EP3771502B1 - Method and forming device for manufacturing a metal sheet component comprising flanges - Google Patents

Method and forming device for manufacturing a metal sheet component comprising flanges Download PDF

Info

Publication number
EP3771502B1
EP3771502B1 EP19382652.6A EP19382652A EP3771502B1 EP 3771502 B1 EP3771502 B1 EP 3771502B1 EP 19382652 A EP19382652 A EP 19382652A EP 3771502 B1 EP3771502 B1 EP 3771502B1
Authority
EP
European Patent Office
Prior art keywords
flanges
component
forming device
forming
calibrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19382652.6A
Other languages
German (de)
French (fr)
Other versions
EP3771502A1 (en
Inventor
Joaquin Piccini
Iñaki Arroyo
Asier Bilbao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gestamp Umformtechnik GmbH
Gestamp Bizkaia SA
Autotech Engineering SL
Gestamp Servicios SA
Gestamp Aveiro Industria de Acessorios de Automoveis SA
Original Assignee
Gestamp Umformtechnik GmbH
Gestamp Bizkaia SA
Autotech Engineering SL
Gestamp Servicios SA
Gestamp Aveiro Industria de Acessorios de Automoveis SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gestamp Umformtechnik GmbH, Gestamp Bizkaia SA, Autotech Engineering SL, Gestamp Servicios SA, Gestamp Aveiro Industria de Acessorios de Automoveis SA filed Critical Gestamp Umformtechnik GmbH
Priority to ES19382652T priority Critical patent/ES2905725T3/en
Priority to PT193826526T priority patent/PT3771502T/en
Priority to EP19382652.6A priority patent/EP3771502B1/en
Publication of EP3771502A1 publication Critical patent/EP3771502A1/en
Application granted granted Critical
Publication of EP3771502B1 publication Critical patent/EP3771502B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D19/00Flanging or other edge treatment, e.g. of tubes
    • B21D19/08Flanging or other edge treatment, e.g. of tubes by single or successive action of pressing tools, e.g. vice jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D5/00Bending sheet metal along straight lines, e.g. to form simple curves
    • B21D5/01Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments

Definitions

  • the invention relates to a method for manufacturing a component from sheet metal, preferably sheet steel or aluminum, in which a sheet metal blank is formed into a component having flanges by reshaping, for example deep drawing, and in which a calibration process is carried out to achieve a predetermined dimensional accuracy of the flanges , according to the preamble of claim 1.
  • the invention further relates to a forming device for producing a component having flanges from sheet metal, in particular a forming device for carrying out a method of the aforementioned type, according to the preamble of claim 5.
  • the flanges of the component produced by forming can also be referred to as wings or flanks.
  • a component with flanges from sheet metal for example a body component with a U-shaped cross-section made from high-strength sheet steel
  • the flanges produced by the forming process often spring open or spring back.
  • the component then often does not have the required dimensional accuracy.
  • Insufficient dimensional accuracy of the component can lead to further production problems if, after the forming process, component flanges of two components, for example a right and a left sheet metal shell, are welded to one another to form a tubular hollow body, especially butt-welded. Serious dimensional deviations of the component flanges can cause failure of the component or welded connection, especially with butt welding.
  • the JP 2014 4618 A discloses an apparatus for forming high-strength steel blanks into components with a U-shaped cross-sectional profile.
  • the steel blanks clamped between a punch and an upper hold-down device are first formed by an essentially vertical downward movement of die parts, whereupon the die parts are then shifted along inclined sliding surfaces by cams in the direction of the die. Any cracking of the components formed in this way should be compensated for by overbending.
  • the JP 2005 305 493 A shows a forming device with a multi-part die, which is arranged on a displaceable die table and has a first die part for bending and a second die part for overbending.
  • the overbending after the bending is intended to compensate for the component produced by means of the forming device jumping open and to achieve a high level of dimensional accuracy.
  • the operation of the respective forming press line may have to be stopped in order to achieve the required dimensional accuracy of the components, in order to readjust the forming and / or calibration tools or to replace them with other forming and / or calibration tools to exchange. This is associated with considerable labor and material costs.
  • the US 2011/0132208 A1 which forms the basis for the preambles of claims 1 and 5, describes a control for a servo press which is able to optimally shape in order to handle the variability of the sheet metal thickness and the material properties of a workpiece.
  • a control device for controlling a servo press in accordance with sliding movement data includes measuring equipment, attached to a die for molding a workpiece, for measuring a molding state of the workpiece; a measurement result receiving section for receiving a measurement result sent from the measurement equipment; and a sliding movement data changing section for changing sliding movement data for forming the same workpiece at the scheduled measurement time according to the measurement result received from the measurement result receiving section.
  • the U.S. 4,430,879 A describes a control for a press brake that enables precise sequential bending of sheet metal by a press brake.
  • the controller includes a microprocessor arrangement for operating a press brake in response to manual input to control a measurement stop and generate output control signals relating to the relative positioning of the punch and die of the press brake, the positioning causing a bend angle in a workpiece.
  • the control is provided with a detection device for detecting the actual bending angle in the workpiece and with means for comparing the actual bending angle with a desired angle. Such a comparison eliminates the need to manually enter complex variables that are required to accurately position the punch and die relative to each other pretend unnecessary.
  • a feedback with regard to a springback of the workpiece material causes subsequent post-processing by means of the press brake, as a result of which the accuracy of the angles generated is improved.
  • the present invention is based on the object of creating a method and a forming device of the type mentioned above, with which a predetermined dimensional accuracy of the components produced by forming can be ensured in an economical manner even if the chemical composition and / or change the thickness of the steel or metal sheet over the length of the steel or metal coil used, although it is / are within the tolerance band of the steel manufacturer.
  • the method according to the invention is characterized in that the calibration tool used is a calibration tool which has one or more height-adjustable devices for setting a driver stroke and / or a slide stroke.
  • the lifting movement of a forming device can advantageously be converted into a lifting movement for calibrating the component flanges.
  • the method according to the invention makes it possible to economically ensure a high degree of dimensional accuracy for components having flanges which are produced by forming sheet metal, in particular high-strength sheet steel.
  • the method according to the invention makes it possible to compensate for different degrees of cracking, which usually occurs in the forming process of high-strength sheet metal, during a cycle duration of the production without interrupting the operation of the forming press line. In this way, scrap, loss of time and costs incurred by adapting conventional forming tools with the aim of avoiding cracking can be largely reduced.
  • An advantageous embodiment of the invention provides that the forming of the sheet metal blank into a component having flanges and the calibration of the flanges of the component are carried out by means of a forming device or forming press having a forming tool, the calibrating tool being carried out by means of the forming device in the cycle of the forming device or in time the press is driven. This allows the component flanges to be calibrated in order to achieve the required dimensional accuracy of the component in a way that is inexpensive and energy-efficient in terms of production technology.
  • Another advantageous embodiment of the invention is characterized in that the actual position of the flanges is detected by means of an optical system, preferably a laser system. In this way, the actual position of the component flanges can be recorded quickly and reliably after a forming process has been carried out.
  • a further advantageous embodiment of the invention provides that a calibration tool is used as the calibration tool, which several independently has mutually controllable slide for calibrating the flanges, so that the flanges can be calibrated independently in different areas. In this way, the flanges of such components can be calibrated with a very precise fit.
  • the forming device is characterized in that the calibration tool has one or more height-adjustable devices for setting a driver stroke and / or a slide stroke (cam stroke).
  • the respective height-adjustable device can for example have bodies which are displaceable relative to one another and which are assigned to one another Have contact surfaces that are essentially on a plane inclined to the direction of movement of the driver stroke.
  • An essentially stepless or finely graduated calibration of the component flanges can be carried out by means of such displaceable bodies.
  • the shaping device according to the invention offers the same advantages that are specified above with regard to the method according to the invention.
  • the forming device according to the invention can be designed in accordance with the method according to the invention.
  • An advantageous embodiment of the forming device according to the invention is thus characterized, for example, in that the calibration tool is driven by means of the forming device in the cycle with which the forming device or a press having the forming device works, that is, without stopping the production line.
  • the detection device is an optical detection device, preferably a camera or laser system.
  • the detection device can also be referred to as a measuring device or inspection device.
  • the detection device is preferably mounted on a robot or robot system.
  • the method according to the invention and the forming device according to the invention are designed, for example, in such a way that data of an actual position of the flanges of the manufactured component recorded after a forming process has been carried out is compared with data of a target position of the flanges of the component to be manufactured and, by means of a processor, a possibly existing position Deviation of the actual position from the target position of the flanges is calculated.
  • an amount is a height-adjustable device of the respective calibration tool is calculated, the calculated height corresponding to a dimension that is suitable or necessary for setting a driver stroke and / or a slide stroke and thus to achieve a predetermined dimensional accuracy of the component flanges.
  • the mutually associated contact surfaces of the bodies which can be displaced relative to one another preferably have tooth surfaces (toothings) corresponding to one another in the manner of straight toothed racks.
  • the tooth surfaces (teeth) of the displaceable body preferably have a relatively small pitch.
  • the height difference between the tooth tips of two immediately adjacent teeth of the contact surface of the height-adjustable device, which is inclined to the direction of movement of the driver stroke, is also relatively small.
  • the division of the tooth surfaces, i. H. the distance between two immediately adjacent teeth is approx. 6 mm, the height difference between the tooth tips of two immediately adjacent teeth being approx. 0.2 mm.
  • the forming device according to the invention has a coupling or lifting device by means of which the bodies which can be displaced relative to one another can be brought out of contact before a displacement and in contact with one another after the displacement has taken place.
  • This embodiment is particularly expedient if the mutually associated contact surfaces of the bodies that can be displaced relative to one another have tooth surfaces (teeth) corresponding to one another in the manner of straight toothed racks.
  • the coupling or lifting device has, for example, resilient elements such.
  • resilient elements such as B. compression springs which push apart the relative to one another displaceable body before a displacement or with the forming device open. Subsequently, the closing of the forming device, in particular after the bodies have been displaced relative to one another, causes said bodies to come into force-locking and / or form-locking contact again, the resilient elements being compressed.
  • the servomotor is preferably a servomotor, i. H. an electric motor that allows control (control) of the angular position of its shaft as well as the speed of rotation and its acceleration.
  • the servomotor or servomotor is preferably provided with a sensor for determining the position of the motor shaft. This allows the height-adjustable device for calibrating the component flanges to be controlled very precisely.
  • the servomotor or servomotor can also be referred to as an electric stepper motor.
  • the calibration tool of the forming device according to the invention has a plurality of independently controllable slides for calibrating the component flanges.
  • the component flanges can be calibrated with a particularly precise fit during operation of the forming device, in accordance with the component-specific dimensional accuracy requirements, with locally different calibration operations being able to take place from component to component, if necessary.
  • slides can be segmented.
  • the processor and / or the evaluation device of the forming device according to the invention converts, for example, a signal proportional to the calculated height of the height-adjustable device of the calibration tool, which can also be referred to as a height signal, into a number of teeth of the above-mentioned tooth surfaces.
  • the number of teeth obtained in this way is then converted into a number of steps for controlling the servomotor or servomotor, a single step corresponding to an angle of rotation of the motor shaft of, for example, 1.8 °.
  • One complete revolution of the motor shaft then corresponds to 200 steps.
  • the processor and / or the evaluation device are preferably designed in such a way that he or she can carry out this signal conversion for each of the height-adjustable devices or for each of the independently controllable slides of the calibration tool.
  • the processor and / or the evaluation device is assigned, for example, a programmable logic controller to which the data resulting from the signal conversion are transmitted. These data include, for example, at least pulse signals and direction of rotation signals.
  • the programmable logic controller controls the respective servomotor (stepper motor) as a function of the received data, so that its motor shaft assumes the position determined by the processor or the evaluation device.
  • a further advantageous embodiment of the invention is characterized in that the or more of the slides are arranged so that they jointly act on the flange in question to calibrate one of the flanges of the component, an acting force of the respective slider being variably adjustable.
  • the force of action of the slider can thus be variably adjusted to one another.
  • a calibration tool 1 is shown schematically, which is or will be integrated into a (not shown) forming device or press for producing a component B having flanges F1, F2 from sheet steel, preferably high-strength sheet steel.
  • the forming device has a table 2 and an upper part 3 that can be raised and lowered.
  • On the press table 2 is a lower one Forming tool (not shown) mounted to which an upper forming tool (not shown) is assigned, which is mounted on the underside of the upper part 3.
  • the component B produced from a sheet steel blank by forming, for example deep drawing, has two opposing flanges F1, F2 connected in one piece by a central web. Viewed in cross section, the component B has an essentially U-shaped cross-sectional profile.
  • the table 2 is preferably provided with two lower forming tools (not shown) and the upper part 3 with two upper forming tools (not shown) assigned to the lower forming tools, so that two components B1, B2, each of the flanges F1 , F2 can be produced at the same time.
  • the two components B1, B2, for example a left and a right or an upper and a lower sheet steel shell, are connected to one another by welding, for example by arc welding, in a subsequent operation at the flange edges E1, E2 which run essentially parallel to the respective central web, so that a tubular or hollow column-like component, for example a chassis or body component, results.
  • the connection of the two components B1, B2 is preferably carried out by welding, the flange edges E1, E2 preferably being butt-welded to one another.
  • Fig. 4 As in Fig. 4 shown, several calibration tools are mounted on the table 2, by means of which, for example, two, namely an upper component B1 and a lower component B2, each having flanges F1, F2 and are to be connected to one another at their flange edges E1, E2 by welding, before Connection operation (joining operation) can be calibrated.
  • the component flanges F1, F2 are calibrated during a press cycle.
  • a detection device for example a camera or laser system, detects the flange position and after the forming operation, preferably deep-drawing operation transmits the measurement data to an evaluation device 4.
  • the detection device can have several sensors 5, preferably optical sensors, for example CCD sensors (cf. Fig. 5 ).
  • the sensors 5 are arranged, for example, in the area of the forming tools, in the area of a transfer device by means of which the respective component B1, B2 produced in the forming process and having flanges is transported to one of the calibration tools 1, and / or in the area of the respective calibration tool 1.
  • the evaluation device 4 compares the measurement data, which correspond to the actual position of the flanges F1, F2, with data of a desired position of the flanges of the component to be manufactured.
  • the evaluation device 4 is provided with a processor which calculates a (possible) deviation of the actual position from the target position of the flanges F1, F2.
  • the evaluation device 4 and / or the processor are connected to a control device 6 by means of which the respective calibration tool 1 is automatically controlled as a function of the calculated deviation in order to calibrate the flanges F1, F2 of the respective component B1, B2 and thereby achieve a predetermined dimensional accuracy bring to.
  • the respective calibration tool 1 has, for example, a stamp-shaped carrier 11 on which the three-dimensionally shaped component B is placed with its central web, so that the flanges F1, F2 of the component point downward.
  • a hold-down device 12 is assigned to the carrier 11, which is connected to the upper part 3 of the forming device and, in the closed state of the forming device, presses the central web of the component B against the carrier 11.
  • the sides 11.1, 11.2 of the carrier 11 are slightly undercut or converge towards the top of the table 2 of the forming device so that the respective flange F1, F2 of the component B can be bent by a certain amount in the direction of the carrier side 11.1, 11.2 if necessary (see. Figures 1a and 1b ).
  • the respective calibration tool 1 has at least one horizontally movable cam or slide 8, which can be displaced against the force of a resilient element (not shown), for example a tension or compression spring, by means of a vertically movable driver 10.
  • the slides 8 are provided, for example, with exchangeable molding tools 8.2 which face the sides 11.1, 11.2 of the carrier 11.
  • the driver 10 which can also be referred to as a cam driver, has a contact surface (driver surface) 10.1, which lies in a plane that is inclined to its direction of movement, and on a contact surface (sliding surface) 8.1 of the slide 8, which is correspondingly inclined to the direction of movement of the driver 10 is applied.
  • the two adjacent contact surfaces 8.1, 10.1 define a displacement angle a with the horizontal or the plane of movement of the slide 8.
  • the respective driver 10 is connected to the upper part 3 of the forming device, so that it is moved together with the upper part 3 in the same direction.
  • the respective calibration tool 1 comprises one or more height-adjustable devices 14 for setting the vertical driver stroke and thus the horizontal slide stroke.
  • the respective height-adjustable device 14 has bodies 14.1, 14.2 which are displaceable relative to one another and which have mutually associated contact surfaces 14.11, 14.21 which are essentially located on a plane inclined to the direction of movement of the driver stroke.
  • the two bodies 14.1, 14.2 thus represent self-adaptive elements for setting the vertical driver stroke.
  • the bodies (self-adaptive elements) 14.1, 14.2 of the respective height-adjustable device 14 are designed in the manner of straight toothed racks, with their mutually corresponding tooth surfaces 14.11, 14.21 are formed essentially in a plane lying obliquely to the direction of movement of the driver stroke. There is thus a height difference Z between immediately adjacent tooth tips and immediately adjacent tooth valleys (cf. in Fig. 2 enlarged Detailed display).
  • the adjustable height of the height-adjustable device 14 is denoted by h.
  • At least one of the displaceable bodies 14.1, 14.2, for example the lower body 14.1, is coupled to a servomotor M, preferably a servomotor.
  • the motor shaft drives, for example, a spindle shaft on which a spindle nut sits, which is positively and rotatably mounted in a holder 14.10 connected to the displaceable body 14.1.
  • the motor M moves the body 14.1 coupled to it, there is a relative movement between the two bodies 14.1, 14.2.
  • the self-adaptive body (elements) 14.1, 14.2 are provided with a coupling or lifting device 20, by means of which the bodies 14.1, 14.2, which are displaceable relative to one another, can be brought out of contact before a displacement and again in contact with one another after the displacement has taken place, so that their Tooth surfaces disengage and then re-engage.
  • the coupling or lifting device 20 has, for example, compression springs 21 which push the bodies 14.1, 14.2, which are displaceable relative to one another, apart before displacement or when the press is open.
  • the forming device or the calibration tool 1 has several independently controllable slides 8 for calibrating the component flanges F1, F2.
  • the or more of the slides 8 are preferably arranged in such a way that they are used to calibrate one of the flanges F1, F2 of the Component B1, B2 act jointly on the flange F1 or F2 in question, an effective force of the respective slide 8 being variably adjustable.
  • At least one slide per component flange F1, F2 is preferably arranged in the forming device for each component B.
  • at least four slides 8 are thus arranged in the forming device.
  • the shaped surface 8.3 of the slide 8 facing the flange F1, F2 of the component B1, B2 essentially corresponds to a section of the flange profile of the component B1, B2.
  • one of the two component flanges F1, F2 and the associated shaped surface 8.3 of the slide (s) 8 have a curved profile in the xy direction, that is to say in the horizontal.
  • the control device 6 of the forming device according to the invention is preferably equipped with a programmable logic controller which controls the movements of the respective servomotor M. Furthermore, the evaluation device 4 and / or the control device 6 can be provided with a man-machine interface 30, via which a user or operating personnel from the outside with components of the forming device, for example with the evaluation device 4, the processor and / or the programmable memory Control 6 can communicate.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen eines Bauteils aus Metallblech, vorzugsweise Stahl- oder Aluminiumblech, bei dem ein Metallblechzuschnitt durch Umformen, beispielsweise Tiefziehen, in ein Flansche aufweisendes Bauteil umgeformt wird, und bei dem zur Erzielung einer vorgegebenen Maßhaltigkeit der Flansche ein Kalibrierprozess durchgeführt wird, gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for manufacturing a component from sheet metal, preferably sheet steel or aluminum, in which a sheet metal blank is formed into a component having flanges by reshaping, for example deep drawing, and in which a calibration process is carried out to achieve a predetermined dimensional accuracy of the flanges , according to the preamble of claim 1.

Die Erfindung betrifft des Weiteren eine Umformvorrichtung zum Herstellen eines Flansche aufweisenden Bauteils aus Metallblech, insbesondere eine Umformvorrichtung zur Durchführung eines Verfahrens der voranstehend genannten Art, gemäß dem Oberbegriff des Anspruchs 5.The invention further relates to a forming device for producing a component having flanges from sheet metal, in particular a forming device for carrying out a method of the aforementioned type, according to the preamble of claim 5.

Die Flansche des durch Umformen hergestellten Bauteils können auch als Flügel oder Flanken bezeichnet werden.The flanges of the component produced by forming can also be referred to as wings or flanks.

Beim Herstellen eines Flansche aufweisenden Bauteils aus Metallblech, beispielsweise eines im Querschnitt U-förmigen Karosseriebauteils aus hochfestem Stahlblech, durch Umformen, insbesondere Tiefziehen eines hierfür geeigneten Metallblechzuschnitts kommt es häufig zu einem sogenannten Aufspringen oder Rückfedern der durch den Umformprozess erzeugten Flansche. Das Bauteil weist dann oft nicht die geforderte Maßhaltigkeit auf. Eine nicht ausreichende Maßhaltigkeit des Bauteils kann zu weiteren Fertigungsproblemen führen, wenn nach dem Umformprozess Bauteilflansche zweier Bauteile, zum Beispiel eine rechte und eine linke Blechschale, miteinander zu einem rohrförmigen Hohlkörper verschweißt, insbesondere im Stumpfstoß verschweißt werden. Gravierende Maßabweichungen der Bauteilflansche können ein Versagen der Bauteil- bzw. Schweißverbindung, insbesondere beim Stumpfstoßschweißen, verursachen.When producing a component with flanges from sheet metal, for example a body component with a U-shaped cross-section made from high-strength sheet steel, by forming, in particular deep-drawing, a sheet metal blank suitable for this purpose, the flanges produced by the forming process often spring open or spring back. The component then often does not have the required dimensional accuracy. Insufficient dimensional accuracy of the component can lead to further production problems if, after the forming process, component flanges of two components, for example a right and a left sheet metal shell, are welded to one another to form a tubular hollow body, especially butt-welded. Serious dimensional deviations of the component flanges can cause failure of the component or welded connection, especially with butt welding.

Das Aufsprungverhalten derartiger Blechbauteile hängt insbesondere von der chemischen Zusammensetzung und der Dicke des verwendeten Metallblechs ab, die je nach Stahl- oder Metallsorte durch bestimmte Toleranzbereiche beschränkt sind. Doch selbst wenn die Toleranzbereiche bei einem typischen Stahl- der Metallcoil eingehalten werden, kann über die gesamte Coillänge ein unterschiedliches, sich veränderndes Aufsprungverhalten bei durch Umformen, insbesondere Tiefziehen erzeugten Bauteilflanschen auftreten.The cracking behavior of such sheet metal components depends in particular on the chemical composition and the thickness of the metal sheet used, which are limited by certain tolerance ranges depending on the type of steel or metal. But even if the tolerance ranges for a typical steel or metal coil are adhered to, different, changing cracking behavior can occur over the entire length of the coil in the case of component flanges produced by forming, in particular deep drawing.

Die JP 2014 4618 A offenbart eine Vorrichtung zum Umformen von hochfesten Stahlplatinen in Bauteile mit U-förmigem Querschnittsprofil. Die zwischen einem Stempel und einem oberen Niederhalter eingespannten Stahlplatinen werden zunächst durch eine im Wesentlichen vertikale Abwärtsbewegung von Matrizenteilen umgeformt, worauf die Matrizenteile dann entlang schräger Gleitflächen von Nocken in Richtung des Stempels verschoben werden. Ein Aufspringen der so geformten Bauteile soll durch ein Überbiegen kompensiert werden.the JP 2014 4618 A discloses an apparatus for forming high-strength steel blanks into components with a U-shaped cross-sectional profile. The steel blanks clamped between a punch and an upper hold-down device are first formed by an essentially vertical downward movement of die parts, whereupon the die parts are then shifted along inclined sliding surfaces by cams in the direction of the die. Any cracking of the components formed in this way should be compensated for by overbending.

Die JP 2005 305 493 A zeigt eine Umformvorrichtung mit einer mehrteiligen Matrize, die auf einem verschiebbaren Matrizentisch angeordnet ist und ein erstes Matrizenteil zum Biegen und ein zweites Matrizenteil zum Überbiegen aufweist. Durch das nach dem Biegen folgende Überbiegen soll ein Aufspringen des mittels der Umformvorrichtung hergestellten Bauteils kompensiert und eine hohe Maßhaltigkeit erreicht werden.the JP 2005 305 493 A shows a forming device with a multi-part die, which is arranged on a displaceable die table and has a first die part for bending and a second die part for overbending. The overbending after the bending is intended to compensate for the component produced by means of the forming device jumping open and to achieve a high level of dimensional accuracy.

Mit diesen bekannten Umformvorrichtungen lässt sich nur dann eine hohe Maßhaltigkeit bei den damit hergestellten Bauteilen erreichen, wenn die hierzu verwendeten Stahlcoils über ihre gesamte Coillänge eine homogene chemische Zusammensetzung sowie eine konstante Blechdicke aufweisen. Diese Voraussetzungen sind jedoch in der Praxis oft nicht gegeben, insbesondere nicht bei hochfesten Edelstählen, die von Stahlherstellern nicht mit einem engen Bereich mechanischer Eigenschaften hergestellt werden können, so dass die gewünschte Maßhaltigkeit der Bauteile mittels solcher Umformvorrichtungen nicht immer ohne weiteres erzielt wird. Ändern sich die chemische Zusammensetzung und/oder die Blechdicke über die Coillänge, muss gegebenenfalls zur Erzielung einer geforderten Maßhaltigkeit der Bauteile der Betrieb der betreffenden Umformpressenlinie gestoppt werden, um die Umform- und/oder Kalibrierwerkzeuge neu einzustellen oder gegen andere Umform- und/oder Kalibrierwerkzeuge auszutauschen. Dies ist mit einem erheblichen Arbeits- und Materialkostenaufwand verbunden.With these known forming devices, a high degree of dimensional accuracy can only be achieved in the components produced with them if the steel coils used for this purpose have a homogeneous chemical composition and a constant sheet metal thickness over their entire coil length. In practice, however, these prerequisites are often not met, especially not in the case of high-strength stainless steels, which steel manufacturers cannot produce with a narrow range of mechanical properties, so that the desired Dimensional accuracy of the components is not always easily achieved by means of such forming devices. If the chemical composition and / or the sheet thickness change over the coil length, the operation of the respective forming press line may have to be stopped in order to achieve the required dimensional accuracy of the components, in order to readjust the forming and / or calibration tools or to replace them with other forming and / or calibration tools to exchange. This is associated with considerable labor and material costs.

Die US 2011/0132208 A1 , die die Basis für die Oberbegriffe der Ansprüche 1 und 5 bildet, beschreibt eine Steuerung für eine Servopresse, die in der Lage ist, optimal zu formen, um die Variabilität der Blechdicke und der Materialeigenschaften eines Werkstücks zu handhaben. Insbesondere wird dort eine Steuervorrichtung zum Steuern einer Servopresse gemäß Gleitbewegungsdaten beschrieben. Die Vorrichtung umfasst eine an einer Matrize zum Formen eines Werkstücks angebrachte Messausrüstung zum Messen eines Formungszustands des Werkstücks; einen Messergebnisempfangsabschnitt zum Empfangen eines von der Messausrüstung gesendeten Messergebnisses; und einen Gleitbewegungsdatenänderungsabschnitt zum Ändern von Gleitbewegungsdaten zum Formen desselben Werkstücks zur geplanten Messzeit gemäß dem Messergebnis, das von dem Messergebnisempfangsabschnitt empfangen wird.the US 2011/0132208 A1 , which forms the basis for the preambles of claims 1 and 5, describes a control for a servo press which is able to optimally shape in order to handle the variability of the sheet metal thickness and the material properties of a workpiece. In particular, there is described a control device for controlling a servo press in accordance with sliding movement data. The apparatus includes measuring equipment, attached to a die for molding a workpiece, for measuring a molding state of the workpiece; a measurement result receiving section for receiving a measurement result sent from the measurement equipment; and a sliding movement data changing section for changing sliding movement data for forming the same workpiece at the scheduled measurement time according to the measurement result received from the measurement result receiving section.

Die US 4 430 879 A beschreibt eine Steuerung für eine Abkantpresse, die ein genaues sequentielles Biegen von Blech durch eine Abkantpresse ermöglicht. Die Steuerung umfasst eine Mikroprozessoranordnung zum Betreiben einer Abkantpresse in Reaktion auf eine manuelle Eingabe, um einen Messstopp zu steuern und Ausgangssteuersignale in Bezug auf die relative Positionierung des Stempels und der Matrize der Abkantpresse zu erzeugen, wobei die Positionierung einen Biegewinkel in einem Werkstück verursacht. Die Steuerung ist mit einer Erfassungsvorrichtung zum Erfassen des tatsächlichen Biegewinkels im Werkstück und mit Mitteln zum Vergleichen des tatsächlichen Biegewinkels mit einem gewünschten Winkel versehen. Durch einen solchen Vergleich wird die manuelle Eingabe komplexer Variablen, die erforderlich sind, um die genaue relative Positionierung des Stempels und der Matrize vorzugeben, unnötig. Ferner bewirkt eine Rückkopplung in Bezug auf ein Rückfedern des Werkstückmaterials eine anschließende Nachbearbeitung mittels der Abkantpresse, wodurch die Genauigkeit der erzeugten Winkel verbessert wird.the U.S. 4,430,879 A describes a control for a press brake that enables precise sequential bending of sheet metal by a press brake. The controller includes a microprocessor arrangement for operating a press brake in response to manual input to control a measurement stop and generate output control signals relating to the relative positioning of the punch and die of the press brake, the positioning causing a bend angle in a workpiece. The control is provided with a detection device for detecting the actual bending angle in the workpiece and with means for comparing the actual bending angle with a desired angle. Such a comparison eliminates the need to manually enter complex variables that are required to accurately position the punch and die relative to each other pretend unnecessary. Furthermore, a feedback with regard to a springback of the workpiece material causes subsequent post-processing by means of the press brake, as a result of which the accuracy of the angles generated is improved.

Davon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren und eine Umformvorrichtung der eingangs genannten Art zu schaffen, mit dem bzw. der sich eine vorgegebene Maßhaltigkeit der durch Umformen hergestellten Bauteile auch dann in wirtschaftlicher Weise sicherstellen lässt, wenn sich die chemische Zusammensetzung und/oder die Dicke des Stahl- oder Metallblechs über die Länge des dabei verwendeten Stahl- oder Metallcoils ändern, obwohl sie innerhalb des Toleranzbandes des Stahlherstellers liegt/liegen.Proceeding from this, the present invention is based on the object of creating a method and a forming device of the type mentioned above, with which a predetermined dimensional accuracy of the components produced by forming can be ensured in an economical manner even if the chemical composition and / or change the thickness of the steel or metal sheet over the length of the steel or metal coil used, although it is / are within the tolerance band of the steel manufacturer.

Gelöst wird diese Aufgabe durch ein Verfahren mit den in Anspruch 1 angegebenen Merkmalen bzw. durch eine Umformvorrichtung mit den in Anspruch 5 angegebenen Merkmalen. Vorteilhafte Ausgestaltungen der erfindungsgemäßen Lösung sind Gegenstand der Unteransprüche.This object is achieved by a method with the features specified in claim 1 or by a shaping device with the features specified in claim 5. Advantageous configurations of the solution according to the invention are the subject of the subclaims.

Das erfindungsgemäße Verfahren zum Herstellen eines Bauteils aus Metallblech, vorzugsweise Stahlblech, bei dem ein Metall- oder Stahlblechzuschnitt durch Umformen in ein Flansche aufweisendes Bauteil, beispielsweise in ein im Querschnitt U-förmiges Fahrwerks- oder Karosseriebauteil, umgeformt und bei dem zur Erzielung einer vorgegebenen Maßhaltigkeit der Flansche ein Kalibrierprozess durchgeführt wird, umfasst die Verfahrensschritte:

  • Erfassen einer Ist-Stellung der Flansche nach Durchführung eines Umformprozesses,
  • Vergleichen von Daten der erfassten Ist-Stellung mit Daten einer Soll-Stellung der Flansche des herzustellenden Bauteils,
The method according to the invention for producing a component from sheet metal, preferably sheet steel, in which a metal or sheet steel blank is reshaped by reshaping into a component having flanges, for example in a chassis or body component with a U-shaped cross-section, and in which to achieve a predetermined dimensional accuracy a calibration process is carried out on the flanges, comprises the following process steps:
  • Acquisition of the actual position of the flanges after a forming process has been carried out,
  • Comparing data of the recorded actual position with data of a target position of the flanges of the component to be manufactured,

Berechnen einer Abweichung der Ist-Stellung von der Soll-Stellung der Flansche, und automatisches Steuern mindestens eines Kalibrierwerkzeuges in Abhängigkeit der berechneten Abweichung, um die Flansche des Bauteils zu kalibrieren und dadurch in die vorgegebene Maßhaltigkeit zu bringen.Calculation of a deviation of the actual position from the target position of the flanges, and automatic control of at least one calibration tool as a function of the calculated deviation in order to calibrate the flanges of the component and thereby bring them into the specified dimensional accuracy.

Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass als Kalibrierwerkzeug ein Kalibrierwerkzeug verwendet wird, das eine oder mehrere höhenverstellbare Vorrichtungen zur Einstellung eines Treiberhubes und/oder eines Schieberhubes aufweist. Hierdurch lässt sich die Hubbewegung einer Umformvorrichtung vorteilhaft in eine Hubbewegung zur Kalibrierung der Bauteilflansche umwandeln.The method according to the invention is characterized in that the calibration tool used is a calibration tool which has one or more height-adjustable devices for setting a driver stroke and / or a slide stroke. In this way, the lifting movement of a forming device can advantageously be converted into a lifting movement for calibrating the component flanges.

Durch das erfindungsgemäße Verfahren lässt sich eine hohe Maßhaltigkeit von Flansche aufweisenden Bauteilen, die durch Umformen von Metallblech, insbesondere hochfestem Stahlblech hergestellt werden, in wirtschaftlicher Weise sicherstellen. Das erfindungsgemäße Verfahren ermöglicht es, unterschiedliche Grade des Aufspringens, das üblicherweise beim Umformprozess von hochfestem Metallblech auftritt, während einer Zyklusdauer der Produktion zu kompensieren, ohne den Betrieb der Umformpressenlinie zu unterbrechen. Somit können Ausschuss, Zeitverlust sowie Kosten, die durch Anpassen herkömmlicher Umformwerkzeuge mit dem Ziel der Vermeidung eines Aufspringens anfallen, weitgehend reduziert werden.The method according to the invention makes it possible to economically ensure a high degree of dimensional accuracy for components having flanges which are produced by forming sheet metal, in particular high-strength sheet steel. The method according to the invention makes it possible to compensate for different degrees of cracking, which usually occurs in the forming process of high-strength sheet metal, during a cycle duration of the production without interrupting the operation of the forming press line. In this way, scrap, loss of time and costs incurred by adapting conventional forming tools with the aim of avoiding cracking can be largely reduced.

Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, dass das Umformen des Metallblechzuschnitts in ein Flansche aufweisendes Bauteil und das Kalibrieren der Flansche des Bauteils mittels einer ein Umformwerkzeug aufweisenden Umformvorrichtung oder Umformpresse ausgeführt werden, wobei das Kalibrierwerkzeug mittels der Umformvorrichtung im Takt der Umformvorrichtung bzw. im Takt der Presse angetrieben wird. Hierdurch lässt sich eine Kalibrierung der Bauteilflansche zur Erzielung einer geforderten Maßhaltigkeit des Bauteils produktionstechnisch günstig und energieeffizient verwirklichen.An advantageous embodiment of the invention provides that the forming of the sheet metal blank into a component having flanges and the calibration of the flanges of the component are carried out by means of a forming device or forming press having a forming tool, the calibrating tool being carried out by means of the forming device in the cycle of the forming device or in time the press is driven. This allows the component flanges to be calibrated in order to achieve the required dimensional accuracy of the component in a way that is inexpensive and energy-efficient in terms of production technology.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die Ist-Stellung der Flansche mittels eines optischen Systems, vorzugsweise eines Lasersystems erfasst wird. Auf diese Weise lässt sich die Ist-Stellung der BauteilFlansche nach Durchführung eines Umformprozesses schnell und zuverlässig erfassen.Another advantageous embodiment of the invention is characterized in that the actual position of the flanges is detected by means of an optical system, preferably a laser system. In this way, the actual position of the component flanges can be recorded quickly and reliably after a forming process has been carried out.

Zur Erzielung einer hohen Maßhaltigkeit von relativ langen und/oder komplex geformten Bauteilen, welche Flansche aufweisen und durch Umformen von Metallblech, insbesondere hochfestem Stahlblech hergestellt werden, sieht eine weitere vorteilhafte Ausgestaltung der Erfindung vor, dass als Kalibrierwerkzeug ein Kalibrierwerkzeug verwendet wird, das mehrere unabhängig voneinander steuerbare Schieber zum Kalibrieren der Flansche aufweist, so dass die Flansche in verschiedenen Bereichen unabhängig voneinander kalibriert werden können. Auf diese Weise lassen sich die Flansche derartiger Bauteil sehr passgenau kalibrieren.In order to achieve high dimensional accuracy of relatively long and / or complexly shaped components which have flanges and are produced by forming sheet metal, in particular high-strength sheet steel, a further advantageous embodiment of the invention provides that a calibration tool is used as the calibration tool, which several independently has mutually controllable slide for calibrating the flanges, so that the flanges can be calibrated independently in different areas. In this way, the flanges of such components can be calibrated with a very precise fit.

Die erfindungsgemäße Umformvorrichtung zum Herstellen eines Flansche aufweisenden Bauteils aus Metallblech, insbesondere zur Durchführung des erfindungsgemäßen Verfahrens, umfasst ein Umformwerkzeug zum Umformen eines Metallblechzuschnitts in ein Flansche aufweisendes Bauteil und mindestens ein Kalibrierwerkzeug zum Kalibrieren der Flansche, um die Flansche in eine vorgegebene Maßhaltigkeit zu bringen,

  • eine Erfassungsvorrichtung zum Erfassen einer Ist-Stellung der Flansche nach Durchführung eines Umformprozesses,
  • eine Auswertevorrichtung zum Vergleichen von Daten der erfassten Ist-Stellung mit Daten einer Soll-Stellung der Flansche des herzustellenden Bauteils,
  • einen Prozessor zum Berechnen einer Abweichung der Ist-Stellung von der Soll-Stellung der Flansche, und
  • eine Steuerungsvorrichtung zum automatischen Steuern des Kalibrierwerkzeuges in Abhängigkeit der berechneten Abweichung, um die Flansche des Bauteils zu kalibrieren und dadurch in die vorgegebene Maßhaltigkeit zu bringen.
The forming device according to the invention for producing a component having flanges from sheet metal, in particular for carrying out the method according to the invention, comprises a forming tool for forming a sheet metal blank into a component having flanges and at least one calibration tool for calibrating the flanges in order to bring the flanges into a predetermined dimensional accuracy,
  • a detection device for detecting an actual position of the flanges after a forming process has been carried out,
  • an evaluation device for comparing data of the recorded actual position with data of a target position of the flanges of the component to be manufactured,
  • a processor for calculating a deviation of the actual position from the desired position of the flanges, and
  • a control device for automatically controlling the calibration tool as a function of the calculated deviation in order to calibrate the flanges of the component and thereby bring them into the specified dimensional accuracy.

Die erfindungsgemäße Umformvorrichtung ist dadurch gekennzeichnet, dass das Kalibrierwerkzeug eine oder mehrere höhenverstellbare Vorrichtungen zur Einstellung eines Treiberhubes und/oder eines Schieberhubes (Nockenhubes) aufweist. Dabei kann die jeweilige höhenverstellbare Vorrichtung beispielsweise relativ zueinander verschiebbare Körper aufweisen, die einander zugeordnete Kontaktflächen haben, die sich im Wesentlichen auf einer zur Bewegungsrichtung des Treiberhubes geneigten Ebene befinden. Mittels solcher verschiebbarer Körper lässt sich eine im Wesentlichen stufenlose oder fein abgestufte Kalibrierung der Bauteilflansche durchführen.The forming device according to the invention is characterized in that the calibration tool has one or more height-adjustable devices for setting a driver stroke and / or a slide stroke (cam stroke). The respective height-adjustable device can for example have bodies which are displaceable relative to one another and which are assigned to one another Have contact surfaces that are essentially on a plane inclined to the direction of movement of the driver stroke. An essentially stepless or finely graduated calibration of the component flanges can be carried out by means of such displaceable bodies.

Die erfindungsgemäße Umformvorrichtung, deren Kalibrierwerkzeug auch als selbstadaptives Kalibrierwerkzeug bezeichnet werden kann, bietet die gleichen Vorteile, die oben in Bezug auf das erfindungsgemäße Verfahren angegeben sind. Insbesondere kann die erfindungsgemäße Umformvorrichtung entsprechend dem erfindungsgemäßen Verfahren ausgeführt sein. Eine vorteilhafte Ausgestaltung der erfindungsgemäßen Umformvorrichtung ist somit beispielsweise dadurch gekennzeichnet, dass das Kalibrierwerkzeug mittels der Umformvorrichtung in dem Takt, mit welchem die Umformvorrichtung bzw. eine die Umformvorrichtung aufweisende Presse arbeitet, angetrieben wird, das heißt, ohne die Fertigungslinie anzuhalten.The shaping device according to the invention, the calibration tool of which can also be referred to as a self-adapting calibration tool, offers the same advantages that are specified above with regard to the method according to the invention. In particular, the forming device according to the invention can be designed in accordance with the method according to the invention. An advantageous embodiment of the forming device according to the invention is thus characterized, for example, in that the calibration tool is driven by means of the forming device in the cycle with which the forming device or a press having the forming device works, that is, without stopping the production line.

Eine weitere Ausgestaltung der erfindungsgemäßen Umformvorrichtung sieht vor, dass die Erfassungsvorrichtung eine optische Erfassungsvorrichtung, vorzugsweise ein Kamera- oder Lasersystem ist. Die Erfassungsvorrichtung kann auch als Messvorrichtung oder Inspektionsvorrichtung bezeichnet werden. Die Erfassungsvorrichtung ist vorzugsweise an einem Roboter oder Robotersystem montiert.Another embodiment of the forming device according to the invention provides that the detection device is an optical detection device, preferably a camera or laser system. The detection device can also be referred to as a measuring device or inspection device. The detection device is preferably mounted on a robot or robot system.

Das erfindungsgemäße Verfahren bzw. die erfindungsgemäße Umformvorrichtung sind beispielsweise derart ausgestaltet, dass damit Daten einer nach Durchführung eines Umformprozesses erfassten Ist-Stellung der Flansche des hergestellten Bauteils mit Daten einer Soll-Stellung der Flansche des herzustellenden Bauteils verglichen werden und mittels eines Prozessors eine möglicherweise vorhandene Abweichung der Ist-Stellung von der Soll-Stellung der Flansche berechnet wird.The method according to the invention and the forming device according to the invention are designed, for example, in such a way that data of an actual position of the flanges of the manufactured component recorded after a forming process has been carried out is compared with data of a target position of the flanges of the component to be manufactured and, by means of a processor, a possibly existing position Deviation of the actual position from the target position of the flanges is calculated.

Bei der Berechnung der Abweichung wird beispielsweise eine Höhe einer höhenverstellbaren Vorrichtung des jeweiligen Kalibrierwerkzeuges berechnet, wobei die berechnete Höhe einem Maß entspricht, das zur Einstellung eines Treiberhubes und/oder eines Schieberhubes und damit zur Erzielung einer vorgegebenen Maßhaltigkeit der Bauteilflansche geeignet oder erforderlich ist.When calculating the deviation, for example, an amount is a height-adjustable device of the respective calibration tool is calculated, the calculated height corresponding to a dimension that is suitable or necessary for setting a driver stroke and / or a slide stroke and thus to achieve a predetermined dimensional accuracy of the component flanges.

In weiterer Ausgestaltung der erfindungsgemäßen Umformvorrichtung weisen die einander zugeordneten Kontaktflächen der relativ zueinander verschiebbaren Körper vorzugsweise miteinander korrespondierende Zahnflächen (Verzahnungen) nach Art von geradverzahnten Zahnstangen auf.In a further embodiment of the forming device according to the invention, the mutually associated contact surfaces of the bodies which can be displaced relative to one another preferably have tooth surfaces (toothings) corresponding to one another in the manner of straight toothed racks.

Die Zahnflächen (Verzahnungen) der verschiebbaren Körper weisen vorzugsweise eine relativ geringe Teilung auf. Auch ist der Höhenunterschied zwischen den Zahnspitzen zweier unmittelbar benachbarter Zähne der schräg zur Bewegungsrichtung des Treiberhubes liegenden Kontaktfläche der höhenverstellbaren Vorrichtung relativ klein. Beispielsweise kann die Teilung der Zahnflächen, d. h. der Abstand zweier unmittelbar benachbarter Zähne, ca. 6 mm betragen, wobei der Höhenunterschied zwischen den Zahnspitzen zweier unmittelbar benachbarter Zähne ca. 0,2 mm beträgt.The tooth surfaces (teeth) of the displaceable body preferably have a relatively small pitch. The height difference between the tooth tips of two immediately adjacent teeth of the contact surface of the height-adjustable device, which is inclined to the direction of movement of the driver stroke, is also relatively small. For example, the division of the tooth surfaces, i. H. the distance between two immediately adjacent teeth is approx. 6 mm, the height difference between the tooth tips of two immediately adjacent teeth being approx. 0.2 mm.

Nach einer weiteren Ausgestaltung der Erfindung weist die erfindungsgemäße Umformvorrichtung eine Kupplungs- oder Hebeeinrichtung auf, mittels der die relativ zueinander verschiebbaren Körper vor einer Verschiebung außer Kontakt und nach erfolgter Verschiebung in Kontakt miteinander bringbar sind. Diese Ausgestaltung ist insbesondere zweckmäßig, wenn die einander zugeordneten Kontaktflächen der relativ zueinander verschiebbaren Körper miteinander korrespondierende Zahnflächen (Verzahnungen) nach Art von geradverzahnten Zahnstangen aufweisen.According to a further embodiment of the invention, the forming device according to the invention has a coupling or lifting device by means of which the bodies which can be displaced relative to one another can be brought out of contact before a displacement and in contact with one another after the displacement has taken place. This embodiment is particularly expedient if the mutually associated contact surfaces of the bodies that can be displaced relative to one another have tooth surfaces (teeth) corresponding to one another in the manner of straight toothed racks.

Die Kupplungs- oder Hebeeinrichtung weist beispielsweise federelastische Elemente, z. B. Druckfedern auf, welche die relativ zueinander verschiebbaren Körper vor einer Verschiebung bzw. bei geöffneter Umformvorrichtung auseinander drücken. Anschließend bewirkt das Schließen der Umformvorrichtung, insbesondere nachdem die Körper relativ zueinander verschoben wurden, dass besagte Körper wieder in kraftschlüssigen und/oder formschlüssigen Kontakt gelangen, wobei die federelastischen Elemente komprimiert werden.The coupling or lifting device has, for example, resilient elements such. B. compression springs which push apart the relative to one another displaceable body before a displacement or with the forming device open. Subsequently, the closing of the forming device, in particular after the bodies have been displaced relative to one another, causes said bodies to come into force-locking and / or form-locking contact again, the resilient elements being compressed.

Eine weitere vorteilhafte Ausgestaltung der erfindungsgemäßen Umformvorrichtung ist dadurch gekennzeichnet, dass mindestens einer der verschiebbaren Körper mit einem Stellmotor gekoppelt ist. Bei dem Stellmotor handelt es vorzugsweise um einen Servomotor, d. h. einen Elektromotor, der eine Kontrolle (Steuerung) der Winkelposition seiner Welle sowie der Drehgeschwindigkeit und seiner Beschleunigung gestattet. Der Stellmotor bzw. Servomotor ist vorzugsweise mit einem Sensor zur Positionsbestimmung der Motorwelle versehen. Hierdurch lässt sich die höhenverstellbare Vorrichtung zur Kalibrierung der Bauteilflansche sehr genau steuern. Der Stellmotor bzw. Servomotor kann auch als elektrischer Schrittmotor bezeichnet werden.Another advantageous embodiment of the forming device according to the invention is characterized in that at least one of the displaceable bodies is coupled to a servomotor. The servomotor is preferably a servomotor, i. H. an electric motor that allows control (control) of the angular position of its shaft as well as the speed of rotation and its acceleration. The servomotor or servomotor is preferably provided with a sensor for determining the position of the motor shaft. This allows the height-adjustable device for calibrating the component flanges to be controlled very precisely. The servomotor or servomotor can also be referred to as an electric stepper motor.

Ferner ist es vorteilhaft, wenn das Kalibrierwerkzeug der erfindungsgemäßen Umformvorrichtung nach einer weiteren Ausgestaltung mehrere unabhängig voneinander steuerbare Schieber zum Kalibrieren der Bauteilflansche aufweist. Hierdurch kann die Kalibrierung der Bauteilflansche während des Betriebes der Umformvorrichtung besonders passgenau, den bauteilspezifischen Maßhaltigkeitsanforderungen entsprechend durchgeführt werden, wobei erforderlichenfalls von Bauteil zu Bauteil örtlich unterschiedliche Kalibrieroperationen erfolgen können.It is also advantageous if, according to a further embodiment, the calibration tool of the forming device according to the invention has a plurality of independently controllable slides for calibrating the component flanges. As a result, the component flanges can be calibrated with a particularly precise fit during operation of the forming device, in accordance with the component-specific dimensional accuracy requirements, with locally different calibration operations being able to take place from component to component, if necessary.

Des Weiteren können die Schieber segmentiert ausgeführt sein.Furthermore, the slides can be segmented.

Der Prozessor und/oder die Auswertevorrichtung der erfindungsgemäßen Umformvorrichtung wandelt/n beispielsweise ein der berechneten Höhe der höhenverstellbaren Vorrichtung des Kalibrierwerkzeuges proportionales Signal, das auch als Höhensignal bezeichnet werden kann, in eine Anzahl von Zähnen der oben genannten Zahnflächen um. Die so erhaltene Anzahl von Zähnen wird dann in eine Anzahl von Schritten zur Steuerung des Stellmotors oder Servomotors umgewandelt, wobei ein einzelner Schritt einem Drehwinkel der Motorwelle von beispielsweise 1,8° entspricht. Eine vollständige Umdrehung der Motorwelle entspricht dann 200 Schritten.The processor and / or the evaluation device of the forming device according to the invention converts, for example, a signal proportional to the calculated height of the height-adjustable device of the calibration tool, which can also be referred to as a height signal, into a number of teeth of the above-mentioned tooth surfaces. The number of teeth obtained in this way is then converted into a number of steps for controlling the servomotor or servomotor, a single step corresponding to an angle of rotation of the motor shaft of, for example, 1.8 °. One complete revolution of the motor shaft then corresponds to 200 steps.

Der Prozessor und/oder die Auswertevorrichtung sind vorzugsweise derart ausgestaltet, dass er bzw. sie diese Signalumwandlung für jede der höhenverstellbaren Vorrichtungen oder für jeden der unabhängig voneinander steuerbaren Schieber des Kalibrierwerkzeuges durchführen kann/können.The processor and / or the evaluation device are preferably designed in such a way that he or she can carry out this signal conversion for each of the height-adjustable devices or for each of the independently controllable slides of the calibration tool.

Dem Prozessor und/oder der Auswertevorrichtung ist dabei beispielsweise eine speicherprogrammierbare Steuerung zugeordnet, an welche die aus der Signalumwandlung resultierenden Daten übertragen werden. Diese Daten umfassen beispielsweise zumindest Pulssignale und Drehrichtungssignale. Die speicherprogrammierbare Steuerung steuert in Abhängigkeit der empfangenen Daten den jeweiligen Stellmotor (Schrittmotor), so dass dessen Motorwelle die durch den Prozessor bzw. die Auswertevorrichtung ermittelte Position einnimmt.The processor and / or the evaluation device is assigned, for example, a programmable logic controller to which the data resulting from the signal conversion are transmitted. These data include, for example, at least pulse signals and direction of rotation signals. The programmable logic controller controls the respective servomotor (stepper motor) as a function of the received data, so that its motor shaft assumes the position determined by the processor or the evaluation device.

Eine weitere vorteilhafte Ausgestaltung der Erfindung ist dadurch gekennzeichnet, dass die oder mehrere der Schieber so angeordnet sind, dass sie zum Kalibrieren eines der Flansche des Bauteils gemeinsam auf den betreffenden Flansch einwirken, wobei eine Einwirkkraft des jeweiligen Schiebers variabel einstellbar ist. Die Einwirkkraft der Schieber ist somit variabel zueinander einstellbar.A further advantageous embodiment of the invention is characterized in that the or more of the slides are arranged so that they jointly act on the flange in question to calibrate one of the flanges of the component, an acting force of the respective slider being variably adjustable. The force of action of the slider can thus be variably adjusted to one another.

Nachfolgend wird die Erfindung anhand einer Ausführungsbeispiele darstellenden Zeichnung näher erläutert. Es zeigen schematisch:

Fig. 1
ein erfindungsgemäßes Kalibrierwerkzeug mit einem darin eingelegten, Flansche aufweisenden Bauteil, das durch Umformen eines Metallblechzuschnittes hergestellt wurde, in einer vertikalen Schnittansicht, wobei sich höhenverstellbare Vorrichtungen zur Einstellung eines vertikalen Treiberhubes und eines horizontalen Schieberhubes des Kalibrierwerkzeugs in Fig. 1a in einer ersten Stellung und in Fig. 1b in einer zweiten Stellung befinden;
Fig. 2
einen vergrößerten Abschnitt einer der höhenverstellbare Vorrichtungen aus Fig. 1a sowie eine weiter vergrößerte Detaildarstellung einer Verzahnung der der höhenverstellbaren Vorrichtung;
Fig. 3
eine Kupplungs- oder Hebeeinrichtung, mittels der die relativ zueinander verschiebbaren Körper der höhenverstellbaren Vorrichtung vor einer Verschiebung außer Kontakt und nach erfolgter Verschiebung in Kontakt miteinander gebracht werden können, in einer vertikalen Schnittansicht;
Fig. 4
einen Abschnitt eines Tisches der Umformvorrichtung mit mehreren darauf montierten Kalibrierwerkzeugen der in Fig. 1 schematisch dargestellten Art, in Draufsicht; und
Fig. 5
Komponenten zur automatischen Steuerung eines Kalibrierwerkzeuges einer erfindungsgemäßen Umformvorrichtung.
The invention is explained in more detail below with the aid of a drawing showing exemplary embodiments. They show schematically:
Fig. 1
a calibration tool according to the invention with an inserted component having flanges, which was produced by forming a sheet metal blank, in a vertical sectional view, with height-adjustable devices for setting a vertical driver stroke and a horizontal slide stroke of the calibration tool in Fig. 1a in a first position and in Figure 1b are in a second position;
Fig. 2
an enlarged section of one of the height-adjustable devices Fig. 1a and a further enlarged detail view of a tooth system of the height-adjustable device;
Fig. 3
a coupling or lifting device, by means of which the relative to one another displaceable body of the height-adjustable device can be brought out of contact before a displacement and after the displacement in contact with one another, in a vertical sectional view;
Fig. 4
a section of a table of the forming device with a plurality of calibration tools mounted thereon of the in Fig. 1 type shown schematically, in plan view; and
Fig. 5
Components for the automatic control of a calibration tool of a forming device according to the invention.

In den Figuren 1a und 1b ist ein Kalibrierwerkzeug 1 schematisch dargestellt, das in eine (nicht näher dargestellte) Umformvorrichtung oder Presse zum Herstellen eines Flansche F1, F2 aufweisenden Bauteils B aus Stahlblech, vorzugsweise hochfestem Stahlblech, integriert ist bzw. wird. Die Umformvorrichtung weist einen Tisch 2 und ein heb- und senkbares Oberteil 3 auf. Auf dem Pressentisch 2 ist ein unteres Umformwerkzeug (nicht gezeigt) montiert, dem ein oberes Umformwerkzeug (nicht gezeigt) zugeordnet ist, welches an der Unterseite des Oberteils 3 montiert ist.In the Figures 1a and 1b a calibration tool 1 is shown schematically, which is or will be integrated into a (not shown) forming device or press for producing a component B having flanges F1, F2 from sheet steel, preferably high-strength sheet steel. The forming device has a table 2 and an upper part 3 that can be raised and lowered. On the press table 2 is a lower one Forming tool (not shown) mounted to which an upper forming tool (not shown) is assigned, which is mounted on the underside of the upper part 3.

Das aus einem Stahlblechzuschnitt durch Umformen, beispielsweise Tiefziehen, hergestellte Bauteil B weist zwei sich gegenüberliegende, durch einen Mittelsteg einteilig verbundene Flansche F1, F2 auf. Im Querschnitt betrachtet hat das Bauteil B ein im Wesentlichen U-förmiges Querschnittsprofil.The component B produced from a sheet steel blank by forming, for example deep drawing, has two opposing flanges F1, F2 connected in one piece by a central web. Viewed in cross section, the component B has an essentially U-shaped cross-sectional profile.

Vorzugsweise sind der Tisch 2 mit zwei unteren Umformwerkzeugen (nicht gezeigt) und das Oberteil 3 mit zwei den unteren Umformwerkzeugen zugeordneten oberen Umformwerkzeugen (nicht gezeigt) versehen, so dass in der Umformvorrichtung durch Umformen von Stahlblechzuschnitten zwei Bauteile B1, B2, die jeweils Flansche F1, F2 aufweisen, gleichzeitig hergestellt werden können. Die beiden Bauteile B1, B2, beispielsweise eine linke und eine rechte oder eine obere und eine untere Stahlblechschale werden in einer Folgeoperation an den im Wesentlichen parallel zu dem jeweiligen Mittelsteg verlaufenden Flanschkanten E1, E2 miteinander durch Schweißen, beispielsweise durch Lichtbogenschweißen verbunden, so dass sich ein rohrartiges oder hohlsäulenartiges Bauteil, beispielsweise ein Fahrwerks- oder Karosseriebauteil ergibt. Die Verbindung der beiden Bauteile B1, B2 erfolgt vorzugsweise durch Schweißen, wobei die Flanschkanten E1, E2 vorzugsweise im Stumpfstoß aneinander geschweißt werden.The table 2 is preferably provided with two lower forming tools (not shown) and the upper part 3 with two upper forming tools (not shown) assigned to the lower forming tools, so that two components B1, B2, each of the flanges F1 , F2 can be produced at the same time. The two components B1, B2, for example a left and a right or an upper and a lower sheet steel shell, are connected to one another by welding, for example by arc welding, in a subsequent operation at the flange edges E1, E2 which run essentially parallel to the respective central web, so that a tubular or hollow column-like component, for example a chassis or body component, results. The connection of the two components B1, B2 is preferably carried out by welding, the flange edges E1, E2 preferably being butt-welded to one another.

Wie in Fig. 4 gezeigt, sind auf dem Tisch 2 mehrere Kalibrierwerkzeuge montiert, mittels derer beispielsweise zwei, nämlich ein oberes Bauteil B1 und ein unteres Bauteil B2, die jeweils Flansche F1, F2 aufweisen und miteinander an ihren Flanschkanten E1, E2 durch Schweißen verbunden werden sollen, vor der Verbindungsoperation (Fügeoperation) kalibriert werden.As in Fig. 4 shown, several calibration tools are mounted on the table 2, by means of which, for example, two, namely an upper component B1 and a lower component B2, each having flanges F1, F2 and are to be connected to one another at their flange edges E1, E2 by welding, before Connection operation (joining operation) can be calibrated.

Die Bauteilflansche F1, F2 werden während eines Pressentaktes kalibriert. Hierzu erfasst eine Erfassungsvorrichtung, beispielsweise ein Kamera- oder Lasersystem, nach der Umformoperation, vorzugsweise Tiefziehoperation, die Flanschstellung und überträgt die Messdaten an eine Auswertevorrichtung 4. Die Erfassungsvorrichtung kann mehrere Sensoren 5, vorzugsweise optische Sensoren, beispielsweise CCD-Sensoren aufweisen (vgl. Fig. 5). Die Sensoren 5 sind beispielsweise im Bereich der Umformwerkzeuge, im Bereich einer Transfervorrichtung, mittels der das jeweilige im Umformprozess hergestellte, Flansche aufweisende Bauteil B1, B2 zu einem der Kalibrierwerkzeuge 1 transportiert wird, und/oder im Bereich des jeweiligen Kalibrierwerkzeugs 1 angeordnet.The component flanges F1, F2 are calibrated during a press cycle. For this purpose, a detection device, for example a camera or laser system, detects the flange position and after the forming operation, preferably deep-drawing operation transmits the measurement data to an evaluation device 4. The detection device can have several sensors 5, preferably optical sensors, for example CCD sensors (cf. Fig. 5 ). The sensors 5 are arranged, for example, in the area of the forming tools, in the area of a transfer device by means of which the respective component B1, B2 produced in the forming process and having flanges is transported to one of the calibration tools 1, and / or in the area of the respective calibration tool 1.

Die Auswertevorrichtung 4 vergleicht die Messdaten, welche der Ist-Stellung der Flansche F1, F2 entsprechen, mit Daten einer Soll-Stellung der Flansche des herzustellenden Bauteils. Die Auswertevorrichtung 4 ist mit einem Prozessor versehen, der eine (mögliche) Abweichung der Ist-Stellung von der Soll-Stellung der Flansche F1, F2 berechnet.The evaluation device 4 compares the measurement data, which correspond to the actual position of the flanges F1, F2, with data of a desired position of the flanges of the component to be manufactured. The evaluation device 4 is provided with a processor which calculates a (possible) deviation of the actual position from the target position of the flanges F1, F2.

Die Auswertevorrichtung 4 und/oder der Prozessor sind mit einer Steuerungsvorrichtung 6 verbunden, mittels der das jeweilige Kalibrierwerkzeug 1 in Abhängigkeit der berechneten Abweichung automatisch gesteuert wird, um die Flansche F1, F2 des jeweiligen Bauteils B1, B2 zu kalibrieren und dadurch in eine vorgegebene Maßhaltigkeit zu bringen. Das jeweilige Kalibrierwerkzeug 1 weist hierzu beispielsweise einen stempelförmigen Träger 11 auf, auf den das dreidimensional geformte Bauteil B mit seinem Mittelsteg gelegt wird, so dass die Flansche F1, F2 des Bauteils nach unten weisen. Dem Träger 11 ist ein Niederhalter 12 zugeordnet, der mit dem Oberteil 3 der Umformvorrichtung verbunden ist und im geschlossenen Zustand der Umformvorrichtung den Mittelsteg des Bauteils B gegen den Träger 11 drückt. Die Seiten 11.1, 11.2 des Trägers 11 sind geringfügig hinterschnitten bzw. konvergieren in Richtung der Oberseite des Tisches 2 der Umformvorrichtung, so dass der jeweilige Flansch F1, F2 des Bauteils B erforderlichenfalls um ein bestimmtes Maß in Richtung des Trägerseite 11.1, 11.2 gebogen werden kann (vgl. Figuren 1a und 1b).The evaluation device 4 and / or the processor are connected to a control device 6 by means of which the respective calibration tool 1 is automatically controlled as a function of the calculated deviation in order to calibrate the flanges F1, F2 of the respective component B1, B2 and thereby achieve a predetermined dimensional accuracy bring to. For this purpose, the respective calibration tool 1 has, for example, a stamp-shaped carrier 11 on which the three-dimensionally shaped component B is placed with its central web, so that the flanges F1, F2 of the component point downward. A hold-down device 12 is assigned to the carrier 11, which is connected to the upper part 3 of the forming device and, in the closed state of the forming device, presses the central web of the component B against the carrier 11. The sides 11.1, 11.2 of the carrier 11 are slightly undercut or converge towards the top of the table 2 of the forming device so that the respective flange F1, F2 of the component B can be bent by a certain amount in the direction of the carrier side 11.1, 11.2 if necessary (see. Figures 1a and 1b ).

Ferner weist das jeweilige Kalibrierwerkzeug 1 mindestens einen horizontal beweglichen Nocken oder Schieber 8 auf, der gegen die Kraft eines federelastischen Elements (nicht gezeigt), beispielsweise einer Zug- oder Druckfeder, mittels eines vertikal beweglichen Treibers 10 verschoben werden kann. Die Schieber 8 sind beispielsweise mit auswechselbaren Formwerkzeugen 8.2 versehen, die den Seiten 11.1, 11.2 des Trägers 11 zugewandt sind.Furthermore, the respective calibration tool 1 has at least one horizontally movable cam or slide 8, which can be displaced against the force of a resilient element (not shown), for example a tension or compression spring, by means of a vertically movable driver 10. The slides 8 are provided, for example, with exchangeable molding tools 8.2 which face the sides 11.1, 11.2 of the carrier 11.

Der Treiber 10, der auch als Nockentreiber bezeichnet werden kann, hat eine Kontaktfläche (Treiberfläche) 10.1, die in einer geneigt zu seiner Bewegungsrichtung verlaufenden Ebene liegt und an einer entsprechend schräg zu der Bewegungsrichtung des Treibers 10 ausgebildeten Kontaktfläche (Schiebefläche) 8.1 des Schiebers 8 anliegt. Die beiden aneinander liegenden Kontaktflächen 8.1, 10.1 definieren mit der Horizontalen bzw. der Bewegungsebene des Schiebers 8 einen Verschiebungswinkel a. Der jeweilige Treiber 10 ist mit dem Oberteil 3 der Umformvorrichtung verbunden, so dass er zusammen mit dem Oberteil 3 jeweils in gleicher Richtung bewegt wird.The driver 10, which can also be referred to as a cam driver, has a contact surface (driver surface) 10.1, which lies in a plane that is inclined to its direction of movement, and on a contact surface (sliding surface) 8.1 of the slide 8, which is correspondingly inclined to the direction of movement of the driver 10 is applied. The two adjacent contact surfaces 8.1, 10.1 define a displacement angle a with the horizontal or the plane of movement of the slide 8. The respective driver 10 is connected to the upper part 3 of the forming device, so that it is moved together with the upper part 3 in the same direction.

Des Weiteren umfasst das jeweilige Kalibrierwerkzeug 1 eine oder mehrere höhenverstellbare Vorrichtungen 14 zur Einstellung des vertikalen Treiberhubes und damit des horizontalen Schieberhubes. Wie insbesondere in Fig. 2 gezeigt ist, weist die jeweilige höhenverstellbare Vorrichtung 14 relativ zueinander verschiebbare Körper 14.1, 14.2 auf, die einander zugeordnete Kontaktflächen 14.11, 14.21 haben, die sich im Wesentlichen auf einer zur Bewegungsrichtung des Treiberhubes geneigten Ebene befinden. Die beiden Körper 14.1, 14.2 stellen somit selbst-adaptive Elemente zur Einstellung des vertikalen Treiberhubes dar. Die Körper (selbst-adaptiven Elemente) 14.1, 14.2 der jeweiligen höhenverstellbaren Vorrichtung 14 sind nach Art von geradverzahnten Zahnstangen ausgebildet, wobei ihre miteinander korrespondierenden Zahnflächen 14.11, 14.21 im Wesentlichen in einer schräg zur Bewegungsrichtung des Treiberhubes liegenden Ebene ausgebildet sind. Somit ist ein Höhenunterschied Z zwischen unmittelbar benachbarten Zahnspitzen sowie unmittelbar benachbarten Zahntälern vorhanden (vgl. in Fig. 2 vergrößerte Detaildarstellung). Mit h ist die einstellbare Höhe der höhenverstellbaren Vorrichtung 14 bezeichnet.Furthermore, the respective calibration tool 1 comprises one or more height-adjustable devices 14 for setting the vertical driver stroke and thus the horizontal slide stroke. As in particular in Fig. 2 As shown, the respective height-adjustable device 14 has bodies 14.1, 14.2 which are displaceable relative to one another and which have mutually associated contact surfaces 14.11, 14.21 which are essentially located on a plane inclined to the direction of movement of the driver stroke. The two bodies 14.1, 14.2 thus represent self-adaptive elements for setting the vertical driver stroke. The bodies (self-adaptive elements) 14.1, 14.2 of the respective height-adjustable device 14 are designed in the manner of straight toothed racks, with their mutually corresponding tooth surfaces 14.11, 14.21 are formed essentially in a plane lying obliquely to the direction of movement of the driver stroke. There is thus a height difference Z between immediately adjacent tooth tips and immediately adjacent tooth valleys (cf. in Fig. 2 enlarged Detailed display). The adjustable height of the height-adjustable device 14 is denoted by h.

Mindestens einer der verschiebbaren Körper 14.1, 14.2, beispielsweise der untere Körper 14.1, ist mit einem Stellmotor M, vorzugsweise einem Servomotor gekoppelt. Die Motorwelle treibt beispielsweise eine Spindelwelle an, auf der eine Spindelmutter sitzt, die formschlüssig und drehbar in einem mit dem verschiebbaren Körper 14.1 verbundenen Halter 14.10 gelagert ist. Wenn der Motor M den mit ihm gekoppelten Körper 14.1 verschiebt, ergibt sich eine Relativbewegung zwischen den beiden Körpern 14.1, 14.2.At least one of the displaceable bodies 14.1, 14.2, for example the lower body 14.1, is coupled to a servomotor M, preferably a servomotor. The motor shaft drives, for example, a spindle shaft on which a spindle nut sits, which is positively and rotatably mounted in a holder 14.10 connected to the displaceable body 14.1. When the motor M moves the body 14.1 coupled to it, there is a relative movement between the two bodies 14.1, 14.2.

Die selbst-adaptiven Körper (Elemente) 14.1, 14.2 sind mit einer Kupplungs- oder Hebeeinrichtung 20 versehen, mittels der die relativ zueinander verschiebbaren Körper 14.1, 14.2 vor einer Verschiebung außer Kontakt und nach erfolgter Verschiebung wieder in Kontakt miteinander bringbar sind, so dass ihre Zahnflächen außer Eingriff und anschließend wieder in Eingriff gelangen. Die Kupplungs- oder Hebeeinrichtung 20 weist beispielsweise Druckfedern 21 auf, welche die relativ zueinander verschiebbaren Körper 14.1, 14.2 vor einer Verschiebung bzw. bei geöffneter Presse auseinander drücken. Nachdem eine Relativbewegung der beiden Körper entlang der schrägen Ebene ausgeführt wurde und die Zahnflächen wieder in Eingriff stehen, hat sich die Höhe h der aus den Körpern 14.1, 14.2 aufgebauten höhenverstellbaren Vorrichtung 14 geändert. Durch die Änderung der Höhe der höhenverstellbaren Vorrichtung 14 wird der Vertikalhub des Treibers 10 variiert und entsprechend dem Schieberkontaktflächenwinkel α ein bestimmter Verschiebeweg des Schiebers 8 bewirkt.The self-adaptive body (elements) 14.1, 14.2 are provided with a coupling or lifting device 20, by means of which the bodies 14.1, 14.2, which are displaceable relative to one another, can be brought out of contact before a displacement and again in contact with one another after the displacement has taken place, so that their Tooth surfaces disengage and then re-engage. The coupling or lifting device 20 has, for example, compression springs 21 which push the bodies 14.1, 14.2, which are displaceable relative to one another, apart before displacement or when the press is open. After a relative movement of the two bodies along the inclined plane has been carried out and the tooth surfaces are in engagement again, the height h of the height-adjustable device 14 made up of the bodies 14.1, 14.2 has changed. By changing the height of the height-adjustable device 14, the vertical stroke of the driver 10 is varied and a certain displacement path of the slide 8 is effected in accordance with the slide contact surface angle α.

In Fig. 4 ist zu erkennen, dass die Umformvorrichtung bzw. das Kalibrierwerkzeug 1 mehrere unabhängig voneinander steuerbare Schieber 8 zum Kalibrieren der Bauteilflansche F1, F2 aufweist. Dabei sind die oder mehrere der Schieber 8 vorzugsweise so angeordnet, dass sie zum Kalibrieren einer der Flansche F1, F2 des Bauteils B1, B2 gemeinsam auf den betreffenden Flansch F1 oder F2 einwirken, wobei eine Einwirkkraft des jeweiligen Schiebers 8 variabel einstellbar ist.In Fig. 4 it can be seen that the forming device or the calibration tool 1 has several independently controllable slides 8 for calibrating the component flanges F1, F2. The or more of the slides 8 are preferably arranged in such a way that they are used to calibrate one of the flanges F1, F2 of the Component B1, B2 act jointly on the flange F1 or F2 in question, an effective force of the respective slide 8 being variably adjustable.

Vorzugsweise ist pro Bauteil B mindestens jeweils ein Schieber pro Bauteilflansch F1, F2 in der Umformvorrichtung angeordnet. Bei gleichzeitigem Formen von zwei Bauteilen B1, B2, die jeweils zwei Flansche F1, F2 aufweisen, sind somit in der Umformvorrichtung mindestens vier Schieber 8 angeordnet.At least one slide per component flange F1, F2 is preferably arranged in the forming device for each component B. When two components B1, B2 each have two flanges F1, F2 are formed at the same time, at least four slides 8 are thus arranged in the forming device.

Die dem Flansch F1, F2 des Bauteils B1, B2 zugewandte Formfläche 8.3 des Schiebers 8 entspricht im Wesentlichen einem Abschnitt des Flanschverlaufes des Bauteils B1, B2. Beispielsweise haben einer der beiden Bauteilflansche F1, F2 und die zugeordnete Formfläche 8.3 des oder der Schieber 8 einen kurvenförmigen Verlauf in xy-Richtung, d. h. in der Horizontalen. Der andere der beiden Bauteilflansche F1, F2 und die Formfläche 8.3 des ihm zugeordneten Schiebers 8 können dagegen einen im Wesentlichen geradlinigen Verlauf in xy-Richtung aufweisen (vgl. Fig. 4).The shaped surface 8.3 of the slide 8 facing the flange F1, F2 of the component B1, B2 essentially corresponds to a section of the flange profile of the component B1, B2. For example, one of the two component flanges F1, F2 and the associated shaped surface 8.3 of the slide (s) 8 have a curved profile in the xy direction, that is to say in the horizontal. The other of the two component flanges F1, F2 and the shaped surface 8.3 of the slide 8 assigned to it, on the other hand, can have an essentially straight course in the xy direction (cf. Fig. 4 ).

Die Steuerungsvorrichtung 6 der erfindungsgemäßen Umformvorrichtung ist vorzugsweise mit einer speicherprogrammierbaren Steuerung ausgestattet, welche die Bewegungen des jeweiligen Stellmotors M steuert. Des Weiteren kann die Auswertevorrichtung 4 und/oder die Steuerungsvorrichtung 6 mit einer Mensch-Maschinen-Schnittstelle 30 versehen sein, über die ein Nutzer bzw. Bedienpersonal von außen mit Komponenten der Umformvorrichtung, beispielsweise mit der Auswertevorrichtung 4, dem Prozessor und/oder der speicherprogrammierbaren Steuerung 6 kommunizieren kann.The control device 6 of the forming device according to the invention is preferably equipped with a programmable logic controller which controls the movements of the respective servomotor M. Furthermore, the evaluation device 4 and / or the control device 6 can be provided with a man-machine interface 30, via which a user or operating personnel from the outside with components of the forming device, for example with the evaluation device 4, the processor and / or the programmable memory Control 6 can communicate.

Claims (13)

  1. Method of producing a component (B; B1, B2) from sheet metal, in which a sheet metal blank is formed by forming into a component (B; B1, B2) having flanges (F1, F2), and in which a calibration process is carried out to achieve a predetermined dimensional accuracy of the flanges (F1, F2),
    comprising the process steps:
    detecting an actual position of the flanges (F1, F2) after a forming process has been carried out,
    comparing data of the detected actual position with data of a nominal position of the flanges (F1, F2) of the component (B; B1, B2) to be produced,
    calculating a deviation of the actual position from the nominal position of the flanges (F1, F2), and
    automatically controlling at least one calibrating tool (1) as a function of the calculated deviation in order to calibrate the flanges (F1, F2) of the component (B; B1, B2) and thereby bring them into the predetermined dimensional accuracy,
    characterized in that as calibrating tool (1) a calibrating tool is used which has one or more height-adjustable devices (14) for setting a driver stroke and/or a slider stroke.
  2. Method according to claim 1,
    characterized in that the forming of the metal sheet blank into a component (B; B1, B2) having flanges (F1, F2) and the calibrating of the flanges (F1, F2) of the component (B; B1, B2) are carried out by means of a forming device having a forming tool, the calibrating tool (1) being driven by means of the forming device in cycle with the forming device or in cycle with a press, with which the forming device or the press operates.
  3. Method according to claim 1 or 2,
    characterized in that the actual position of the flanges (F1, F2) is detected by means of an optical system, preferably a camera system or laser system.
  4. Method according to any one of claims 1 to 3, characterized in that the calibrating tool (1) used is a calibrating tool which has a plurality of independently controllable sliders (8) for calibrating the flanges (F1, F2).
  5. Forming device for producing a component (B; B1, B2) having flanges (F1, F2) from sheet metal, in particular for carrying out the method according to one of claims 1 to 4, having a forming tool for forming a sheet metal blank into a component (B; B1, B2) having flanges (F1, F2) and having at least one calibrating tool (1) for calibrating the flanges in order to bring the flanges into a predetermined dimensional accuracy, comprising
    a detection device for detecting an actual position of the flanges (F1, F2) after a forming process has been carried out,
    an evaluation device for comparing data of the detected actual position with data of a nominal position of the flanges (F1, F2) of the component to be produced (B; B1, B2),
    a processor for calculating a deviation of the actual position from the nominal position of the flanges (F1, F2), and
    a control device for automatically controlling the calibrating tool as a function of the calculated deviation in order to calibrate the flanges (F1, F2) of the component (B; B1, B2) and thereby bring them into the predetermined dimensional accuracy,
    characterized in that the calibrating tool (1) comprises one or more height-adjustable devices (14) for adjusting a driver stroke and/or a slider stroke.
  6. Forming device according to claim 5, characterized in that the calibrating tool (1) is driven by means of the forming device in a cycle with which the forming device or a press operates.
  7. Forming device according to claim 5 or 6, characterized in that the detection device is an optical detection device, preferably a camera system or laser system.
  8. Forming device according to any one of claims 5 to 7, characterized in that the respective height-adjustable device (14) comprises bodies (14.1, 14.2) which are displaceable relative to one another and have mutually associated contact surfaces (14.11, 14.21) which are located on a plane which is inclined with respect to the direction of movement of the driver stroke.
  9. Forming device according to claim 8, characterized in that the mutually associated contact surfaces (14.11, 14.21) have mutually corresponding tooth surfaces in the manner of straight-toothed racks.
  10. Forming device according to claim 8 or 9, characterized by a coupling or lifting device (20) by means of which the bodies (14.1, 14.2) displaceable relative to one another can be brought out of contact before displacement and into contact with one another after displacement has taken place.
  11. Forming device according to one of claims 8 or 10, characterized in that at least one of the displaceable bodies (14.1, 14.2) is coupled to a servomotor (M).
  12. Forming device according to any one of the claims 5 to 11, characterized in that the calibrating tool (1) has a plurality of independently controllable sliders (8) for calibrating the flanges (F1, F2).
  13. Forming device according to any one of claims 5 to 12, characterized in that the one or more of the sliders (8) are arranged in such a way that they act jointly on the relevant flange (F1, F2) for calibrating one of the flanges (F1, F2) of the component (B; B1, B2), an acting force of the respective slider (8) being variably adjustable.
EP19382652.6A 2019-07-29 2019-07-29 Method and forming device for manufacturing a metal sheet component comprising flanges Active EP3771502B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
ES19382652T ES2905725T3 (en) 2019-07-29 2019-07-29 Method and forming device for the manufacture of a sheet metal component that has flanges
PT193826526T PT3771502T (en) 2019-07-29 2019-07-29 Method and forming device for manufacturing a metal sheet component comprising flanges
EP19382652.6A EP3771502B1 (en) 2019-07-29 2019-07-29 Method and forming device for manufacturing a metal sheet component comprising flanges

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19382652.6A EP3771502B1 (en) 2019-07-29 2019-07-29 Method and forming device for manufacturing a metal sheet component comprising flanges

Publications (2)

Publication Number Publication Date
EP3771502A1 EP3771502A1 (en) 2021-02-03
EP3771502B1 true EP3771502B1 (en) 2021-12-15

Family

ID=67514509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19382652.6A Active EP3771502B1 (en) 2019-07-29 2019-07-29 Method and forming device for manufacturing a metal sheet component comprising flanges

Country Status (3)

Country Link
EP (1) EP3771502B1 (en)
ES (1) ES2905725T3 (en)
PT (1) PT3771502T (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021121616B3 (en) 2021-08-20 2022-10-06 Thyssenkrupp Steel Europe Ag Process for the production of sheet metal components and device therefor
DE102022100163B3 (en) * 2022-01-05 2023-02-09 Thyssenkrupp Steel Europe Ag Process for the production of sheet metal components and device therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430879A (en) * 1981-06-12 1984-02-14 Hurco Manufacturing Company, Inc. Apparatus for controlling a press brake
JP2005305493A (en) 2004-04-20 2005-11-04 Toyota Motor Corp Over-bend forming die, press and over-bend forming method
JP5721388B2 (en) * 2009-12-04 2015-05-20 株式会社日立製作所 Servo press control device and control method, and servo press equipped with this control device
JP5808297B2 (en) 2012-06-27 2015-11-10 Jfeスチール株式会社 Press forming method, press forming apparatus
DE102013103612B8 (en) * 2013-04-10 2023-12-28 Thyssenkrupp Steel Europe Ag Process and compression tool for producing highly dimensionally stable half-shells
DE102016118419A1 (en) * 2016-09-29 2018-03-29 Thyssenkrupp Ag Method and device for producing components with an adapted floor area

Also Published As

Publication number Publication date
ES2905725T3 (en) 2022-04-11
PT3771502T (en) 2022-02-03
EP3771502A1 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
EP1640080B1 (en) Hemming device and method with workpiece protection
EP2616197B1 (en) Device and method for producing at least partially closed hollow profiles with rotatable die halves and low cycle time
AT402372B (en) SHEET BENDING MACHINE WITH A MANIPULATOR AND A DETECTOR DEVICE FOR THE POSITION OF THE WORKPIECE
EP2024111B1 (en) Device and method for producing profiled bodies
EP2701861B1 (en) Method and device for producing flangeless drawn parts
EP3274110B1 (en) Forming tool and method for optimizing board forming in a forming tool
DE102005022052A1 (en) Method for straightening long metal workpieces especially rail track lengths by applying bending forces between a pair of thrust supports and a pair of thrust hammers with variable position and spacing
WO2020078792A1 (en) Method and device for laser cutting a sheet metal blank from a continuously conveyed sheet metal strip
EP3771502B1 (en) Method and forming device for manufacturing a metal sheet component comprising flanges
EP1202825A2 (en) Method and device for forming a corner limited on three sides, from a plate-shaped material with an even surface
WO2018055193A1 (en) Tool, machine tool, and method for machining planar workpieces
WO2018055184A1 (en) Tool and machine tool and method for machining plate-like workpieces
EP1661638B1 (en) Method and device for precision rolling of rotationally symmetric workpieces
AT409733B (en) POSITIONING DEVICE AND METHOD FOR WELDING DOORS AND FLAPS
EP3515617B1 (en) Tool, machine tool, and method for machining planar workpieces
DE102005022043B3 (en) Straightening long workpieces, employs two hammers and two anvils which are spaced apart and offset from each other, one pair being closer to the workpiece ends
DE102009053534A1 (en) Device for transforming or tempering of sheet metal components, comprises forming tool, which is formed for transforming or tempering of transient area, which has molding surface
DE102004038208A1 (en) Method and tool device for forming
DE19901015A1 (en) Device and method for the technical joining of parts
DE102017118654A1 (en) Ironing arrangement, forming device with a Abstreckwerkzeuganordnung and method for forming a cup-shaped output part
EP3558557B1 (en) Device and method for shaping sheet metal
DE102012101952A1 (en) Press for manufacturing can object from slug, has setting unit that is provided for setting upper turning point and lower turning point between stamper and die based on measurement signal defining bottom thickness of can object
DE102010060627A1 (en) Forming machine, particularly for cold and hot forming of metal workpieces, such as metal sheets, comprises machine table, which has tool receiving area for lower forming tool and plunger with tool receiving portion
DE102016005850A1 (en) Method and device for joining at least two components, in particular for a motor vehicle
DE10203491A1 (en) forming tool

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210618

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GESTAMP UMFORMTECHNIK GMBH

Owner name: AUTOTECH ENGINEERING S.L.

Owner name: GESTAMP SERVICIOS, S.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GESTAMP BIZKAIA, S.A.

Owner name: GESTAMP UMFORMTECHNIK GMBH

Owner name: AUTOTECH ENGINEERING S.L.

Owner name: GESTAMP SERVICIOS, S.A.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GESTAMP AVEIRO - INDUSTRIA E ACESSORIOS DE AUTOMOVEIS, S.A.

Owner name: GESTAMP BIZKAIA, S.A.

Owner name: GESTAMP UMFORMTECHNIK GMBH

Owner name: AUTOTECH ENGINEERING S.L.

Owner name: GESTAMP SERVICIOS, S.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GESTAMP AVEIRO - INDUSTRIA E ACESSORIOS DE AUTOMOVEIS, S.A.

Owner name: GESTAMP BIZKAIA, S.A.

Owner name: GESTAMP UMFORMTECHNIK GMBH

Owner name: AUTOTECH ENGINEERING S.L.

Owner name: GESTAMP SERVICIOS, S.A.

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003005

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1455091

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220115

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3771502

Country of ref document: PT

Date of ref document: 20220203

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20220127

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2905725

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220411

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220315

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003005

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

26N No opposition filed

Effective date: 20220916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220729

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211215

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230825

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230725

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230729