EP3768568B1 - Véhicule ferroviaire comprenant un dispositif de commande - Google Patents

Véhicule ferroviaire comprenant un dispositif de commande Download PDF

Info

Publication number
EP3768568B1
EP3768568B1 EP19721218.6A EP19721218A EP3768568B1 EP 3768568 B1 EP3768568 B1 EP 3768568B1 EP 19721218 A EP19721218 A EP 19721218A EP 3768568 B1 EP3768568 B1 EP 3768568B1
Authority
EP
European Patent Office
Prior art keywords
rail vehicle
control
rail
trained
rail vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19721218.6A
Other languages
German (de)
English (en)
Other versions
EP3768568A1 (fr
EP3768568C0 (fr
Inventor
Laurentiu GOGA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility GmbH
Original Assignee
Siemens Mobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility GmbH filed Critical Siemens Mobility GmbH
Publication of EP3768568A1 publication Critical patent/EP3768568A1/fr
Application granted granted Critical
Publication of EP3768568B1 publication Critical patent/EP3768568B1/fr
Publication of EP3768568C0 publication Critical patent/EP3768568C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2210/00Vehicle systems
    • B61L2210/02Single autonomous vehicles

Definitions

  • the invention relates to a rail vehicle with a control device for controlling the rail vehicle.
  • rail vehicles are controlled via higher-level monitoring devices in the form of signal boxes.
  • Such control or monitoring by the signal box requires a permanent communication connection to the rail vehicles in the track section controlled by the signal box.
  • the disclosure document DE 10 2006 007 788 A1 discloses a method for computer-aided monitoring of the operation of a rail vehicle.
  • the invention is based on the object of specifying a rail vehicle that enables more independent driving than before.
  • the control device is based on artificial intelligence and has been trained to control the rail vehicle on at least a predetermined route.
  • the rail vehicle also has a communication device for direct communication with other rail vehicles.
  • a significant advantage of the rail vehicle according to the invention can be seen in the fact that it is based on artificial intelligence and, in view of the computing power available today, can be very easily enabled to make a railway track system completely self-sufficient, in particular, for example, without Interlocking monitoring, or at least largely to drive independently in a safe manner.
  • a signal box can also be used to increase security, but this is not always necessary.
  • control device has been trained using machine learning on the basis of external data.
  • control device has been trained on the basis of measurement data that was previously recorded during previous journeys of the rail vehicle or another rail vehicle with the same driving behavior on the specified route.
  • control device can be or have been trained in an advantageous manner on the basis of route data which describes the predetermined route.
  • control device records measurement data while driving on the specified route, stores it and uses it for subsequent machine learning for the purpose of improving its control behavior, i.e. improves its control behavior with the recorded measurement data within the framework of machine learning.
  • the control device has been trained in such a way that when controlling the rail vehicle, it takes into account information from other rail vehicles traveling on the route, in particular a rail vehicle in front, in particular location information, speed information and / or timetable information from other rail vehicles.
  • the control device is preferably trained in particular in such a way that it maintains a predetermined minimum distance from a rail vehicle in front when controlling the rail vehicle.
  • control device For routes with an available, higher-level monitoring device, in particular a signal box, it is advantageous if the control device has been trained in such a way that it takes into account, in particular executes, control commands from the higher-level monitoring device or the signal box when controlling the rail vehicle.
  • the control device has preferably been trained for an ATO driving operation, in particular an ATO driving operation with automation level 4, and/or for a driving operation according to ETCS Level 3.
  • the invention also relates to a method for operating rail vehicles according to claim 9.
  • the rail vehicles are controlled by the vehicle's own control devices, which are based on artificial intelligence and have been trained to control the respective rail vehicle on the route to be traveled, whereby the rail vehicles communicate directly with each other.
  • the rail vehicles preferably drive autonomously.
  • control devices when controlling their rail vehicle, take into account information from other rail vehicles traveling on the route, in particular a rail vehicle in front, in particular location information, speed information and / or timetable information from other rail vehicles.
  • control devices record measurement data while driving on the specified route, store them and use them for subsequent machine learning, thereby increasing their artificial intelligence.
  • a higher-level monitoring device in particular a signal box, preferably takes over the control of the rail vehicles in whole or in part. For this purpose, it preferably transmits control commands to the control devices of the rail vehicles.
  • the Figure 1 shows a railway track system 5, which is driven by three rail vehicles 10, 11, 12.
  • the rail vehicles 10, 11 and 12 each have a control device 100 which is based on artificial intelligence and has been trained to control their respective rail vehicle on at least a predetermined route.
  • control devices 100 of the rail vehicles 10, 11 and 12 are each programmed in such a way that the rail vehicles 10, 11 and 12 move from a starting point 20 of the railway track system 5 to an upper destination point 21 in Figure 1 and/or a lower one Can drive to destination point 22 and can return to the starting point 20 from the two destination points 21 and 22 in a corresponding manner.
  • the rail vehicles 10, 11 and 12 communicate with one another by means of communication devices (not shown in detail), which can be arranged in or outside the control devices 100.
  • Such communication can be based, for example, on radio signals F, as exemplified in the Figure 1 is shown.
  • Radio communication can based on the GSM-R mobile radio system known in railway technology or on another mobile radio system.
  • the rail vehicles 10, 11 and 12 communicate with each other directly via radio, i.e. without using a higher-level communication network.
  • the Figure 2 shows a second exemplary embodiment of a railway track system 5, which is driven by three rail vehicles 10, 11 and 12.
  • the rail vehicles 10, 11 and 12 each have control devices 100 which are based on artificial intelligence and have been trained to control the respective rail vehicle with a view to driving at least a predetermined route, here between the starting point 20 and the two destination points 21 and 22 are.
  • an interlocking 30 is provided, which forms a higher-level monitoring device and can transmit control commands SB to the rail vehicles 10, 11 and 12, which are to be taken into account by the rail vehicles 10, 11 and 12.
  • Such monitoring or additional control of rail vehicle traffic on the railway track 5 by the signal box 30 is carried out in particular when the signal box 30 determines that the rail vehicles 10, 11 and 12 traveling on the railway track 5 are in a dangerous situation or are approaching a dangerous situation .
  • the control device 100 has been trained on the rail vehicles 10, 11 and 12 by machine learning in such a way that the rail vehicles 10, 11 and 12 can drive in an automatic driving mode, also known in technical terms as ATO driving mode. Particularly preferably, completely autonomous driving according to automation level 4 is achieved.
  • the rail vehicles 10, 11 and 12 communicate with one another by means of their control devices 100;
  • control devices 100 In this regard, reference is made to the above explanations in connection with FIG.
  • the signal box 30 will transmit any control commands SB for controlling or influencing the driving behavior of the rail vehicles 10, 11 and 12, preferably via radio. It is advantageous if the signal box 30 uses the same radio system as the rail vehicles 10, 11 and 12 as part of their communication with one another.
  • the Figure 3 shows an exemplary embodiment of a control device 100, which is used in the rail vehicles 10, 11 and 12 according to the Figures 1 and 2 can be used.
  • the control device 100 according to Figure 3 has a computer 110 and a memory 120.
  • a control program module SPM is stored in the memory 120, which determines the behavior of the computer 110 and thus the control behavior of the control device 100 as a whole.
  • the control program module SPM is in accordance with the exemplary embodiment Figure 3 been generated by machine learning using an external training device 200.
  • the external training device 200 preferably uses external data De, which is supplied by external sources, to train the control program module SPM or to form the control program module SPM.
  • the external data can include, for example, driving behavior data that describes the driving behavior of the respective rail vehicle 10, 11 or 12.
  • the training device uses 200 according to Figure 3 For training the control program SPM, preferably measurement data Dm, which were obtained from previous journeys of the respective rail vehicle or another rail vehicle with the same or similar driving behavior on the specified route or the railway track system 5 according to Figures 1 and 2 have been previously recorded.
  • the training device 200 will advantageously use route data Ds to train the control program SPM, which shows the routes to be traveled between the starting point 20 and the two destination points 21 and 22 or the railway track system 5 according to Figures 1 and 2 describe completely.
  • the training device 200 For training the control device 100, the training device 200 preferably has a training program TPM stored in a memory 220, which is executed by a computing device 210 of the training device 200.
  • control program module SPM and thus the control behavior of the control device 100 is completely determined before the rail vehicles 10, 11 and 12 are put into operation and remains unchanged afterwards.
  • Such a design of the control device 100 is particularly advantageous in view of the fact that it is possible to understand at any time on which data set the artificial intelligence of the control device 100 is based or on what level of knowledge the control device 100 works on in its control behavior.
  • the Figure 4 shows a second exemplary embodiment of a control device 100, which is used in the rail vehicles 10, 11 and 12 according to the Figures 1 and 2 can be used.
  • the control device 100 according to Figure 4 has been trained using an external training device 200 or an external training program TPM, as described in connection with Figure 3 has already been explained above.
  • the external training using the external training device 200 can be based on external data De, measurement data Dm and route data Ds; In this context, please refer to the above explanations in connection with Figure 3 referred.
  • the memory 120 additionally contains its own training program TPMe, which enables further training of the control device 100 and thus a further improvement of the artificial intelligence of the control device 100.
  • the further training of the control device 100 using the own or internal training program TPMe is preferably based on current measurement data Dma, which is recorded and processed during current journeys of the respective rail vehicle 10, 11 or 12, i.e. after completion of the external training by the external training device 200 become.
  • An advantage of the exemplary embodiment according to Figure 4 is that a further improvement of the artificial intelligence and thus the control behavior of the control device 100 can be achieved by additionally using current measurement data Dma for training after the external training has been completed by the external training device 200, so that the control behavior and thus the Driving behavior of the rail vehicle can be improved on further journeys compared to the original level of knowledge or the original learning success.
  • the Figure 5 shows a third exemplary embodiment of a control device 100, which is used in the rail vehicles 10, 11 and 12 according to the Figures 1 and 2 can be used.
  • the control device 100 has a computer 110 and a memory 120 and in this respect corresponds to the exemplary embodiments according to Figures 3 and 4 .
  • a training program TPMe is stored, which carries out the machine learning and thus the generation of the artificial intelligence of the SPM control program entirely on its own.
  • the control device's own Training program TPMe preferably use external data De, measurement data Dm, route data Ds and current measurement data Dma, as is the case in connection with the Figures 3 and 4 has been explained above.
  • An advantage of the embodiment variant according to Figure 5 is that an external training device 200, as in the exemplary embodiments according to Figures 3 and 4 is provided, can be dispensed with since the control program module SPM can be generated solely on the basis of the own training program TPMe in the memory 120 of the control device 100.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Claims (12)

  1. Véhicule (10, 11, 12) ferroviaire comprenant un dispositif (100) de commande embarqué pour la commande du véhicule (10, 11, 12) ferroviaire, dans lequel le dispositif (100) repose sur l'intelligence artificielle et a subi un apprentissage pour commander le véhicule (10, 11, 12) ferroviaire au moins sur un parcours donné à l'avance, dans lequel le véhicule (10, 11, 12) ferroviaire est constitué pour, au moyen du dispositif (100) de commande, emprunter une installation de chemin de fer d'une façon sûre d'une manière autonome complètement ou au moins dans une grande mesure,
    caractérisé en ce que
    le véhicule (10, 11, 12) ferroviaire a un dispositif de communication pour une communication directe avec d'autres véhicules ferroviaires et le dispositif (100) de commande a subi un apprentissage, de manière à ce que, lors de la commande du véhicule (10, 11, 12) ferroviaire, il prenne en compte des informations d'autres véhicules (10, 11, 12) ferroviaires empruntant le parcours, en particulier d'un véhicule (10, 11, 12) ferroviaire précédent, en particulier des informations de lieu, des informations de vitesse et/ou des informations de plan de circulation d'autres véhicules (10, 11, 12) ferroviaires.
  2. Véhicule (10, 11, 12) ferroviaire suivant la revendication 1,
    caractérisé en ce que
    le dispositif (100) de commande a subi un apprentissage par enseignement par machine sur la base de données (De) extérieures.
  3. Véhicule (10, 11, 12) ferroviaire suivant l'une des revendications précédentes,
    caractérisé en ce que
    le dispositif (100) de commande a subi un apprentissage sur la base de données (Dm) de mesure, qui ont été prises auparavant sur le parcours donné à l'avance, lors de trajets antérieurs du véhicule (10, 11, 12) ferroviaire ou d'un autre véhicule (10, 11, 12) ferroviaire ayant le même comportement de circulation.
  4. Véhicule (10, 11, 12) ferroviaire suivant l'une des revendications précédentes,
    caractérisé en ce que
    le dispositif (100) de commande a subi un apprentissage sur la base de données de parcours, qui décrivent le parcours donné à l'avance.
  5. Véhicule (10, 11, 12) ferroviaire suivant l'une des revendications précédentes,
    caractérisé en ce que
    le dispositif (100) de commande détecte, pendant des trajets sur le parcours donné à l'avance, des données (Dma) de mesure en cours, les met en mémoire et les utilise pour l'enseignement par machine à suivre, afin d'améliorer son comportement de commande.
  6. Véhicule (10, 11, 12) ferroviaire suivant l'une des revendications précédentes,
    caractérisé en ce que
    le dispositif (100) de commande a subi un apprentissage, de manière à ce qu'il maintienne, lors de la commande du véhicule (10, 11, 12) ferroviaire, une distance minimum donnée à l'avance à un véhicule (10, 11, 12) ferroviaire le précédent.
  7. Véhicule (10, 11, 12) ferroviaire suivant l'une des revendications précédentes,
    caractérisé en ce que
    le dispositif (100) de commande a subi un apprentissage, de manière à prendre en compte, en particulier à exécuter, lors de la commande du véhicule (10, 11, 12) ferroviaire, des instructions (SB) de commande d'un dispositif de contrôle supérieur hiérarchiquement, en particulier d'un poste (30) d'aiguillage.
  8. Véhicule (10, 11, 12) ferroviaire suivant l'une des revendications précédentes,
    caractérisé en ce que
    le dispositif (100) de commande a subi un apprentissage pour un fonctionnement en circulation ATO, en particulier en fonctionnement en circulation ATO ayant le stade d'automatisation 4, et/ou pour un fonctionnement en circulation suivant ETCS level 3.
  9. Procédé pour faire fonctionner des véhicules ferroviaires, dans lequel on commande les véhicules (10, 11, 12) ferroviaires par des dispositifs (100) de commande embarqués, qui reposent sur l'intelligence artificielle et qui ont subi un apprentissage pour la commande du véhicule (10, 11, 12) ferroviaire respectif sur le parcours à emprunter, dans lequel les véhicules (10, 11, 12) ferroviaires sont constitués pour, au moyen des dispositifs (100) de commande, emprunter d'une façon sûre, de manière autonome complètement ou du moins dans une grande mesure, une installation de chemin de fer,
    caractérisé en ce que
    les véhicules (10, 11, 12) ferroviaires communiquent entre eux directement et les dispositifs (100) de commande ont subi un apprentissage de manière à ce que, lors de la commande de leur véhicule (10, 11, 12) ferroviaire, ils prennent en compte des informations d'autres véhicules (10, 11, 12) ferroviaires empruntant le parcours, en particulier d'un véhicule (10, 11, 12) ferroviaire précédent, en particulier des informations de lieu, des informations de vitesse et/ou des informations de plan de circulation d'autres véhicules (10, 11, 12) ferroviaires.
  10. Procédé suivant la revendication 9,
    caractérisé en ce que
    les véhicules (10, 11, 12) ferroviaires circulent d'une manière autonome.
  11. Procédé suivant l'une des revendications 9 à 10 précédentes,
    caractérisé en ce que
    les dispositifs (100) de commande détectent, pendant des trajets sur le parcours donné à l'avance, des données (Dma) de mesure en cours, les mettent en mémoire et les utilisent pour l'enseignement par machine à suivre, afin d'améliorer leur comportement de commande respectif.
  12. Procédé suivant l'une des revendications 9 à 11 précédentes,
    caractérisé en ce que
    dans le cas de la détection d'une situation de danger, un dispositif de contrôle supérieur hiérarchiquement, en particulier un poste (30) d'aiguillage, prend en charge en tout ou partie, la commande des véhicules (10, 11, 12) ferroviaires en transmettant en particulier des instructions (SB) de commande aux dispositifs (100) de commande des véhicules (10, 11, 12) ferroviaires.
EP19721218.6A 2018-05-16 2019-04-17 Véhicule ferroviaire comprenant un dispositif de commande Active EP3768568B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018207634.0A DE102018207634A1 (de) 2018-05-16 2018-05-16 Schienenfahrzeug mit Steuereinrichtung
PCT/EP2019/059937 WO2019219319A1 (fr) 2018-05-16 2019-04-17 Véhicule ferroviaire comprenant un dispositif de commande

Publications (3)

Publication Number Publication Date
EP3768568A1 EP3768568A1 (fr) 2021-01-27
EP3768568B1 true EP3768568B1 (fr) 2023-10-11
EP3768568C0 EP3768568C0 (fr) 2023-10-11

Family

ID=66379877

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19721218.6A Active EP3768568B1 (fr) 2018-05-16 2019-04-17 Véhicule ferroviaire comprenant un dispositif de commande

Country Status (4)

Country Link
EP (1) EP3768568B1 (fr)
DE (1) DE102018207634A1 (fr)
ES (1) ES2967226T3 (fr)
WO (1) WO2019219319A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019218611A1 (de) * 2019-11-29 2021-06-02 Siemens Mobility GmbH Fahrzeug und Verfahren zum Betreiben eines Fahrzeugs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133601A (ja) * 1990-09-21 1992-05-07 Toshiba Corp 保安機能付自動運転制御装置
AUPR221900A0 (en) * 2000-12-20 2001-01-25 Central Queensland University Vehicle dynamics prediction system and method
DE102006007788A1 (de) * 2006-02-20 2007-08-30 Siemens Ag Verfahren zur rechnergestützten Überwachung des Betriebs eines einen vorgegebenen Streckenverlauf fahrenden Fahrzeugs, insbesondere eines spurgebundenen Schienenfahrzeugs
DE102014219817A1 (de) * 2014-09-30 2016-03-31 Siemens Aktiengesellschaft Verkehrssicherung
CA3027360C (fr) * 2016-06-13 2022-04-12 Siemens Industry, Inc. Systeme et procede destines a l'optimisation d'itineraire de train comprenant un systeme d'apprentissage automatique

Also Published As

Publication number Publication date
EP3768568A1 (fr) 2021-01-27
ES2967226T3 (es) 2024-04-29
DE102018207634A1 (de) 2019-11-21
WO2019219319A1 (fr) 2019-11-21
EP3768568C0 (fr) 2023-10-11

Similar Documents

Publication Publication Date Title
EP3566105B1 (fr) Procédé et système de préparation d'une conduite au moins partiellement automatique d'un véhicule suiveur
DE102014224099A1 (de) Verfahren und Vorrichtung zum Betreiben von mehreren Fahrzeugen
EP3105092B1 (fr) Procédé d'utilisation d'un système de véhicule conçu pour la conduite au moins partiellement automatique d'un véhicule et véhicule automobile
DE102018212025A1 (de) Verfahren zum Betreiben eines autonomen Fahrzeugs und autonomes Fahrzeug
EP3795451B1 (fr) Procédé de localisation d'un véhicule dans une station destinée à un arrêt du véhicule
EP3634828B1 (fr) Procédé de commande permettant de faire fonctionner un véhicule ferroviaire
EP3768568B1 (fr) Véhicule ferroviaire comprenant un dispositif de commande
DE102018222677A1 (de) Verfahren zum Betreiben eines zeitweise autonom fahrenden Fahrzeugs
EP3102476B1 (fr) Procédé pour régler la circulation sur un réseau ferré et réseau ferré comportant une installation de maintenance de trains
EP3190023B1 (fr) Procédé, voiture de guidage et poids lourd destinés à faire entrer et sortir le poids lourd d'une autoroute
DE102014218946A1 (de) Verfahren und Vorrichtung zur Steuerung wenigstens eines Stromabnehmers eines Fahrzeugs
WO2020151844A1 (fr) Procédé de déplacement sans conducteur d'un véhicule sur une distance à l'intérieur d'un terrain fermé
WO2020119987A1 (fr) Procédé pour fournir des données cartographiques d'une carte numérique et un itinéraire
EP3060452A1 (fr) Commande de véhicule ferroviaire
WO2021219327A2 (fr) Installation ferroviaire avec système de diagnostic et son procédé de fonctionnement
DE102016203675A1 (de) Vorrichtung zur Erzeugung streckenbezogener Betriebsdaten
DE112016002303T5 (de) Signalsicherheitssystem
DE102015014627A1 (de) System und Verfahren zur Einstellung des Fahrgestellniveaus der Fahrzeuge in einer Fahrzeuggruppe
EP4331943A1 (fr) Réseau de transport et procédé de fonctionnement de véhicules ferroviaires dans un réseau de transport comprenant une combinaison de sections de voie avec et sans protection contre les trains
DE102016210849A1 (de) Planen einer Zugfahrt
DE102020209413A1 (de) Verfahren zum Betreiben eines teilweise automatisiert fahrenden Fahrzeugs
EP4331939A1 (fr) Réseau de trafic et procédé de fonctionnement de véhicules ferroviaires dans un réseau de trafic
WO2016074900A1 (fr) Procédé de mise en oeuvre d'une circulation automatique de trains et système de circulation des trains permettant la mise en oeuvre d'une circulation automatique de trains
EP4360990A1 (fr) Procédé de déneigement le long d'un trajet d'une installation technique ferroviaire et véhicule ferroviaire
EP4063232A1 (fr) Véhicule, en particulier véhicule ferroviaire et son procédé de fonctionnement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201021

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019009631

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B61L0015000000

Ipc: B61L0027500000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: B61L0015000000

Ipc: B61L0027500000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B61L 15/00 20060101ALI20230502BHEP

Ipc: B61L 27/50 20220101AFI20230502BHEP

INTG Intention to grant announced

Effective date: 20230525

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009631

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20231108

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20231113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240211

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2967226

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240112

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20240418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240111

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240507

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019009631

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231011

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240712

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240722

Year of fee payment: 6