EP3771610B1 - Sleeve buffer with mechanical resistance during telescoping movement - Google Patents
Sleeve buffer with mechanical resistance during telescoping movement Download PDFInfo
- Publication number
- EP3771610B1 EP3771610B1 EP19188900.5A EP19188900A EP3771610B1 EP 3771610 B1 EP3771610 B1 EP 3771610B1 EP 19188900 A EP19188900 A EP 19188900A EP 3771610 B1 EP3771610 B1 EP 3771610B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sleeve
- elongate portions
- buffer
- elongate
- guide parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000872 buffer Substances 0.000 title claims description 67
- 238000005520 cutting process Methods 0.000 claims description 12
- 238000003754 machining Methods 0.000 claims description 10
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 4
- 238000007667 floating Methods 0.000 claims description 3
- 238000010008 shearing Methods 0.000 claims 2
- 230000007423 decrease Effects 0.000 claims 1
- 230000004907 flux Effects 0.000 claims 1
- 238000005265 energy consumption Methods 0.000 description 12
- 230000008901 benefit Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000006378 damage Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 241000209035 Ilex Species 0.000 description 3
- 230000021715 photosynthesis, light harvesting Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 210000003746 feather Anatomy 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 240000003517 Elaeocarpus dentatus Species 0.000 description 1
- 241001295925 Gegenes Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000009189 diving Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000003137 locomotive effect Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 210000002023 somite Anatomy 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61G—COUPLINGS; DRAUGHT AND BUFFING APPLIANCES
- B61G11/00—Buffers
- B61G11/16—Buffers absorbing shocks by permanent deformation of buffer element
Definitions
- the invention relates to a sleeve buffer for movable or fixed support structures according to the preamble of claim 1.
- a so-called absorber buffer in which a sleeve is provided in a recess in a fastening plate for fastening to the support structure.
- cutting tools are provided which are attached to the fastening plate and act on the sleeve.
- the prior art discloses the FR 2 789 358 A1 Sleeve buffers, which also have consumable elements and tools that machine them, for the purpose of dissipating energy when the normal operational forces are exceeded. These consumable elements and the tools that machine them if necessary are each arranged recessed in an immersion opening in the support structure, on which the sleeve buffer is mounted on the outside.
- the FR 2 775 240 A1 discloses sleeve buffers, with guide and deformation structures that deform when the normal operational forces are exceeded, as well as penetration openings in the relevant support structures, into which the sleeve buffer can immerse in accordance with the length of the guide and deformation structures reduced by the deformation to compensate for the length.
- the EP 1 740 435 A0 also discloses sleeve buffers, with structures that deform or break at predetermined breaking points when the normal operational forces are exceeded.
- the object of the invention is to be able to provide a sleeve buffer that can be used as universally as possible for support structures of different types and with different requirements and still offers a high level of safety.
- the task is, based on a sleeve buffer of the type mentioned, solved by the characterizing features of claim 1.
- the invention relates to a sleeve buffer for movable or fixed support structures, in particular rail vehicles.
- a fixed support structure is, for example, a buffer block that represents the end of a track and is intended to prevent a rail vehicle from rolling beyond this area and possibly derailing.
- Movable support structures are usually rail vehicles such as locomotives, freight cars, passenger cars or the like.
- the sleeve buffer according to the invention is telescopic and comprises a first and a second guide part in the form of a sleeve and a plunger, and optionally also several guide parts.
- the sleeve and plunger have different diameters so that they can be pushed into one another in the event of an impact, i.e. they are telescopic.
- the sleeve can be fixed in place on a support structure.
- the relative displacement between sleeve and plunger during the telescoping movement occurs accordingly in the longitudinal direction of the vehicle.
- the corresponding sleeve buffers are often referred to as side buffers due to their arrangement on the (vehicle) support structure.
- a structure forming a mechanical resistance is provided in order to brake the telescoping movement during the telescoping movement of the guide parts and/or the elongated sections.
- Such mechanical resistance to energy dissipation offers several advantages.
- the mechanical resistance is used in a telescoping sleeve buffer, in such a way that the telescoping movement is also inhibited.
- diving into the support structure can be avoided.
- a mechanical resistance can be chosen so that it allows scalability, so that use on different rail vehicles or support structures of different sizes can be made possible.
- a mechanical resistance can be provided which hinders telescoping movement between the first and second guide parts when the triggering force is exceeded.
- the telescoping movement of the elongated sections of a guide part can also be braked once the triggering force has been reached.
- cutting tools can be considered as structures forming mechanical resistance.
- these tools When the triggering force is exceeded, these tools are brought into contact with a structure of the sleeve buffer, so that the structure of the sleeve buffer is damaged as a result of the impact effect. If the energy during the impact is sufficient, the cutting tool is pushed forward and its machining process consumes part of the energy.
- This embodiment has in particular the The advantage is that very good scalability is possible.
- the area over which the tool engages in the structure during machining can be selected.
- the penetration depth can also be varied.
- a plastically deformable barrier in particular a web or a bolt, which is arranged as an obstacle in the path of the guide part or elongated section to be deformed during the telescopic movement can also be considered as mechanical resistance.
- the mechanical resistance may correlate with the thickness of the component to be deformed or with regard to the material selection for the barrier.
- the bolt can also be made of a special material to adjust the resistance. Consequently, a certain scalability is enabled.
- the scaling can also be adjusted by providing multiple bolts to increase resistance.
- the structure forming a mechanical resistance can be arranged so that during telescoping movements of the elongated sections, the cutting tool or tools perform machining perform/carry out one of the elongated sections.
- the elongated sections are generally only moved relative to one another when the triggering force is exceeded, in that the elongated sections are connected to one another via predetermined breaking connections, which only break when the triggering force is reached. The machining can then take place.
- the cutting tool can also be arranged on one of the guide parts in such a way that it processes the other guide part when the triggering force is exceeded.
- the tool is arranged on the ram and processes the sleeve.
- This embodiment of the invention can have the advantage over the variant in which an elongated section is machined that no section is affected in its structure, which is constantly in the flow of force for support. For example, if the plunger is divided into several elongated sections, these can support each other until a certain force is reached.
- a spring that is in the flow of force is often supported on one of the elongated sections. If the structure of an elongated section is impaired by machining, the flow of force can be impaired if the structure breaks, for example.
- the structure forming a mechanical resistance can also be arranged in such a way that it engages with a guide part or one of the elongated sections, ie there is a mechanical coupling between the parts, which only leads to a plastic deformation when the triggering force is exceeded. It is also conceivable that the structure forming mechanical resistance is mounted in such a way that a certain freedom of movement is still possible (support with play is provided) and energy consumption can only take place from a certain trigger force or with a certain deflection / telescoping movement. This can advantageously support the fact that a certain degree of elasticity must be provided; As part of the normal buffer stroke, no machining takes place and the tool can move freely in the storage. The tool only engages with a structure once the triggering force has been reached.
- the inner or outer casing of a guide part or elongated section When telescoping, it may be possible, for example, for the inner or outer casing of a guide part or elongated section to be machined. Machining the inner casing generally has the advantage that no chips fly away due to the high speed and may pose a danger to people in the area or damage objects in the area.
- the sleeve buffer according to the invention comprises at least two guide parts, a plunger and a sleeve. So that they can be telescoped into one another, the inside diameter of one of the guide parts is larger than the outside diameter of the other guide part. In particular, the inside diameter of the sleeve is larger than the outside diameter of the plunger, so that it can be inserted into the sleeve.
- the internal guide part with a smaller diameter can also be constructed from elongated sections arranged one behind the other.
- the outer guide part consists of elongated parts arranged one behind the other sections. If the triggering force is now exceeded, various scenarios are conceivable.
- the selected geometries can be dimensioned such that in the course of the displacement movement of the plunger, the predetermined breaking connections are torn off first. Following this, for example, deformations of other structures such as a deformation of the sleeve, a bolt, a deformation by a tool or the like can be provided for additional energy consumption.
- individual elongated sections are pushed telescopically into one another, they preferably have a cylindrical shape, which is also advantageous for absorbing transverse forces and has a comparatively high bending moment.
- Telescopically movable elongated sections which are connected via predetermined breaking connections, can be viewed as a one-piece component or guide part.
- the inside diameter of the space into which the section is pushed is, from a certain point, smaller than the outside diameter of the section to be moved.
- Deformation is also necessary here during the telescopic movement in order to completely push the components into one another. This results in energy consumption.
- such an embodiment can be manufactured comparatively simply by strengthening the wall or simply making it thicker.
- a comparatively high energy consumption is made possible.
- one of the elongated sections is provided with recesses or slots so that controlled deformation can take place more easily and in a more targeted manner.
- the force transmission member is always in the flow of force during the telescopic movement, even if the triggering force is exceeded.
- the force transmission member which can be designed in particular as a spring, can always absorb and store a certain amount of energy (elastic pushing together of the buffer during normal buffer stroke). In a (partially) inelastic collision, energy is consumed, for example as a result of deformation or as thermal energy.
- the force transmission member ensures a certain level of support between the buffer plate, to which a force is transmitted during an impact, and the support structure.
- a mechanical coupling in the longitudinal direction between elongated sections or a coupling to one of the guide parts can continue to exist even after the predetermined breaking connections have been torn off.
- the elongated sections can slide past each other, but the guide points are in mechanical contact with one another in such a way that there is increased friction, which results in further energy consumption.
- the sections can, for example, have projections that come into contact with the inner walls.
- the cutting tool can be designed as a ring which includes at least one cutting edge, the ring in particular being not connected insert is stored or floating.
- the ring can therefore be manufactured as a separate component and it is not necessary to integrate the cutting tools in one of the sections or one of the guide parts.
- the guide part can be designed in such a way that after the triggering force has been exceeded, it is shortened by controlled deformation under a high, essentially constant force. This means that energy consumption can take place in a comparatively controlled form. In principle, the course of events in the event of a collision is difficult to predict; Nevertheless, the framework conditions can be created in order to at least achieve energy consumption that is as consistent as possible.
- Figure 1 shows a sleeve buffer 1 with a plunger 2 and a sleeve 3, the plunger 2 being mounted as the first guide part in the sleeve 3 as the second guide part.
- the plunger 2 is partially accommodated in the sleeve 3, with both guide parts 2, 3 overlapping over a certain coverage length 4.
- This overlap 4 means, among other things, that any transverse forces that may occur in the event of an impact can be absorbed.
- the sleeve 3 in turn is firmly connected to the support structure 5.
- the plunger 2 ends with a ring 6, which is provided with cutting tools 7.
- the tools 7 are arranged on the circumference of the ring 6.
- the floating ring is in contact with an elongated section 8 in which a spring 9 is mounted.
- This spring 9 is permanently in the flow of force: If a force acts on the buffer plate 10 as a result of a shock, the plunger 2 connected to the buffer plate 10 presses on the ring 6 and in turn transmits a force to the section 8 and thus also to the spring 9 , which in turn is supported on the support structure 5. As long as the tools 7 do not reach the bolts 11 when the sleeve buffer 1 is compressed, which does not occur in the area of the normal buffer stroke, the shock can be absorbed essentially elastically via the spring 9 alone. After the force is lifted, the plunger 2 is pushed away from the support structure 5 again and reaches its original position.
- the sleeve 3 is provided with a recess 12 in the area of the tools 7, so that the tools 7 are mounted with play in this area and can be moved in the direction of the longitudinal axis without machining.
- the sleeve 3 is in the area 3a are also thicker, so that the tools 7 cut into the material of the sleeve 3 in the area 3a after the bolt 11 has been separated or shielded. From this point onwards, the intended energy consumption takes place.
- the section 8 is provided with projections 13 so that these can guide the section in the areas 3a since they rest on the inner wall.
- the ring 6 can also be designed in such a way that a certain force is sufficient to cause the section 8 to break through the ring 6. This measure also results in further energy consumption.
- the plunger 2 is designed in the area 2a so that its inner diameter tapers. If section 8 hits this area, it experiences further mechanical resistance, which contributes to energy dissipation.
- the sleeve buffers 21, 31 according to Figures 2 , 3 are equipped with predetermined breaking connections S.
- a sleeve buffer 31 is sketched, which differs from the variant according to Figure 2 the extension sleeve 38 is processed as an elongated section and thus, in addition to a breakage of the predetermined breaking connections S when the triggering force is exceeded, leads to energy consumption.
- the tools 37 are also attached to the plunger 32, but on its inner surface so that they can hit the extension sleeve 38.
- the sleeve 33 which is firmly connected to the support structure 35, is not machined.
- the spring 39 is practically permanently in the flow of force when the sleeve buffer 31 is subjected to a force via the buffer plate T.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Vibration Dampers (AREA)
Description
Die Erfindung betrifft einen Hülsenpuffer für bewegliche oder feste Tragstrukturen nach dem Oberbegriff des Anspruchs 1.The invention relates to a sleeve buffer for movable or fixed support structures according to the preamble of claim 1.
Aus dem Stand der Technik ist aus der
Im Stand der Technik offenbart die
Die
Die
Aufgabe der Erfindung ist es, einen Hülsenpuffer bereitstellen zu können, der möglichst universell für Tragstrukturen unterschiedlicher Art und mit unterschiedlichen Anforderungen eingesetzt werden kann und dennoch ein hohes Maß an Sicherheit bietet.The object of the invention is to be able to provide a sleeve buffer that can be used as universally as possible for support structures of different types and with different requirements and still offers a high level of safety.
Die Aufgabe wird, ausgehend von einem Hülsenpuffer der eingangs genannten Art, durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.The task is, based on a sleeve buffer of the type mentioned, solved by the characterizing features of claim 1.
Durch die in den abhängigen Ansprüchen genannten Maßnahmen sind vorteilhafte Ausführungen und Weiterbildungen der Erfindung möglich.The measures mentioned in the dependent claims make advantageous embodiments and developments of the invention possible.
Die Erfindung betrifft einen Hülsenpuffer für bewegliche oder feste Tragstrukturen, insbesondere Schienenfahrzeuge. Bei einer festen Tragstruktur handelt es sich beispielsweise um einen Pufferblock, der den Abschluss eines Gleises darstellt und verhindern soll, dass ein Schienenfahrzeug über diesen Bereich hinaus rollt und gegebenenfalls entgleist. Bei beweglichen Tragstrukturen handelt es sich in der Regel um Schienenfahrzeuge wie Lokomotiven, Güterwagen, Reisezugwagen oder dergleichen. Der erfindungsgemäße Hülsenpuffer ist in sich teleskopierbar und umfasst ein erstes und ein zweites Führungsteil in Form einer Hülse und eines Stößels, gegebenenfalls auch mehrere Führungsteile. Hülse und Stößel besitzen unterschiedliche Durchmesser, sodass diese bei einer Stoßeinwirkung ineinandergeschoben werden können, also teleskopierbar sind. Die Hülse ist ortsfest an einer Tragstruktur befestigbar. Die relative Verschiebung zwischen Hülse und Stößel bei der Teleskopierbewegung erfolgt entsprechend in Fahrzeuglängsrichtung. Die entsprechenden Hülsenpuffer werden aufgrund ihrer Anordnung an der (Fahrzeug-)Tragstruktur oftmals auch als Seitenpuffer bezeichnet.The invention relates to a sleeve buffer for movable or fixed support structures, in particular rail vehicles. A fixed support structure is, for example, a buffer block that represents the end of a track and is intended to prevent a rail vehicle from rolling beyond this area and possibly derailing. Movable support structures are usually rail vehicles such as locomotives, freight cars, passenger cars or the like. The sleeve buffer according to the invention is telescopic and comprises a first and a second guide part in the form of a sleeve and a plunger, and optionally also several guide parts. The sleeve and plunger have different diameters so that they can be pushed into one another in the event of an impact, i.e. they are telescopic. The sleeve can be fixed in place on a support structure. The relative displacement between sleeve and plunger during the telescoping movement occurs accordingly in the longitudinal direction of the vehicle. The corresponding sleeve buffers are often referred to as side buffers due to their arrangement on the (vehicle) support structure.
Der Hülsenpuffer erfüllt unter anderem in zweifacher Hinsicht jeweils eine Funktion:
- Werden zum Beispiel Schienenfahrzeuge, z.B. Wagen, aneinandergekoppelt, so stoßen diese bei sehr geringer Geschwindigkeit im Normalbetrieb zusammen. Die Schienenfahrzeuge besitzen aber in der Regel eine große Masse, sodass ein starker Impuls dabei übertragen wird. Damit es nicht zu Beschädigungen der Schienenfahrzeuge kommt, besitzen die entsprechenden Fahrzeuge in der Regel Hülsenpuffer, welche den Stoß entsprechend abfangen können, ohne dass Strukturen beschädigt bzw. in Mitleidenschaft gezogen werden. Entsprechende Hülsenpuffer ermöglichen sehen hierfür meist ein elastisches Kraftübertragungsglied (z.B. eine Feder) vor, welche die Kraft beim Stoß aufnimmt, gestaucht wird und sich wieder ausdehnen und den Puffer in den ursprünglichen Zustand zurückversetzen kann. Die Einwirkung auf den Hülsenpuffer in diesem Kraftbereich ist also reversibel. Darüber hinaus kann zum Beispiel auch ein Schienenfahrzeug gegen eine feste Tragstruktur wie einen Pufferblock geparkt werden, sodass auch hier bei geringer Geschwindigkeitskrafteinwirkung die entsprechenden Hülsenpuffer miteinander in Berührung kommen.
- Insbesondere bei ungewollten Zusammenstößen, bei denen sehr hohe Kraftwirkungen auftreten, ermöglicht der Hülsenpuffer aber außerdem, dass zumindest ein Teil der beim Stoß auftretenden Energie aufgebraucht wird und somit nicht mehr die Tragstruktur schädigen kann. Bei einer Ausführungsform der Erfindung kann zu diesem Zweck eines der Führungsteile in längliche Abschnitte unterteilt sein, die wiederum über Sollbruchverbindungen untereinander verbunden sind, die bei Überschreiten einer bestimmten Kraft beim Zusammenstoß, der sog. Auslösekraft, brechen. Im elastischen Bereich ist also eine Teleskopbewegung zwischen den Führungsteilen Stößel und Hülse zerstörungsfrei möglich, während oberhalb der Auslösekraft die Sollbruchverbindungen zwischen den Abschnitten eines der Führungsteil aufgebrochen werden. Dies ist mit einem Energieverzehr verbunden. Erfindungsgemäß wird nunmehr, ob für einen Hülsenpuffer mit oder ohne Sollbruchverbindungen in der internen Struktur, einen zusätzliches mechanisches System zum Energieverzehr bei Überschreiten der Auslösekraft vorgeschlagen.
- For example, if rail vehicles, such as wagons, are coupled together, they collide at very low speeds during normal operation. However, rail vehicles usually have a large mass, so that a strong impulse is transmitted. To ensure that the rail vehicles are not damaged, the corresponding vehicles usually have sleeve buffers that can absorb the impact without damaging or affecting structures to be pulled. Corresponding sleeve buffers usually provide an elastic force transmission member (e.g. a spring), which absorbs the force of the impact, is compressed and can expand again and return the buffer to its original state. The effect on the sleeve buffer in this force range is therefore reversible. In addition, for example, a rail vehicle can also be parked against a fixed support structure such as a buffer block, so that the corresponding sleeve buffers come into contact with one another even when the speed force is low.
- Particularly in the case of unwanted collisions in which very high forces occur, the sleeve buffer also enables at least part of the energy generated during the impact to be used up and therefore no longer be able to damage the support structure. In one embodiment of the invention, for this purpose one of the guide parts can be divided into elongated sections, which in turn are connected to one another via predetermined breaking connections, which break when a certain force is exceeded during the collision, the so-called trigger force. In the elastic range, a telescopic movement between the guide parts plunger and sleeve is possible without destruction, while above the triggering force the predetermined breaking connections between the sections of one of the guide parts are broken. This is associated with energy consumption. According to the invention, an additional mechanical system for dissipating energy when the triggering force is exceeded is now proposed, whether for a sleeve buffer with or without predetermined breaking connections in the internal structure.
Dementsprechend ist erfindungsgemäß eine einen mechanischen Widerstand bildende Struktur vorgesehen ist, um bei der Teleskopierbewegung der Führungsteile und/oder der länglichen Abschnitte die Teleskopierbewegung zu bremsen. Ein derartiger mechanischer Widerstand zum Energieverzehr bietet mehrere Vorteile. Zum einen wird der mechanische Widerstand im vorliegenden erfindungsgemäßen Fall bei einem teleskopierbaren Hülsenpuffer eingesetzt, und zwar in der Weise, dass auch die Teleskopierbewegung gehemmt wird. Im Unterschied zum Stand der Technik kann ein Durchtauchen in die Tragstruktur vermieden werden. Zum anderen kann ein mechanischer Widerstand so gewählt werden, dass er eine Skalierbarkeit erlaubt, sodass der Einsatz bei unterschiedlichen Schienenfahrzeugen oder Tragstrukturen unterschiedlicher Größe ermöglicht werden kann.Accordingly, according to the invention, a structure forming a mechanical resistance is provided in order to brake the telescoping movement during the telescoping movement of the guide parts and/or the elongated sections. Such mechanical resistance to energy dissipation offers several advantages. On the one hand, in the present case according to the invention, the mechanical resistance is used in a telescoping sleeve buffer, in such a way that the telescoping movement is also inhibited. In contrast to the prior art, diving into the support structure can be avoided. On the other hand, a mechanical resistance can be chosen so that it allows scalability, so that use on different rail vehicles or support structures of different sizes can be made possible.
Grundsätzlich sind verschiedene Varianten denkbar, welche der Teleskopierbewegungen durch den mechanischen Widerstand gehemmt werden soll. Erstens kann ein mechanischer Widerstand vorgesehen sein, der Teleskopierbewegung zwischen erstem und zweitem Führungsteil bei Überschreiten der Auslösekraft behindert. Zweitens kann aber auch die Teleskopierbewegung der länglichen Abschnitte eines Führungsteils ab Erreichen der Auslösekraft gebremst werden.In principle, different variants are conceivable as to which of the telescoping movements should be inhibited by the mechanical resistance. Firstly, a mechanical resistance can be provided which hinders telescoping movement between the first and second guide parts when the triggering force is exceeded. Secondly, the telescoping movement of the elongated sections of a guide part can also be braked once the triggering force has been reached.
Als einen mechanischen Widerstand bildende Strukturen kommen erfindungsgemäß spanende Werkzeuge in Betracht. Diese Werkzeuge werden bei Überschreiten der Auslösekraft in Kontakt mit einer Struktur des Hülsenpuffers gebracht, sodass die Struktur des Hülsenpuffers infolge der Stoßwirkung beschädigt wird. Wenn die Energie beim Stoß ausreicht, wird das spanende Werkzeug vorangetrieben und dessen Bearbeitungsvorgang verzehrt einen Teil der Energie. Diese Ausführungsform besitzt insbesondere den Vorteil, dass eine sehr gute Skalierbarkeit ermöglicht wird. Um den mechanischen Widerstand genau anzupassen, kann der Bereich ausgewählt werden, über den das Werkzeug bei der spanenden Bearbeitung in die Struktur eingreift. Auch die Eindringtiefe kann variiert werden. Darüber hinaus ist es aber auch möglich, die Anzahl der spanenden Werkzeuge zu wählen und somit eine lineare Skalierbarkeit bereitstellen zu können. Aus diesem Grund kann ein derartiger Hülsenpuffer gemäß diese Ausführungsform so gewählt werden, dass er für unterschiedliche Tragstrukturen, insbesondere für Schienenfahrzeuge unterschiedlicher Größe, verwendet und angepasst werden kann.According to the invention, cutting tools can be considered as structures forming mechanical resistance. When the triggering force is exceeded, these tools are brought into contact with a structure of the sleeve buffer, so that the structure of the sleeve buffer is damaged as a result of the impact effect. If the energy during the impact is sufficient, the cutting tool is pushed forward and its machining process consumes part of the energy. This embodiment has in particular the The advantage is that very good scalability is possible. In order to precisely adjust the mechanical resistance, the area over which the tool engages in the structure during machining can be selected. The penetration depth can also be varied. In addition, it is also possible to choose the number of cutting tools and thus be able to provide linear scalability. For this reason, such a sleeve buffer according to this embodiment can be selected so that it can be used and adapted for different support structures, in particular for rail vehicles of different sizes.
Als mechanischer Widerstand kommt auch eine plastisch verformbare Barriere, insbesondere ein Steg oder ein Bolzen in Betracht, der bei der Teleskopbewegung als Hindernis im Weg des zu verformenden Führungsteils bzw. länglichen Abschnitts angeordnet ist. Auch bei dieser Variante ist grundsätzlich eine Skalierbarkeit möglich; zum Beispiel kann der mechanische Widerstand mit der Dicke des zu verformenden Bauteils oder hinsichtlich der Materialauswahl für die Barriere korrelieren. Denkbar ist zum Beispiel, einen Bolzen zur plastischen Verformung bei einer Ausführungsvariante der Erfindung vorzusehen, sodass dieser bei der Teleskopbewegung verformt oder gegebenenfalls auch abgeschert werden kann. Der Bolzen kann auch aus einem speziellen Material gefertigt sein, um den Widerstand anzupassen. Folglich wird eine gewisse Skalierbarkeit ermöglicht. Die Skalierung kann auch angepasst werden, indem mehrere Bolzen zur Verfügung gestellt werden, um den Widerstand zu erhöhen.A plastically deformable barrier, in particular a web or a bolt, which is arranged as an obstacle in the path of the guide part or elongated section to be deformed during the telescopic movement can also be considered as mechanical resistance. In principle, scalability is also possible with this variant; for example, the mechanical resistance may correlate with the thickness of the component to be deformed or with regard to the material selection for the barrier. It is conceivable, for example, to provide a bolt for plastic deformation in an embodiment variant of the invention, so that it can be deformed or, if necessary, sheared off during the telescopic movement. The bolt can also be made of a special material to adjust the resistance. Consequently, a certain scalability is enabled. The scaling can also be adjusted by providing multiple bolts to increase resistance.
Bei einer Ausführungsform der Erfindung kann die einen mechanischen Widerstand bildende Struktur so angeordnet sein, dass bei Teleskopierbewegungen der länglichen Abschnitte das spanende Werkzeug oder die spanenden Werkzeuge eine Bearbeitung eines der länglichen Abschnitte durchführt / durchführen. Die länglichen Abschnitte werden untereinander in der Regel erst dann relativ zueinander verschoben, wenn die Auslösekraft überschritten ist, indem die länglichen Abschnitte untereinander über Sollbruchverbindungen verbunden sind, die erst bei Erreichen der Auslösekraft brechen. Anschließen erfolgt sodann die spanabhebende Bearbeitung eingreifen kann.In one embodiment of the invention, the structure forming a mechanical resistance can be arranged so that during telescoping movements of the elongated sections, the cutting tool or tools perform machining perform/carry out one of the elongated sections. The elongated sections are generally only moved relative to one another when the triggering force is exceeded, in that the elongated sections are connected to one another via predetermined breaking connections, which only break when the triggering force is reached. The machining can then take place.
Das spanende Werkzeug kann aber auch an einem der Führungsteile so angeordnet sein, dass es das andere Führungsteil bearbeitet, wenn die Auslösekraft überschritten wird. Zum Beispiel ist das Werkzeug am Stößel angeordnet und bearbeitet die Hülse. Diese Ausführungsform der Erfindung kann gegenüber der Variante, bei der ein länglicher Abschnitt spanend bearbeitet wird, den Vorteil besitzen, dass kein Abschnitt in seiner Struktur beeinträchtigt wird, der zur Abstützung ständig im Kraftfluss steht. Ist z.B. der Stößel in mehrere längliche Abschnitte unterteilt, so können diese sich bis zum Erreichen einer bestimmten Kraft gegenseitig abstützen. Zudem ist oftmals eine Feder, die im Kraftfluss steht, an einem der länglichen Abschnitte abgestützt. Wird folglich die Struktur eines länglichen Abschnitts durch spanende Bearbeitung beeinträchtigt, so kann der Kraftfluss beeinträchtigt werden, wenn die Struktur z.B. bricht.The cutting tool can also be arranged on one of the guide parts in such a way that it processes the other guide part when the triggering force is exceeded. For example, the tool is arranged on the ram and processes the sleeve. This embodiment of the invention can have the advantage over the variant in which an elongated section is machined that no section is affected in its structure, which is constantly in the flow of force for support. For example, if the plunger is divided into several elongated sections, these can support each other until a certain force is reached. In addition, a spring that is in the flow of force is often supported on one of the elongated sections. If the structure of an elongated section is impaired by machining, the flow of force can be impaired if the structure breaks, for example.
Die einen mechanischen Widerstand bildende Struktur kann aber auch so angeordnet sein, dass sie mit einem Führungsteil bzw. einem der länglichen Abschnitte in Eingriff steht, d.h. es besteht eine mechanische Kopplung zwischen den Teilen, die bei Überschreiten der Auslösekraft erst zu einer plastischen Verformung führt. Denkbar ist auch, dass die einen mechanischen Widerstand bildende Struktur so gelagert ist, dass eine gewisse Bewegungsfreiheit noch ermöglicht wird (eine Lagerung mit Spiel vorgesehen ist) und erst ab einer bestimmten Auslösekraft bzw. bei einer bestimmten Auslenkung / Teleskopierbewegung ein Energieverzehr stattfinden kann. Hierdurch kann in vorteilhafter Weise unterstützt werden, dass ein gewisses Maß an Elastizität vorgesehen sein muss; im Rahmen des normalen Pufferhubs erfolgt sodann keine spanabhebende Bearbeitung und das Werkzeug kann sich in der Lagerung frei bewegen. Erst ab Erreichen der Auslösekraft steht das Werkzeug im Eingriff mit einer Struktur.However, the structure forming a mechanical resistance can also be arranged in such a way that it engages with a guide part or one of the elongated sections, ie there is a mechanical coupling between the parts, which only leads to a plastic deformation when the triggering force is exceeded. It is also conceivable that the structure forming mechanical resistance is mounted in such a way that a certain freedom of movement is still possible (support with play is provided) and energy consumption can only take place from a certain trigger force or with a certain deflection / telescoping movement. This can advantageously support the fact that a certain degree of elasticity must be provided; As part of the normal buffer stroke, no machining takes place and the tool can move freely in the storage. The tool only engages with a structure once the triggering force has been reached.
Bei Teleskopierbewegung kann es sich zum Beispiel anbieten, dass der Innen- oder Außenmantel eines Führungsteils bzw. länglichen Abschnitts spanabhebend bearbeitet wird. Die Bearbeitung des Innenmantels besitzt generell aber den Vorteil, dass keine Späne infolge der hohen Geschwindigkeit wegfliegen und gegebenenfalls eine Gefahr für Personen in der Umgebung darstellen oder auch Gegenstände in der Umgebung beschädigen können.When telescoping, it may be possible, for example, for the inner or outer casing of a guide part or elongated section to be machined. Machining the inner casing generally has the advantage that no chips fly away due to the high speed and may pose a danger to people in the area or damage objects in the area.
Im Allgemeinen ermöglicht die Anordnung der Werkzeuge entlang des eine gute Skalierbarkeit bereitgestellt werden kann.In general, the arrangement of tools along which allows good scalability to be provided.
Der erfindungsgemäße Hülsenpuffer umfasst wenigstens zwei Führungsteile, einen Stößel und eine Hülse. Damit diese ineinander teleskopierbar sind, ist der Innendurchmesser eines der Führungsteile größer als der Außendurchmesser des anderen Führungsteils. Insbesondere ist der Innendurchmesser der Hülse größer als der Außendurchmesser des Stößels, sodass dieser in die Hülse eingeschoben werden kann.The sleeve buffer according to the invention comprises at least two guide parts, a plunger and a sleeve. So that they can be telescoped into one another, the inside diameter of one of the guide parts is larger than the outside diameter of the other guide part. In particular, the inside diameter of the sleeve is larger than the outside diameter of the plunger, so that it can be inserted into the sleeve.
Bei einer Ausführungsform der Erfindung kann ebenfalls das innenliegende Führungsteil mit kleinerem Durchmesser aus hintereinander angeordneten länglichen Abschnitten aufgebaut sein. Freilich ist auch denkbar, dass das äußere Führungsteil entsprechend aus hintereinander angeordneten länglichen Abschnitten besteht. Wird nunmehr die Auslösekraft überschritten, so sind verschiedene Szenarien denkbar. Insbesondere können die gewählten Geometrien so bemessen sein, dass im Laufe der Verschiebebewegung des Stößels zuerst die Sollbruchverbindungen abreißen. Im Anschluss daran können zum zusätzlichen Energieverzehr beispielsweise Deformationen anderer Strukturen wie eine Deformation der Hülse, eines Bolzens, eine Deformation durch ein Werkzeug oder dergleichen vorgesehen sein.In one embodiment of the invention, the internal guide part with a smaller diameter can also be constructed from elongated sections arranged one behind the other. Of course, it is also conceivable that the outer guide part consists of elongated parts arranged one behind the other sections. If the triggering force is now exceeded, various scenarios are conceivable. In particular, the selected geometries can be dimensioned such that in the course of the displacement movement of the plunger, the predetermined breaking connections are torn off first. Following this, for example, deformations of other structures such as a deformation of the sleeve, a bolt, a deformation by a tool or the like can be provided for additional energy consumption.
Werden einzelne längliche Abschnitte teleskopartig ineinander geschoben, weisen diese vorzugsweise eine zylindrische Gestalt auf, die sich auch zur Aufnahme von Querkräften vorteilhaft eignet und ein vergleichsweise hohes Biegemoment besitzt.If individual elongated sections are pushed telescopically into one another, they preferably have a cylindrical shape, which is also advantageous for absorbing transverse forces and has a comparatively high bending moment.
Teleskopartig verschiebbare längliche Abschnitte, die über eine Sollbruchverbindungen zusammenhängen, können als einteiliges Bauteil bzw. Führungsteil angesehen werden.Telescopically movable elongated sections, which are connected via predetermined breaking connections, can be viewed as a one-piece component or guide part.
Bei einer vorteilhaften Weiterbildung der Erfindung werden beim Teleskopieren längliche Abschnitte so ineinander geschoben, dass die Teleskopbewegung gehemmt wird. Dazu ist der Innendurchmesser des Raumes, in den der Abschnitt geschoben wird, ab einem gewissen Punkt kleiner als der Außendurchmesser des zu verschiebenden Abschnitts. Eine Deformation ist also auch hier während der Teleskopbewegung notwendig, um die Bauteile vollständig ineinander zu schieben. Dies hat einen Energieverzehr zur Folge. In vorteilhafter Weise kann eine solche Ausführungsform vergleichsweise einfach hergestellt werden, indem nämlich die Wandung verstärkt bzw. einfach dicker ausgebildet wird. Zudem wird ein vergleichsweise hoher Energieverzehr ermöglicht. Denkbar ist auch, dass einer der länglichen Abschnitte mit Ausnehmungen oder Schlitzen versehen wird, sodass leichter und gezielter eine kontrollierte Deformation stattfinden kann.In an advantageous development of the invention, when telescoping, elongated sections are pushed into one another in such a way that the telescopic movement is inhibited. For this purpose, the inside diameter of the space into which the section is pushed is, from a certain point, smaller than the outside diameter of the section to be moved. Deformation is also necessary here during the telescopic movement in order to completely push the components into one another. This results in energy consumption. Advantageously, such an embodiment can be manufactured comparatively simply by strengthening the wall or simply making it thicker. In addition, a comparatively high energy consumption is made possible. It is also conceivable that one of the elongated sections is provided with recesses or slots so that controlled deformation can take place more easily and in a more targeted manner.
Bei einer besonders bevorzugten Weiterbildung der Erfindung steht das Kraftübertragungsglied während des Teleskopbewegung, auch bei Überschreiten der Auslösekraft, immer im Kraftfluss. In vorteilhafter Weise kann dadurch das Kraftübertragungsglied, das insbesondere als Feder ausgebildet sein kann, stets einen gewissen Betrag der Energie aufnehmen und speichern (elastisches Zusammenschieben des Puffers bei normalem Pufferhub). Bei einem (teilweise) inelastischen Stoß wird Energie verbraucht, etwa infolge einer Deformation bzw. als Wärmeenergie. Zudem sorgt das Kraftübertragungsglied für eine gewisse Abstützung zwischen dem Pufferteller, auf den eine Kraft beim Stoß übertragen wird, und der Tragstruktur.In a particularly preferred development of the invention, the force transmission member is always in the flow of force during the telescopic movement, even if the triggering force is exceeded. Advantageously, the force transmission member, which can be designed in particular as a spring, can always absorb and store a certain amount of energy (elastic pushing together of the buffer during normal buffer stroke). In a (partially) inelastic collision, energy is consumed, for example as a result of deformation or as thermal energy. In addition, the force transmission member ensures a certain level of support between the buffer plate, to which a force is transmitted during an impact, and the support structure.
Bricht eine Sollbruchverbindung zwischen länglichen Abschnitten auf, so sind diese zunächst mechanisch an diesen Stellen entkoppelt. In vorteilhafter Weise kann somit bei einer Ausführungsvariante auch nach dem Abreißen der Sollbruchverbindungen eine mechanische Kopplung in Längsrichtung zwischen länglichen Abschnitten oder eine Kopplung zu einem der Führungsteile fortbestehen. Beispielsweise können die länglichen Abschnitte aneinander vorbei gleiten, wobei jedoch die Führungsstellen mechanisch so miteinander in Kontakt stehen, dass eine erhöhte Reibung besteht hierdurch wird ein weiterer Energieverzehr erreicht. Die Abschnitte können z.B. Auskragungen aufweisen, die mit den Innenwänden in Kontakt treten.If a predetermined breaking connection breaks between elongated sections, they are initially mechanically decoupled at these points. Advantageously, in one embodiment variant, a mechanical coupling in the longitudinal direction between elongated sections or a coupling to one of the guide parts can continue to exist even after the predetermined breaking connections have been torn off. For example, the elongated sections can slide past each other, but the guide points are in mechanical contact with one another in such a way that there is increased friction, which results in further energy consumption. The sections can, for example, have projections that come into contact with the inner walls.
Um eine möglichst kompakte Bauweise zu erhalten, die zudem auch noch eine gewisse Symmetrieeigenschaft aufweist, die sich auch zum Abstützen von Querkräften als vorteilhaft erweisen kann, kann das spanende Werkzeug als Ring ausgebildet sein, der wenigstens eine Schneide umfasst, wobei der Ring insbesondere als nicht verbundene Einlage aus bzw. schwimmend gelagert ist.In order to obtain the most compact design possible, which also has a certain symmetry property, which can also prove to be advantageous for supporting transverse forces, the cutting tool can be designed as a ring which includes at least one cutting edge, the ring in particular being not connected insert is stored or floating.
Der Ring kann somit als separates Bauteil hergestellt werden und es ist nicht notwendig, die spanenden Werkzeuge in einem der Abschnitte bzw. einem der Führungsteile zu integrieren.The ring can therefore be manufactured as a separate component and it is not necessary to integrate the cutting tools in one of the sections or one of the guide parts.
Bei einer weiteren Ausführungsform der Erfindung kann also das Führungsteil so ausgebildet sein, dass es sich nach Überschreiten der Auslösekraft durch kontrollierte Deformation unter einer hohen, im Wesentlichen gleich bleibenden Kraft verkürzt. Hierdurch kann der Energieverzehr in vergleichsweise kontrollierter Form erfolgen. Grundsätzlich ist der Ablauf bei einer Kollision bei einem Unfall schwierig zu prognostizieren; dennoch können so die Rahmenbedingungen geschaffen werden, um zumindest einen möglichst gleichbleibenden Energieverzehr erreichen.In a further embodiment of the invention, the guide part can be designed in such a way that after the triggering force has been exceeded, it is shortened by controlled deformation under a high, essentially constant force. This means that energy consumption can take place in a comparatively controlled form. In principle, the course of events in the event of a collision is difficult to predict; Nevertheless, the framework conditions can be created in order to at least achieve energy consumption that is as consistent as possible.
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden nachstehend unter Angabe weiterer Einzelheiten und Vorteile näher erläutert. Im Einzelnen zeigen:
- Figur 1:
- einen Hülsenpuffer gemäß der Erfindung mit einem Werkzeug-Ring,
- Figur 2:
- einen weiteren Hülsenpuffer gem. der Erfindung mit einer Sollbruchverbindung und einem die Hülse bearbeitenden Werkzeug, sowie
- Figur 3:
- eine zusätzliche Variante eines Hülsenpuffers gem. der Erfindung mit einer Sollbruchverbindung und einem die länglichen Abschnitte bearbeitenden Werkzeug.
- Figure 1:
- a sleeve buffer according to the invention with a tool ring,
- Figure 2:
- a further sleeve buffer according to the invention with a predetermined breaking connection and a tool that processes the sleeve, as well
- Figure 3:
- an additional variant of a sleeve buffer according to the invention with a predetermined breaking connection and a tool that processes the elongated sections.
Diese Feder 9 steht permanent im Kraftfluss: Wirkt auf den Pufferteller 10 eine Kraft infolge eines Stoßes ein, so drückt der mit dem Pufferteller 10 verbundene Stößel 2 auf den Ring 6 und überträgt wiederum eine Kraft auf den Abschnitt 8 und somit ebenfalls auf die Feder 9, welche sich wiederum an der Tragstruktur 5 abstützt. Solange beim Zusammendrücken des Hülsenpuffers 1 die Werkzeuge 7 nicht die Bolzen 11 erreichen, was im Bereich des normalen Pufferhubs nicht stattfindet, kann der Stoß im Wesentlichen elastisch allein über die Feder 9 aufgenommen werden. Nach Aufhebung der Kraft wird der Stößel 2 wieder von der Tragstruktur 5 weg gedrückt und erreicht seine ursprüngliche Position. Die Hülse 3 ist im Bereich der Werkzeuge 7 mit einer Ausnehmung 12 versehen, sodass die Werkzeuge 7 in diesem Bereich mit Spiel gelagert sind und ohne spanende Bearbeitung in Richtung der Längsachse verschoben werden können.This spring 9 is permanently in the flow of force: If a force acts on the buffer plate 10 as a result of a shock, the
Erst dann, wenn die Auslösekraft überschritten ist, treffen die spanenden Werkzeuge 7 auf den Bolzen 11 und können diesen bearbeiten bzw. gegebenenfalls auch abscheren. Die Hülse 3 ist im Bereich 3a ebenfalls jeweils dicker ausgebildet, sodass die Werkzeuge 7 nach Abtrennung oder Abschirmung des Bolzens 11 in das Material der Hülse 3 im Bereich 3a einschneiden. Somit erfolgt ab diesem Zeitpunkt die beabsichtigte Energieverzehr.Only when the triggering force is exceeded do the
Der Abschnitt 8 ist mit Auskragungen 13 versehen, sodass diese den Abschnitt in den Bereichen 3a führen können, da sie an der Innenwandung anliegen. Bei weiterer Deformation kann der Ring 6 zudem so ausgebildet sein, dass eine bestimmte Krafteinwirkung genügt, um den Abschnitt 8 durch den Ring 6 durchbrechen zu lassen. Auch diese Maßnahme sorgt für einen weiteren Energieverzehr. Schließlich ist der Stößel 2 im Bereich 2a so ausgebildet, dass sich sein Innendurchmesser verjüngt. Trifft der Abschnitt 8 auf diesem Bereich, so erfährt ereinen weiteren mechanischen Widerstand der einen Beitrag zum Energieverzehr leistet.The
Die Hülsenpuffer 21, 31 gem. den
Nach
- Zum einen können Sollbruchverbindungen S aufbrechen.
- Zum anderen kann die
Hülse 23durch Werkzeuge 27 spanabhebend bearbeitet werden.
- On the one hand, predetermined breaking connections S can break.
- On the other hand, the
sleeve 23 can be machined usingtools 27.
In
Allen Ausführungsformen und Weiterbildungen der Erfindung ist gemeinsam, dass eine einen mechanischen Widerstand bildende Struktur vorgesehen ist, um bei einer der Teleskopierbewegungen der Führungsteile und/oder der länglichen Abschnitte die Teleskopierbewegung zu bremsen, wobei der vorgeschlagene Hülsenpuffer universell für Tragstrukturen unterschiedlicher Art und mit unterschiedlichen Anforderungen eingesetzt werden kann und dennoch ein hohes Maß an Sicherheit bietet.What all embodiments and developments of the invention have in common is that a structure forming a mechanical resistance is provided in order to brake the telescoping movement during one of the telescoping movements of the guide parts and / or the elongated sections, the proposed sleeve buffer being universal for support structures of different types and with different requirements can be used and still offers a high level of security.
- 11
- HülsenpufferSleeve buffer
- 22
- StößelPestle
- 2a2a
- verengter Bereichnarrowed area
- 33
- Hülsesleeve
- 3a3a
- verdickter Bereichthickened area
- 44
- ÜberlappungsbereichOverlap area
- 55
- TragstrukturSupport structure
- 66
- WerkzeugringTool ring
- 77
- WerkzeugTool
- 88th
- Verlängerungshülse / länglicher AbschnittExtension sleeve / elongated section
- 99
- FederFeather
- 1010
- PuffertellerBuffer plate
- 1111
- Bolzenbolt
- 1212
- Ausnehmungrecess
- 1313
- Auskragungprojection
- 2121
- HülsenpufferSleeve buffer
- 2222
- StößelPestle
- 2323
- Hülsesleeve
- 23a23a
- Ausnehmungrecess
- 2525
- TragstrukturSupport structure
- 2727
- WerkzeugTool
- 2828
- VerlängerungshülseExtension sleeve
- 2929
- FederFeather
- 3131
- HülsenpufferSleeve buffer
- 3232
- StößelPestle
- 3333
- Hülsesleeve
- 3535
- TragstrukturSupport structure
- 3737
- WerkzeugTool
- 3838
- VerlängerungshülseExtension sleeve
- 3939
- FederFeather
- SS
- SollbruchverbindungPredetermined breaking connection
- TT
- PuffertellerBuffer plate
Claims (13)
- Sleeve buffer (1, 21, 31) for mobile or fixed support structures (5, 25, 35), in particular of rail vehicles,- having a first and a second guide part in the form of a sleeve (3, 23, 33) and a tappet (2, 22, 32) ;- wherein the sleeve (3, 23, 33) is able to be fastened so as to be stationary on the support structure (5, 25, 35), and the tappet (2, 22, 32) is displaceable relative to the sleeve (3, 23, 33) in the vehicle longitudinal direction and in the displacement movement thereof is received by the sleeve (3, 23, 33);- wherein a first and a second guide part (2, 22, 32; 3, 23, 33) are configured in such a way that they are telescopically displaceable in one another; and- having a force transmission member (9, 29, 39) for resiliently coupling the tappet (2, 22, 32) to the support structure (5, 25, 35);- wherein in particular at least one of the two guide parts (2, 22, 32; 3, 23, 33) is composed of at least two elongate portions (2, 22, 32; 8, 28, 38) which are disposed behind one another and in the region of their adjacent end sides are in each case interconnected by one or a plurality of predetermined breaking connection or connections (S) and have dissimilar cross-sectional dimensions in such a manner that the predetermined breaking connection or connections (S) is/are torn off and the elongate portions (2, 22, 32; 8, 28, 38) telescopically slide in one another when a specific impact force (triggering force) acting on the sleeve buffer (1, 21, 31) is exceeded;- wherein provided is a structure (2a, 6, 7, 11, 27, 37) which forms a mechanical resistance so as to decelerate the telescopic movement during one of the telescopic movements of the guide parts (2, 22, 32; 3, 23, 33) and/or of the elongate portions (2, 22, 32; 8, 28, 38);- characterized in that a subtractive tool (7) is disposed on a ring (6) that covers the tappet (2) towards the support structure (5), so as to machine, or optionally shear off, a pin (11) which is disposed on the sleeve (3) when the triggering force is exceeded, wherein the sleeve (3) is in each case configured so as to be thicker in a region (3a) that follows the pin (11) towards the support structure (5) in the shearing direction, such that the tool (7), after severing or shearing off the pin (11), cuts into the material of the sleeve (3) in the region (3a) so as to consume energy as from this point in time; or- in that a subtractive tool (37) is disposed on the inner shell face of the tappet (32) so as to, besides rupturing of the predetermined breaking connections (S), when the triggering force is exceeded, subtractively machine an extension sleeve (38) which as an elongate portion by means of predetermined breaking connections (S) is likewise connected to the tappet (32) on the inner shell face of the latter and points away therefrom in the direction of the support structure (35), and in this way to cause a consumption of energy.
- Sleeve buffer (1, 21, 31) according to Claim 1, characterized in that the structure forming a mechanical resistance comprises:- at least the subtractive tool (6, 7, 27, 37); and/or- at least one plastically deformable obstacle part, in particular a web, which in the telescopic displacement is disposed as an obstacle in the path of one of the guide parts (2, 22, 32) or elongate portions (8, 28, 38); and/or- at least one pin (11) which, for the plastic deformation of one of the guide parts in the telescopic displacement, is disposed as an obstacle in the path of one of the guide parts (2, 22, 32) or elongate portions (8, 28, 38).
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the structure (6, 7, 27, 37) forming a mechanical resistance is disposed in such a way that, in the telescopic movement of the elongate portions and/or of the guide parts, the subtractive tool (7, 27, 37) and/or the at least one subtractive tool (7, 27, 37) carry/carries out subtractive machining of one of the elongate portions (38) and/or of one of the guide parts (3a, 11, 23).
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that at least two of the elongate portions (2, 22, 32; 8, 28, 38) disposed behind one another and/or of the guide parts (2, 22, 32; 3, 23, 33) have dissimilar diameters.
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the structure (6, 7, 27, 37) forming a mechanical resistance is disposed in such a way that said structure engages with one of the elongate portions and/or with one of the guide parts (3, 23) and/or is mounted with a clearance.
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the subtractive tool and/or at least one of the subtractive tools (7, 27, 37) are/is disposed in such a way that said tool during the subtractive machining of one of the guide parts (3, 23, 33) and/or of one of the elongate portions is covered towards the outside, in particular subtractively machines the inner shell of one of the elongate portions during the telescopic movement so as to reduce the dissemination of chips towards the outside.
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that- the inner guide part is composed of the elongate portions (2, 8, 22, 28, 32, 38) which are disposed behind one another; and/or- the outer guide part is composed of the elongate portions which are disposed behind one another; and/or- the guide parts are sized in such a way that the tearing off of the predetermined breaking connection (S) in the course of the displacement movement of the tappet (2, 22, 32) occurs first, and the beginning of a deformation of the other guide part takes place only shortly thereafter; and/or- the telescopically displaceable elongate portions have a cylindrical, tubular design; and/or- the predetermined breaking connection (S), conjointly with one or a plurality of the telescopically displaceable elongate portions (22, 28, 32, 38), forms an integral component.
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that a first elongate portion (2a) of two of the elongate portions which are telescopically displaceable in one another, on that side that faces the other, second elongate portion (8), has a larger internal diameter, such that the second elongate portion is mounted thereon in the first elongate portion, wherein the internal diameter of the first elongate portion (2a) decreases towards that side that faces away from the second elongate portion (8), such that a mechanical resistance is imparted to the telescopic movement of the second elongate portion that slides into the first elongate portion.
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that- the force transmission member, which is in particular configured as a spring (9, 29, 39), is disposed in such a way that said force transmission member, when the triggering force acting on the sleeve buffer (1, 21, 31) is exceeded, is always in the force flux during the telescopic movement of the elongate portions (2, 8, 22, 28, 32, 38); and/or- the elongate portions are configured in such a way that a mechanical coupling in the longitudinal direction between the elongate portions is upheld when the predetermined breaking connection or connections (S) is/are torn off.
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the subtractive tool (7) is configured as a ring (6) which comprises at least one cutting blade, wherein the ring is in particular configured as a non-connected insert and/or is mounted in a floating manner.
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the structure forming a mechanical resistance is attached to one of the guide parts (22, 32), in particular to one of the elongate portions.
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that one of the guide parts (2, 22, 32; 3, 23, 33) is configured in such a way that said guide part is shortened by controlled deformation at a high, substantially consistent force level when the triggering force is exceeded.
- Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the subtractive tool (27) is disposed on the tappet (22) so as to subtractively machine the sleeve (3) when the triggering force is exceeded, in order to cause a consumption of energy.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
HUE19188900A HUE066417T2 (en) | 2019-07-29 | 2019-07-29 | Sleeve buffer with mechanical resistance during telescoping movement |
EP19188900.5A EP3771610B1 (en) | 2019-07-29 | 2019-07-29 | Sleeve buffer with mechanical resistance during telescoping movement |
PL19188900.5T PL3771610T3 (en) | 2019-07-29 | 2019-07-29 | Sleeve buffer with mechanical resistance during telescoping movement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19188900.5A EP3771610B1 (en) | 2019-07-29 | 2019-07-29 | Sleeve buffer with mechanical resistance during telescoping movement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3771610A1 EP3771610A1 (en) | 2021-02-03 |
EP3771610B1 true EP3771610B1 (en) | 2024-01-24 |
Family
ID=67543983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19188900.5A Active EP3771610B1 (en) | 2019-07-29 | 2019-07-29 | Sleeve buffer with mechanical resistance during telescoping movement |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3771610B1 (en) |
HU (1) | HUE066417T2 (en) |
PL (1) | PL3771610T3 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115214739B (en) * | 2022-09-08 | 2022-11-29 | 西南交通大学 | Energy-absorbing structure and energy-absorbing anti-creep device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1740435B1 (en) * | 2004-04-27 | 2008-04-23 | Sieghard Schneider | Plunger buffer |
US8100237B2 (en) * | 2009-09-15 | 2012-01-24 | Voith Patent Gmbh | Energy-absorbing device, in particular in the form of a safety device against shock loads for a track-borne vehicle |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2775240B1 (en) * | 1998-02-25 | 2000-12-22 | Nantes Ecole Centrale | IMPROVEMENT IN MOUNTING BUFFER BUFFERS FOR RAIL VEHICLES |
FR2789358B1 (en) * | 1999-02-10 | 2004-02-27 | Nantes Ecole Centrale | SHOCK ABSORBING DEVICE FOR A NEW RAIL BUFFER |
EP2687416B1 (en) * | 2012-07-16 | 2014-09-03 | Voith Patent GmbH | Impact protection, in particular in the form of a crash buffer |
PL229944B1 (en) | 2015-03-05 | 2018-09-28 | Axtone Spolka Akcyjna | Device absorbing the energy of blows |
IT201700017003A1 (en) * | 2017-02-15 | 2018-08-15 | Bigaran S R L | Railway bumper |
RU185514U1 (en) * | 2018-08-02 | 2018-12-07 | Александр Владимирович Барышников | THREE-STAGE DEFORMABLE BUFFER |
-
2019
- 2019-07-29 HU HUE19188900A patent/HUE066417T2/en unknown
- 2019-07-29 EP EP19188900.5A patent/EP3771610B1/en active Active
- 2019-07-29 PL PL19188900.5T patent/PL3771610T3/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1740435B1 (en) * | 2004-04-27 | 2008-04-23 | Sieghard Schneider | Plunger buffer |
US8100237B2 (en) * | 2009-09-15 | 2012-01-24 | Voith Patent Gmbh | Energy-absorbing device, in particular in the form of a safety device against shock loads for a track-borne vehicle |
Also Published As
Publication number | Publication date |
---|---|
EP3771610A1 (en) | 2021-02-03 |
HUE066417T2 (en) | 2024-08-28 |
PL3771610T3 (en) | 2024-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2072370B1 (en) | Energy absorbing device for a vehicle body of a multi-unit vehicle | |
EP2594452B1 (en) | Coupling assembly for the front of a rail-guided vehicle | |
EP1791747B1 (en) | Crumple element comprising a guiding mechanism | |
EP2601088B1 (en) | Energy absorption device, in particular for a shock absorber of a track-guided vehicle | |
EP2295305B1 (en) | Energy consumption device, in particular in the form of impact protection for a rail-led vehicle | |
EP1990251B1 (en) | Power consumption unit for vehicles consisting of several units | |
EP2687416B1 (en) | Impact protection, in particular in the form of a crash buffer | |
WO2009034097A9 (en) | Replaceable energy absorbing structure, especially for use in combination with a buffer | |
DE102006043982B4 (en) | Side buffers for mobile or fixed supporting structures of rail vehicles | |
EP1486381A2 (en) | Bumper for motor vehicle | |
EP1541424B1 (en) | Crash element shaped as a hollow profile | |
EP0850807A2 (en) | Energy absorbing device for a motor vehicle | |
EP2720925B1 (en) | Arrangement for deflecting a rail vehicle central buffer coupling unhitched in the course of a collision due to failure of an overload safety device | |
DE102004034577B4 (en) | Device for absorbing impact energy on a motor vehicle | |
EP3771610B1 (en) | Sleeve buffer with mechanical resistance during telescoping movement | |
EP1637426A2 (en) | Buffer assembly | |
EP2230147B1 (en) | Energy consumption element and impact protection with an energy consumption element | |
EP3771609B1 (en) | Sleeve buffer with partially sheathed tappet | |
DE10252175A1 (en) | Plunger buffer for rolling stock has plunger consisting of long parts connected via break-off points for controlled deformation when subjected to excess impact force | |
EP1740435B1 (en) | Plunger buffer | |
EP3530544A1 (en) | Deformation device with climbing protection for rail vehicles | |
DE102005026284B3 (en) | Longitudinal carrier, for a motor vehicle chassis, has a two-part tube with a nominal fracture point between them to give a telescopic movement to absorb impact forces | |
DE10249517B4 (en) | Shock-absorbing, load-limiting connection device and rotary wing aircraft with such a connection device | |
DE102012107152B3 (en) | Bumper arrangement for motor car, has inner component comprising shearing nut that is split up by locking element during retraction of inner component such that movement energy of inner component is converted into gap operation | |
EP3594082B1 (en) | Crash buffer with guide rod, support structure and railway vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20210723 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20221130 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230823 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019010435 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240524 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240425 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240424 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240524 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240425 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240524 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E066417 Country of ref document: HU |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240524 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240124 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240724 Year of fee payment: 6 |