EP3752721B1 - Abgasnachbehandlungseinrichtung zum eindosieren eines flüssigen abgasnachbehandlungsmittels - Google Patents

Abgasnachbehandlungseinrichtung zum eindosieren eines flüssigen abgasnachbehandlungsmittels Download PDF

Info

Publication number
EP3752721B1
EP3752721B1 EP19700042.5A EP19700042A EP3752721B1 EP 3752721 B1 EP3752721 B1 EP 3752721B1 EP 19700042 A EP19700042 A EP 19700042A EP 3752721 B1 EP3752721 B1 EP 3752721B1
Authority
EP
European Patent Office
Prior art keywords
exhaust
flow
gas aftertreatment
exhaust gas
funnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19700042.5A
Other languages
English (en)
French (fr)
Other versions
EP3752721A1 (de
Inventor
Kamran Khani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3752721A1 publication Critical patent/EP3752721A1/de
Application granted granted Critical
Publication of EP3752721B1 publication Critical patent/EP3752721B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/21Mixing gases with liquids by introducing liquids into gaseous media
    • B01F23/213Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids
    • B01F23/2132Mixing gases with liquids by introducing liquids into gaseous media by spraying or atomising of the liquids using nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/10Mixing by creating a vortex flow, e.g. by tangential introduction of flow components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/313Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit
    • B01F25/3131Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced in the centre of the conduit with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F2025/93Arrangements, nature or configuration of flow guiding elements
    • B01F2025/931Flow guiding elements surrounding feed openings, e.g. jet nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel

Definitions

  • the invention relates to an exhaust gas after-treatment device for metering a liquid exhaust gas after-treatment agent into an exhaust gas stream of an internal combustion engine, with a mixing chamber in which the exhaust gas after-treatment agent is mixed with the exhaust gas stream, the mixing chamber having a circular-cylindrical mixing tube which has a funnel-shaped circumference extending towards a free end has an enlarging end section, with a funnel element that opens conically at least in sections in the direction of the mixing tube, which funnel element has a plurality of flow openings in its jacket wall, and with an injection valve that is arranged on the end of the funnel element that faces away from the mixing tube, in order to inject the exhaust gas aftertreatment agent into the funnel element .
  • the invention relates to an exhaust gas aftertreatment system with the exhaust gas aftertreatment device mentioned above.
  • Exhaust gas aftertreatment devices of the type mentioned are known from the prior art.
  • exhaust gas aftertreatment devices that ensure pollutant reduction by using an additional exhaust gas aftertreatment agent.
  • SCR Selective Catalytic Reduction
  • An aqueous urea solution which is injected into the exhaust gas or the exhaust pipe by means of suitable metering systems, in particular injection valves, is suitable as an exhaust aftertreatment agent.
  • the reducing agent ammonia is obtained from the aqueous urea solution, which is fed to the exhaust gas during operation of the internal combustion engine, by means of thermolysis and hydrolysis.
  • an exhaust gas aftertreatment device of the type mentioned is known.
  • the exhaust gas is introduced radially into a mixing chamber so that a swirl is created even before the exhaust gas and exhaust gas aftertreatment agent are mixed with one another. This improves mixture preparation.
  • a funnel-shaped element ensures that the injected exhaust gas aftertreatment agent can initially expand over a predetermined length essentially undisturbed by the exhaust gas flow before it is mixed with the exhaust gas flow.
  • the exhaust gas can flow into the mixing tube independently of the exhaust gas aftertreatment agent.
  • EP 2 956 233 A1 DE 10 2010 032 576 A1 , DE 10 2014 211 260 A1 , EP 2 884 069 A1 , DE 11 2015 001 958 T5 or EP 2 171 229 B1 already known.
  • EP 3 067 529 A1 a generic exhaust gas aftertreatment device is already known.
  • the exhaust gas aftertreatment device with the features of claim 1 has the advantage that, despite a small installation volume, the exhaust gas and exhaust gas aftertreatment agent are optimally mixed, and crystalline by-products are avoided during operation.
  • this is achieved in that the funnel element lies at least substantially within the end section coaxially to the end section, and that at least some of the through-flow openings are each assigned a flow guide element that rises from the casing wall, in particular outwards, for generating a swirl flow in the mixing tube.
  • the funnel element lies essentially freely in the mixing chamber, but ends in a funnel-shaped, widened end section of the mixing tube, which also protrudes into the mixing chamber.
  • the fact that the funnel element lies at least essentially inside the end section ensures that the exhaust gas flowing into the mixing tube acts on the funnel element.
  • the exhaust gas flows at least partially through the through-flow openings through the casing wall of the funnel element in order to be mixed with the exhaust gas after-treatment agent inside the funnel element.
  • the flow guide elements assigned to the respective through-flow openings ensure that the exhaust gas flowing in or flowing through the jacket is directed into a swirling movement, which additionally improves the mixing of the exhaust gas aftertreatment agent with the exhaust gas. Because the swirl flow is achieved by the funnel element, the swirl flow takes place independently of how the exhaust gas is fed to the exhaust gas aftertreatment device.
  • the mixing chamber is therefore completely in the mixing tube. This makes it possible to design the exhaust gas aftertreatment device to be significantly more space-saving than was previously possible and at the same time to avoid the aforementioned disadvantages.
  • the through-flow openings are free of flow guide elements in a region close to the injector.
  • the through-flow openings in the area close to the injector represent simple openings that do not have a swirling effect on the exhaust gas and/or the exhaust gas aftertreatment agent. Rather, the simple through openings allow that
  • All flow openings are preferably each assigned a flow guide element.
  • the flow guide elements are thus present in order to prevent the swirl flow through the
  • Shell wall of the funnel element to generate flowing exhaust gas Shell wall of the funnel element to generate flowing exhaust gas.
  • the late generation of swirl also means that the exhaust gas aftertreatment agent spray can initially expand and atomize more or less undisturbed before it is mixed with the exhaust gas, as a result of which optimized mixing is achieved.
  • the fact that all through-flow openings remote from the injection valve are provided with flow guide elements ensures that swirl is generated with a high degree of efficiency.
  • the funnel element is arranged on a cup-shaped flow element, with the flow element lying in an exhaust gas supply channel into which the free end of the mixing tube opens.
  • the funnel element is thus held by a separate flow element, with the flow element being located in an exhaust gas supply duct and, in particular, being fastened to it.
  • the cup-shaped element directs the air flow from the feed channel in the direction of the mixing tube.
  • the cup-shaped configuration ensures that the injection valve is arranged particularly close to the tip of the funnel element in a simple manner.
  • the central axes of the cup-shaped flow element and the mixing tube are aligned with one another in order to achieve an advantageous flow effect.
  • the conical design of the cup-shaped flow element optimizes the routing of the exhaust gas from the exhaust gas feed channel into the mixing tube, in that turbulence in particular is avoided at the transition from the feed channel into the mixing tube.
  • the flow element defines an annular gap to the mixing tube or its orifice, through which the exhaust gas flowing into the mixing tube is compressed and/or accelerated, thereby further improving mixing with the exhaust gas aftertreatment agent.
  • the flow element protrudes in some areas into the end section of the mixing tube.
  • the formation of the annular gap and a defined guidance of the Exhaust flow guaranteed in the mixing tube.
  • the injection valve is preferably fastened or arranged on the flow element and/or on the funnel element in such a way that a central axis of the exhaust gas aftertreatment agent sprayed out conically and a swirl axis generated by the flow guide elements are at least essentially aligned with one another.
  • the exhaust gas aftertreatment agent is injected into the exhaust gas particularly close to the eye of the swirl flow, resulting in advantageous mixing.
  • the flow guide elements are designed or aligned in such a way that at least part of the injected exhaust gas aftertreatment agent impinges on an inner wall of the mixing tube.
  • the result of this is that the exhaust gas aftertreatment agent is distributed uniformly on the inside of the mixing tube wall and at least largely evaporates there during further operation of the internal combustion engine.
  • the swirl flow increases the thermal energy input into the wall, which is used to vaporize the exhaust aftertreatment agent.
  • the swirling flow prevents larger amounts of the exhaust aftertreatment agent from passing through the mixing tube without coming into contact with the inner wall.
  • the funnel element rests radially on the mixing tube. At its free end, at which the funnel element has its largest outer circumference, the funnel element thus bears radially against the inner wall of the mixing tube, which means that all of the exhaust gas has to flow through through-flow openings in the funnel element in order to get into the mixing tube.
  • the swirl flow is adjusted in a particularly reliable manner and the advantageous mixing is ensured.
  • an in particular annular bypass gap for the exhaust gas is present radially between the funnel element and the mixing tube.
  • a radial distance remains between the funnel element and the mixing tube or its inner wall. This leaves the distance also at the largest outer circumference of the funnel element.
  • the bypass channel can extend in the form of a ring or a ring segment over the circumference of the funnel element. This leaves the possibility that the funnel element is positioned radially in the mixing tube by means of one or more webs or spacers which are arranged on its outer circumference and bear against the inner wall of the mixing tube.
  • the funnel element opens in the shape of a funnel along its entire length.
  • the funnel element is thus configured in a funnel shape overall, so that it can be optimally adapted to the shape of the exhaust gas aftertreatment agent spray of the injection valve.
  • the funnel element is funnel-shaped only in one end area and cylindrical in an area in particular close to the injection valve, with the through-flow openings preferably being formed only in this area.
  • a flow guide element as described above, is preferably assigned to the or at least most of the through-flow openings in order to generate the hydraulic flow.
  • the funnel-shaped end area means that the exhaust gas aftertreatment agent spray can expand to the end of the funnel section and that advantageous mixing also occurs downstream of the funnel element in the mixing tube.
  • the exhaust gas supply channel extends transversely, in particular perpendicularly, to the central axis of the mixing tube. This results in a deflection of the exhaust gas into the mixing tube, which is, for example, 90°. This ensures a compact design, with the deflection having no adverse effect on the flow behavior due to the advantageous design of the exhaust gas aftertreatment device.
  • the exhaust gas feed channel causes an exhaust gas deflection of the exhaust gas into the mixing tube by 180° or less. As a result, particularly compact designs of the exhaust aftertreatment device can be achieved.
  • the flow guide elements preferably have a straight cross section and/or longitudinal section, or alternatively have a curvature in cross section and/or longitudinal section, through which the preferred swirl flow is achieved.
  • the exhaust gas aftertreatment system according to the invention with the features of claim 14 is characterized by the exhaust gas aftertreatment device according to the invention. This results in the advantages already mentioned.
  • FIG 1 shows an exhaust gas aftertreatment system 1 for an internal combustion engine of a motor vehicle in a simplified sectional view.
  • the exhaust aftertreatment system 1 has an exhaust pipe 2 which is connected to the internal combustion engine and has an exhaust gas inlet 3 .
  • a first catalytic converter 4 and a particle filter 5 are arranged downstream of the catalytic converter 4, which treat the exhaust gas flowing into the exhaust pipe 2 in a known manner.
  • the exhaust gas pipe 2 merges into an exhaust gas supply channel 6 for an exhaust gas aftertreatment device 7, which is described in more detail below.
  • FIG 2 shows an enlarged sectional view of the exhaust gas aftertreatment device 7 .
  • This has a mixing tube 8 opening into the exhaust gas supply channel 6 .
  • An end section 9 of the mixing tube facing the exhaust gas supply channel 6 widens conically in the direction of the exhaust gas supply channel 6 .
  • the end section 9 ends on a first side wall 10 of the exhaust gas supply duct 6.
  • a cup-shaped flow element 12 is fastened to a side wall 11 of the exhaust gas supply duct 6, which is arranged opposite the side wall 10 in the present case penetrates completely from the side wall 11 to the side wall 10 .
  • the flow element 12 protrudes into an orifice of the end section 9 in the side wall 10 .
  • the flow element 12 has an end section 13 which faces the mixing tube 8 and tapers in the direction of the mixing tube 8 .
  • the end section 13 extends, as seen in the longitudinal extension of the flow element 12, or in the axial extension, over more than half of the entire longitudinal extension of the flow element 12 a mixing tube 8 facing bottom portion 15, which is substantially extends parallel to the side walls 10 and 11 of the exhaust gas supply channel 6.
  • an opening 16 is formed centrally.
  • a funnel element 17 is assigned to this opening 16 .
  • the funnel element 17 is funnel-shaped overall in such a way that, starting from the flow element 12, it widens in the direction of the mixing tube 8, with a central axis of the funnel element 17 and the mixing tube 8 being aligned with one another, at least in the end section 9.
  • the funnel element 17 or its casing wall 19 protrudes from the flow element 12 through the entire conical end section 9 and into the mixing tube 8 .
  • the funnel element 17 is thus located overall in the end section 9. At its free end, its maximum outer circumference corresponds essentially or almost to the inner circumference of the mixing tube 8.
  • the funnel element 17 has a multiplicity of flow openings 18 which are distributed uniformly in a casing wall 19 of the funnel element 17 . For reasons of clarity, only some of the flow openings 18 are provided with a reference number in the present case.
  • each through-flow opening is assigned a flow-guiding element 20, which extends radially in sections over the respective through-flow opening, so that the flow-guiding elements 20 specify a flow direction for exhaust gas flowing through the flow opening 18, which is in the circumferential direction or at least essentially in the circumferential direction of the funnel element 17 , so that a swirling flow through the funnel element 17 for the exhaust gas, which flows axially into the mixing tube 8, is generated.
  • the funnel element 17 extends almost to the inner wall of the mixing tube 8 , the exhaust gas is forced to pass through the flow openings 18 or the funnel element 17 .
  • the flow guide elements 20 ensure that the exhaust gas entering the mixing tube 8 is guided through the mixing tube 8 in a swirling flow.
  • the flow guide elements 20 are all aligned in the same direction.
  • an injection valve 21 is arranged in the flow element 12, which is connected by a delivery device, not shown here, to a tank that provides liquid exhaust gas aftertreatment agent.
  • the liquid exhaust gas after-treatment agent is mixed with the exhaust gas flow which penetrates into the mixing tube 8.
  • the mixing tube 8 thus represents a mixing chamber 22.
  • the injection valve 21 is arranged centrally on the flow element 12 in such a way that a central axis of a spray cone of the injection valve 21 is aligned with the central axis of the funnel element 17 (dash-dot line in figure 2 ).
  • the funnel element 17 is preferably designed in such a way that the funnel opening axially facing the mixing tube is larger than the spray cone of the injection valve 21, so that wetting of the funnel element 17 with the exhaust gas aftertreatment agent is prevented.
  • the exhaust gas flows through the exhaust gas feed duct 6 in the direction of the exhaust gas aftertreatment device 7 and is conducted through the advantageous flow part 12 into the end section 9 of the mixing tube 8 . Because the flow part 12 partially projects into the mixing tube 8, an annular gap is formed through which the exhaust gas flow flows, as a result of which it is compressed and accelerated. When passing through the throughflow openings 18 of the funnel element 17, the exhaust gas flow is forced into a swirling movement and mixed with the injected exhaust gas aftertreatment agent.
  • the flow part 12 can be designed symmetrically or asymmetrically in order to ensure an optimal flow of exhaust gas.
  • the external inner area of the flow part 12 is preferably designed in such a way that the injection valve 21, including the necessary insulation elements, is accommodated in the depression.
  • the flow part 12 is formed from sheet metal.
  • the exhaust gas is supplied to the funnel element 17 particularly evenly.
  • a flow-evening geometry fitted upstream of the funnel element 17 can be supplemented in order to ensure that the exhaust gas is supplied to the funnel element 17 as homogeneously as possible.
  • the funnel element 17 is expediently fastened to the flow part 12 and optionally supported laterally or radially on the mixing tube 8 .
  • radial spacer elements or spacers can be present at the end of the funnel element 17 , which bear against the inside of the mixing tube 8 .
  • the advantageous swirl flow ensures that the introduced exhaust gas after-treatment agent is distributed evenly over the inner wall of the mixing tube 8 and from there it is largely evaporated.
  • the swirling flow increases the thermal energy input into the mixing tube 8, which can be further used for evaporating the exhaust gas aftertreatment agent.
  • it can also be designed in such a way that part of the exhaust gas is guided past the transition or radially between the funnel element 17 and the mixing tube 8 through an annular gap as a bypass channel 23 .
  • Such a bypass channel 23 is formed radially between the free end of the funnel element 17 and the mixing tube 8 . As a result, for example, a dynamic pressure acting on the exhaust system is reduced.
  • exhaust gas is deflected by the exhaust system 1 by 180°
  • other exhaust gas feeds can also be conceivable which, for example, have a deflection of only 90° or less.
  • FIGs 3A and 3B show the funnel element 17 according to the first example of FIG figure 2 in a side view ( Figure 3A ) and in a plan view ( Figure 3B ). It can be seen here that the flow guide elements 20 have an arched contour in order to generate an optimal swirl flow. The openings of the flow guide elements 20 are always aligned in the same direction in order to ensure a clear swirl flow.
  • FIGS 4A and 4B show an embodiment of the funnel element 17, in a side view and in a plan view, the funnel element 17 according to this embodiment differing from the preceding one Example differs in that in an end region close to the injector, that is to say at the end with the smaller diameter, a plurality of through-flow openings 18 are formed without flow-guiding elements.
  • a plurality of through-flow openings 18 are formed without flow-guiding elements.
  • FIGS 5A and 5B show another embodiment of the funnel element 17, which differs from the embodiment of FIG Figures 4A and 4B differs in that the flow guide elements 20 are not formed in the shape of an archway, but each have a straight contour in cross section and longitudinal section, that is to say are formed in the shape of a plate. This enables the funnel element 17 to be realized in a particularly cost-effective manner. Also in the embodiment of Figure 3A and 3B the flow guide elements 20 can be plate-shaped.
  • the flow guiding elements 20 are preferably designed as outwardly bent air guiding tongues of the jacket wall 19 .
  • the through-flow openings 18 with the flow-guiding elements 20 are arranged/designed in the circular-cylindrical section. In this way, too, an advantageous mixing of exhaust gas and exhaust gas after-treatment agent and the avoidance of crystal formation is achieved.

Description

  • Die Erfindung betrifft eine Abgasnachbehandlungseinrichtung zum Eindosieren eines flüssigen Abgasnachbehandlungsmittels in einen Abgasstrom einer Brennkraftmaschine, mit einer Mischkammer, in welcher das Abgasnachbehandlungsmittel mit dem Abgasstrom vermischt wird, wobei die Mischkammer ein kreiszylinderförmiges Mischrohr aufweist, das einen trichterförmigen, sich zu einem freien Ende hin den Umfang vergrößernden Endabschnitt aufweist, mit einem sich in Richtung des Mischrohrs zumindest abschnittsweise kegelförmig öffnenden Trichterelement, das mehrere Durchströmungsöffnungen in seiner Mantelwand aufweist, und mit einem Einspritzventil, das an dem von dem Mischrohr abgewandten Ende des Trichterelements angeordnet ist, um das Abgasnachbehandlungsmittel in das Trichterelement hineinzuspritzen.
  • Weiterhin betrifft die Erfindung ein Abgasnachbehandlungssystem mit der oben genannten Abgasnachbehandlungseinrichtung.
  • Stand der Technik
  • Abgasnachbehandlungseinrichtungen der eingangs genannten Art sind aus dem Stand der Technik bekannt. Um den strenger werdenden Gesetzgebungen in Bezug auf zulässige Ausstoßmengen von Schadstoffen im Abgas von Brennkraftmaschinen von Kraftfahrzeugen gerecht zu werden, ist es bekannt, Abgasnachbehandlungseinrichtungen einzusetzen, die durch Verwendung eines zusätzlichen Abgasnachbehandlungsmittels eine Schadstoffreduktion gewährleisten. So ist es beispielsweise bekannt, durch das sogenannte SCR-Verfahren (SCR = Selektive Katalytische Reduktion) ein Abgas zunächst mit einem Abgasnachbehandlungsmittel zu vermischen, und dann einem SCR-Katalysator zuzuführen, in welchem das Abgas zusammen mit dem Abgasnachbehandlungsmittel reagiert und Schadstoffemissionen gesenkt werden. Als Abgasnachbehandlungsmittel eignet sich eine wässrige Harnstofflösung, die mittels geeigneter Dosiersysteme, insbesondere Einspritzventile, in das Abgas beziehungsweise das Abgasrohr eingespritzt wird. Aus der wässrigen Harnstofflösung, welche während des Betriebs der Brennkraftmaschine dem Abgas zugeführt wird, wird mittels Thermolyse und Hydrolyse das Reduktionsmittel Ammoniak gewonnen. Bei der Aufbereitung der Harnstofflösung in dem Abgas besteht die Schwierigkeit, dass neben der gewünschten chemischen Reaktion der Thermolyse, bei welcher der Ammoniak freigesetzt wird, auch kristalline Nebenprodukte entstehen können.
  • Aus der Offenlegungsschrift WO 2015/197145 A1 ist beispielsweise eine Abgasnachbehandlungseinrichtung der eingangs genannten Art bekannt. Um das Vermischen von Abgasnachbehandlungsmittel und Abgas zu verbessern, wird das Abgas radial in eine Mischkammer eingebracht, sodass ein Drall entsteht, noch bevor Abgas und Abgasnachbehandlungsmittel miteinander vermischt werden. Hierdurch wird die Gemischaufbereitung verbessert. Durch ein trichterförmiges Element wird dabei gewährleistet, dass sich das eingespritze Abgasnachbehandlungsmittel zunächst über eine vorbestimmte Länge im Wesentlichen ungestört durch den Abgasstrom aufweiten kann, bevor es mit dem Abgasstrom vermischt wird. Dabei kann das Abgas unabhängig von dem Abgasnachbehandlungsmittel in das Mischrohr einströmen.
  • Weitere Abgasnachbehandlungseinrichtungen sind beispielsweise aus EP 2 956 233 A1 , DE 10 2010 032 576 A1 , DE 10 2014 211 260 A1 , EP 2 884 069 A1 , DE 11 2015 001 958 T5 oder EP 2 171 229 B1 bereits bekannt. Aus der Offenlegungsschrift EP 3 067 529 A1 ist bereits eine gattungsgemäße Abgasnachbehandlungseinrichtung bekannt.
  • Offenbarung der Erfindung
  • Die erfindungsgemäße Abgasnachbehandlungseinrichtung mit den Merkmalen des Anspruchs 1 hat den Vorteil, dass trotz eines geringen Bauraumvolumens eine optimale Vermischung von Abgas und Abgasnachbehandlungsmittel erfolgt, und kristalline Nebenprodukte im Betrieb vermieden werden. Erfindungsgemäß wird dies dadurch erreicht, dass das Trichterelement zumindest im Wesentlichen innerhalb des Endabschnitts koaxial zu dem Endabschnitt liegt, und dass zumindest einigen der Durchströmungsöffnungen jeweils ein sich von der Mantelwand insbesondere nach außen erhebendes Strömungsleitelement zum Erzeugen einer Drallströmung in dem Mischrohr zugeordnet ist. Das Trichterelement liegt dabei im Wesentlichen frei in der Mischkammer, endet jedoch in einem trichterförmig aufgeweiteten Endabschnitt des in die Mischkammer ebenfalls hineinragenden Mischrohrs. Dadurch, dass das Trichterelement zumindest im Wesentlichen innerhalb des Endabschnitts liegt, wird erreicht, dass eine Beaufschlagung des Trichterelements mit dem in das Mischrohr einströmende Abgas sichergestellt ist. Das Abgas strömt dabei zumindest teilweise durch die Durchströmungsöffnungen durch die Mantelwand des Trichterelements hindurch, um bereits innerhalb des Trichterelements mit dem Abgasnachbehandlungsmittel vermischt zu werden. Die den jeweiligen Durchströmungsöffnungen zugeordneten Strömungsleitelemente sorgen dabei dafür, dass das einströmende beziehungsweise durch die Mantel strömende Abgas in eine Drallbewegung gelenkt wird, welche zusätzlich das Vermischen des Abgasnachbehandlungsmittels mit dem Abgas verbessert. Dadurch, dass die Drallströmung durch das Trichterelement erzielt wird, erfolgt die Drallströmung unabhängig davon, wie das Abgas der Abgasnachbehandlungseinrichtung zugeführt wird. Die Mischkammer liegt dabei also vollständig in dem Mischrohr. Dadurch ist es möglich, die Abgasnachbehandlungseinrichtung wesentlich platzsparender zu gestalten als es bisher möglich war und gleichzeitig die zuvor genannten Nachteile zu vermeiden.
  • Erfindungsgemäß ist vorgesehen, dass die Durchströmungsöffnungen in einem einspritzventilnahen Bereich Strömungsleitelement-frei sind. Das bedeutet, dass die Durchströmungsöffnung im einspritzventilnahen Bereich einfache Öffnungen darstellen, die keine Drallwirkung auf das Abgas und/oder das Abgasnachbehandlungsmittel ausüben. Vielmehr erlauben die einfachen Durchgangsöffnungen, dass das
  • Abgas ohne gravierende Rezirkulationsgebiete in das Trichterelement einströmen kann.
  • Bevorzugt sind allen Durchströmungsöffnungen mit Ausnahme der Durchströmungsöffnungen im einspritzventilnahen Bereich jeweils ein Strömungsleitelement zugeordnet. Im einspritzventilfernen Bereich sind somit die Strömungsleitelemente vorhanden, um die Drallströmung durch das durch die
  • Mantelwand des Trichterelements strömenden Abgas zu erzeugen. Durch die späte Drallerzeugung wird außerdem erreicht, dass sich das Abgasnachbehandlungsmittel-Spray zunächst mehr oder weniger ungestört aufweiten und zerstäuben kann, bevor es mit dem Abgas vermischt wird, wodurch eine optimierte Vermischung erreicht ist. Dadurch, dass alle einspritzventilfernen Durchströmungsöffnungen mit Strömungsleitelementen versehen sind, ist eine Drallerzeugung mit hohem Wirkungsgrad gewährleistet.
  • Gemäß einer bevorzugten Weiterbildung der Erfindung ist das Trichterelement an einem becherförmigen Strömungselement angeordnet, wobei das Strömungselement in einem Abgaszuführkanal liegt, in welchen das freie Ende des Mischrohrs mündet. Das Trichterelement ist somit durch ein separates Strömungselement gehalten, wobei das Strömungselement in einem Abgaszuführkanal liegt, und insbesondere an diesem befestigt ist. Durch das becherförmige Element wird der Luftstrom aus dem Zuführkanal in Richtung des Mischrohrs gelenkt. Durch die becherförmige Ausbildung ist die Anordnung des Einspritzventils besonders nahe zu der Spitze des Trichterelements in einfacher Art und Weise gewährleistet. Insbesondere fluchten die Mittelachsen des becherförmigen Strömungselements und des Mischrohrs miteinander, um eine vorteilhafte Strömungswirkung zu erzielen.
  • Weiterhin ist bevorzugt vorgesehen, dass das Strömungselement eine sich in Richtung des Mischrohrs verjüngende und geschlossen ausgebildete Kegelwand aufweist. Durch die kegelförmige Ausbildung des becherförmigen Strömungselements wird die Abgasführung von dem Abgaszuführkanal in das Mischrohr optimiert, indem insbesondere Turbulenzen beim Übergang von dem Zuführkanal in das Mischrohr vermieden werden. Darüber hinaus wird durch das Strömungselement ein Ringspalt zu dem Mischrohr beziehungsweise dessen Mündungsöffnung definiert, durch welchen das in das Mischrohr einströmende Abgas verdichtet und/oder beschleunigt wird, wodurch die Vermischung mit dem Abgasnachbehandlungsmittel weiter verbessert wird.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung ragt das Strömungselement bereichsweise in den Endabschnitt des Mischrohrs hinein. Hierdurch ist die Bildung des Ringspalts und eine definierte Führung des Abgasstroms in das Mischrohr gewährleistet. Darüber hinaus entsteht dabei eine kompakte Ausführungsform der Abgasnachbehandlungseinrichtung.
  • Weiterhin ist das Einspritzventil bevorzugt an dem Strömungselement und/oder an dem Trichterelement derart befestigt oder angeordnet, dass eine Mittelachse des kegelförmig ausgespritzten Abgasnachbehandlungsmittels und eine durch die Strömungsleitelemente erzeugte Drallachse zumindest im Wesentlichen miteinander fluchten. Dadurch wird das Abgasnachbehandlungsmittel besonders nahe am Auge der Drallströmung in das Abgas eingespritzt, wodurch sich eine vorteilhafte Vermischung ergibt.
  • Weiterhin ist bevorzugt vorgesehen, dass die Strömungsleitelemente derart ausgebildet oder ausgerichtet sind, dass zumindest ein Teil des eingespritzten Abgasnachbehandlungsmittels auf eine Innenwand des Mischrohrs trifft. Hierdurch wird erreicht, dass das Abgasnachbehandlungsmittel gleichmäßig auf der Innenseite der Mischrohrwand verteilt wird und dort im weiteren Betrieb der Brennkraftmaschine zumindest größtenteils verdampft. Durch die Drallströmung erhöht sich der thermische Energieeintrag in die Wand, welcher zur Verdampfung des Abgasnachbehandlungsmittels genutzt wird. Die Drallströmung verhindert, dass größere Mengen des Abgasnachbehandlungsmittels das Mischrohr ohne Kontakt zu der Innenwand passieren.
  • Gemäß einer bevorzugten Weiterbildung liegt das Trichterelement radial an dem Mischrohr an. An seinem freien Ende, an welchem das Trichterelement seinen größten Außenumfang aufweist, liegt das Trichterelement somit radial an der Innenwand des Mischrohrs an, wodurch erreicht wird, dass das gesamte Abgas durch Durchströmungsöffnungen des Trichterelements hindurchströmen muss, um in das Mischrohr zu gelangen. Dadurch wird die Drallströmung besonders sicher eingestellt und die vorteilhafte Vermischung gewährleistet.
  • Gemäß einer alternativen Ausführungsform der Erfindung ist bevorzugt vorgesehen, dass radial zwischen dem Trichterelement und dem Mischrohr ein insbesondere ringförmiger Bypass-Spalt für das Abgas vorhanden ist. In diesem Fall verbleibt also ein radialer Abstand zwischen dem Trichterelement und dem Mischrohr beziehungsweise dessen Innenwand. Damit verbleibt der Abstand auch an dem größten Außenumfang des Trichterelements. Durch den Bypass-Spalt kann das Abgas ohne in die Drallströmung überführt zu werden, an dem Trichterelement vorbei in das Mischrohr gelangen. Hier ist beispielsweise ein Vorteil, dass der Staudruck der Abgasnachbehandlungseinrichtung auf das Abgas reduziert wird. Der Bypass-Kanal kann sich ringförmig oder auch ringsegmentförmig über den Umfang des Trichterelements erstrecken. Somit verbleibt die Möglichkeit, dass das Trichterelement durch ein oder mehrere an seinem Außenumfang angeordnete Stege oder Abstandshalter in dem Mischrohr, die an der Innenwand des Mischrohrs anliegen, radial positioniert ist.
  • Vorteilhafterweise öffnet sich das Trichterelement entlang seiner gesamten Längserstreckung trichterförmig. Damit ist das Trichterelement insgesamt trichterförmig ausgebildet, sodass es optimal an die Form des Abgasnachbehandlungsmittelsprays des Einspritzventils anpassbar ist.
  • Alternativ ist das Trichterelement nur in einem Endbereich trichterförmig ausgebildet und in einem insbesondere einspritzventilnahen Bereich zylinderförmig, wobei nur in diesem Bereich bevorzugt die Durchströmungsöffnungen ausgebildet sind. Auch in diesem Fall ist den oder zumindest den meisten Durchströmungsöffnungen bevorzugt jeweils ein Strömungsleitelement, wie zuvor beschrieben, zugeordnet, um die Hydraulikströmung zu erzeugen. Durch den trichterförmigen Endbereich wird einerseits erreicht, dass sich das Abgasnachbehandlungsmittelspray bis zum Ende des Trichterabschnitts aufweiten kann, und dass andererseits eine vorteilhafte Vermischung auch stromabwärts des Trichterelements in dem Mischrohr erfolgt.
  • Weiterhin ist bevorzugt vorgesehen, dass sich der Abgaszuführkanal quer, insbesondere senkrecht zu der Mittelachse des Mischrohrs erstreckt. Damit erfolgt eine Umlenkung des Abgases in das Mischrohr, die beispielsweise 90° beträgt. Hierdurch ist eine kompakte Ausbildung gewährleistet, wobei aufgrund der vorteilhaften Ausbildung der Abgasnachbehandlungseinrichtung die Umlenkung keine nachteilige Wirkung auf das Strömungsverhalten hat. Insbesondere bewirkt der Abgaszuführkanal eine Abgasumlenkung des Abgases in das Mischrohr von 180° oder weniger. Dadurch sind besonders kompakte Bauformen der Abgasnachbehandlungseinrichtung erreichbar.
  • Vorzugsweise weisen die Strömungsleitelemente einen geraden Quer- und/oder Längsschnitt auf, oder haben alternativ eine Krümmung im Querschnitt und/oder Längsschnitt, durch welche die bevorzugte Drallströmung erzielt wird.
  • Das erfindungsgemäße Abgasnachbehandlungssystem mit den Merkmalen des Anspruchs 14 zeichnet sich durch die erfindungsgemäße Abgasnachbehandlungseinrichtung aus. Es ergeben sich dabei die bereits genannten Vorteile.
  • Weitere Vorteile und bevorzugte Merkmale und Merkmalskombinationen ergeben sich aus dem zuvor Beschriebenen sowie aus den Ansprüchen.
  • Im Folgenden soll die Erfindung anhand der Zeichnung näher erläutert werden.
  • Dazu zeigen
  • Figur 1
    ein Abgasnachbehandlungssystem in einer vereinfachten Längsschnittdarstellung,
    Figur 2
    eine Abgasnachbehandlungseinrichtung des Abgasnachbehandlungssystems in einer vergrößerten Schnittdarstellung,
    Figuren 3A und 3B
    ein erstes nicht von den Ansprüchen gedecktes Beispiel eines Trichterelements der Abgasnachbehandlungseinrichtung,
    Figuren 4A und 4B
    ein Ausführungsbeispiel des Trichterelements,
    Figuren 5A und 5B
    ein weiteres Ausführungsbeispiel des vorteilhaften Trichterelements und
    Figuren 6A und 6B
    ein nicht von den Ansprüchen gedecktes Beispiel des Trichterelements, jeweils in einer Seitenansicht und in einer Draufsicht.
  • Figur 1 zeigt in einer vereinfachten Schnittdarstellung ein Abgasnachbehandlungssystem 1 für eine Brennkraftmaschine eines Kraftfahrzeugs. Das Abgasnachbehandlungssystem 1 weist ein Abgasrohr 2 auf, das sich an die Brennkraftmaschine anschließt und einen Abgaseinlass 3 aufweist. In dem Abgasrohr 2 ist beispielsweise ein erster Katalysator 4 sowie ein Partikelfilter 5 stromabwärts des Katalysators 4 angeordnet, welche das in das Abgasrohr 2 einströmende Abgas auf bekannte Art und Weise behandeln. Das Abgasrohr 2 geht in einem Abgaszuführkanal 6 für eine Abgasnachbehandlungseinrichtung 7 über, welche im Folgenden genauer beschrieben wird.
  • Figur 2 zeigt dazu eine vergrößerte Schnittdarstellung der Abgasnachbehandlungseinrichtung 7. Diese weist ein in den Abgaszuführkanal 6 mündendes Mischrohr 8 auf. Ein dem Abgaszuführkanal 6 zugewandter Endabschnitt 9 des Mischrohrs weitet sich in Richtung des Abgaszuführkanals 6 kegelförmig auf. Der Endabschnitt 9 endet dabei an einer ersten Seitenwand 10 des Abgaszuführkanals 6. An einer der Seitenwand 10 gegenüberliegend angeordneten Seitenwand 11 des Abgaszuführkanals 6 ist ein becherförmiges Strömungselement 12 befestigt, das in den Abgaszuführkanal 6 in Richtung des Mischrohrs 8 hineinragt ,sodass es den Abgaszuführkanal 6 vorliegend vollständig von der Seitenwand 11 bis zu der Seitenwand 10 durchdringt. An der Seitenwand 10 ragt dabei das Strömungselement 12 in eine Mündungsöffnung des Endabschnitts 9 in der Seitenwand 10 hinein.
  • Das Strömungselement 12 weist dabei einen dem Mischrohr 8 zugewandten Endabschnitt 13 auf, der sich in Richtung des Mischrohrs 8 hin verjüngt. Der Endabschnitt 13 erstreckt sich dabei in Längserstreckung des Strömungselements 12 gesehen, beziehungsweise in Axialerstreckung, über mehr als die Hälfte der gesamten Längserstreckung des Strömungselements 12. Eine Mantelwand 14 des Strömungselements 12, welche im Längsschnitt gesehen die Kegelform aufweist, ist geschlossen ausgebildet und endet in einem dem Mischrohr 8 zugewandten Bodenabschnitt 15, der sich im Wesentlichen parallel zu den Seitenwänden 10 und 11 des Abgaszuführkanals 6 erstreckt. In dem Bodenabschnitt 15 ist eine Öffnung 16 mittig ausgebildet. Dieser Öffnung 16 ist ein Trichterelement 17 zugeordnet. Das Trichterelement 17 ist gemäß dem vorliegenden Ausführungsbeispiel insgesamt trichterförmig derart ausgebildet, dass es sich von dem Strömungselement 12 ausgehend in Richtung des Mischrohrs 8 aufweitet, wobei eine Mittelachse des Trichterelements 17 und des Mischrohrs 8, zumindest in dem Endabschnitt 9, miteinander fluchten. Das Trichterelement 17 beziehungsweise seine Mantelwand 19 ragt dabei von dem Strömungselement 12 durch den gesamten kegelförmigen Endabschnitt 9 hindurch bis in das Mischrohr 8 hinein. Damit liegt das Trichterelement 17 insgesamt in dem Endabschnitt 9. Sein maximaler Außenumfang entspricht dabei an seinem freien Ende im Wesentlichen oder nahezu dem Innenumfang des Mischrohrs 8.
  • Das Trichterelement 17 weist eine Vielzahl von Durchströmungsöffnungen 18 auf, die gleichmäßig in einer Mantelwand 19 des Trichterelements 17 verteilt ausgebildet sind. Aus Übersichtlichkeitsgründen sind vorliegend nur einige der Durchströmungsöffnungen 18 mit einem Bezugszeichen versehen.
  • Gemäß dem vorliegenden Beispiel ist jeder Durchströmungsöffnung ein Strömungsleitelement 20 zugeordnet, das sich abschnittsweise über die jeweilige Durchströmungsöffnung radial erstreckt, sodass die Strömungsleitelemente 20 eine Strömungsrichtung für durch die Strömungsöffnung 18 strömendes Abgas vorgeben, die in Umfangsrichtung oder zumindest im Wesentlichen in Umfangsrichtung des Trichterelements 17 liegt, sodass eine Drallströmung durch das Trichterelement 17 für das Abgas, das axial in das Mischrohr 8 einströmt, erzeugt wird. Weil sich das Trichterelement 17 bis nahezu an die Innenwand des Mischrohrs 8 heran erstreckt, ist das Abgas gezwungen, durch die Durchströmungsöffnungen 18 beziehungsweise das Trichterelement 17 hindurch zu treten. Durch die Strömungsleitelemente 20 wird gewährleistet, dass das in das Mischrohr 8 eintretende Abgas in einer Drallströmung durch das Mischrohr 8 geführt ist. Hierzu sind die Strömungsleitelemente 20 alle in die gleiche Richtung ausgerichtet.
  • In dem Strömungselement 12 ist außerdem ein Einspritzventil 21 angeordnet, das durch eine hier nicht dargestellte Fördereinrichtung mit einem Tank verbunden ist, der flüssiges Abgasnachbehandlungsmittel bereitstellt. Durch Betätigen des Einspritzventils 21 wird das flüssige Abgasnachbehandlungsmittel dem Abgasstrom, der in das Mischrohr 8 eindringt, zugemischt. Somit stellt das Mischrohr 8 eine Mischkammer 22 dar. Dabei ist das Einspritzventil 21 an dem Strömungselement 12 derart zentral angeordnet, dass eine Mittelachse eines Spritzkegels des Einspritzventils 21 mit der Mittelachse des Trichterelements 17 fluchtet (Strich-Punkt-Linie in Figur 2). Vorzugsweist ist das Trichterelement 17 derart ausgebildet, dass die dem Mischrohr axial zugewandte Trichteröffnung größer ist als der Spritzkegel des Einspritzventils 21, sodass ein Benetzen des Trichterelements 17 mit dem Abgasnachbehandlungsmittel verhindert ist.
  • Im Normalbetrieb strömt das Abgas durch den Abgaszuführkanal 6 in Richtung der Abgasnachbehandlungseinrichtung 7 und wird durch das vorteilhafte Strömungsteil 12 in den Endabschnitt 9 des Mischrohrs 8 geleitet. Weil das Strömungsteil 12 bereichsweise in das Mischrohr 8 hineinragt, entsteht ein Ringspalt, durch welchen der Abgasstrom fließt, wodurch dieser gestaucht und beschleunigt wird. Beim Durchtreten der Durchströmungsöffnungen 18 des Trichterelements 17 wird der Abgasstrom in eine Drallbewegung gezwungen und mit dem eingespritzten Abgasnachbehandlungsmittel vermischt.
  • Das Strömungsteil 12 kann dabei symmetrisch oder asymmetrisch ausgebildet sein, um einen optimalen Abgasstrom zu gewährleisten. Vorzugsweise ist der außenliegende Innenbereich des Strömungsteils 12 derart ausgebildet, dass das Einspritzventil 21 inklusive notwendiger Isolationselemente in der Vertiefung platzfindet. Insbesondere ist das Strömungsteil 12 aus Blech geformt.
  • Durch das vorteilhafte Strömungselement 12 wird das Abgas dem Trichterelement 17 besonders gleichmäßig zugeführt. Optional kann eine stromaufwärts des Trichterelements 17 angebrachte strömungsvergleichmäßigende Geometrie ergänzt werden, um eine möglichst homogene Zufuhr des Abgases zu dem Trichterelement 17 zu gewährleisten.
  • Das Trichterelement 17 ist zweckmäßigerweise an dem Strömungsteil 12 befestigt und optional am Mischrohr 8 seitlich beziehungsweise radial abgestützt. Dazu können am Trichterelement 17 endseitig radiale Abstandselemente beziehungsweise Abstandshalter vorhanden sein, die an der Innenseite des Mischrohrs 8 anliegen. Durch die vorteilhafte Drallströmung wird erreicht, dass das eingebrachte Abgasnachbehandlungsmittel gleichmäßig auf die Innenwand des Mischrohrs 8 verteilt wird und von dort größtenteils verdampft. Durch die Drallströmung erhöht sich der thermische Energieeintrag in das Mischrohr 8, welcher zur Verdampfung des Abgasnachbehandlungsmittels weiter verwendbar ist. Je nach Ausführung des Trichterelements 17 kann dieses auch so ausgestaltet sein, dass ein Teil des Abgases durch einen Ringspalt als Bypass-Kanal 23 am Übergang beziehungsweise radial zwischen Trichterelement 17 und Mischrohr 8 vorbeigeführt wird.
  • Auch im Beispiel von Figur 2 ist ein derartiger Bypass-Kanal 23 radial zwischen dem freien Ende des Trichterelements 17 und dem Mischrohr 8 ausgebildet. Hierdurch wird beispielsweise ein auf das Abgassystem wirkender Staudruck reduziert.
  • Während in dem vorliegenden Beispiel das Abgas durch das Abgassystem 1 um 180° umgelenkt wird, können auch andere Abgaszuführungen denkbar sein, die beispielsweise eine Umlenkung von nur 90° oder weniger aufweisen.
  • Figuren 3A und 3B zeigen das Trichterelement 17 gemäß dem ersten Beispiel von Figur 2 in einer Seitenansicht (Figur 3A) und in einer Draufsicht (Figur 3B). Dabei ist ersichtlich, dass die Strömungsleitelemente 20 eine torbogenförmige Kontur aufweisen, um eine optimale Drallströmung zu erzeugen. Die Öffnungen der Strömungsleitelemente 20 sind dabei stets in die gleiche Richtung ausgerichtet, um eine eindeutige Drallströmung zu gewährleisten.
  • Figuren 4A und 4B zeigen ein Ausführungsbeispiel des Trichterelements 17, in einer Seitenansicht und in einer Draufsicht, wobei sich das Trichterelement 17 gemäß diesem Ausführungsbeispiel von dem vorhergehenden Beispiel dadurch unterscheidet, dass in einem einspritzventilnahen Endbereich, also an dem Ende mit dem kleineren Durchmesser, mehrere Durchströmungsöffnungen 18 strömungsleitelementfrei ausgebildet sind. Dadurch erfolgt die Penetration des Sprays des Einspritzventils 21 in das Mischrohr 8 zunächst unbeeinflusst vom Abgas, zumindest ohne dass ein Drall erzeugt wird. Erst nachdem das Spray bereits ausreichend weit aufgefächert in dem Trichterelement 17 ist, wird durch die in dem darauffolgenden, einspritzventilfernen Abschnitt des Trichterelements 17 durch die Strömungsleitelemente 20 die Drallströmung erzeugt und die Vermischung des Abgasnachbehandlungsmittels mit dem Abgas bewirkt. Durch die vorteilhafte Ausbildung wird außerdem erreicht, dass im dosiernahen Bereich keine gravierenden Rezirkulationsgebiete entstehen, welche ablagerungsbegünstigend hinsichtlich kristalliner Nebenprodukte agieren können.
  • Figuren 5A und 5B zeigen ein weiteres Ausführungsbeispiel des Trichterelements 17, das sich von dem Ausführungsbeispiel von Figuren 4A und 4B dadurch unterscheidet, dass die Strömungsleitelemente 20 nicht torbogenförmig ausgebildet sind, sondern im Querschnitt und Längsschnitt jeweils eine gerade Kontur aufweisen, also plattenförmig ausgebildet sind. Hierdurch ist eine besonders kostengünstige Realisierung des Trichterelements 17 möglich. Auch bei dem Ausführungsbeispiel von Figur 3A und 3B können die Strömungsleitelemente 20 plattenförmig ausgebildet sein. Dabei sind die Strömungsleitelemente 20 bevorzugt als nach außen gebogene Luftleitzungen der Mantelwand 19 ausgebildet.
  • Das Beispiel des Trichterelements 17, das in den Figuren 6A und 6B in einer Seitenansicht und einer Draufsicht gezeigt ist, unterscheidet sich von dem vorhergehenden Ausführungsbeispiel und den nicht durch die Ansprüche gedeckten Beispielen, dass der trichterförmige Abschnitt des Trichterelements 17 axial besonders kurz ist. Ansonsten ist das Trichterelement 17 kreiszylinderförmig ausgebildet. In dem kreiszylinderförmigen Abschnitt sind dabei die Durchströmungsöffnungen 18 mit den Strömungsleitelementen 20 angeordnet/ausgebildet. Auch hierdurch wird eine vorteilhafte Vermischung von Abgas und Abgasnachbehandlungsmittel und der Vermeidung von Kristallbildung erreicht.

Claims (14)

  1. Abgasnachbehandlungseinrichtung (7) zum Eindosieren eines flüssigen Abgasnachbehandlungsmittels in einen Abgasstrom einer Brennkraftmaschine, mit einer Mischkammer (22), in welcher das Abgasnachbehandlungsmittel mit dem Abgasstrom vermischt wird, wobei die Mischkammer (22) ein kreiszylinderförmiges Mischrohr (8) aufweist, das einen trichterförmigen, sich zu einem freien Ende hin den Umfang vergrößernden Endabschnitt (9) aufweist, mit einem sich in Richtung des Mischrohrs (8) zumindest abschnittsweise kegelförmig öffnenden Trichterelement (17), das mehrere Durchströmungsöffnungen (18) in seiner Mantelwand (19) aufweist, und wobei an dem von dem Mischrohr (8) abgewandten Ende des Trichterelements (17) ein Einspritzventil (21) für das Abgasnachbehandlungsmittel angeordnet ist, um das Abgasnachbehandlungsmittel in das Trichterelement (17) hineinzuspritzen, wobei das Trichterelement (17) zumindest im Wesentlichen innerhalb des Endabschnitts (9) koaxial zu dem Endabschnitt liegt, und dass zumindest einigen der Durchströmungsöffnungen (18) jeweils ein sich von der Mantelwand (19) erhebendes Strömungsleitelement (20) zum Erzeugen einer Drallströmung in dem Mischrohr (8) zugeordnet ist, dadurch gekennzeichnet, dass die Durchströmungsöffnungen (18) in einem einspritzventilnahen Bereich strömungsleitelementfrei sind.
  2. Abgasnachbehandlungseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass allen Durchströmungsöffnungen (18) mit Ausnahme der Durchströmungsöffnungen (18) im einspritzventilnahen Bereich oder allen Durchströmungsöffnungen (18) jeweils ein Strömungsleitelement (20) zugeordnet ist.
  3. Abgasnachbehandlungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Trichterelement (17) an einem becherförmigen Strömungselement (12) angeordnet ist, das in einem Abgaszuführkanal (6) liegt, in welchem das freie Ende des Mischrohrs (8) mündet.
  4. Abgasnachbehandlungseinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das Strömungselement (12) eine sich in Richtung des Mischrohrs (8) verjüngende und geschlossen ausgebildete Kegelwand (14) aufweist.
  5. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 3 und 4, dadurch gekennzeichnet, dass das Strömungselement (12) bereichsweise in den Endabschnitt (9) des Mischrohrs (8) hineinragt.
  6. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass das Einspritzventil (21) an dem Strömungselement (12) und/oder an dem Trichterelement (17) derart befestigt oder angeordnet ist, dass eine Mittelachse des kegelförmig ausgespritzten Abgasnachbehandlungsmittels und eine durch die Strömungsleitelemente (20) erzeugte Drallachse zumindest im Wesentlichen miteinander fluchten.
  7. Abgasnachbehandlungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungsleitelemente (20) derart ausgebildet oder ausgerichtet sind, dass zumindest ein Teil des eingespritzten Abgasnachbehandlungsmittels auf eine Innenwand des Mischrohrs (8) trifft.
  8. Abgasnachbehandlungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Trichterelement (17) radial an dem Mischrohr (8) anliegt.
  9. Abgasnachbehandlungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass radial zwischen dem Trichterelement (17) und dem Mischrohr (8) ein insbesondere ringförmiger Bypass-Kanal (23) für das Abgas vorhanden ist.
  10. Abgasnachbehandlungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich das Trichterelement (17) entlang seiner gesamten Längserstreckung trichterförmig öffnet.
  11. Abgasnachbehandlungseinrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass sich das Trichterelement (17) nur in einem Endbereich trichterförmig öffnet, und dass die Durchströmungsöffnungen (18) nur in einem zylinderförmigen Bereich des Trichterelements (17) ausgebildet sind.
  12. Abgasnachbehandlungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich der Abgaszuführkanal (6) quer, insbesondere senkrecht zu der Mittelachse des Mischrohrs (8) erstreckt.
  13. Abgasnachbehandlungseinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abgaszuführkanal (6) eine Abgasumlenkung in das Mischrohr (8) von 180° oder weniger bewirkt.
  14. Abgasnachbehandlungssystem (1) zum Reduzieren von Schadstoffemissionen im Abgas einer Brennkraftmaschine eines Kraftfahrzeugs, mit einer Abgasnachbehandlungseinrichtung (7) nach einem der Ansprüche 1 bis 13.
EP19700042.5A 2018-02-15 2019-01-03 Abgasnachbehandlungseinrichtung zum eindosieren eines flüssigen abgasnachbehandlungsmittels Active EP3752721B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018202298.4A DE102018202298A1 (de) 2018-02-15 2018-02-15 Abgasnachbehandlungseinrichtung zum Eindosieren eines flüssigen Abgasnachbehandlungsmittels
PCT/EP2019/050067 WO2019158269A1 (de) 2018-02-15 2019-01-03 Abgasnachbehandlungseinrichtung zum eindosieren eines flüssigen abgasnachbehandlungsmittels

Publications (2)

Publication Number Publication Date
EP3752721A1 EP3752721A1 (de) 2020-12-23
EP3752721B1 true EP3752721B1 (de) 2022-03-30

Family

ID=64959361

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19700042.5A Active EP3752721B1 (de) 2018-02-15 2019-01-03 Abgasnachbehandlungseinrichtung zum eindosieren eines flüssigen abgasnachbehandlungsmittels

Country Status (4)

Country Link
EP (1) EP3752721B1 (de)
CN (1) CN111742123B (de)
DE (1) DE102018202298A1 (de)
WO (1) WO2019158269A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI20215978A1 (en) * 2021-09-16 2023-03-17 Proventia Oy Method in a flow device for exhaust gas aftertreatment and flow device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009053950A1 (de) * 2009-11-19 2011-05-26 Man Nutzfahrzeuge Aktiengesellschaft Vorrichtung zur Nachbehandlung von Abgasen von Brennkraftmaschinen
DE102012010878A1 (de) * 2012-06-01 2013-12-05 Daimler Ag Reduktionsmittelzugabe- und Aufbereitungssystem eines Kraftfahrzeugs
CN106232955B (zh) * 2014-04-24 2019-11-05 天纳克汽车经营有限公司 具有旋流器的穿孔混合管
DE102014208743A1 (de) * 2014-05-09 2015-11-12 Robert Bosch Gmbh Einrichtung, Abgasnachbehandlungseinrichtung
DE102014009731A1 (de) 2014-06-28 2015-12-31 Daimler Ag Reduktionsmittelaufbereitungssystem
GB2533790B (en) * 2014-12-30 2019-01-23 Proventia Oy Method, apparatus and device for improved aftertreatment of exhaust gas
US9784163B2 (en) * 2015-01-22 2017-10-10 Tenneco Automotive Operating Company Inc. Exhaust aftertreatment system having mixer assembly
DE102015002974A1 (de) * 2015-03-10 2016-09-15 Man Truck & Bus Ag Vorrichtung zur Nachbehandlung von Abgas eines Kraftfahrzeugs

Also Published As

Publication number Publication date
CN111742123B (zh) 2022-06-14
DE102018202298A1 (de) 2019-08-22
WO2019158269A1 (de) 2019-08-22
EP3752721A1 (de) 2020-12-23
CN111742123A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
EP3478947B1 (de) Mischervorrichtung für ein abgasnachbehandlungssystem eines kraftfahrzeugs, abgasnachbehandlungssystem und kraftfahrzeug
EP3018311B1 (de) Injektionsabschnitt für eine abgasnachbehandlungseinrichtung
EP2700442B1 (de) Abgasanlage mit Misch- und/oder Verdampfungseinrichtung
EP2865861B1 (de) Kataylsatoranordnung mit Injektionsabschnitt
EP2659101B1 (de) Vorrichtung zum verteilen von fluiden in abgasanlagen
EP2687697B1 (de) Mischvorrichtung zur Nachbehandlung von Abgasen
EP2325452B1 (de) Vorrichtung zur Nachbehandlung von Abgasen von Brennkraftmaschinen
EP2006017B1 (de) Misch- und/oder Verdampfungseinrichtung und zugehöriges Herstellungsverfahren
DE102009036511B4 (de) Abgasanlage
EP2687286B1 (de) Mischvorrichtung zur Nachbehandlung von Abgasen
DE102008053168B4 (de) Einrichtung zum Einbringen einer Flüssigkeit in eine Gasströmung
DE102010021438B4 (de) Abgasnachbehandlungsvorrichtung
EP3071807A1 (de) Abgasnachbehandlungseinrichtung
EP2090761A1 (de) Abgasnachbehandlungssystem für eine Verbrennungskraftmaschine
EP3068523B1 (de) Einrichtung zum vermischen eines flüssigen mediums mit einem gasstrom
WO2012120000A1 (de) Abgasanlage einer brennkraftmaschine
DE102016004333A1 (de) Abgasnachbehandlungsvorrichtung mit Katalysator und Mischvorrichtung
DE102013211662A1 (de) Mischereinrichtung
WO2016062395A1 (de) Abgasnachbehandlungseinrichtung für eine verbrennungskraftmaschine, insbesondere eines kraftwagens
EP3752721B1 (de) Abgasnachbehandlungseinrichtung zum eindosieren eines flüssigen abgasnachbehandlungsmittels
DE102012014528A1 (de) Mehrstufiger Plattenmischer
WO2020216520A1 (de) Mischervorrichtung für ein abgasnachbehandlungssystem eines kraftfahrzeugs, abgasnachbehandlungssystem und kraftfahrzeug
DE102015209165B4 (de) Abgasbehandlungseinrichtung für eine Brennkraftmaschine
CH711045A1 (de) Vorrichtung zur Abgasnachbehandlung einer Brennkraftmaschine.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200915

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211104

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1479388

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019003864

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220630

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220701

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220801

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220730

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019003864

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230123

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240322

Year of fee payment: 6