EP3771610B1 - Sleeve buffer with mechanical resistance during telescoping movement - Google Patents

Sleeve buffer with mechanical resistance during telescoping movement Download PDF

Info

Publication number
EP3771610B1
EP3771610B1 EP19188900.5A EP19188900A EP3771610B1 EP 3771610 B1 EP3771610 B1 EP 3771610B1 EP 19188900 A EP19188900 A EP 19188900A EP 3771610 B1 EP3771610 B1 EP 3771610B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
elongate portions
buffer
elongate
guide parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19188900.5A
Other languages
German (de)
French (fr)
Other versions
EP3771610A1 (en
Inventor
Falk Schneider
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to HUE19188900A priority Critical patent/HUE066417T2/en
Priority to EP19188900.5A priority patent/EP3771610B1/en
Priority to PL19188900.5T priority patent/PL3771610T3/en
Publication of EP3771610A1 publication Critical patent/EP3771610A1/en
Application granted granted Critical
Publication of EP3771610B1 publication Critical patent/EP3771610B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61GCOUPLINGS; DRAUGHT AND BUFFING APPLIANCES
    • B61G11/00Buffers
    • B61G11/16Buffers absorbing shocks by permanent deformation of buffer element

Definitions

  • the invention relates to a sleeve buffer for movable or fixed support structures according to the preamble of claim 1.
  • a so-called absorber buffer in which a sleeve is provided in a recess in a fastening plate for fastening to the support structure.
  • cutting tools are provided which are attached to the fastening plate and act on the sleeve.
  • the prior art discloses the FR 2 789 358 A1 Sleeve buffers, which also have consumable elements and tools that machine them, for the purpose of dissipating energy when the normal operational forces are exceeded. These consumable elements and the tools that machine them if necessary are each arranged recessed in an immersion opening in the support structure, on which the sleeve buffer is mounted on the outside.
  • the FR 2 775 240 A1 discloses sleeve buffers, with guide and deformation structures that deform when the normal operational forces are exceeded, as well as penetration openings in the relevant support structures, into which the sleeve buffer can immerse in accordance with the length of the guide and deformation structures reduced by the deformation to compensate for the length.
  • the EP 1 740 435 A0 also discloses sleeve buffers, with structures that deform or break at predetermined breaking points when the normal operational forces are exceeded.
  • the object of the invention is to be able to provide a sleeve buffer that can be used as universally as possible for support structures of different types and with different requirements and still offers a high level of safety.
  • the task is, based on a sleeve buffer of the type mentioned, solved by the characterizing features of claim 1.
  • the invention relates to a sleeve buffer for movable or fixed support structures, in particular rail vehicles.
  • a fixed support structure is, for example, a buffer block that represents the end of a track and is intended to prevent a rail vehicle from rolling beyond this area and possibly derailing.
  • Movable support structures are usually rail vehicles such as locomotives, freight cars, passenger cars or the like.
  • the sleeve buffer according to the invention is telescopic and comprises a first and a second guide part in the form of a sleeve and a plunger, and optionally also several guide parts.
  • the sleeve and plunger have different diameters so that they can be pushed into one another in the event of an impact, i.e. they are telescopic.
  • the sleeve can be fixed in place on a support structure.
  • the relative displacement between sleeve and plunger during the telescoping movement occurs accordingly in the longitudinal direction of the vehicle.
  • the corresponding sleeve buffers are often referred to as side buffers due to their arrangement on the (vehicle) support structure.
  • a structure forming a mechanical resistance is provided in order to brake the telescoping movement during the telescoping movement of the guide parts and/or the elongated sections.
  • Such mechanical resistance to energy dissipation offers several advantages.
  • the mechanical resistance is used in a telescoping sleeve buffer, in such a way that the telescoping movement is also inhibited.
  • diving into the support structure can be avoided.
  • a mechanical resistance can be chosen so that it allows scalability, so that use on different rail vehicles or support structures of different sizes can be made possible.
  • a mechanical resistance can be provided which hinders telescoping movement between the first and second guide parts when the triggering force is exceeded.
  • the telescoping movement of the elongated sections of a guide part can also be braked once the triggering force has been reached.
  • cutting tools can be considered as structures forming mechanical resistance.
  • these tools When the triggering force is exceeded, these tools are brought into contact with a structure of the sleeve buffer, so that the structure of the sleeve buffer is damaged as a result of the impact effect. If the energy during the impact is sufficient, the cutting tool is pushed forward and its machining process consumes part of the energy.
  • This embodiment has in particular the The advantage is that very good scalability is possible.
  • the area over which the tool engages in the structure during machining can be selected.
  • the penetration depth can also be varied.
  • a plastically deformable barrier in particular a web or a bolt, which is arranged as an obstacle in the path of the guide part or elongated section to be deformed during the telescopic movement can also be considered as mechanical resistance.
  • the mechanical resistance may correlate with the thickness of the component to be deformed or with regard to the material selection for the barrier.
  • the bolt can also be made of a special material to adjust the resistance. Consequently, a certain scalability is enabled.
  • the scaling can also be adjusted by providing multiple bolts to increase resistance.
  • the structure forming a mechanical resistance can be arranged so that during telescoping movements of the elongated sections, the cutting tool or tools perform machining perform/carry out one of the elongated sections.
  • the elongated sections are generally only moved relative to one another when the triggering force is exceeded, in that the elongated sections are connected to one another via predetermined breaking connections, which only break when the triggering force is reached. The machining can then take place.
  • the cutting tool can also be arranged on one of the guide parts in such a way that it processes the other guide part when the triggering force is exceeded.
  • the tool is arranged on the ram and processes the sleeve.
  • This embodiment of the invention can have the advantage over the variant in which an elongated section is machined that no section is affected in its structure, which is constantly in the flow of force for support. For example, if the plunger is divided into several elongated sections, these can support each other until a certain force is reached.
  • a spring that is in the flow of force is often supported on one of the elongated sections. If the structure of an elongated section is impaired by machining, the flow of force can be impaired if the structure breaks, for example.
  • the structure forming a mechanical resistance can also be arranged in such a way that it engages with a guide part or one of the elongated sections, ie there is a mechanical coupling between the parts, which only leads to a plastic deformation when the triggering force is exceeded. It is also conceivable that the structure forming mechanical resistance is mounted in such a way that a certain freedom of movement is still possible (support with play is provided) and energy consumption can only take place from a certain trigger force or with a certain deflection / telescoping movement. This can advantageously support the fact that a certain degree of elasticity must be provided; As part of the normal buffer stroke, no machining takes place and the tool can move freely in the storage. The tool only engages with a structure once the triggering force has been reached.
  • the inner or outer casing of a guide part or elongated section When telescoping, it may be possible, for example, for the inner or outer casing of a guide part or elongated section to be machined. Machining the inner casing generally has the advantage that no chips fly away due to the high speed and may pose a danger to people in the area or damage objects in the area.
  • the sleeve buffer according to the invention comprises at least two guide parts, a plunger and a sleeve. So that they can be telescoped into one another, the inside diameter of one of the guide parts is larger than the outside diameter of the other guide part. In particular, the inside diameter of the sleeve is larger than the outside diameter of the plunger, so that it can be inserted into the sleeve.
  • the internal guide part with a smaller diameter can also be constructed from elongated sections arranged one behind the other.
  • the outer guide part consists of elongated parts arranged one behind the other sections. If the triggering force is now exceeded, various scenarios are conceivable.
  • the selected geometries can be dimensioned such that in the course of the displacement movement of the plunger, the predetermined breaking connections are torn off first. Following this, for example, deformations of other structures such as a deformation of the sleeve, a bolt, a deformation by a tool or the like can be provided for additional energy consumption.
  • individual elongated sections are pushed telescopically into one another, they preferably have a cylindrical shape, which is also advantageous for absorbing transverse forces and has a comparatively high bending moment.
  • Telescopically movable elongated sections which are connected via predetermined breaking connections, can be viewed as a one-piece component or guide part.
  • the inside diameter of the space into which the section is pushed is, from a certain point, smaller than the outside diameter of the section to be moved.
  • Deformation is also necessary here during the telescopic movement in order to completely push the components into one another. This results in energy consumption.
  • such an embodiment can be manufactured comparatively simply by strengthening the wall or simply making it thicker.
  • a comparatively high energy consumption is made possible.
  • one of the elongated sections is provided with recesses or slots so that controlled deformation can take place more easily and in a more targeted manner.
  • the force transmission member is always in the flow of force during the telescopic movement, even if the triggering force is exceeded.
  • the force transmission member which can be designed in particular as a spring, can always absorb and store a certain amount of energy (elastic pushing together of the buffer during normal buffer stroke). In a (partially) inelastic collision, energy is consumed, for example as a result of deformation or as thermal energy.
  • the force transmission member ensures a certain level of support between the buffer plate, to which a force is transmitted during an impact, and the support structure.
  • a mechanical coupling in the longitudinal direction between elongated sections or a coupling to one of the guide parts can continue to exist even after the predetermined breaking connections have been torn off.
  • the elongated sections can slide past each other, but the guide points are in mechanical contact with one another in such a way that there is increased friction, which results in further energy consumption.
  • the sections can, for example, have projections that come into contact with the inner walls.
  • the cutting tool can be designed as a ring which includes at least one cutting edge, the ring in particular being not connected insert is stored or floating.
  • the ring can therefore be manufactured as a separate component and it is not necessary to integrate the cutting tools in one of the sections or one of the guide parts.
  • the guide part can be designed in such a way that after the triggering force has been exceeded, it is shortened by controlled deformation under a high, essentially constant force. This means that energy consumption can take place in a comparatively controlled form. In principle, the course of events in the event of a collision is difficult to predict; Nevertheless, the framework conditions can be created in order to at least achieve energy consumption that is as consistent as possible.
  • Figure 1 shows a sleeve buffer 1 with a plunger 2 and a sleeve 3, the plunger 2 being mounted as the first guide part in the sleeve 3 as the second guide part.
  • the plunger 2 is partially accommodated in the sleeve 3, with both guide parts 2, 3 overlapping over a certain coverage length 4.
  • This overlap 4 means, among other things, that any transverse forces that may occur in the event of an impact can be absorbed.
  • the sleeve 3 in turn is firmly connected to the support structure 5.
  • the plunger 2 ends with a ring 6, which is provided with cutting tools 7.
  • the tools 7 are arranged on the circumference of the ring 6.
  • the floating ring is in contact with an elongated section 8 in which a spring 9 is mounted.
  • This spring 9 is permanently in the flow of force: If a force acts on the buffer plate 10 as a result of a shock, the plunger 2 connected to the buffer plate 10 presses on the ring 6 and in turn transmits a force to the section 8 and thus also to the spring 9 , which in turn is supported on the support structure 5. As long as the tools 7 do not reach the bolts 11 when the sleeve buffer 1 is compressed, which does not occur in the area of the normal buffer stroke, the shock can be absorbed essentially elastically via the spring 9 alone. After the force is lifted, the plunger 2 is pushed away from the support structure 5 again and reaches its original position.
  • the sleeve 3 is provided with a recess 12 in the area of the tools 7, so that the tools 7 are mounted with play in this area and can be moved in the direction of the longitudinal axis without machining.
  • the sleeve 3 is in the area 3a are also thicker, so that the tools 7 cut into the material of the sleeve 3 in the area 3a after the bolt 11 has been separated or shielded. From this point onwards, the intended energy consumption takes place.
  • the section 8 is provided with projections 13 so that these can guide the section in the areas 3a since they rest on the inner wall.
  • the ring 6 can also be designed in such a way that a certain force is sufficient to cause the section 8 to break through the ring 6. This measure also results in further energy consumption.
  • the plunger 2 is designed in the area 2a so that its inner diameter tapers. If section 8 hits this area, it experiences further mechanical resistance, which contributes to energy dissipation.
  • the sleeve buffers 21, 31 according to Figures 2 , 3 are equipped with predetermined breaking connections S.
  • a sleeve buffer 31 is sketched, which differs from the variant according to Figure 2 the extension sleeve 38 is processed as an elongated section and thus, in addition to a breakage of the predetermined breaking connections S when the triggering force is exceeded, leads to energy consumption.
  • the tools 37 are also attached to the plunger 32, but on its inner surface so that they can hit the extension sleeve 38.
  • the sleeve 33 which is firmly connected to the support structure 35, is not machined.
  • the spring 39 is practically permanently in the flow of force when the sleeve buffer 31 is subjected to a force via the buffer plate T.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)

Description

Die Erfindung betrifft einen Hülsenpuffer für bewegliche oder feste Tragstrukturen nach dem Oberbegriff des Anspruchs 1.The invention relates to a sleeve buffer for movable or fixed support structures according to the preamble of claim 1.

Aus dem Stand der Technik ist aus der WO 16 / 139 596 A1 ein sog. Absorberpuffer bekannt, bei dem eine Hülse in einer Aussparung einer Befestigungsplatte zur Befestigung an der Tragstruktur vorgesehen ist. Um bei einem Zusammenstoß einen Energieverzehr zu ermöglichen, bei dem der Puffer geopfert wird, um einen Teil des Stoßes abzufangen und Schädigungen am Schienenfahrzeug reduzieren zu können, sind spanende Werkzeuge vorgesehen, die an der Befestigungsplatte angebracht sind und auf die Hülse einwirken.From the prior art is from the WO 16/139 596 A1 a so-called absorber buffer is known, in which a sleeve is provided in a recess in a fastening plate for fastening to the support structure. In order to enable energy dissipation in the event of a collision, in which the buffer is sacrificed in order to absorb part of the shock and reduce damage to the rail vehicle, cutting tools are provided which are attached to the fastening plate and act on the sleeve.

Im Stand der Technik offenbart die FR 2 789 358 A1 Hülsenpuffer, die ebenfalls Verbrauchselemente und diese spanend bearbeitende Werkzeuge aufweisen, zum Zwecke des Energieverzehrs bei Überschreitung der betriebsüblichen Krafteinwirkungen. Diese Verbrauchselemente und die sie im Bedarfsfall spanend bearbeitenden Werkzeuge sind jeweils in einer Durchtauchöffnung in der Tragstruktur versenkt angeordnet, an welcher der Hülsenpuffer außenseitig montiert ist.The prior art discloses the FR 2 789 358 A1 Sleeve buffers, which also have consumable elements and tools that machine them, for the purpose of dissipating energy when the normal operational forces are exceeded. These consumable elements and the tools that machine them if necessary are each arranged recessed in an immersion opening in the support structure, on which the sleeve buffer is mounted on the outside.

Die FR 2 775 240 A1 offenbart Hülsenpuffer, mit sich bei Überschreitung der betriebsüblichen Krafteinwirkungen verformenden Führungs-und Verformungsstrukturen, sowie jeweils Durchtauchöffnungen in den betreffenden Tragstrukturen, in welche der Hülsenpuffer entsprechend der durch die Verformung reduzierten Länge der Führungs-und Verformungsstrukturen zum Längenausgleich eintauchen kann.The FR 2 775 240 A1 discloses sleeve buffers, with guide and deformation structures that deform when the normal operational forces are exceeded, as well as penetration openings in the relevant support structures, into which the sleeve buffer can immerse in accordance with the length of the guide and deformation structures reduced by the deformation to compensate for the length.

Die EP 1 740 435 A0 offenbart ebenfalls Hülsenpuffer, mit sich bei Überschreitung der betriebsüblichen Krafteinwirkungen verformenden oder an Sollbruchstellen brechenden Strukturen.The EP 1 740 435 A0 also discloses sleeve buffers, with structures that deform or break at predetermined breaking points when the normal operational forces are exceeded.

Aufgabe der Erfindung ist es, einen Hülsenpuffer bereitstellen zu können, der möglichst universell für Tragstrukturen unterschiedlicher Art und mit unterschiedlichen Anforderungen eingesetzt werden kann und dennoch ein hohes Maß an Sicherheit bietet.The object of the invention is to be able to provide a sleeve buffer that can be used as universally as possible for support structures of different types and with different requirements and still offers a high level of safety.

Die Aufgabe wird, ausgehend von einem Hülsenpuffer der eingangs genannten Art, durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.The task is, based on a sleeve buffer of the type mentioned, solved by the characterizing features of claim 1.

Durch die in den abhängigen Ansprüchen genannten Maßnahmen sind vorteilhafte Ausführungen und Weiterbildungen der Erfindung möglich.The measures mentioned in the dependent claims make advantageous embodiments and developments of the invention possible.

Die Erfindung betrifft einen Hülsenpuffer für bewegliche oder feste Tragstrukturen, insbesondere Schienenfahrzeuge. Bei einer festen Tragstruktur handelt es sich beispielsweise um einen Pufferblock, der den Abschluss eines Gleises darstellt und verhindern soll, dass ein Schienenfahrzeug über diesen Bereich hinaus rollt und gegebenenfalls entgleist. Bei beweglichen Tragstrukturen handelt es sich in der Regel um Schienenfahrzeuge wie Lokomotiven, Güterwagen, Reisezugwagen oder dergleichen. Der erfindungsgemäße Hülsenpuffer ist in sich teleskopierbar und umfasst ein erstes und ein zweites Führungsteil in Form einer Hülse und eines Stößels, gegebenenfalls auch mehrere Führungsteile. Hülse und Stößel besitzen unterschiedliche Durchmesser, sodass diese bei einer Stoßeinwirkung ineinandergeschoben werden können, also teleskopierbar sind. Die Hülse ist ortsfest an einer Tragstruktur befestigbar. Die relative Verschiebung zwischen Hülse und Stößel bei der Teleskopierbewegung erfolgt entsprechend in Fahrzeuglängsrichtung. Die entsprechenden Hülsenpuffer werden aufgrund ihrer Anordnung an der (Fahrzeug-)Tragstruktur oftmals auch als Seitenpuffer bezeichnet.The invention relates to a sleeve buffer for movable or fixed support structures, in particular rail vehicles. A fixed support structure is, for example, a buffer block that represents the end of a track and is intended to prevent a rail vehicle from rolling beyond this area and possibly derailing. Movable support structures are usually rail vehicles such as locomotives, freight cars, passenger cars or the like. The sleeve buffer according to the invention is telescopic and comprises a first and a second guide part in the form of a sleeve and a plunger, and optionally also several guide parts. The sleeve and plunger have different diameters so that they can be pushed into one another in the event of an impact, i.e. they are telescopic. The sleeve can be fixed in place on a support structure. The relative displacement between sleeve and plunger during the telescoping movement occurs accordingly in the longitudinal direction of the vehicle. The corresponding sleeve buffers are often referred to as side buffers due to their arrangement on the (vehicle) support structure.

Der Hülsenpuffer erfüllt unter anderem in zweifacher Hinsicht jeweils eine Funktion:

  • Werden zum Beispiel Schienenfahrzeuge, z.B. Wagen, aneinandergekoppelt, so stoßen diese bei sehr geringer Geschwindigkeit im Normalbetrieb zusammen. Die Schienenfahrzeuge besitzen aber in der Regel eine große Masse, sodass ein starker Impuls dabei übertragen wird. Damit es nicht zu Beschädigungen der Schienenfahrzeuge kommt, besitzen die entsprechenden Fahrzeuge in der Regel Hülsenpuffer, welche den Stoß entsprechend abfangen können, ohne dass Strukturen beschädigt bzw. in Mitleidenschaft gezogen werden. Entsprechende Hülsenpuffer ermöglichen sehen hierfür meist ein elastisches Kraftübertragungsglied (z.B. eine Feder) vor, welche die Kraft beim Stoß aufnimmt, gestaucht wird und sich wieder ausdehnen und den Puffer in den ursprünglichen Zustand zurückversetzen kann. Die Einwirkung auf den Hülsenpuffer in diesem Kraftbereich ist also reversibel. Darüber hinaus kann zum Beispiel auch ein Schienenfahrzeug gegen eine feste Tragstruktur wie einen Pufferblock geparkt werden, sodass auch hier bei geringer Geschwindigkeitskrafteinwirkung die entsprechenden Hülsenpuffer miteinander in Berührung kommen.
  • Insbesondere bei ungewollten Zusammenstößen, bei denen sehr hohe Kraftwirkungen auftreten, ermöglicht der Hülsenpuffer aber außerdem, dass zumindest ein Teil der beim Stoß auftretenden Energie aufgebraucht wird und somit nicht mehr die Tragstruktur schädigen kann. Bei einer Ausführungsform der Erfindung kann zu diesem Zweck eines der Führungsteile in längliche Abschnitte unterteilt sein, die wiederum über Sollbruchverbindungen untereinander verbunden sind, die bei Überschreiten einer bestimmten Kraft beim Zusammenstoß, der sog. Auslösekraft, brechen. Im elastischen Bereich ist also eine Teleskopbewegung zwischen den Führungsteilen Stößel und Hülse zerstörungsfrei möglich, während oberhalb der Auslösekraft die Sollbruchverbindungen zwischen den Abschnitten eines der Führungsteil aufgebrochen werden. Dies ist mit einem Energieverzehr verbunden. Erfindungsgemäß wird nunmehr, ob für einen Hülsenpuffer mit oder ohne Sollbruchverbindungen in der internen Struktur, einen zusätzliches mechanisches System zum Energieverzehr bei Überschreiten der Auslösekraft vorgeschlagen.
The sleeve buffer fulfills a function in two ways, among other things:
  • For example, if rail vehicles, such as wagons, are coupled together, they collide at very low speeds during normal operation. However, rail vehicles usually have a large mass, so that a strong impulse is transmitted. To ensure that the rail vehicles are not damaged, the corresponding vehicles usually have sleeve buffers that can absorb the impact without damaging or affecting structures to be pulled. Corresponding sleeve buffers usually provide an elastic force transmission member (e.g. a spring), which absorbs the force of the impact, is compressed and can expand again and return the buffer to its original state. The effect on the sleeve buffer in this force range is therefore reversible. In addition, for example, a rail vehicle can also be parked against a fixed support structure such as a buffer block, so that the corresponding sleeve buffers come into contact with one another even when the speed force is low.
  • Particularly in the case of unwanted collisions in which very high forces occur, the sleeve buffer also enables at least part of the energy generated during the impact to be used up and therefore no longer be able to damage the support structure. In one embodiment of the invention, for this purpose one of the guide parts can be divided into elongated sections, which in turn are connected to one another via predetermined breaking connections, which break when a certain force is exceeded during the collision, the so-called trigger force. In the elastic range, a telescopic movement between the guide parts plunger and sleeve is possible without destruction, while above the triggering force the predetermined breaking connections between the sections of one of the guide parts are broken. This is associated with energy consumption. According to the invention, an additional mechanical system for dissipating energy when the triggering force is exceeded is now proposed, whether for a sleeve buffer with or without predetermined breaking connections in the internal structure.

Dementsprechend ist erfindungsgemäß eine einen mechanischen Widerstand bildende Struktur vorgesehen ist, um bei der Teleskopierbewegung der Führungsteile und/oder der länglichen Abschnitte die Teleskopierbewegung zu bremsen. Ein derartiger mechanischer Widerstand zum Energieverzehr bietet mehrere Vorteile. Zum einen wird der mechanische Widerstand im vorliegenden erfindungsgemäßen Fall bei einem teleskopierbaren Hülsenpuffer eingesetzt, und zwar in der Weise, dass auch die Teleskopierbewegung gehemmt wird. Im Unterschied zum Stand der Technik kann ein Durchtauchen in die Tragstruktur vermieden werden. Zum anderen kann ein mechanischer Widerstand so gewählt werden, dass er eine Skalierbarkeit erlaubt, sodass der Einsatz bei unterschiedlichen Schienenfahrzeugen oder Tragstrukturen unterschiedlicher Größe ermöglicht werden kann.Accordingly, according to the invention, a structure forming a mechanical resistance is provided in order to brake the telescoping movement during the telescoping movement of the guide parts and/or the elongated sections. Such mechanical resistance to energy dissipation offers several advantages. On the one hand, in the present case according to the invention, the mechanical resistance is used in a telescoping sleeve buffer, in such a way that the telescoping movement is also inhibited. In contrast to the prior art, diving into the support structure can be avoided. On the other hand, a mechanical resistance can be chosen so that it allows scalability, so that use on different rail vehicles or support structures of different sizes can be made possible.

Grundsätzlich sind verschiedene Varianten denkbar, welche der Teleskopierbewegungen durch den mechanischen Widerstand gehemmt werden soll. Erstens kann ein mechanischer Widerstand vorgesehen sein, der Teleskopierbewegung zwischen erstem und zweitem Führungsteil bei Überschreiten der Auslösekraft behindert. Zweitens kann aber auch die Teleskopierbewegung der länglichen Abschnitte eines Führungsteils ab Erreichen der Auslösekraft gebremst werden.In principle, different variants are conceivable as to which of the telescoping movements should be inhibited by the mechanical resistance. Firstly, a mechanical resistance can be provided which hinders telescoping movement between the first and second guide parts when the triggering force is exceeded. Secondly, the telescoping movement of the elongated sections of a guide part can also be braked once the triggering force has been reached.

Als einen mechanischen Widerstand bildende Strukturen kommen erfindungsgemäß spanende Werkzeuge in Betracht. Diese Werkzeuge werden bei Überschreiten der Auslösekraft in Kontakt mit einer Struktur des Hülsenpuffers gebracht, sodass die Struktur des Hülsenpuffers infolge der Stoßwirkung beschädigt wird. Wenn die Energie beim Stoß ausreicht, wird das spanende Werkzeug vorangetrieben und dessen Bearbeitungsvorgang verzehrt einen Teil der Energie. Diese Ausführungsform besitzt insbesondere den Vorteil, dass eine sehr gute Skalierbarkeit ermöglicht wird. Um den mechanischen Widerstand genau anzupassen, kann der Bereich ausgewählt werden, über den das Werkzeug bei der spanenden Bearbeitung in die Struktur eingreift. Auch die Eindringtiefe kann variiert werden. Darüber hinaus ist es aber auch möglich, die Anzahl der spanenden Werkzeuge zu wählen und somit eine lineare Skalierbarkeit bereitstellen zu können. Aus diesem Grund kann ein derartiger Hülsenpuffer gemäß diese Ausführungsform so gewählt werden, dass er für unterschiedliche Tragstrukturen, insbesondere für Schienenfahrzeuge unterschiedlicher Größe, verwendet und angepasst werden kann.According to the invention, cutting tools can be considered as structures forming mechanical resistance. When the triggering force is exceeded, these tools are brought into contact with a structure of the sleeve buffer, so that the structure of the sleeve buffer is damaged as a result of the impact effect. If the energy during the impact is sufficient, the cutting tool is pushed forward and its machining process consumes part of the energy. This embodiment has in particular the The advantage is that very good scalability is possible. In order to precisely adjust the mechanical resistance, the area over which the tool engages in the structure during machining can be selected. The penetration depth can also be varied. In addition, it is also possible to choose the number of cutting tools and thus be able to provide linear scalability. For this reason, such a sleeve buffer according to this embodiment can be selected so that it can be used and adapted for different support structures, in particular for rail vehicles of different sizes.

Als mechanischer Widerstand kommt auch eine plastisch verformbare Barriere, insbesondere ein Steg oder ein Bolzen in Betracht, der bei der Teleskopbewegung als Hindernis im Weg des zu verformenden Führungsteils bzw. länglichen Abschnitts angeordnet ist. Auch bei dieser Variante ist grundsätzlich eine Skalierbarkeit möglich; zum Beispiel kann der mechanische Widerstand mit der Dicke des zu verformenden Bauteils oder hinsichtlich der Materialauswahl für die Barriere korrelieren. Denkbar ist zum Beispiel, einen Bolzen zur plastischen Verformung bei einer Ausführungsvariante der Erfindung vorzusehen, sodass dieser bei der Teleskopbewegung verformt oder gegebenenfalls auch abgeschert werden kann. Der Bolzen kann auch aus einem speziellen Material gefertigt sein, um den Widerstand anzupassen. Folglich wird eine gewisse Skalierbarkeit ermöglicht. Die Skalierung kann auch angepasst werden, indem mehrere Bolzen zur Verfügung gestellt werden, um den Widerstand zu erhöhen.A plastically deformable barrier, in particular a web or a bolt, which is arranged as an obstacle in the path of the guide part or elongated section to be deformed during the telescopic movement can also be considered as mechanical resistance. In principle, scalability is also possible with this variant; for example, the mechanical resistance may correlate with the thickness of the component to be deformed or with regard to the material selection for the barrier. It is conceivable, for example, to provide a bolt for plastic deformation in an embodiment variant of the invention, so that it can be deformed or, if necessary, sheared off during the telescopic movement. The bolt can also be made of a special material to adjust the resistance. Consequently, a certain scalability is enabled. The scaling can also be adjusted by providing multiple bolts to increase resistance.

Bei einer Ausführungsform der Erfindung kann die einen mechanischen Widerstand bildende Struktur so angeordnet sein, dass bei Teleskopierbewegungen der länglichen Abschnitte das spanende Werkzeug oder die spanenden Werkzeuge eine Bearbeitung eines der länglichen Abschnitte durchführt / durchführen. Die länglichen Abschnitte werden untereinander in der Regel erst dann relativ zueinander verschoben, wenn die Auslösekraft überschritten ist, indem die länglichen Abschnitte untereinander über Sollbruchverbindungen verbunden sind, die erst bei Erreichen der Auslösekraft brechen. Anschließen erfolgt sodann die spanabhebende Bearbeitung eingreifen kann.In one embodiment of the invention, the structure forming a mechanical resistance can be arranged so that during telescoping movements of the elongated sections, the cutting tool or tools perform machining perform/carry out one of the elongated sections. The elongated sections are generally only moved relative to one another when the triggering force is exceeded, in that the elongated sections are connected to one another via predetermined breaking connections, which only break when the triggering force is reached. The machining can then take place.

Das spanende Werkzeug kann aber auch an einem der Führungsteile so angeordnet sein, dass es das andere Führungsteil bearbeitet, wenn die Auslösekraft überschritten wird. Zum Beispiel ist das Werkzeug am Stößel angeordnet und bearbeitet die Hülse. Diese Ausführungsform der Erfindung kann gegenüber der Variante, bei der ein länglicher Abschnitt spanend bearbeitet wird, den Vorteil besitzen, dass kein Abschnitt in seiner Struktur beeinträchtigt wird, der zur Abstützung ständig im Kraftfluss steht. Ist z.B. der Stößel in mehrere längliche Abschnitte unterteilt, so können diese sich bis zum Erreichen einer bestimmten Kraft gegenseitig abstützen. Zudem ist oftmals eine Feder, die im Kraftfluss steht, an einem der länglichen Abschnitte abgestützt. Wird folglich die Struktur eines länglichen Abschnitts durch spanende Bearbeitung beeinträchtigt, so kann der Kraftfluss beeinträchtigt werden, wenn die Struktur z.B. bricht.The cutting tool can also be arranged on one of the guide parts in such a way that it processes the other guide part when the triggering force is exceeded. For example, the tool is arranged on the ram and processes the sleeve. This embodiment of the invention can have the advantage over the variant in which an elongated section is machined that no section is affected in its structure, which is constantly in the flow of force for support. For example, if the plunger is divided into several elongated sections, these can support each other until a certain force is reached. In addition, a spring that is in the flow of force is often supported on one of the elongated sections. If the structure of an elongated section is impaired by machining, the flow of force can be impaired if the structure breaks, for example.

Die einen mechanischen Widerstand bildende Struktur kann aber auch so angeordnet sein, dass sie mit einem Führungsteil bzw. einem der länglichen Abschnitte in Eingriff steht, d.h. es besteht eine mechanische Kopplung zwischen den Teilen, die bei Überschreiten der Auslösekraft erst zu einer plastischen Verformung führt. Denkbar ist auch, dass die einen mechanischen Widerstand bildende Struktur so gelagert ist, dass eine gewisse Bewegungsfreiheit noch ermöglicht wird (eine Lagerung mit Spiel vorgesehen ist) und erst ab einer bestimmten Auslösekraft bzw. bei einer bestimmten Auslenkung / Teleskopierbewegung ein Energieverzehr stattfinden kann. Hierdurch kann in vorteilhafter Weise unterstützt werden, dass ein gewisses Maß an Elastizität vorgesehen sein muss; im Rahmen des normalen Pufferhubs erfolgt sodann keine spanabhebende Bearbeitung und das Werkzeug kann sich in der Lagerung frei bewegen. Erst ab Erreichen der Auslösekraft steht das Werkzeug im Eingriff mit einer Struktur.However, the structure forming a mechanical resistance can also be arranged in such a way that it engages with a guide part or one of the elongated sections, ie there is a mechanical coupling between the parts, which only leads to a plastic deformation when the triggering force is exceeded. It is also conceivable that the structure forming mechanical resistance is mounted in such a way that a certain freedom of movement is still possible (support with play is provided) and energy consumption can only take place from a certain trigger force or with a certain deflection / telescoping movement. This can advantageously support the fact that a certain degree of elasticity must be provided; As part of the normal buffer stroke, no machining takes place and the tool can move freely in the storage. The tool only engages with a structure once the triggering force has been reached.

Bei Teleskopierbewegung kann es sich zum Beispiel anbieten, dass der Innen- oder Außenmantel eines Führungsteils bzw. länglichen Abschnitts spanabhebend bearbeitet wird. Die Bearbeitung des Innenmantels besitzt generell aber den Vorteil, dass keine Späne infolge der hohen Geschwindigkeit wegfliegen und gegebenenfalls eine Gefahr für Personen in der Umgebung darstellen oder auch Gegenstände in der Umgebung beschädigen können.When telescoping, it may be possible, for example, for the inner or outer casing of a guide part or elongated section to be machined. Machining the inner casing generally has the advantage that no chips fly away due to the high speed and may pose a danger to people in the area or damage objects in the area.

Im Allgemeinen ermöglicht die Anordnung der Werkzeuge entlang des eine gute Skalierbarkeit bereitgestellt werden kann.In general, the arrangement of tools along which allows good scalability to be provided.

Der erfindungsgemäße Hülsenpuffer umfasst wenigstens zwei Führungsteile, einen Stößel und eine Hülse. Damit diese ineinander teleskopierbar sind, ist der Innendurchmesser eines der Führungsteile größer als der Außendurchmesser des anderen Führungsteils. Insbesondere ist der Innendurchmesser der Hülse größer als der Außendurchmesser des Stößels, sodass dieser in die Hülse eingeschoben werden kann.The sleeve buffer according to the invention comprises at least two guide parts, a plunger and a sleeve. So that they can be telescoped into one another, the inside diameter of one of the guide parts is larger than the outside diameter of the other guide part. In particular, the inside diameter of the sleeve is larger than the outside diameter of the plunger, so that it can be inserted into the sleeve.

Bei einer Ausführungsform der Erfindung kann ebenfalls das innenliegende Führungsteil mit kleinerem Durchmesser aus hintereinander angeordneten länglichen Abschnitten aufgebaut sein. Freilich ist auch denkbar, dass das äußere Führungsteil entsprechend aus hintereinander angeordneten länglichen Abschnitten besteht. Wird nunmehr die Auslösekraft überschritten, so sind verschiedene Szenarien denkbar. Insbesondere können die gewählten Geometrien so bemessen sein, dass im Laufe der Verschiebebewegung des Stößels zuerst die Sollbruchverbindungen abreißen. Im Anschluss daran können zum zusätzlichen Energieverzehr beispielsweise Deformationen anderer Strukturen wie eine Deformation der Hülse, eines Bolzens, eine Deformation durch ein Werkzeug oder dergleichen vorgesehen sein.In one embodiment of the invention, the internal guide part with a smaller diameter can also be constructed from elongated sections arranged one behind the other. Of course, it is also conceivable that the outer guide part consists of elongated parts arranged one behind the other sections. If the triggering force is now exceeded, various scenarios are conceivable. In particular, the selected geometries can be dimensioned such that in the course of the displacement movement of the plunger, the predetermined breaking connections are torn off first. Following this, for example, deformations of other structures such as a deformation of the sleeve, a bolt, a deformation by a tool or the like can be provided for additional energy consumption.

Werden einzelne längliche Abschnitte teleskopartig ineinander geschoben, weisen diese vorzugsweise eine zylindrische Gestalt auf, die sich auch zur Aufnahme von Querkräften vorteilhaft eignet und ein vergleichsweise hohes Biegemoment besitzt.If individual elongated sections are pushed telescopically into one another, they preferably have a cylindrical shape, which is also advantageous for absorbing transverse forces and has a comparatively high bending moment.

Teleskopartig verschiebbare längliche Abschnitte, die über eine Sollbruchverbindungen zusammenhängen, können als einteiliges Bauteil bzw. Führungsteil angesehen werden.Telescopically movable elongated sections, which are connected via predetermined breaking connections, can be viewed as a one-piece component or guide part.

Bei einer vorteilhaften Weiterbildung der Erfindung werden beim Teleskopieren längliche Abschnitte so ineinander geschoben, dass die Teleskopbewegung gehemmt wird. Dazu ist der Innendurchmesser des Raumes, in den der Abschnitt geschoben wird, ab einem gewissen Punkt kleiner als der Außendurchmesser des zu verschiebenden Abschnitts. Eine Deformation ist also auch hier während der Teleskopbewegung notwendig, um die Bauteile vollständig ineinander zu schieben. Dies hat einen Energieverzehr zur Folge. In vorteilhafter Weise kann eine solche Ausführungsform vergleichsweise einfach hergestellt werden, indem nämlich die Wandung verstärkt bzw. einfach dicker ausgebildet wird. Zudem wird ein vergleichsweise hoher Energieverzehr ermöglicht. Denkbar ist auch, dass einer der länglichen Abschnitte mit Ausnehmungen oder Schlitzen versehen wird, sodass leichter und gezielter eine kontrollierte Deformation stattfinden kann.In an advantageous development of the invention, when telescoping, elongated sections are pushed into one another in such a way that the telescopic movement is inhibited. For this purpose, the inside diameter of the space into which the section is pushed is, from a certain point, smaller than the outside diameter of the section to be moved. Deformation is also necessary here during the telescopic movement in order to completely push the components into one another. This results in energy consumption. Advantageously, such an embodiment can be manufactured comparatively simply by strengthening the wall or simply making it thicker. In addition, a comparatively high energy consumption is made possible. It is also conceivable that one of the elongated sections is provided with recesses or slots so that controlled deformation can take place more easily and in a more targeted manner.

Bei einer besonders bevorzugten Weiterbildung der Erfindung steht das Kraftübertragungsglied während des Teleskopbewegung, auch bei Überschreiten der Auslösekraft, immer im Kraftfluss. In vorteilhafter Weise kann dadurch das Kraftübertragungsglied, das insbesondere als Feder ausgebildet sein kann, stets einen gewissen Betrag der Energie aufnehmen und speichern (elastisches Zusammenschieben des Puffers bei normalem Pufferhub). Bei einem (teilweise) inelastischen Stoß wird Energie verbraucht, etwa infolge einer Deformation bzw. als Wärmeenergie. Zudem sorgt das Kraftübertragungsglied für eine gewisse Abstützung zwischen dem Pufferteller, auf den eine Kraft beim Stoß übertragen wird, und der Tragstruktur.In a particularly preferred development of the invention, the force transmission member is always in the flow of force during the telescopic movement, even if the triggering force is exceeded. Advantageously, the force transmission member, which can be designed in particular as a spring, can always absorb and store a certain amount of energy (elastic pushing together of the buffer during normal buffer stroke). In a (partially) inelastic collision, energy is consumed, for example as a result of deformation or as thermal energy. In addition, the force transmission member ensures a certain level of support between the buffer plate, to which a force is transmitted during an impact, and the support structure.

Bricht eine Sollbruchverbindung zwischen länglichen Abschnitten auf, so sind diese zunächst mechanisch an diesen Stellen entkoppelt. In vorteilhafter Weise kann somit bei einer Ausführungsvariante auch nach dem Abreißen der Sollbruchverbindungen eine mechanische Kopplung in Längsrichtung zwischen länglichen Abschnitten oder eine Kopplung zu einem der Führungsteile fortbestehen. Beispielsweise können die länglichen Abschnitte aneinander vorbei gleiten, wobei jedoch die Führungsstellen mechanisch so miteinander in Kontakt stehen, dass eine erhöhte Reibung besteht hierdurch wird ein weiterer Energieverzehr erreicht. Die Abschnitte können z.B. Auskragungen aufweisen, die mit den Innenwänden in Kontakt treten.If a predetermined breaking connection breaks between elongated sections, they are initially mechanically decoupled at these points. Advantageously, in one embodiment variant, a mechanical coupling in the longitudinal direction between elongated sections or a coupling to one of the guide parts can continue to exist even after the predetermined breaking connections have been torn off. For example, the elongated sections can slide past each other, but the guide points are in mechanical contact with one another in such a way that there is increased friction, which results in further energy consumption. The sections can, for example, have projections that come into contact with the inner walls.

Um eine möglichst kompakte Bauweise zu erhalten, die zudem auch noch eine gewisse Symmetrieeigenschaft aufweist, die sich auch zum Abstützen von Querkräften als vorteilhaft erweisen kann, kann das spanende Werkzeug als Ring ausgebildet sein, der wenigstens eine Schneide umfasst, wobei der Ring insbesondere als nicht verbundene Einlage aus bzw. schwimmend gelagert ist.In order to obtain the most compact design possible, which also has a certain symmetry property, which can also prove to be advantageous for supporting transverse forces, the cutting tool can be designed as a ring which includes at least one cutting edge, the ring in particular being not connected insert is stored or floating.

Der Ring kann somit als separates Bauteil hergestellt werden und es ist nicht notwendig, die spanenden Werkzeuge in einem der Abschnitte bzw. einem der Führungsteile zu integrieren.The ring can therefore be manufactured as a separate component and it is not necessary to integrate the cutting tools in one of the sections or one of the guide parts.

Bei einer weiteren Ausführungsform der Erfindung kann also das Führungsteil so ausgebildet sein, dass es sich nach Überschreiten der Auslösekraft durch kontrollierte Deformation unter einer hohen, im Wesentlichen gleich bleibenden Kraft verkürzt. Hierdurch kann der Energieverzehr in vergleichsweise kontrollierter Form erfolgen. Grundsätzlich ist der Ablauf bei einer Kollision bei einem Unfall schwierig zu prognostizieren; dennoch können so die Rahmenbedingungen geschaffen werden, um zumindest einen möglichst gleichbleibenden Energieverzehr erreichen.In a further embodiment of the invention, the guide part can be designed in such a way that after the triggering force has been exceeded, it is shortened by controlled deformation under a high, essentially constant force. This means that energy consumption can take place in a comparatively controlled form. In principle, the course of events in the event of a collision is difficult to predict; Nevertheless, the framework conditions can be created in order to at least achieve energy consumption that is as consistent as possible.

AusführungsbeispieleExamples of embodiments

Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden nachstehend unter Angabe weiterer Einzelheiten und Vorteile näher erläutert. Im Einzelnen zeigen:

Figur 1:
einen Hülsenpuffer gemäß der Erfindung mit einem Werkzeug-Ring,
Figur 2:
einen weiteren Hülsenpuffer gem. der Erfindung mit einer Sollbruchverbindung und einem die Hülse bearbeitenden Werkzeug, sowie
Figur 3:
eine zusätzliche Variante eines Hülsenpuffers gem. der Erfindung mit einer Sollbruchverbindung und einem die länglichen Abschnitte bearbeitenden Werkzeug.
Embodiments of the invention are shown in the drawings and are explained in more detail below with further details and advantages. Show in detail:
Figure 1:
a sleeve buffer according to the invention with a tool ring,
Figure 2:
a further sleeve buffer according to the invention with a predetermined breaking connection and a tool that processes the sleeve, as well
Figure 3:
an additional variant of a sleeve buffer according to the invention with a predetermined breaking connection and a tool that processes the elongated sections.

Figur 1 zeigt einen Hülsenpuffer 1 mit einem Stößel 2 und eine Hülse 3, wobei der Stößel 2 als erstes Führungsteil in der Hülse 3 als zweites Führungsteil gelagert ist. Der Stößel 2 ist teilweise in der Hülse 3 aufgenommen, wobei beide Führungsteile 2, 3 über eine gewisse Überdeckungslänge 4 überlappen. Diese Überlappung 4 bewirkt u.a., dass gegebenenfalls bei einem Stoß auftretende Querkräfte aufgenommen werden können. Die Hülse 3 wiederum ist fest mit der Tragstruktur 5 verbunden. Zur Tragstruktur 5 hin schließt der Stößel 2 mit einem Ring 6 ab, der mit spanenden Werkzeugen 7 versehen ist. Die Werkzeuge 7 sind am Umfang des Ringes 6 angeordnet. Der schwimmend gelagerte Ring steht in Kontakt mit einem länglichen Abschnitt 8, in dem eine Feder 9 gelagert ist. Figure 1 shows a sleeve buffer 1 with a plunger 2 and a sleeve 3, the plunger 2 being mounted as the first guide part in the sleeve 3 as the second guide part. The plunger 2 is partially accommodated in the sleeve 3, with both guide parts 2, 3 overlapping over a certain coverage length 4. This overlap 4 means, among other things, that any transverse forces that may occur in the event of an impact can be absorbed. The sleeve 3 in turn is firmly connected to the support structure 5. Towards the support structure 5, the plunger 2 ends with a ring 6, which is provided with cutting tools 7. The tools 7 are arranged on the circumference of the ring 6. The floating ring is in contact with an elongated section 8 in which a spring 9 is mounted.

Diese Feder 9 steht permanent im Kraftfluss: Wirkt auf den Pufferteller 10 eine Kraft infolge eines Stoßes ein, so drückt der mit dem Pufferteller 10 verbundene Stößel 2 auf den Ring 6 und überträgt wiederum eine Kraft auf den Abschnitt 8 und somit ebenfalls auf die Feder 9, welche sich wiederum an der Tragstruktur 5 abstützt. Solange beim Zusammendrücken des Hülsenpuffers 1 die Werkzeuge 7 nicht die Bolzen 11 erreichen, was im Bereich des normalen Pufferhubs nicht stattfindet, kann der Stoß im Wesentlichen elastisch allein über die Feder 9 aufgenommen werden. Nach Aufhebung der Kraft wird der Stößel 2 wieder von der Tragstruktur 5 weg gedrückt und erreicht seine ursprüngliche Position. Die Hülse 3 ist im Bereich der Werkzeuge 7 mit einer Ausnehmung 12 versehen, sodass die Werkzeuge 7 in diesem Bereich mit Spiel gelagert sind und ohne spanende Bearbeitung in Richtung der Längsachse verschoben werden können.This spring 9 is permanently in the flow of force: If a force acts on the buffer plate 10 as a result of a shock, the plunger 2 connected to the buffer plate 10 presses on the ring 6 and in turn transmits a force to the section 8 and thus also to the spring 9 , which in turn is supported on the support structure 5. As long as the tools 7 do not reach the bolts 11 when the sleeve buffer 1 is compressed, which does not occur in the area of the normal buffer stroke, the shock can be absorbed essentially elastically via the spring 9 alone. After the force is lifted, the plunger 2 is pushed away from the support structure 5 again and reaches its original position. The sleeve 3 is provided with a recess 12 in the area of the tools 7, so that the tools 7 are mounted with play in this area and can be moved in the direction of the longitudinal axis without machining.

Erst dann, wenn die Auslösekraft überschritten ist, treffen die spanenden Werkzeuge 7 auf den Bolzen 11 und können diesen bearbeiten bzw. gegebenenfalls auch abscheren. Die Hülse 3 ist im Bereich 3a ebenfalls jeweils dicker ausgebildet, sodass die Werkzeuge 7 nach Abtrennung oder Abschirmung des Bolzens 11 in das Material der Hülse 3 im Bereich 3a einschneiden. Somit erfolgt ab diesem Zeitpunkt die beabsichtigte Energieverzehr.Only when the triggering force is exceeded do the cutting tools 7 hit the bolt 11 and can process it or, if necessary, shear it off. The sleeve 3 is in the area 3a are also thicker, so that the tools 7 cut into the material of the sleeve 3 in the area 3a after the bolt 11 has been separated or shielded. From this point onwards, the intended energy consumption takes place.

Der Abschnitt 8 ist mit Auskragungen 13 versehen, sodass diese den Abschnitt in den Bereichen 3a führen können, da sie an der Innenwandung anliegen. Bei weiterer Deformation kann der Ring 6 zudem so ausgebildet sein, dass eine bestimmte Krafteinwirkung genügt, um den Abschnitt 8 durch den Ring 6 durchbrechen zu lassen. Auch diese Maßnahme sorgt für einen weiteren Energieverzehr. Schließlich ist der Stößel 2 im Bereich 2a so ausgebildet, dass sich sein Innendurchmesser verjüngt. Trifft der Abschnitt 8 auf diesem Bereich, so erfährt ereinen weiteren mechanischen Widerstand der einen Beitrag zum Energieverzehr leistet.The section 8 is provided with projections 13 so that these can guide the section in the areas 3a since they rest on the inner wall. In the event of further deformation, the ring 6 can also be designed in such a way that a certain force is sufficient to cause the section 8 to break through the ring 6. This measure also results in further energy consumption. Finally, the plunger 2 is designed in the area 2a so that its inner diameter tapers. If section 8 hits this area, it experiences further mechanical resistance, which contributes to energy dissipation.

Die Hülsenpuffer 21, 31 gem. den Figuren 2,3 sind mit Sollbruchverbindungen S ausgestattet.The sleeve buffers 21, 31 according to Figures 2 , 3 are equipped with predetermined breaking connections S.

Nach Figur 2 sind die Werkzeuge 27 unmittelbar am Stößel 22 angebracht, um die Hülse 23 bei Überschreiten der Auslösekraft zu spanend zu bearbeiten und einen Energieverbrauch zu bewirken. In der Hülse 23 ist eine Ausnehmung 23a vorgesehen, in welcher das Werkzeug 27 (mit Spiel) gelagert ist. Denn der Stößel 22 ist über die Verlängerungshülse 28, mit der er über die Sollbruchverbindung S verbunden ist, mechanisch gekoppelt. Die Verlängerungshülse 28 wiederum stützt sich über die Feder 29 an der Tragstruktur 25 ab. Die Feder 29 steht also ständig im Kraftfluss und kann Energie aufnehmen und gegebenenfalls auch dämpfen. Bei Überschreiten der Auslösekraft können folglich zwei Mechanismen zum Energieverzehr genutzt werden:

  • Zum einen können Sollbruchverbindungen S aufbrechen.
  • Zum anderen kann die Hülse 23 durch Werkzeuge 27 spanabhebend bearbeitet werden.
After Figure 2 the tools 27 are attached directly to the plunger 22 in order to machine the sleeve 23 when the triggering force is exceeded and to cause energy consumption. A recess 23a is provided in the sleeve 23, in which the tool 27 is mounted (with play). This is because the plunger 22 is mechanically coupled via the extension sleeve 28, to which it is connected via the predetermined breaking connection S. The extension sleeve 28 in turn is supported on the support structure 25 via the spring 29. The spring 29 is therefore constantly in the flow of force and can absorb energy and, if necessary, also dampen it. If the triggering force is exceeded, two mechanisms can be used to dissipate energy:
  • On the one hand, predetermined breaking connections S can break.
  • On the other hand, the sleeve 23 can be machined using tools 27.

In Figur 3 ist ein Hülsenpuffer 31 skizziert, der im Unterschied zur Variante nach Figur 2 die Verlängerungshülse 38 als länglichen Abschnitt bearbeitet und so, neben einem Bruch der Sollbruchverbindugen S beim Überschreiten der Auslösekraft, zu einem Energieverbrauch führt. Die Werkzeuge 37 sind ebenfalls am Stößel 32 angebracht, jedoch an dessen Innenmantelfläche, sodass sie auf die Verlängerungshülse 38 treffen können. Die Hülse 33, die fest mit der Tragstruktur 35 verbunden ist, wird nicht spanabhebend bearbeitet. Die Feder 39 steht praktisch dauerhaft im Kraftfluss, wenn der Hülsenpuffer 31 über den Pufferteller T mit einer Kraft beaufschlagt wird.In Figure 3 a sleeve buffer 31 is sketched, which differs from the variant according to Figure 2 the extension sleeve 38 is processed as an elongated section and thus, in addition to a breakage of the predetermined breaking connections S when the triggering force is exceeded, leads to energy consumption. The tools 37 are also attached to the plunger 32, but on its inner surface so that they can hit the extension sleeve 38. The sleeve 33, which is firmly connected to the support structure 35, is not machined. The spring 39 is practically permanently in the flow of force when the sleeve buffer 31 is subjected to a force via the buffer plate T.

Allen Ausführungsformen und Weiterbildungen der Erfindung ist gemeinsam, dass eine einen mechanischen Widerstand bildende Struktur vorgesehen ist, um bei einer der Teleskopierbewegungen der Führungsteile und/oder der länglichen Abschnitte die Teleskopierbewegung zu bremsen, wobei der vorgeschlagene Hülsenpuffer universell für Tragstrukturen unterschiedlicher Art und mit unterschiedlichen Anforderungen eingesetzt werden kann und dennoch ein hohes Maß an Sicherheit bietet.What all embodiments and developments of the invention have in common is that a structure forming a mechanical resistance is provided in order to brake the telescoping movement during one of the telescoping movements of the guide parts and / or the elongated sections, the proposed sleeve buffer being universal for support structures of different types and with different requirements can be used and still offers a high level of security.

Bezugszeichenliste:List of reference symbols:

11
HülsenpufferSleeve buffer
22
StößelPestle
2a2a
verengter Bereichnarrowed area
33
Hülsesleeve
3a3a
verdickter Bereichthickened area
44
ÜberlappungsbereichOverlap area
55
TragstrukturSupport structure
66
WerkzeugringTool ring
77
WerkzeugTool
88th
Verlängerungshülse / länglicher AbschnittExtension sleeve / elongated section
99
FederFeather
1010
PuffertellerBuffer plate
1111
Bolzenbolt
1212
Ausnehmungrecess
1313
Auskragungprojection
2121
HülsenpufferSleeve buffer
2222
StößelPestle
2323
Hülsesleeve
23a23a
Ausnehmungrecess
2525
TragstrukturSupport structure
2727
WerkzeugTool
2828
VerlängerungshülseExtension sleeve
2929
FederFeather
3131
HülsenpufferSleeve buffer
3232
StößelPestle
3333
Hülsesleeve
3535
TragstrukturSupport structure
3737
WerkzeugTool
3838
VerlängerungshülseExtension sleeve
3939
FederFeather
SS
SollbruchverbindungPredetermined breaking connection
TT
PuffertellerBuffer plate

Claims (13)

  1. Sleeve buffer (1, 21, 31) for mobile or fixed support structures (5, 25, 35), in particular of rail vehicles,
    - having a first and a second guide part in the form of a sleeve (3, 23, 33) and a tappet (2, 22, 32) ;
    - wherein the sleeve (3, 23, 33) is able to be fastened so as to be stationary on the support structure (5, 25, 35), and the tappet (2, 22, 32) is displaceable relative to the sleeve (3, 23, 33) in the vehicle longitudinal direction and in the displacement movement thereof is received by the sleeve (3, 23, 33);
    - wherein a first and a second guide part (2, 22, 32; 3, 23, 33) are configured in such a way that they are telescopically displaceable in one another; and
    - having a force transmission member (9, 29, 39) for resiliently coupling the tappet (2, 22, 32) to the support structure (5, 25, 35);
    - wherein in particular at least one of the two guide parts (2, 22, 32; 3, 23, 33) is composed of at least two elongate portions (2, 22, 32; 8, 28, 38) which are disposed behind one another and in the region of their adjacent end sides are in each case interconnected by one or a plurality of predetermined breaking connection or connections (S) and have dissimilar cross-sectional dimensions in such a manner that the predetermined breaking connection or connections (S) is/are torn off and the elongate portions (2, 22, 32; 8, 28, 38) telescopically slide in one another when a specific impact force (triggering force) acting on the sleeve buffer (1, 21, 31) is exceeded;
    - wherein provided is a structure (2a, 6, 7, 11, 27, 37) which forms a mechanical resistance so as to decelerate the telescopic movement during one of the telescopic movements of the guide parts (2, 22, 32; 3, 23, 33) and/or of the elongate portions (2, 22, 32; 8, 28, 38);
    - characterized in that a subtractive tool (7) is disposed on a ring (6) that covers the tappet (2) towards the support structure (5), so as to machine, or optionally shear off, a pin (11) which is disposed on the sleeve (3) when the triggering force is exceeded, wherein the sleeve (3) is in each case configured so as to be thicker in a region (3a) that follows the pin (11) towards the support structure (5) in the shearing direction, such that the tool (7), after severing or shearing off the pin (11), cuts into the material of the sleeve (3) in the region (3a) so as to consume energy as from this point in time; or
    - in that a subtractive tool (37) is disposed on the inner shell face of the tappet (32) so as to, besides rupturing of the predetermined breaking connections (S), when the triggering force is exceeded, subtractively machine an extension sleeve (38) which as an elongate portion by means of predetermined breaking connections (S) is likewise connected to the tappet (32) on the inner shell face of the latter and points away therefrom in the direction of the support structure (35), and in this way to cause a consumption of energy.
  2. Sleeve buffer (1, 21, 31) according to Claim 1, characterized in that the structure forming a mechanical resistance comprises:
    - at least the subtractive tool (6, 7, 27, 37); and/or
    - at least one plastically deformable obstacle part, in particular a web, which in the telescopic displacement is disposed as an obstacle in the path of one of the guide parts (2, 22, 32) or elongate portions (8, 28, 38); and/or
    - at least one pin (11) which, for the plastic deformation of one of the guide parts in the telescopic displacement, is disposed as an obstacle in the path of one of the guide parts (2, 22, 32) or elongate portions (8, 28, 38).
  3. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the structure (6, 7, 27, 37) forming a mechanical resistance is disposed in such a way that, in the telescopic movement of the elongate portions and/or of the guide parts, the subtractive tool (7, 27, 37) and/or the at least one subtractive tool (7, 27, 37) carry/carries out subtractive machining of one of the elongate portions (38) and/or of one of the guide parts (3a, 11, 23).
  4. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that at least two of the elongate portions (2, 22, 32; 8, 28, 38) disposed behind one another and/or of the guide parts (2, 22, 32; 3, 23, 33) have dissimilar diameters.
  5. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the structure (6, 7, 27, 37) forming a mechanical resistance is disposed in such a way that said structure engages with one of the elongate portions and/or with one of the guide parts (3, 23) and/or is mounted with a clearance.
  6. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the subtractive tool and/or at least one of the subtractive tools (7, 27, 37) are/is disposed in such a way that said tool during the subtractive machining of one of the guide parts (3, 23, 33) and/or of one of the elongate portions is covered towards the outside, in particular subtractively machines the inner shell of one of the elongate portions during the telescopic movement so as to reduce the dissemination of chips towards the outside.
  7. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that
    - the inner guide part is composed of the elongate portions (2, 8, 22, 28, 32, 38) which are disposed behind one another; and/or
    - the outer guide part is composed of the elongate portions which are disposed behind one another; and/or
    - the guide parts are sized in such a way that the tearing off of the predetermined breaking connection (S) in the course of the displacement movement of the tappet (2, 22, 32) occurs first, and the beginning of a deformation of the other guide part takes place only shortly thereafter; and/or
    - the telescopically displaceable elongate portions have a cylindrical, tubular design; and/or
    - the predetermined breaking connection (S), conjointly with one or a plurality of the telescopically displaceable elongate portions (22, 28, 32, 38), forms an integral component.
  8. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that a first elongate portion (2a) of two of the elongate portions which are telescopically displaceable in one another, on that side that faces the other, second elongate portion (8), has a larger internal diameter, such that the second elongate portion is mounted thereon in the first elongate portion, wherein the internal diameter of the first elongate portion (2a) decreases towards that side that faces away from the second elongate portion (8), such that a mechanical resistance is imparted to the telescopic movement of the second elongate portion that slides into the first elongate portion.
  9. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that
    - the force transmission member, which is in particular configured as a spring (9, 29, 39), is disposed in such a way that said force transmission member, when the triggering force acting on the sleeve buffer (1, 21, 31) is exceeded, is always in the force flux during the telescopic movement of the elongate portions (2, 8, 22, 28, 32, 38); and/or
    - the elongate portions are configured in such a way that a mechanical coupling in the longitudinal direction between the elongate portions is upheld when the predetermined breaking connection or connections (S) is/are torn off.
  10. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the subtractive tool (7) is configured as a ring (6) which comprises at least one cutting blade, wherein the ring is in particular configured as a non-connected insert and/or is mounted in a floating manner.
  11. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the structure forming a mechanical resistance is attached to one of the guide parts (22, 32), in particular to one of the elongate portions.
  12. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that one of the guide parts (2, 22, 32; 3, 23, 33) is configured in such a way that said guide part is shortened by controlled deformation at a high, substantially consistent force level when the triggering force is exceeded.
  13. Sleeve buffer (1, 21, 31) according to one of the preceding claims, characterized in that the subtractive tool (27) is disposed on the tappet (22) so as to subtractively machine the sleeve (3) when the triggering force is exceeded, in order to cause a consumption of energy.
EP19188900.5A 2019-07-29 2019-07-29 Sleeve buffer with mechanical resistance during telescoping movement Active EP3771610B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
HUE19188900A HUE066417T2 (en) 2019-07-29 2019-07-29 Sleeve buffer with mechanical resistance during telescoping movement
EP19188900.5A EP3771610B1 (en) 2019-07-29 2019-07-29 Sleeve buffer with mechanical resistance during telescoping movement
PL19188900.5T PL3771610T3 (en) 2019-07-29 2019-07-29 Sleeve buffer with mechanical resistance during telescoping movement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19188900.5A EP3771610B1 (en) 2019-07-29 2019-07-29 Sleeve buffer with mechanical resistance during telescoping movement

Publications (2)

Publication Number Publication Date
EP3771610A1 EP3771610A1 (en) 2021-02-03
EP3771610B1 true EP3771610B1 (en) 2024-01-24

Family

ID=67543983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19188900.5A Active EP3771610B1 (en) 2019-07-29 2019-07-29 Sleeve buffer with mechanical resistance during telescoping movement

Country Status (3)

Country Link
EP (1) EP3771610B1 (en)
HU (1) HUE066417T2 (en)
PL (1) PL3771610T3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115214739B (en) * 2022-09-08 2022-11-29 西南交通大学 Energy-absorbing structure and energy-absorbing anti-creep device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1740435B1 (en) * 2004-04-27 2008-04-23 Sieghard Schneider Plunger buffer
US8100237B2 (en) * 2009-09-15 2012-01-24 Voith Patent Gmbh Energy-absorbing device, in particular in the form of a safety device against shock loads for a track-borne vehicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2775240B1 (en) * 1998-02-25 2000-12-22 Nantes Ecole Centrale IMPROVEMENT IN MOUNTING BUFFER BUFFERS FOR RAIL VEHICLES
FR2789358B1 (en) * 1999-02-10 2004-02-27 Nantes Ecole Centrale SHOCK ABSORBING DEVICE FOR A NEW RAIL BUFFER
EP2687416B1 (en) * 2012-07-16 2014-09-03 Voith Patent GmbH Impact protection, in particular in the form of a crash buffer
PL229944B1 (en) 2015-03-05 2018-09-28 Axtone Spolka Akcyjna Device absorbing the energy of blows
IT201700017003A1 (en) * 2017-02-15 2018-08-15 Bigaran S R L Railway bumper
RU185514U1 (en) * 2018-08-02 2018-12-07 Александр Владимирович Барышников THREE-STAGE DEFORMABLE BUFFER

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1740435B1 (en) * 2004-04-27 2008-04-23 Sieghard Schneider Plunger buffer
US8100237B2 (en) * 2009-09-15 2012-01-24 Voith Patent Gmbh Energy-absorbing device, in particular in the form of a safety device against shock loads for a track-borne vehicle

Also Published As

Publication number Publication date
EP3771610A1 (en) 2021-02-03
HUE066417T2 (en) 2024-08-28
PL3771610T3 (en) 2024-06-24

Similar Documents

Publication Publication Date Title
EP2072370B1 (en) Energy absorbing device for a vehicle body of a multi-unit vehicle
EP2594452B1 (en) Coupling assembly for the front of a rail-guided vehicle
EP1791747B1 (en) Crumple element comprising a guiding mechanism
EP2601088B1 (en) Energy absorption device, in particular for a shock absorber of a track-guided vehicle
EP2295305B1 (en) Energy consumption device, in particular in the form of impact protection for a rail-led vehicle
EP1990251B1 (en) Power consumption unit for vehicles consisting of several units
EP2687416B1 (en) Impact protection, in particular in the form of a crash buffer
WO2009034097A9 (en) Replaceable energy absorbing structure, especially for use in combination with a buffer
DE102006043982B4 (en) Side buffers for mobile or fixed supporting structures of rail vehicles
EP1486381A2 (en) Bumper for motor vehicle
EP1541424B1 (en) Crash element shaped as a hollow profile
EP0850807A2 (en) Energy absorbing device for a motor vehicle
EP2720925B1 (en) Arrangement for deflecting a rail vehicle central buffer coupling unhitched in the course of a collision due to failure of an overload safety device
DE102004034577B4 (en) Device for absorbing impact energy on a motor vehicle
EP3771610B1 (en) Sleeve buffer with mechanical resistance during telescoping movement
EP1637426A2 (en) Buffer assembly
EP2230147B1 (en) Energy consumption element and impact protection with an energy consumption element
EP3771609B1 (en) Sleeve buffer with partially sheathed tappet
DE10252175A1 (en) Plunger buffer for rolling stock has plunger consisting of long parts connected via break-off points for controlled deformation when subjected to excess impact force
EP1740435B1 (en) Plunger buffer
EP3530544A1 (en) Deformation device with climbing protection for rail vehicles
DE102005026284B3 (en) Longitudinal carrier, for a motor vehicle chassis, has a two-part tube with a nominal fracture point between them to give a telescopic movement to absorb impact forces
DE10249517B4 (en) Shock-absorbing, load-limiting connection device and rotary wing aircraft with such a connection device
DE102012107152B3 (en) Bumper arrangement for motor car, has inner component comprising shearing nut that is split up by locking element during retraction of inner component such that movement energy of inner component is converted into gap operation
EP3594082B1 (en) Crash buffer with guide rod, support structure and railway vehicle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210723

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221130

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230823

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019010435

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240424

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240424

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240524

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240425

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240524

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E066417

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240524

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240724

Year of fee payment: 6