidine sowie bicyclische Guanidine enthaltende Formulierungen und deren Verwendung als Katalysator.
  • Bei zahlreichen industriell durchgeführten chemischen Prozessen werden Basen als Katalysatoren eingesetzt. Vor allem im Bereich der Polymerchemie werden organische Basen bevorzugt, da sie in unpolarem Milieu wesentlich besser löslich sind als anorganische Basen wie z.B. Natrium- oder Kaliumhydroxid, welche außerdem unerwünschte Nebenreaktionen auslösen können.
  • Für eine möglichst große katalytische Wirkung ist eine große Basenstärke erwünscht. Daher sind bicyclische Guanidine wie z.B. 1,5,7-Triazabicyclo[4.4.0]-dec-5-en (TBD) prinzipiell gegenüber den gängigeren, jedoch deutlich schwächer basischen Verbindungen Tetramethylguanidin, DBU (Diazabicycloundecen) oder DBN (Diazabicyclodecen) bevorzugt.
  • TBD ist beispielsweise ein hochwirksamer Katalysator für die Ringöffnungspolymerisation von Lactonen und cyclischen Siloxanen, außerdem bei der Herstellung von Polyurethanen. Gemäß DE 10 2015216 598 A1 kann das Endcapping von Hydroxypolysiloxanen mit TBD effizient katalysiert werden.
  • Dem technischen Einsatz von TBD und weiteren bicyclischen Guanidinen stand bisher jedoch deren mangelnde technische Zugänglichkeit im Wege. TBD kann beispielsweise durch Umsetzung von Dipropylentriamin mit den C1-Bausteinen Schwefelkohlenstoff, Carbodiimiden und Guanidinen hergestellt werden. Bei der in US 4,797,487 beschriebenen Schwefelkohlenstoff-Route entsteht jedoch toxisches Schwefelwasserstoffgas, die Minimierung des Risikos dessen unbeabsichtigter Freisetzung erfordert einen hohen technischen Aufwand. Ein weiteres Sicherheitsrisiko stellt der niedrige Flammpunkt von Schwefelkohlenstoff dar.
  • Die in den US 20130289272 und US 2013163130 beschriebenen Routen ausgehend von Carbodiimiden sind aufgrund des hohen Preises von Diimiden unwirtschaftlich. Zudem können Verunreinigungen nur sehr schwer abgetrennt werden.
  • Bei der beispielsweise in der US 2012/0259112 beschriebenen Synthese bicyclischer Guanidine durch Einsatz acyclischer Guanidinsalze als C1-Bausteine entstehen große Mengen Ammoniak, welche aufgefangen und entsorgt werden müssen, was das Verfahren ebenfalls erheblich verteuert. Zudem fällt TBD als Salz an, welches in einem zusätzlichen Schritt in die freie Base überführt werden muss.
  • In den Veröffentlichungen US 2009/0281313 und US 2009/0281314 wird die Herstellung von TBD aus Dipropylentriamin mit Dimethylcarbonat beschrieben. Gegenüber den oben genannten Routen besitzt diese Route den Vorteil, dass kostengünstige großtechnisch verfügbare Edukte eingesetzt werden können und keine toxischen Gase bei der Umsetzung entstehen. Zunächst bildet sich bei der Umsetzung unter zweifacher Methanolabspaltung ein cyclischer Harnstoff und bei Temperaturen > 200°C und Reaktionszeiten von bis zu 50 Stunden die Bildung von TBD, wobei als Reaktionsmedium bevorzugt hochsiedende Ether eingesetzt werden, beispielsweise Glycolether wie Triethylenglycoldimethylether und Diethylenglycolmonobutylether oder auch Glycoletheracetale wie Butylcarbitolformal. Diese ermöglichen eine druckfreie Ausführung der Reaktion auch bei den hohen Temperaturen > 200°C. Das Produkt TBD wird nach der Umsetzung als Feststoff isoliert, indem entweder das Lösemittel entfernt wird und sich das Produkt TBD im Rückstand befindet, oder das Produkt durch Zusatz eines Fällungsmittels, z.B. eines Kohlenwasserstoffs, auskristallisiert wird. In weiteren Ausführungsformen wird die Reaktionsmischung in dem hochsiedenden Ether zusätzlich mit einem Reagens zur Bindung des gebildeten Wassers versetzt, als Beispiele für dieses werden Disilazane und Tetraethoxysilan (TEOS) genannt. Bei der Verwendung von TEOS bildet sich jedoch, wie in der US 2009/0281314 Abschnitt [0028] offenbart, unter den dort angegebenen Bedingungen unlösliches Silica, welches nur über Filtration der verdünnten Produktlösung abgetrennt werden kann, was den Prozess weiter verteuert. Hinzu kommt, dass die Verwendung von Glycolethern als Lösemittel problematisch ist, da diese in Kontakt mit Luft zur Bildung von thermisch labilen Etherperoxiden neigen und außerdem toxisch sind. Diese Lösemittel müssen daher vor der Anwendung möglichst vollständig entfernt werden, was mehrfaches Umkristallisieren erfordert. Die Herstellung des Produkts wird damit erheblich verteuert und dessen Einsatz letztlich unwirtschaftlich.
  • Insbesondere für Anwendungen in der Polymerchemie ist das kristalline bicyclische Guanidin nur wenig geeignet, da es sich nur sehr langsam in Polymeren, insbesondere in Siloxanen löst. Durch den langwierigen Prozess des Lösens vergrößert sich der technische Aufwand beträchtlich, was letztlich zur Unwirtschaftlichkeit des Verfahrens führen kann. Es besteht auch stets die Gefahr, dass unlösliche Bestandteile des Katalysators im Reaktionsgemisch verbleiben, dies hat dann einen Mehrverbrauch zur Folge, was wiederum die Wirtschaftlichkeit herabsetzt.
  • Es bestand daher die Aufgabe, ein Verfahren zur Herstellung von bicyclischen Guanidinen bereitzustellen, welches die o.g. Nachteile nicht aufweist und eine kostengünstige und technisch einfache Produktion ermöglicht. Eine weitere Aufgabe ist, eine auf einfachem Weg kostengünstig herstellbare flüssige Formulierung von bicyclischem Guanidin bereitzustellen, welche direkt für katalytische Zwecke eingesetzt werden kann.
  • Gegenstand der Erfindung ist ein Verfahren zur Herstellung bicyclischer Guanidine durch Umsetzung von (A) Dialkylentriamin mit (B) Dialkylcarbonat
  • in Gegenwart von (C) Silan der Formel

            Si (ORx)oRy (4-o)     (IV)

    und/oder dessen Teilhydrolysate,
    wobei
    • Rx gleich oder verschieden sein können und einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 2 bis 10 Kohlenstoffatomen darstellen,
    • Ry gleich oder verschieden sein können und einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, bei denen einzelne nicht an Silicium gebundene CH2-Gruppierungen durch Sauerstoff ersetzt oder durch Silylgruppen substituiert sein können, darstellen und
    • o 1, 2, 3 oder 4, bevorzugt 2, 3 oder 4, besonders bevorzugt 3, ist,
    • mit der Maßgabe, dass bei Silanen der Formel (IV) mit o=4 mindestens zwei Reste Rx die Bedeutung von einwertigem, gegebenenfalls substituiertem Kohlenwasserstoffrest mit 3 bis 10 Kohlenstoffatomen haben.
  • Vorzugsweise handelt es sich bei dem erfindungsgemäß eingesetzten Dialkylentriamin (A) um solche der allgemeinen Formel

            H2N- (CRa 2)m-CRa 2-NH-CRa 2- (CRa 2)n-NH2     (II),

    wobei
    m und n unabhängig voneinander 1, 2, 3 oder 4, bevorzugt 1, 2 oder 3, besonders bevorzugt 1 oder 2, sind und Ra gleich oder verschieden sein kann und Wasserstoffatom oder einwertige Kohlenwasserstoffreste darstellt, wobei einzelne Methylengruppen durch Sauerstoff oder durch Gruppierungen -NH- oder -NRd- ersetzt sein können, wobei Rd einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 2 bis 10 Kohlenstoffatomen bedeutet.
  • Beispiele für einwertige Ra sind Alkylreste, wie der Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, 1-n-Butyl-, 2-n-Butyl-, isoButyl-, tert.-Butyl-, n-Pentyl-, iso-Pentyl-, neo-Pentyl-, tert.-Pentylrest; Hexylreste, wie der n-Hexylrest, der 2-Methylpentylrest; Heptylreste, wie der n-Heptylrest; Octylreste, wie der n-Octylrest und iso-Octylreste, wie der 2,2,4-Trimethylpentylrest; Nonylreste, wie der n-Nonylrest; Decylreste, wie der n-Decylrest; Undecylreste wie der n-Undecylrest, Dodecylreste, wie der n-Dodecylrest; Octadecylreste, wie der n-Octadecylrest; Cycloalkylreste, wie der Cyclopentyl-, Cyclohexyl-, Cycloheptylrest und Methylcyclohexylreste; Alkenylreste, wie der Vinyl-, 1-Propenyl- und der 2-Propenylrest; Arylreste, wie der Phenyl-, Naphthyl-, Anthryl- und Phenanthrylrest; Alkarylreste, wie o-, m-, p-Tolylreste; Xylylreste und Ethylphenylreste; und Aralkylreste, wie der Benzylrest, der α- und der β-Phenylethylrest, -OH, -OCH3, -OC2H5, -CH2-O-CH3, -NH2, -CH2-NH2 oder -CH2-N(CH3)2.
  • Bevorzugt handelt es sich bei den Resten Ra um Wasserstoffatom oder Kohlenwasserstoffreste mit 1 bis 10 Kohlenstoffatomen, wobei einzelne Methylengruppen durch Sauerstoff oder durch Gruppierungen -NH- oder -NRd- ersetzt sein können, wobei Rd die oben dafür angegebene Bedeutung hat, besonders bevorzugt um Wasserstoffatom oder aliphatische lineare oder verzweigte Kohlenwasserstoffreste mit 1 bis 6 Kohlenstoffatomen, insbesondere um Wasserstoffatom.
  • Bevorzugt hat im Triamin (A) der Formel (II) m die gleiche Bedeutung wie n, wobei m=n= 1 oder 2 besonders bevorzugt ist.
  • Bevorzugt handelt es sich bei dem erfindungsgemäß eingesetzten Triamin (A) um Bis-(3-aminopropyl)amin, Bis-(2-aminoethyl)amin, 1-Amino-3-[(3-amino-2-hydroxypropyl)amino]propan-2-ol oder N-(2-Aminoethyl)-N-(3-aminopropyl)amin, wobei Bis-(3-aminopropyl)amin besonders bevorzugt ist.
  • Vorzugsweise handelt es sich bei dem erfindungsgemäß eingesetzten Dialkylcarbonat (B) um solche der allgemeinen Formel

            RbO-CO-ORb     (III),

    wobei
    Rb gleich oder verschieden sein kann und ein- oder zweiwertige, aliphatisch gesättigte Kohlenwasserstoffreste darstellt.
  • Falls Rb die Bedeutung von zweiwertigen aliphatisch gesättigten Kohlenwasserstoffresten hat, sind diese bevorzugt miteinander verbunden und bilden über die beiden Sauerstoffatome einen Ring.
  • Beispiele für Reste Rb sind die für Rest Ra angegebenen Beispiele für einwertige aliphatisch gesättigte Kohlenwasserstoffreste sowie zweiwertige aliphatisch gesättigte Kohlenwasserstoffreste, wie -CH2-(CH2)p-CH2- mit p bevorzugt gleich 0, 1, 2, 3 oder 4, besonders bevorzugt 0 oder 1, wobei die zweiwertigen Reste Rb bevorzugt miteinander verbunden sind und über die beiden Sauerstoffatome einen Ring bilden.
  • Bevorzugt handelt es sich bei Rest Rb um ein- oder zweiwertige aliphatisch gesättigte Kohlenwasserstoffreste mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt um ein- oder zweiwertige aliphatisch gesättigte lineare oder verzweigte Kohlenwasserstoffreste mit 1 bis 6 Kohlenstoffatomen, insbesondere um den Methyl-, Ethyl-, Propyl-, Ethylen- oder Propylenrest, ganz besonders bevorzugt um den Methyl- oder Ethylrest.
  • Bevorzugt handelt es sich bei dem erfindungsgemäß eingesetzten Carbonat (B) um Dimethylcarbonat, Diethylcarbonat, Di-n-Propylcarbonat, Ethylencarbonat oder Propylencarbonat, wobei Dimethylcarbonat oder Diethylcarbonat besonders bevorzugt sind.
  • Bei dem erfindungsgemäßen Verfahren wird Dialkylcarbonat (B) in molaren Mengen von bevorzugt 0,5 bis 2, 0 Mol, besonders bevorzugt 0,8 bis 1,5 Mol, jeweils bezogen auf 1 Mol des eingesetzten Dialkylentriamins (A), eingesetzt.
  • Bevorzugt handelt es sich bei Rest Rx um lineare, verzweigte oder cyclische gesättigte oder ungesättigte Kohlenwasserstoffreste mit 2 bis 6 Kohlenstoffatomen, besonders bevorzugt um aliphatisch gesättigte lineare oder verzweigte Kohlenwasserstoffreste mit 2 bis 6 Kohlenstoffatomen, insbesondere um den Ethyl-, n-Propyl-, i-Propyl, n-Butyl oder 2-Butylrest, ganz besonders bevorzugt um den Ethylrest.
  • Beispiele für Reste Ry sind die für Rest Ra angegebenen Beispiele.
  • Bevorzugt handelt es sich bei den Resten Ry um lineare, verzweigte oder cyclische gesättigte oder ungesättigte Kohlenwasserstoffreste mit 1 bis 20 Kohlenstoffatomen, besonders bevorzugt um aliphatische, lineare oder verzweigte Kohlenwasserstoffreste mit 1 bis 12 Kohlenstoffatomen.
  • Beispiele für erfindungsgemäß eingesetzte Silane (C) sind i-Octyl-Si(OEt)3, Methyltriethoxysilan, Ethyltriethoxysilan, Vinyltriethoxysilan, Propyltriethoxysilan, Butyltriethoxysilan, Cyclohexyltriethoxysilan, 2-Methylpropyltriethoxysilan, Pentyltriethoxysilan, Methyltris(1-methylethoxy)silan, n-Octyltriethoxysilan, Phenyltriethoxysilan, Benzyltriethoxysilan, Si(O-2-Butyl)4, Si(OEt) (O-2-Butyl)3, Si(OEt)2(O-2-Butyl)2, Si(OiProp)4, Si(OEt) (OiProp)3, Si(OEt)2(OiProp)2 und (EtO)3Si-CH2-CH2-Si(OEt)3, (EtO)3Si-CH2-CH2-SiMe3, (EtO)2MeSi-CH2-CH2-SiMe(OEt)2 und deren Teilhydrolysate, wobei Et gleich Ethylrest und Prop gleich Propylrest bedeutet.
  • Bevorzugt handelt es sind bei den erfindungsgemäß eingesetzten Silanen (C) um solche mit o=3 und Rx gleich einwertigem, aliphatisch gesättigtem, linearem oder verzweigtem Alkylrest mit 2 bis 4 Kohlenstoffatomen und Ry gleich einwertigem, aliphatischem, linearem oder verzweigtem Kohlenwasserstoffrest mit 6 bis 10 Kohlenstoffatomen oder um solche mit o=4 und mindestens zwei Resten Rx gleich einwertigem, aliphatisch gesättigtem, linearem oder verzweigtem Kohlenwasserstoffrest mit 3 bis 8 Kohlenstoffatomen und/oder jeweils deren Teilhydrolysate.
  • Besonders bevorzugt handelt es sind bei den erfindungsgemäß eingesetzten Silanen (C) um i-Octyl-Si(OEt)3, n-Heptyl-Si(OEt)3, n-Decyl-Si(OEt)3, Phenyl-Si(OEt)3, Si(O-2-Butyl)4, Si(OEt)(O-2-Butyl)3, Si(OEt)2(O-2-Butyl)2, Si(OiProp)4, Si(OEt)(OiProp)3 oder Si(OEt)2(OiProp)2 und/oder deren Teilhydrolysate, insbesondere um i-Octyl-Si(OEt)3 und/oder dessen Teilhydrolysate.
  • Falls es sich bei Komponente (C) um Teilhydrolysate der Silane der Formel (IV) handelt, sind solche mit 2 bis 5 Siliciumatomen bevorzugt.
  • Bei dem erfindungsgemäßen Verfahren wird Komponente (C) in Mengen von bevorzugt 30 bis 1000 Gewichtsteilen, besonders bevorzugt 100 bis 500 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Dialkylentriamin (A), eingesetzt.
  • Im erfindungsgemäßen Verfahren können zusätzlich zu den Komponenten (A), (B) und (C) weitere Stoffe eingesetzt werden, die jeweils unterschiedlich sind zu den Komponenten (A), (B) und (C), wie z.B. Basen (D) oder organische Lösungsmittel (E).
  • Beispiele für gegebenenfalls eingesetzte Basen (D) sind anorganische oder organische Basen.
  • Bevorzugt handelt es sich bei den gegebenenfalls eingesetzten Basen (D) um Stickstoffbasen, die unterschiedlich sind zu Komponente (A), besonders bevorzugt um TBD, DBU, DBN, Pyridin oder Dimethylaminpyridin, Guanidin, Tetramethylguanidin oder Tetraethylguanidin.
  • Falls im erfindungsgemäßen Verfahren Basen (D) eingesetzt werden, handelt es sich um Mengen von vorzugsweise 0,01 bis 20 Gewichtsteilen, besonders bevorzugt 0,1 bis 10 Gewichtsteilen, insbesondere 1 bis 5 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile an eingesetztem Dialkylentriamin (A). Beim erfindungsgemäßen Verfahren wird bevorzugt keine Base (D) eingesetzt.
  • Vorzugsweise handelt es sich bei den gegebenenfalls eingesetzten Lösungsmitteln (E) um Alkohole, Phenole, Nitrile, Dialkyl- oder Diarylether oder Kohlenwasserstoffe, wobei Alkohole oder Kohlenwasserstoffe bevorzugt und Alkohole besonders bevorzugt sind.
  • Falls im erfindungsgemäßen Verfahren Lösungsmittel (E) eingesetzt werden, handelt es sich um Mengen von vorzugsweise 0,1 bis 200 Gewichtsteilen, besonders bevorzugt 1 bis 100 Gewichtsteilen, insbesondere 10 bis 50 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile des eingesetzten Dialkylentriamins (A). Beim erfindungsgemäßen Verfahren wird bevorzugt kein Lösungsmittel (E) eingesetzt.
  • Falls erwünscht, können im erfindungsgemäßen Verfahren noch weitere Stoffe eingesetzt werden, wie z.B. die im Zusammenhang mit der erfindungsgemäßen Zubereitung weiter unten beschriebenen Füllstoffe (f), Farbmittel (g) und Polymere (h), was jedoch nicht bevorzugt ist.
  • Im erfindungsgemäßen Verfahren werden bevorzugt keine Glycolether eingesetzt.
  • Im erfindungsgemäßen Verfahren werden bevorzugt keine über die Komponenten (A) bis (E) sowie (f), (g) und (h) hinausgehenden weiteren Bestandteile, besonders bevorzugt keine über die Komponenten (A) bis (E) hinausgehenden weiteren Bestandteile eingesetzt.
  • Bei den im erfindungsgemäßen Verfahren eingesetzten Komponenten kann es sich jeweils um eine Art einer solchen Komponente wie auch um ein Gemisch aus mindestens zwei Arten einer jeweiligen Komponente handeln.
  • Bei dem erfindungsgemäßen Verfahren werden bevorzugt in einer ersten Stufe die Komponenten (A) und (B) sowie gegebenenfalls Komponenten (D), (E), (f), (g) und (h) vermischt und reagieren gelassen und dann in einer zweiten Stufe Komponente (C) sowie gegebenenfalls Komponenten (D), (E), (f), (g) und (h) zugegeben und auf eine Temperatur größer 200°C erhitzt.
  • In der ersten Stufe des erfindungsgemäßen Verfahrens wird Komponente (A) sowie gegebenenfalls Komponenten (D), (E), (f), (g) und (h) bevorzugt bei Temperaturen zwischen Raumtemperatur und 120°C vorgelegt und Komponente (B) zugegeben, wobei eine exotherme Reaktion stattfindet, wodurch die Temperatur des Reaktionsgemischs weiter ansteigt. Bevorzugt wird die Temperatur gegebenenfalls durch Kühlen oder Erwärmen auf 20 bis 120°C gehalten, wobei der entstehende Alkohol, vorzugsweise Rb-OH, abgetrennt, bevorzugt abdestilliert, wird. Der gebildete Alkohol kann auch im Anschluss an die Reaktion abgetrennt werden, bevorzugt durch Destillation. Bei dieser Umsetzung bildet sich durch Abspaltung von Alkohol ein cyclischer Harnstoff.
  • In der zweiten Stufe des erfindungsgemäßen Verfahrens wird zu der in der ersten Stufe erhaltenen Reaktionsmischung Komponente (C) sowie gegebenenfalls Komponenten (D), (E), (f), (g) und (h) zugegeben und auf eine Temperatur von bevorzugt 200°C bis 280°C, besonders bevorzugt von 210°C bis 260°C, insbesondere auf eine Temperatur von 220°C bis 250°C, aufgeheizt und reagieren gelassen, wobei Alkohol Rx-OH entsteht, der vorzugsweise entfernt wird. Das Entfernen des Alkohols erfolgt dabei vorzugsweise durch Destillation, besonders bei Drucken zwischen 0,1 mbar und 50 bar, besonders bevorzugt bei Drucken zwischen 1 mbar und 20 bar, ganz besonders bevorzugt bei Umgebungsdruck.
  • In einer weiteren Durchführungsform des erfindungsgemäßen Verfahrens werden alle Komponenten in beliebiger Reihenfolge miteinander vermischt und reagieren gelassen, wobei die Temperatur bevorzugt nach dem Abklingen der exothermen Reaktion im Zeitraum von bevorzugt 0,1 bis 10 Stunden, besonders bevorzugt 1 bis 5 Stunden, auf 220 bis 280°C erhöht wird und in diesem Temperaturbereich für bevorzugt 5 bis 30 Stunden, besonders bevorzugt 8 bis 20 Stunden, gehalten wird.
  • Das erfindungsgemäße Verfahren wird bevorzugt unter Schutzgas, wie z.B. Stickstoff, durchgeführt.
  • Das erfindungsgemäße Verfahren kann kontinuierlich, diskontinuierlich oder semikontinuierlich durchgeführt werden, wobei die diskontinuierliche Verfahrensweise bevorzugt ist.
  • Nach der erfindungsgemäßen Umsetzung wird eine blassgelbe Reaktionsmischung erhalten, aus der das bicyclische Guanidin bei Umgebungstemperatur nahezu quantitativ in kristalliner Form ausfällt, es kann daher auf einfache Weise, beispielsweise durch Filtration, abgetrennt werden. Es ist jedoch ebenso möglich, das bicyclische Guanidin durch fraktionierte Destillation, Sublimation oder Feststoffdestillation zu isolieren. Die Bildung von unlöslichen Komponenten wie z.B. Silica findet bei dem erfindungsgemäßen Verfahren bevorzugt nicht statt.
  • Bevorzugt werden nach dem erfindungsgemäßen Verfahren bicyclische Guanidine der Formel (I)
    Figure imgb0001
    erhalten, wobei Ra, m und n die oben genannte Bedeutung haben.
  • Bei dem erfindungsgemäßen Verfahren können die abgetrennten Alkohole, bevorzugt Rb-OH und Rx-OH, wiederverwendet werden, z.B. bei der Herstellung von Alkoxysilanen oder bei der Herstellung der erfindungsgemäßen Zubereitung als Komponente (c). In diesem Fall entstehen durch das erfindungsgemäße Verfahren keinerlei Abfallprodukte, was einen besonderen Vorteil bei dem erfindungsgemäßen Verfahren darstellt.
  • In einer bevorzugten Ausführungsform wird die erhaltene Reaktionsmischung nach Reaktionsende mit Wasser oder ein- oder mehrwertigem Alkohol vermischt. Eine Aufarbeitung des Reaktionsgemisches kann dadurch vorteilhafterweise vollständig entfallen und die so erhaltene Zubereitung kann direkt eingesetzt werden.
  • Ein weiterer Gegenstand der Erfindung ist daher eine Zubereitung bestehend aus
    • (a) bicyclischem Guanidin,
    • (b) Silan der allgemeinen Formel (IV) und/oder dessen Teilhydrolysate,
    • (c) Verbindung RcOH, wobei Rest Rc gleich Wasserstoffatom oder einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, die mit Sauerstoff unterbrochen sein können, darstellt,
    • gegebenenfalls (d) Reaktionsnebenprodukte,
    • gegebenenfalls (e) organische, von an aliphatische Kohlenstoffatome gebundenen Hydroxylgruppen freie Lösungsmittel,
    • gegebenenfalls (f) Füllstoffe,
    • gegebenenfalls (g) Farbmittel und
    • gegebenenfalls (h) Polymere.
  • Zusätzlich zu den Komponenten (a), (b) und (c) sowie gegebenenfalls (e), (f) und (h) können die erfindungsgemäßen Zubereitungen Reaktionsnebenprodukte (d) aus der erfindungsgemäßen Umsetzung von (A) mit (B) enthalten, die vorzugsweise dann anwesend sind, wenn das nach dem erfindungsgemäßen Verfahren erhaltene Reaktionsgemisch ohne Aufarbeitung zur Herstellung der erfindungsgemäßen Zubereitungen verwendet wird, was bevorzugt ist.
  • Bei erfindungsgemäß eingesetzter Komponente (a) handelt es sich bevorzugt um Verbindungen der Formel (I), besonders bevorzugt um TBD.
  • Bei den erfindungsgemäßen Zubereitungen beträgt der Gehalt an bicyclischen Guanidinen (a) bevorzugt 2 bis 35 Gew.-%, besonders bevorzugt 5 bis 25 Gew.-%.
  • Bei erfindungsgemäß eingesetzter Komponente (b) handelt es sich bevorzugt um Silane der Formel (IV) im Gemisch mit deren durch Hydrolyse und Kondensation gebildeten Siloxanen.
  • Bei den erfindungsgemäßen Zubereitungen beträgt der Gehalt an Silanen und/oder Siloxanen (b) bevorzugt 20 bis 90 Gew.-%, besonders bevorzugt 30 bis 70 Gew.-%.
  • Beispiele für Rest Rc sind die für Rest Ry oben angegebenen Reste.
  • Bevorzugt handelt es sich bei Rest Rc um Wasserstoffatom oder aliphatisch gesättigte oder aliphatisch ungesättigte, lineare oder verzweigte oder cyclische, gegebenenfalls substituierte Kohlenwasserstoffreste mit 1 bis 12 Kohlenstoffatomen, die mit Sauerstoff unterbrochen sein können, besonders bevorzugt um aliphatisch gesättigte oder aliphatisch ungesättigte, lineare oder verzweigte, gegebenenfalls mit Hydroxylgruppen substituierte Kohlenwasserstoffreste mit 1 bis 6 Kohlenstoffatomen, die mit Sauerstoffatomen unterbrochen sein können, insbesondere um Wasserstoffatom, den Methyl-, Ethyl-, 2-Hydroxyethyl-, n-Propyl-, i-Propyl-, 2-Hydroxypropyl-, 2,3-Dihydroxypropyl-, n-Butyl- oder 2-Butyl-rest.
  • Bevorzugt handelt es sich bei Komponente (c) um Wasser, Methanol, Ethanol, n-Propanol, i-Propanol, Glycerin, Ethylenglycol oder Propylenglycol, wobei Ethanol besonders bevorzugt ist.
  • Bei den erfindungsgemäßen Zubereitungen beträgt der Gehalt an Komponente (c) bevorzugt 5 bis 50 Gew.-%, besonders bevorzugt 10 bis 30 Gew.-%.
  • Bevorzugt beträgt der Gewichtsanteil der Komponenten (a), (b), (c) und gegebenenfalls (d) in den erfindungsgemäßen Zusammensetzungen mindestens 80 Gew.-%, besonders bevorzugt mindestens 90 Gew.-%, insbesondere 100 Gew.-%.
  • Falls die erfindungsgemäßen Zubereitungen Reaktionsnebenprodukte (d) enthalten, handelt es sich um Mengen von vorzugsweise 1 bis 20 Gewichtsteilen, besonders bevorzugt 2 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile des Gesamtgewichts der Komponenten (a), (b) und (c).
  • Beispiele für gegebenenfalls eingesetzte Komponente (e) sind die oben für organische Lösungsmittel (E) angegebenen Beispiele, ausgenommen Alkohole.
  • Falls die erfindungsgemäßen Zubereitungen organische Lösungsmittel (e) enthalten, handelt es sich um Mengen von vorzugsweise 0,01 bis 100 Gewichtsteilen, besonders bevorzugt 0,1 bis 50 Gewichtsteilen, insbesondere 1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile des Gesamtgewichts der Komponenten (a), (b) und (c). Die erfindungsgemäßen Zubereitungen enthalten bevorzugt kein organisches Lösungsmittel (e).
  • Beispiele für gegebenenfalls eingesetzte Füllstoffe (f) sind nicht verstärkende Füllstoffe, also Füllstoffe mit einer BET-Oberfläche von bis zu 50 m2/g, wie Quarz, Diatomeenerde, Calciumsilikat, Zeolithe, Siliciumnitrid, Siliciumcarbid, Bornitrid, Glaspulver; verstärkende Füllstoffe, also Füllstoffe mit einer BET-Oberfläche von mindestens 50 m2/g, wie pyrogen hergestellte Kieselsäure, gefällte Kieselsäure, und Silicium-Aluminium-Mischoxide großer BET-Oberfläche, wobei gefällte und pyrogene Kieselsäure bevorzugt und pyrogene Kieselsäure besonders bevorzugt ist.
  • Falls die erfindungsgemäßen Zubereitungen Füllstoffe (f) enthalten, handelt es sich um Mengen von vorzugsweise 0,1 bis 100 Gewichtsteilen, besonders bevorzugt 1 bis 50 Gewichtsteilen, insbesondere 5 bis 20 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile des Gesamtgewichts der Komponenten (a), (b) und (c). Die erfindungsgemäßen Zubereitungen enthalten bevorzugt keinen Füllstoff (f).
  • Beispiele für gegebenenfalls eingesetzte Farbmittel (g) sind Farbstoffe wie Phthalocyanine, Indanthrenfarbstoffe, Azofarbstoffe, optische Aufheller und Fluoreszenzfarbstoffe, sowie Pigmente, wie Ruß oder Titandioxid, wobei optische Aufheller und Ruß bevorzugt und optische Aufheller besonders bevorzugt sind.
  • Falls in den erfindungsgemäßen Zubereitungen Farbmittel (g) enthalten sind, handelt es sich um Mengen von vorzugsweise 0,0001 bis 20 Gewichtsteilen, besonders bevorzugt 0,001 bis 5 Gewichtsteilen, insbesondere 0,01 bis 1 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile des Gesamtgewichts der Komponenten (a), (b) und (c). Die erfindungsgemäßen Zubereitungen enthalten bevorzugt keine Farbmittel (g).
  • Beispiele für gegebenenfalls eingesetzte Polymere (h) sind von Organyloxygruppen freie Polysiloxane, Polyether, Polyurethane oder Polyharnstoffe mit bevorzugt 15 bis 1000 Wiederholungseinheiten, bevorzugt von Organyloxygruppen freie Polysiloxane oder Polyether, besonders bevorzugt von Organyloxygruppen freie Polysiloxane.
  • Falls Polymere (h) in den erfindungsgemäßen Zubereitungen enthalten sind, handelt es sich um Mengen von vorzugsweise 0,1 bis 500 Gewichtsteilen, besonders bevorzugt 1 bis 100 Gewichtsteilen, insbesondere 5 bis 50 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile des Gesamtgewichts der Komponenten (a), (b) und (c). Die erfindungsgemäßen Zubereitungen enthalten bevorzugt keine Polymere (h).
  • Bei den in den erfindungsgemäßen Zubereitungen enthaltenen Komponenten kann es sich jeweils um eine Art einer solchen Komponente wie auch um ein Gemisch aus mindestens zwei Arten einer jeweiligen Komponente handeln.
  • Die erfindungsgemäßen Zubereitungen können nach beliebigen und bekannten Verfahren, wie durch einfaches Vermischen der einzelnen Bestandteile, hergestellt werden. Vorzugsweise wird die nach dem erfindungsgemäßen Verfahren erhaltene Reaktionsmischung, die im Wesentlichen aus (a) bicyclischem Guanidin und (b) Silan der allgemeinen Formel (IV) und/oder dessen Teilhydrolysaten und (d) Reaktionsnebenprodukten besteht, mit Alkohol (c) sowie gegebenenfalls den Komponenten (e) bis (h) vermischt. Bevorzugt wird dieses Vermischen bei einer Temperatur von 10 bis 100°C und dem Druck der umgebenden Atmosphäre, also etwa 900 bis 1100 hPa, durchgeführt.
  • Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Zubereitungen durch Mischen der einzelnen Komponenten in beliebiger Reihenfolge.
  • Die erfindungsgemäßen Zubereitungen sind bei 20°C und 1013 hPa bevorzugt nahezu farblose bis schwach gelbliche und homogene Flüssigkeiten.
  • Die erfindungsgemäß hergestellten bicyclischen Guanidine sowie die erfindungsgemäßen Zubereitungen können überall da eingesetzt werden, wo auch bisher bicyclische Guanidine eingesetzt wurden, insbesondere als flüssige Katalysatorzubereitung bei der Umsetzung von Hydroxysiloxanen mit Alkoxysilanen (sog. Endcapping), bei der ringöffnenden Polymerisation von Lactonen, Lactamen und cyclischen Carbonaten, zur Überführung von Estern in Amide und von Carbonaten in Harnstoffe, zur Aldolkondensation, und zur Transalkoxylierung von Alkoxysilanen und Alkoxysiloxanen.
  • Das erfindungsgemäße Verfahren hat den Vorteil, dass bei Einsatz von Alkoxysilanen als Reaktionsmedium und gleichzeitig als Mittel zur Entfernung von Wasser bicyclische Guanidine in hohen Ausbeuten hergestellt werden können.
  • Ein weiterer Vorteil des erfindungsgemäßen Verfahrens ist, dass auf den Einsatz der chemisch und toxikologisch problematischen Glycolether als Solventien komplett verzichtet werden kann.
  • Das Verfahren liefert überraschenderweise - im Gegensatz zu Verfahren des Standes der Technik, mit welchen dunkel gefärbte Reaktionsgemische erhalten werden - blassgelbe Reaktionsmischungen.
  • Das erfindungsgemäße Verfahren hat ferner den Vorteil, dass die eingesetzten Alkoxysilane überraschend gut in der Lage sind, den durch die Umsetzung mit Wasser gebildeten Alkohol aus dem Reaktionsgemisch herauszuschleppen und damit den Prozess der Bildung cyclischer Guanidine zu begünstigen.
  • Überraschend ist zudem, dass das Produktgemisch, welches cyclische Guanidine und Alkoxysilan bzw. die durch die Reaktion mit Wasser gebildeten Kondensationsprodukte des Alkoxysilans enthält, durch Zusatz von verhältnismäßig geringen Mengen Alkohol verflüssigt werden kann und die erhaltene Zubereitung daher ohne weitere Aufarbeitung des Reaktionsgemisches direkt für katalytische Prozesse eingesetzt werden kann.
  • Die erfindungsgemäßen Zubereitungen haben den Vorteil, dass sie flüssig sind und sich ausgezeichnet für katalytische Zwecke eignen. Insbesondere besteht durch den Siloxananteil in den erfindungsgemäßen Formulierungen eine sehr gute Mischbarkeit mit Siloxanen, wodurch katalytische Anwendungen in diesem Bereich besonders vorteilhaft sind.
  • Ein weiterer wirtschaftlicher Vorteil ist, dass die erfindungsgemäße Herstellung von bicyclischen Guanidinen und die Weiterverarbeitung zu der erfindungsgemäßen flüssigen Formulierung ohne Feststoffhandling erfolgt und außerdem keine Abfallprodukte abgetrennt werden müssen.
  • In den nachfolgenden Beispielen beziehen sich alle Angaben von Teilen und Prozentsätzen, soweit nicht anders angegeben, auf das Gewicht. Sofern nicht anders angegeben, werden die folgenden Beispiele bei einem Druck der umgebenden Atmosphäre, also bei etwa 1000 hPa, und bei Raumtemperatur, also etwa 20°C, bzw. einer Temperatur, die sich beim Zusammengeben der Reaktanden bei Raumtemperatur ohne zusätzliche Heizung oder Kühlung einstellt, durchgeführt. Alle in den Beispielen angeführten Viskositätsangaben sollen sich auf eine Temperatur von 25°C beziehen. Bei den Versuchen wird jeweils mit Stickstoff inertisiert.
  • Beispiel 1
  • 409 g (3,11 mol) Bis-(3-aminopropyl)amin und 11 g einer TBD-Lösung in Ethanol mit einem TDB-Gehalt von ca. 19 % wurden bei Raumtemperatur vermischt und unter Rühren innerhalb einer Stunde mit 293 g (3,24 mol) Dimethylcarbonat versetzt. Hierbei wurde ein Temperaturanstieg bis auf 90°C Sumpftemperatur beobachtet. Nach Abklingen der exothermen Reaktion wurde noch 3 Stunden auf 90°C erhitzt, und das gebildete Methanol sowie vorhandenes Ethanol wurde über eine Brücke bei einer Sumpftemperatur bis 139°C abdestilliert.
  • Der so erhaltene Rückstand wurde mit 1258 g (4,55 mol) i-Octyltriethoxysilan (=2,4,4-Trimethylpentyltriethoxysilan) versetzt, das Gemisch auf 240°C erhitzt und gebildetes Ethanol über eine Brücke abdestilliert. Die Reaktionszeit betrug 12 Stunden. Beim Abkühlen kristallisierte TBD aus dem Sumpf aus. Durch Zugabe von 440 g Ethanol erhielt man eine nahezu farblose homogene TBD-Lösung (Gesamtgewicht 1880 g) mit einem TBD-Gehalt von 19 Gew.-% (387 g TBD, HPLC-Analyse), dies entspricht einer Ausbeute an TBD von 90%.
  • Beispiel 2
  • 203 g (1,55 mol) Bis-(3-aminopropyl)amin wurden auf 60°C erwärmt und in einer Stunde unter Rühren mit 146 g (1,62 mol) Dimethylcarbonat versetzt. Hierbei wurde ein Temperaturanstieg bis auf 86°C Sumpftemperatur beobachtet. Es wurden noch 3 Stunden auf 90°C erhitzt und anschließend gebildetes Methanol abdestilliert.
  • Der so erhaltene Rückstand wurde mit 624 g (2,26 mol) Isooctyltriethoxysilan versetzt, das Gemisch unter Rühren auf 250°C erhitzt und gebildetes Ethanol über eine Brücke abdestilliert. Die Reaktionszeit bei 250°C betrug 9 Stunden. Beim Abkühlen kristallisiert TBD aus dem Sumpf aus. Durch Zugabe von 210 g Ethanol erhielt man eine nahezu farblose homogene TBD-Lösung (Gesamtgewicht 940 g) mit einem TBD-Gehalt von 20 Gew.-% (188 g TBD, HPLC-Analyse), dies entspricht einer Ausbeute an TBD von 87 %.
  • Vergleichsbeispiel 3
  • 77,3 g (0,59 mol) Bis-(3-aminopropyl)amin wurden bei Raumtemperatur in einer Stunde unter Rühren mit 55,6 g (0,62 mol) Dimethylcarbonat versetzt. Hierbei wurde ein Temperaturanstieg bis auf 50°C Sumpftemperatur beobachtet. Es wurden noch 3 Stunden auf 90°C erhitzt und anschließend gebildetes Methanol abdestilliert. Man erhielt 109 g Rückstand, welcher mit 232 g eines Gemisches bestehend aus 25 % Tetraethoxysilan, 35 % Hexaethoxydisiloxan, 26 % Octaethoxytrisiloxan, 10 % Octaethoxycyclotetrasiloxan und 4 % Decaethoxytetrasiloxan versetzt und 10 Stunden unter Rühren auf Temperaturen zwischen 210°C und 235°C erhitzt und dabei Ethanol abdestilliert wurde. Nach dem Erkalten wurde das das kristalline TBD enthaltende dreiphasige (zwei flüssige Phasen und Feststoff) dunkel gefärbte Reaktionsgemisch mit 60 g Ethanol versetzt. Die untere zähflüssige Phase blieb zunächst bestehen und löste sich nach Erwärmen auf 70°C / 10 Stunden auf. Die erhaltene homogene Lösung (Gesamtgewicht 275 g) hatte einen TBD-Gehalt (HPLC) von 10,4 %, entsprechend 28,6 g TBD (35 %).
  • Beispiel 4
  • 109 g des Produktes aus der Umsetzung von Bis-(3-aminopropyl)-amin mit Dimethylcarbonat nach Beispiel 2 wurden unter Rühren mit 251 g eines Alkoxysilangemisches bestehend aus 30 % Diet-hoxy-di-(2-butoxy)silan, 50 % Ethoxy-tri-(2-butoxy)silan und 20 % Tetra-(2-butoxy)silan versetzt und 10 Stunden unter Rühren auf Temperaturen zwischen 210°C und 235°C erhitzt und dabei Ethanol und 2-Butanol abdestilliert. Nach dem Erkalten wurde das kristalline TBD enthaltende Reaktionsgemisch mit 43 g Ethanol versetzt. Es bildete sich eine homogene Lösung (Gesamtgewicht 386 g), der TBD-Gehalt (HPLC) betrug 22,4 %, entspricht 86,5 g TBD (90 %).
  • Beispiel 5
  • 30,0 g (0,29 mol) Diethylentriamin wurden auf 50°C erwärmt und innerhalb von 45 Minuten unter Rühren mit 21,8 g (0,24 mol) Dimethylcarbonat versetzt. Hierbei wurde ein Temperaturanstieg bis auf 50°C Sumpftemperatur beobachtet. Es wurde noch 3 Stunden auf 90°C erhitzt und anschließend gebildetes Methanol bei Sumpftemperatur zwischen 125-145°C abdestilliert. Man erhielt 40,2 g Rückstand, welcher mit 200 g i-Octyltriethoxysilan versetzt und unter Rühren über 20 Std auf 220°C bis 250°C erhitzt wurde. Hierbei wird das gebildete Ethanol abdestilliert. Nach dem Erkalten des Reaktionsansatzes wird dieser mit 38 g Ethanol versetzt. Es ergab sich eine klare homogene Lösung mit einem TBO-Gehalt von 6,1 % (HPLC).
  • Beispiel 6
  • 117 g des Produktes aus der Umsetzung von Bis-(3-aminopropyl)-amin mit Dimethylcarbonat nach Beispiel 2 wurden mit 300 g i-Octyltriethoxysilan versetzt, das Gemisch unter Rühren auf Temperaturen zwischen 230 und 250°C erhitzt und gebildetes Ethanol (49 g) über eine Brücke abdestilliert. Die Reaktionszeit betrug 13 Stunden. Anschließend wurde auf ca. 190°C abgekühlt und aus der bei dieser Temperatur homogenen Reaktionsmischung eine Probe über HPLC untersucht. Der Gehalt an TBD betrug 23 %. Dies entspricht einer TBD Menge von 85 g (99 %). Beim Abkühlen auf Umgebungstemperatur kristallisierte TBD aus dem Sumpf aus. Durch Zugabe von 71 g Ethanol erhielt man eine nahezu farblose homogene TBD-Lösung.
  • Beispiel 7
  • 204 g (1,55 mol) Bis-(3-aminopropyl)amin wurden mit 14,4 g der nach Beispiel 1 erhaltenen TBD-Lösung versetzt, auf 90°C erwärmt und innerhalb einer Stunde 191 g (1,62 mol) Diethylcarbonat unter Rühren zugegeben. Hierbei wurde ein Temperaturanstieg bis auf 102°C Sumpftemperatur beobachtet. Es wurde noch 3 Stunden auf 105°C erhitzt (Rückfluss Ethanol) und anschließend gebildetes Ethanol (142 g) bei Normaldruck und Sumpftemperatur von 110 bis 160°C abdestilliert. Man erhielt 271 g Rückstand (Gehalt an cyclischem Harnstoff 90 %). Hiervon wurden 117 g (0,67 mmol) mit 248 g i-Octyltriethoxysilan versetzt, das Gemisch unter Rühren auf 245°C erhitzt und gebildetes Ethanol über eine Brücke abdestilliert. Die Reaktionszeit bei 245°C betrug 12 Stunden. Beim Abkühlen auf Umgebungstemperatur kristallisierte TBD aus dem Sumpf aus. Durch Zugabe von 87 g Ethanol erhielt man eine homogene TBD-Lösung (Gesamtgewicht 367 g) mit einem TBD-Gehalt von 18 Gew. % (66 g TBD, HPLC-Analyse), dies entspricht einer Ausbeute an TBD von 72 %.
  • Beispiel 8
  • 103 g (0,78 mol) Bis-(3-aminopropyl)amin wurden mit 7,2 g der nach Beispiel 1 erhaltenen TBD-Lösung und mit 100 g i-Octyltriethoxysilan versetzt, auf 90°C erwärmt und innerhalb einer Stunde unter Rühren 95,5 g (0,80 mol) Diethylcarbonat zugegeben. Hierbei wurde ein Temperaturanstieg bis auf 106°C Sumpftemperatur beobachtet. Es wurde noch 3 Stunden auf 105°C erhitzt (Rückfluss Ethanol) und anschließend gebildetes Ethanol (73 g) bei Normaldruck und Sumpftemperatur von 110 bis 160°C abdestilliert. Man erhielt 233 g eines zweiphasigen Rückstands. Dieser wurde mit 182 g i-Octyltriethoxysilan versetzt, das Gemisch unter Rühren auf 245°C erhitzt und gebildetes Ethanol (ca. 70 g) über eine Brücke abdestilliert. Die Reaktionszeit bei 245°C betrug 12 Stunden. Beim Abkühlen auf Umgebungstemperatur kristallisierte TBD aus dem Sumpf aus. Durch Zugabe von 100 g Ethanol erhielt man eine homogene TBD-Lösung (Gesamtgewicht 445 g) mit einem TBD-Gehalt von 22 Gew. % (98 g TBD, HPLC-Analyse), dies entspricht einer Ausbeute an TBD von 91 %.

Claims (10)

  1. Verfahren zur Herstellung bicyclischer Guanidine durch Umsetzung von (A) Dialkylentriamin mit (B) Dialkylcarbonat in Gegenwart von (C) Silan der Formel

            Si(ORx)oRy (4-o)     (IV)

    und/oder dessen Teilhydrolysate, wobei
    Rx gleich oder verschieden sein können und einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 2 bis 10 Kohlenstoffatomen darstellen,
    Ry gleich oder verschieden sein können und einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, bei denen einzelne nicht an Silicium gebundene CH2-Gruppierungen durch Sauerstoff ersetzt oder durch Silylgruppen substituiert sein können, darstellen und
    o 1, 2, 3 oder 4 ist,
    mit der Maßgabe, dass bei Silanen der Formel (IV) mit o=4 mindestens zwei Reste Rx die Bedeutung von einwertigem, gegebenenfalls substituiertem Kohlenwasserstoffrest mit 3 bis 10 Kohlenstoffatomen haben.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Dialkylentriaminen (A) um solche der allgemeinen Formel

            H2N-(CRa 2)m-CRa 2-NH-CRa 2-(CRa 2)n-NH2     (II)

    handelt, wobei
    m und n unabhängig voneinander 1, 2, 3 oder 4 sind und
    Ra gleich oder verschieden sein kann und Wasserstoffatom oder einwertige Kohlenwasserstoffreste darstellt, wobei einzelne Methylengruppen durch Sauerstoff oder durch Gruppierungen -NH- oder -NRd- ersetzt sein können, wobei Rd einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 2 bis 10 Kohlenstoffatomen bedeutet.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass es sich bei den Dialkylcarbonaten (B) um solche der allgemeinen Formel

            RbO-CO-ORb     (III)

    handelt, wobei
    Rb gleich oder verschieden sein kann und ein- oder zweiwertige, aliphatisch gesättigte Kohlenwasserstoffreste darstellt.
  4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Komponente (C) in Mengen von 30 bis 1000 Gewichtsteilen, bezogen auf 100 Gewichtsteile Dialkylentriamin (A), eingesetzt wird.
  5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in einer ersten Stufe die Komponenten (A) und (B) sowie gegebenenfalls Komponenten (D), (E), (f), (g) und (h) vermischt und reagieren gelassen werden und dann in einer zweiten Stufe Komponente (C) sowie gegebenenfalls Komponenten (D), (E), (f), (g) und (h) zugegeben und auf eine Temperatur größer 200°C erhitzt werden.
  6. Zubereitung bestehend aus
    (a) bicyclischem Guanidin,
    (b) Silan der allgemeinen Formel (IV) und/oder dessen Teilhydrolysate,
    (c) Verbindung RcOH, wobei Rest Rc gleich Wasserstoffatom oder einwertige, gegebenenfalls substituierte Kohlenwasserstoffreste mit 1 bis 30 Kohlenstoffatomen, die mit Sauerstoff unterbrochen sein können, darstellt,
    gegebenenfalls (d) Reaktionsnebenprodukte,
    gegebenenfalls (e) organische, von an aliphatische Kohlenstoffatome gebundenen Hydroxylgruppen freie Lösungsmittel,
    gegebenenfalls (f) Füllstoffe,
    gegebenenfalls (g) Farbmittel und
    gegebenenfalls (h) Polymere.
  7. Zubereitung gemäß Anspruch 6, dadurch gekennzeichnet, dass der Gehalt an bicyclischen Guanidinen (a) 2 bis 35 Gew.-% beträgt.
  8. Zubereitung gemäß Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Gehalt an Silanen und/oder Siloxanen (b) 20 bis 90 Gew.-%, beträgt.
  9. Zubereitung gemäß einem oder mehreren der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass der Gewichtsanteil der Komponenten (a), (b), (c) und gegebenenfalls (d) in den erfindungsgemäßen Zusammensetzungen mindestens 80 Gew.-% beträgt.
  10. Verfahren zur Herstellung der Zubereitungen gemäß einem oder mehreren der Ansprüche 6 bis 9 durch Mischen der einzelnen Komponenten in beliebiger Reihenfolge.
EP18772759.9A 2018-09-06 2018-09-06 Verfahren zur herstellung bicyclischer guanidine Active EP3774807B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/074069 WO2020048604A1 (de) 2018-09-06 2018-09-06 Verfahren zur herstellung bicyclischer guanidine

Publications (2)

Publication Number Publication Date
EP3774807A1 EP3774807A1 (de) 2021-02-17
EP3774807B1 true EP3774807B1 (de) 2021-09-01

Family

ID=63637867

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18772759.9A Active EP3774807B1 (de) 2018-09-06 2018-09-06 Verfahren zur herstellung bicyclischer guanidine

Country Status (6)

Country Link
US (1) US20210214367A1 (de)
EP (1) EP3774807B1 (de)
JP (1) JP2021535917A (de)
KR (1) KR102596108B1 (de)
CN (1) CN112638913A (de)
WO (1) WO2020048604A1 (de)

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8509531D0 (en) 1985-04-13 1985-05-15 Bp Chem Int Ltd Preparation of guanidines
US8334380B2 (en) 2008-05-09 2012-12-18 Ppg Industries Ohio, Inc. Method for producing bicyclic guanidines by use of a cyclic urea and a dehydrating agent
US8039618B2 (en) * 2008-05-09 2011-10-18 Ppg Industries Ohio, Inc. Method for producing bicyclic guanidines by use of a cyclic urea
JP2010106195A (ja) * 2008-10-31 2010-05-13 Toyota Motor Corp ポリエステル系樹脂を含む樹脂組成物及び成形体
CN102257037B (zh) * 2008-11-25 2013-06-12 蓝星有机硅法国公司 具有胍结构的化合物及其作为有机聚硅氧烷缩聚催化剂的用途
CN102665406B (zh) 2009-12-24 2016-03-09 诺沃梅尔公司 合成多环胍化合物的方法
WO2012033148A1 (ja) 2010-09-10 2012-03-15 株式会社村田製作所 Esd保護構造およびその製造方法
US8563560B2 (en) * 2011-02-25 2013-10-22 Ppg Industries Ohio, Inc. Preparation of bicyclic guanidine salts in an aqueous media
US9108968B2 (en) 2012-04-25 2015-08-18 Ppg Industries Ohio, Inc. Methods for producing 1,5,7-triazabicyclo[4.4.0]dec-5-ene by reaction of a disubstituted carbodiimide and dipropylene triamine
US20130289273A1 (en) * 2012-04-25 2013-10-31 Ppg Industries Ohio, Inc. Methods for producing 1,5,7-triazabicyclo[4.4.0]dec-5-ene by reaction of a disubstituted carbodiimide and dipropylene triamine
DE102014214408A1 (de) 2014-07-23 2016-01-28 Wacker Chemie Ag Härtbare Organopolysiloxanzusammensetzungen
DE102015216598A1 (de) 2015-08-31 2017-03-02 Wacker Chemie Ag Verfahren zur Herstellung von Organyloxygruppen aufweisenden Organosiliciumverbindungen
US20200024475A1 (en) * 2018-07-23 2020-01-23 Momentive Performance Materials Inc. Crack resistant coating composition and method of making thereof

Also Published As

Publication number Publication date
EP3774807A1 (de) 2021-02-17
US20210214367A1 (en) 2021-07-15
KR102596108B1 (ko) 2023-10-30
KR20210032982A (ko) 2021-03-25
WO2020048604A1 (de) 2020-03-12
JP2021535917A (ja) 2021-12-23
CN112638913A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
EP1627892B1 (de) Verfahren zur Herstellung von organisch modifizierten Polyorganosiloxanen durch katalytische dehydrogenative Kondensation von Polyorganosiloxanen mit Alkoholen
EP1288246B1 (de) Quaternäre Ammoniumgruppen aufweisende Organopolysiloxane und Verfahren zu deren Herstellung
DE102005051939A1 (de) Verfahren zur Herstellung von organisch modifizierten Polyorganosiloxanen
DE102010001531A1 (de) Neuartige organomodifizierte Siloxane mit primären Aminofunktionen, neuartige organomodifizierte Siloxane mit quaternären Ammoniumfunktionen und das Verfahren zu deren Herstellung
EP1679335A2 (de) Siloxanblockcopolymere
EP0659803A2 (de) Verfahren zur Herstellung von Organopolysiloxanen mit über Kohlenstoff an Silicium gebundenen sekundären Aminoalkylgruppen
EP2493962B1 (de) Verfahren zur herstellung von (hydroxymethyl)polysiloxanen
EP2493899B1 (de) Verfahren zur herstellung von metallverbindungen
EP1398338B1 (de) Verfahren zur Herstellung von Organopolysiloxanharz
DE102005022856A1 (de) Verfahren zur Herstellung von Diorganopolysiloxanen
DE102009000500A1 (de) Verfahren zur Herstellung von Bis- und Tris(silylorgano)aminen
DE3041296A1 (de) Verfahren zur synthese fluessiger fluorsiloxane mit als silanol endender kette
EP0626414A1 (de) Organosiliciumreste aufweisende Phosphazene, Verfahren zu deren Herstellung und deren Verwendung
DE60007583T2 (de) Verfahren zur Herstellung von Silanolgruppe-enthaltende Organosiliziumverbindungen
EP2838936B1 (de) Neue, einfach herstellbare, voc reduzierte, umweltfreundliche (meth)acrylamido-funktionelle siloxan-systeme, verfahren zu ihrer herstellung sowie verwendung
DE69809018T2 (de) Verfahren zur Herstellung von verzweigtem Silikonöl
EP3774807B1 (de) Verfahren zur herstellung bicyclischer guanidine
EP0401684B1 (de) Verfahren zur Herstellung von Organosiloxanen
EP0258640A1 (de) Verfahren zur Ketten-stabilisierung von Organo-polysiloxanen
DE102012204315A1 (de) Verfahren zur Herstellung von Aminoalkylalkoxysilanen
DE2263819A1 (de) Alpha-alkoxy-omega-siloxanole und verfahren zu irer herstellung
EP1678240B1 (de) Verfahren zur herstellung von mit phosphonsäureester modifizierten organosiloxanen
DE69126482T2 (de) Alkoxyfunktionelle Organopolysiloxane und Verfahren zu ihrer Herstellung
DE2408480A1 (de) Verfahren zur herstellung von gammaaminopropylalkoxysilanen
EP2123697A1 (de) Verfahren zur Herstellung von quartäre Ammoniumgruppen aufweisenden Organopolysiloxanen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201113

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210506

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1426169

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006885

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006885

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210906

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210906

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502018006885

Country of ref document: DE

Owner name: WACKER CHEMIE AG, DE

Free format text: FORMER OWNER: WACKER CHEMIE AG, 81737 MUENCHEN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240918

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240920

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240925

Year of fee payment: 7