EP3752379A1 - Hybridmodul und antriebsanordnung für ein kraftfahrzeug - Google Patents

Hybridmodul und antriebsanordnung für ein kraftfahrzeug

Info

Publication number
EP3752379A1
EP3752379A1 EP19706874.5A EP19706874A EP3752379A1 EP 3752379 A1 EP3752379 A1 EP 3752379A1 EP 19706874 A EP19706874 A EP 19706874A EP 3752379 A1 EP3752379 A1 EP 3752379A1
Authority
EP
European Patent Office
Prior art keywords
coupling
hybrid module
spring
module according
clutch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19706874.5A
Other languages
English (en)
French (fr)
Inventor
Benjamin Stober
Dierk Reitz
Steffen Lehmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Publication of EP3752379A1 publication Critical patent/EP3752379A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/266Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators with two coaxial motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/428Double clutch arrangements; Dual clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/60Electric Machines, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric
    • F16D2021/0676Mechanically actuated multiple lamellae clutches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Definitions

  • the invention relates to a hybrid module for a motor vehicle for coupling an internal combustion engine and to a drive arrangement for a motor vehicle having an internal combustion engine and a hybrid module according to the invention.
  • Electric drives are widely known, including for driving
  • Internal combustion engines are present, such as integrated in hybrid modules, which provide a coupling of an internal combustion engine.
  • a hybrid module usually comprises a connection device for the mechanical coupling of an internal combustion engine, a separating clutch, with the
  • Torque can be transferred from the internal combustion engine to the hybrid module and with the hybrid module of the internal combustion engine is separable, at least one electric machine for generating a driving torque with a rotor, and a further coupling unit, in particular a
  • Dual clutch device with the torque from the electric machine and / or from the separating clutch to a drive train is transferable.
  • the dual clutch device comprises a first part clutch and a second one
  • Each arranged clutch is associated with an actuating system.
  • Other starting elements such as converters or single-disc clutches instead of the double clutch are possible.
  • a respective electric machine allows electric driving
  • hybrid drives which have two electrical machines.
  • a first electric machine is rotatable with a first electric machine.
  • Rotation is to be offset by moments of inertia and occurring magnetic forces.
  • drive systems or hybrid modules are known, each having two electrical machines, each electrical machine is assigned in each case a coupling device with which the electric machine to the
  • Powertrain coupled or can be separated from it.
  • Hybrid modules or drive systems can be found in the documents DE 10 2015 222 690 A1, DE 10 2015 222 691 A1, DE 10 2015 222 692 A1 and DE 10 2015 222 694 A1.
  • the present invention has the object to provide a hybrid module available, which has a high efficiency under stress of a small space. This object is achieved by the hybrid module according to the invention according to claim 1 and by the drive arrangement according to claim 10.
  • axial always refers in the context of the present invention to the axis of rotation of the hybrid module.
  • the invention relates to a hybrid module for a motor vehicle for coupling an internal combustion engine, which comprises a first drive shaft and associated therewith a first electric machine and a first clutch device. Furthermore, the hybrid module comprises a second drive shaft and a second electric machine and a second clutch device. In addition, the hybrid module has an output element. A respective drive shaft can be connected or connected to the output element via a respective coupling device. It is inventively provided that the two coupling devices are simultaneously actuated by a movement of a mechanically coupled with two coupling devices actuator.
  • the output element is preferably an output shaft for forwarding the applied torques to a transmission or to the driving wheels of a motor vehicle.
  • the two coupling devices are preferably an output shaft for forwarding the applied torques to a transmission or to the driving wheels of a motor vehicle.
  • Internal combustion engine are transferred to the first electric machine and / or transferred from the internal combustion engine to the second electric machine.
  • the advantage of the hybrid module according to the invention is, in particular, that only one actuating device is used to operate the two coupling devices is required, which with an axial movement of the actuating element is able to close one of the coupling means and thereby to open the other coupling means.
  • the rotor of the first electric machine is rotatably connected to the first drive shaft and the rotor of the second electric machine is non-rotatably connected to the output element.
  • first drive shaft is fixedly connected to the rotor of the first electric machine and is connected to the first coupling device.
  • the second electric machine is assigned directly to the output element or the output shaft.
  • the first coupling means and the second coupling means are both components of a double clutch device, one for the two
  • Coupling has common outer disk carrier.
  • In execution of the dual clutch device with common outer disk carrier are connected to the first drive shaft and the driven element components of the two clutch devices inner disc carrier.
  • the invention is not limited to the mentioned connection of the drive or.
  • Output side limited to inner disk carrier and outer disk carrier, but inner disk carrier and
  • External disk carrier can also be assigned to the other side.
  • the dual clutch device is designed such that always only one of the two clutch devices is closed, wherein in this
  • the two have
  • Actuator is mechanically connected and or which the
  • Actuator at least partially formed, and with which pressure plates of the first clutch means and the second clutch means axially fixed connectable or connected, so that an axial displacement axial release of the first pressure plate simultaneously leads to the axial displacement or axial release of the second pressure plate, so that a simultaneous actuation of the
  • the hybrid module may comprise an actuating device which is adapted for the simultaneous actuation of the first clutch means as well as the second clutch means.
  • the actuating device is arranged and arranged such that with it an actuating force on the actuating element for the purpose of
  • Displacement can be applied.
  • the actuating device and the actuating element can be configured such that an immediate
  • Spring device in particular a plate spring, whose spring force upon tension of the spring means a closure of one of the two Supports and / or effects coupling devices and supports and / or effects an opening of the respective other coupling device.
  • both the first coupling device having a first spring means and the second coupling means comprise a second spring means, wherein the first spring means and the second spring means supports the closure of the first coupling means and / or causes and supports the opening of the second coupling means and / or causes ,
  • the first spring force caused by the first spring device is significantly lower than the force required for the complete closure of the second spring force
  • Coupling device is applied by the actuator. This has the advantage that as a whole the actuator, i. to operate both coupling devices in both directions, an actuating force with a small fluctuation range is applied. The amount of control effort to be applied is correspondingly low and the actuating device can be realized with correspondingly simple means.
  • the second coupling means comprises a second inner disk carrier which is rotatably connected to the output member and axially displaceable, wherein the Flybridmodul further comprises a compression spring device, in particular a
  • Coil spring which is axially supported on the driven element and presses against the second inner disk carrier, which in turn is common to one of the first clutch means and second clutch means
  • Clutch carrier is supported.
  • This common clutch carrier in turn can be axially supported directly or indirectly on the first drive shaft.
  • Another aspect of the present invention is a drive assembly for a motor vehicle with an internal combustion engine and a hybrid module according to the invention and with a transmission, wherein the hybrid module with the
  • Coupling devices of the hybrid module is connected.
  • FIG. 1 shows a partial section of a hybrid module according to the invention
  • Figure 2 a force-displacement diagram with illustrated characteristics of the first
  • Figure 3 a force-displacement diagram with illustrated sum characteristic.
  • the hybrid module according to the invention shown in Figure 1 comprises in one
  • Housing 1 which is only indicated here, on a common axis of rotation 2, a first drive shaft 10, on which the rotor 12 of a first electric machine 11 is rotatably mounted.
  • a driven member 30 in the form of an output shaft rotatably seated the rotor 22 of a second electric machine 21.
  • Output element 30 are rotationally symmetrical to each other.
  • a second drive shaft 20 is provided for mechanically, optionally via a
  • Disconnect to be connected to an internal combustion engine, which may also be part of the hybrid module.
  • the first drive shaft 10 is connected via a first coupling device 13 with a common coupling carrier 51.
  • This common clutch carrier 51 is connected via a toothing 31 with the second drive shaft 20 rotationally fixed.
  • first clutch device 13 and the second clutch device 23 together form a dual clutch device 50.
  • This dual clutch device 50 includes one of the two
  • the first drive shaft 10 itself forms a first inner disk carrier 53, on which inner disks of the first clutch device 13 are arranged, alternately with outer disks of the first clutch device 13 arranged axially displaceably on the outer disk carrier 52.
  • a second inner disk carrier 54 which is coupled via a non-rotatable connection 55 to the driven element 30, inner plates of the second coupling device 23, which alternately with outer plates of the second
  • Coupling device 23 are arranged.
  • Coupling device 23 are arranged axially displaceable on the outer disk carrier 52.
  • a first pressure plate 14 of the first clutch device 13 is axially fixed to a stop point axially fixed to a connecting element 56, which is also referred to as a pressure piece, with a second pressure plate of the second
  • Clutch device 13,23 in an operation automatically the other clutch means 13,23 is operated in the opposite operation. This means that upon closure of the first clutch device 13, the second clutch device 23 is automatically opened, and vice versa. In this way, it is ensured that during operation of the second electric machine 21, the first electric machine 11 is decoupled from the output element 30 and the output shaft and therefore no energy for realizing a rotational movement of the first rotor and to overcome the magnetic forces occurring there must be provided.
  • the present Flybridmodul invention is not limited to this embodiment, but it can also be provided be that each coupling device 13,23 is assigned its own actuator, but even then these extra controls should be designed and arranged such that the two
  • Clutch devices 13,23 can be operated simultaneously with opposite operation.
  • an actuating device not shown here is provided, which is preferably supported on the housing 1.
  • the actuating device can in particular a
  • the actuating force 41 applied in the axial direction by the actuating device can be seen in FIG. 1, which acts on an actuating element 40, which is supported axially on a rotary bearing 57.
  • the rotary bearing 57 in turn is supported axially on the connecting element 56, which is axially fixed to the pressure plates 14,24 of the two coupling devices 13,23 connected or connected. Such can be done by exercising the
  • the first coupling device 13 is assigned a first spring device 15 in the form of a first plate spring; and the second coupling device 23 is associated with a second spring means 25 in the form of a second plate spring.
  • the first spring device 15 causes a first spring force 16 in the same direction as the second spring force 26 effected by the second spring device 25.
  • both spring devices 15, 25 act in the direction of closing the first clutch device 13 and opening the second clutch device 23.
  • both spring devices 15, 25 act in the direction of closing the first clutch device 13 and opening the second clutch device 23.
  • Clutch device 23 effected via a first partial path and the second
  • Spring means 25 causes the opening via a second partial path.
  • the second spring device 25 also ensures that the connecting element 56 does not lift off the pivot bearing 57.
  • the hybrid module shown here comprises a compression spring device 60 in the form of a helical spring, which is supported axially on the housing 1 indirectly. On the axially opposite side, the compression spring device 60 presses against the second inner disk carrier 54, which in turn axially on a first
  • Rotary bearing 61 is supported.
  • This first rotary bearing 61 supports itself axially on the common clutch carrier 51, which in turn is axially supported on the first drive shaft 10 via a second rotary bearing 62.
  • a second rotary bearing 62 As a result, it is possible in a simple manner, if appropriate, to reduce existing tolerances in the hybrid module or in the individual components and by axial pressure in the individual components.
  • the bearings involved namely the pivot bearing 57 and the first rotary bearing 61 and the second rotary bearing 62, axially
  • holes 63 are provided in the first drive shaft to allow the transport of lubricants, which can also serve for cooling integrated.
  • the illustrated coupling devices 13,23 are not limited to multi-plate clutches, but it can be used instead other friction clutches or clutches acting positively.
  • the characteristic curve 70 of the first disk spring is the first one here
  • Spring device 15 is provided, shown. In this case, the operating point K1 can be seen, in which the first clutch device 13 is completely closed. Upon actuation of the first clutch device 13 by axial displacement of the first pressure plate 14 along the direction of the actuating force 41 via a in the
  • Diagram 2 in Figure 2 shown positive path s changes from the first spring means 15 and the first plate spring applied force F. It can be seen that after a brief increase in the force F, this becomes significantly lower as the distance s is further increased.
  • the characteristic curve 80 of the actuating device is shown in FIG. It can be seen that, after a first low required force F, a kink in the characteristic curve 80 takes place to cover a relatively long distance s, and then the characteristic curve 80 has a steeper rise. This is due to the fact that upon closure of the second coupling device 23 after first pushing together the lamellae of the second coupling device 23 and contacting the lamellae they must be compressed with increased force F, to another
  • the extent of the rise of the characteristic curve 80 is influenced by the component stiffnesses of the components involved as well as by the compression of the linings of the lamellae as well as the acting second spring device 25.
  • this distance is s 1, 8 mm, in addition to the Hughes wholly contribute to the slats paths from the tolerances of
  • Coupling devices 13,23 is dependent.
  • Diaphragm spring applied force F is already relatively low. However, this relatively small force F is sufficient to be able to make an automatic return to the starting position upon cancellation of the actuating force 41 caused by the actuating device, thereby overcoming the friction in the system.
  • the hybrid module according to the invention may further be configured with a device for slip detection, with which the coupling devices 13,23 can be optionally controlled automatically controlled and with the prevailing contact forces in the coupling devices 13,23 can be adjusted.
  • FIG. 3 shows the mathematical result of an addition of the two characteristic curves 70, 80 explained with reference to FIG. 2, wherein it can be seen that the forces F required to realize the two characteristic points K1 and K2 differ only insignificantly from one another.
  • the sum characteristic curve 90 in FIG. 2 has only slight fluctuations between the two points K1 and K2.
  • an actuating device to be provided essentially has to be set up for only a relatively small force range to be realized.
  • a drive device for a motor vehicle is provided, which with a low load

Abstract

Die Erfindung betrifft ein Hybridmodul für ein Kraftfahrzeug zum Ankoppeln einer Verbrennungskraftmaschine sowie eine Antriebsanordnung für ein Kraftfahrzeug mit einem erfindungsgemäßen Hybridmodul. Das Hybridmodul ist zum Ankoppeln einer Verbrennungskraftmaschine ausgestaltet und umfasst eine erste Antriebswelle (10) eine erste elektrische Maschine (11) sowie eine erste Kupplungseinrichtung (13), sowie eine zweite Antriebswelle (20) und dieser zugeordnet eine zweite elektrische Maschine (21) sowie eine zweite Kupplungseinrichtung (23); sowie weiterhin umfassend ein Abtriebselement (30), und die jeweilige Antriebswelle (10,20) über eine jeweilige Kupplungseinrichtung (13,23) mit dem Abtriebselement (30) verbindbar bzw. verbunden ist, wobei die beiden Kupplungseinrichtungen (13,23) durch eine Bewegung eines mit beiden Kupplungseinrichtungen (13,23) mechanisch gekoppelten Betätigungselements (40) gleichzeitig betätigbar sind. Mit dem hier vorgeschlagenen Hybridmodul wird eine Antriebseinrichtung für ein Kraftfahrzeug zur Verfügung gestellt, die mit Beanspruchung eines geringen Bauraums einen energieeffizienten Betrieb in mehreren unterschiedlichen Betriebsmodi bietet.

Description

Hybridmodul und Antriebsanordnunq für ein Kraftfahrzeug
Die Erfindung betrifft ein Hybridmodul für ein Kraftfahrzeug zum Ankoppeln einer Verbrennungskraftmaschine sowie eine Antriebsanordnung für ein Kraftfahrzeug mit einer Verbrennungskraftmaschine und einem erfindungsgemäßen Hybridmodul.
Elektrische Antriebe sind weitgehend bekannt, so auch zum Antreiben von
Kraftfahrzeugen. Hier können die elektrischen Antriebe kombiniert mit
Verbrennungskraftmaschinen vorliegen, wie zum Beispiel in Hybridmodulen integriert, die eine Kopplung einer Verbrennungskraftmaschine vorsehen.
Ein Hybridmodul umfasst üblicherweise eine Anschlusseinrichtung zur mechanischen Ankopplung einer Verbrennungskraftmaschine, eine Trennkupplung, mit der
Drehmoment von der Verbrennungskraftmaschine auf das Hybridmodul übertragbar ist und mit der das Hybridmodul von der Verbrennungskraftmaschine trennbar ist, wenigstens eine elektrische Maschine zur Erzeugung eines Antriebsdrehmoments mit einem Rotor, sowie eine weitere Kupplungseinheit, insbesondere eine
Doppelkupplungsvorrichtung, mit der Drehmoment von der elektrischen Maschine und/ oder von der Trennkupplung auf einen Antriebsstrang übertragbar ist. Die Doppelkupplungsvorrichtung umfasst eine erste Teilkupplung und eine zweite
Teilkupplung. Jeder angeordneten Kupplung ist jeweils ein Betätigungssystem zugeordnet. Weitere Anfahrelemente wie Wandler oder Einscheibenkupplungen anstelle der Doppelkupplung sind möglich.
Eine jeweilige elektrische Maschine ermöglicht das elektrische Fahren,
Leistungszuwachs zum Verbrennungsmotorbetrieb und Rekuperieren bzw.
Generieren.
Des Weiteren sind hybride Antriebe bekannt, die zwei elektrische Maschinen aufweisen. Eine erste elektrische Maschine ist drehfest mit einer
Verbrennungskraftmaschine verwendbar bzw. verbunden und eine zweite elektrische Maschine ist drehfest mit den Antriebsrädern des Kraftfahrzeuges verbindbar bzw. verbunden. Zwischen den beiden elektrischen Maschinen ist eine Kupplungseinrichtung angeordnet, die den Drehmoment-Übertragungspfad zwischen den beiden elektrischen Maschinen schließen und öffnen kann. Entsprechend sind die beiden elektrischen Maschinen mechanisch in Reihe geschaltet. Durch entsprechende Getriebe, so zum Beispiel Zahnrad-Übersetzungen, werden Drehzahlen und
Drehmomente der elektrischen Maschinen sowie der angeschlossenen
Verbrennungskraftmaschine und der Eingangsseite eines Getriebes bzw. der
Antriebsräder aneinander angepasst.
Es können derart unterschiedliche Betriebszustände realisiert werden, wie zum Beispiel eine rein elektromotorische Fahrt, bei der die Kupplung geöffnet ist; ein elektromotorischer Antrieb des Kraftfahrzeuges durch die erste elektrische Maschine bei gleichzeitigem Generator-Betrieb durch die zweite elektrische Maschine, die durch die Verbrennungskraftmaschine angetrieben wird, wobei die Kupplung geöffnet ist; und eine verbrennungsmotorische Fahrt, bei der keine, eine oder beide elektrischen Maschinen Leistung ab- oder aufnehmen können, wobei die Kupplung geschlossen ist.
Diese Systeme weisen allerdings den Nachteil eines geminderten Wirkungsgrades auf, da auf Grund der Reihenschaltung der elektrischen Maschinen bei Betrieb einer elektrischen Maschine als Antrieb die zweite elektrische Maschine ebenfalls in
Rotation zu versetzen ist, wobei Massenträgheitsmomente zu überwinden sind sowie auftretende magnetische Kräfte.
Weiterhin sind Antriebssysteme bzw. Hybridmodule bekannt, die jeweils zwei elektrische Maschinen aufweisen, wobei jeder elektrischen Maschine jeweils eine Kupplungseinrichtung zugeordnet ist, mit der die elektrische Maschine an den
Antriebsstrang angekoppelt bzw. davon getrennt werden kann. Derartige
Hybridmodule bzw. Antriebssysteme sind den Dokumenten DE 10 2015 222 690 A1 , DE 10 2015 222 691 A1 , DE 10 2015 222 692 A1 und DE 10 2015 222 694 A1 entnehmbar.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Hybridmodul zur Verfügung zu stellen, welches unter Beanspruchung eines geringen Bauraums einen hohen Wirkungsgrad aufweist. Diese Aufgabe wird durch das erfindungsgemäße Hybridmodul nach Anspruch 1 und durch die Antriebsanordnung nach Anspruch 10 gelöst.
Vorteilhafte Ausgestaltungen des Hybridmoduls sind in den Unteransprüchen 2-9 angegeben.
Die Merkmale der Ansprüche können in jeglicher technisch sinnvollen Art und Weise kombiniert werden, wobei hierzu auch die Erläuterungen aus der nachfolgenden Beschreibung sowie Merkmale aus den Figuren hinzugezogen werden können, die ergänzende Ausgestaltungen der Erfindung umfassen.
Der Begriff axial bezieht sich im Rahmen der vorliegenden Erfindung immer auf die Drehachse des Hybridmoduls.
Die Erfindung betrifft ein Hybridmodul für ein Kraftfahrzeug zum Ankoppeln einer Verbrennungskraftmaschine, welches eine erste Antriebswelle und dieser zugeordnet eine erste elektrische Maschine sowie eine erste Kupplungseinrichtung umfasst. Des Weiteren umfasst das Hybridmodul eine zweite Antriebswelle und eine zweite elektrische Maschine sowie eine zweite Kupplungseinrichtung. Zudem weist das Hybridmodul ein Abtriebselement auf. Eine jeweilige Antriebswelle ist über eine jeweilige Kupplungseinrichtung mit dem Abtriebselement verbindbar bzw. verbunden. Es ist erfindungsgemäß vorgesehen, dass die beiden Kupplungseinrichtungen durch eine Bewegung eines mit beiden Kupplungseinrichtungen mechanisch gekoppelten Betätigungselements gleichzeitig betätigbar sind.
Das Abtriebselement ist vorzugsweise eine Abtriebswelle zur Weiterleitung der anliegenden Drehmomente auf ein Getriebe oder auf antreibende Räder eines Kraftfahrzeuges. Vorzugsweise sind die beiden Kupplungseinrichtungen
ausschließlich zur wechselseitigen Schließung ausgestaltet.
Mit den Kupplungseinrichtungen kann Drehmoment von der
Verbrennungskraftmaschine auf die erste elektrische Maschine übertragen werden und/oder von der Verbrennungskraftmaschine auf die zweite elektrische Maschine übertragen werden.
Der Vorteil des erfindungsgemäßen Hybridmoduls liegt insbesondere darin, dass zum Betrieb der beiden Kupplungseinrichtungen lediglich eine Betätigungseinrichtung erforderlich ist, welche mit einer axialen Bewegung des Betätigungselements in der Lage ist, eine der Kupplungseinrichtungen zu schließen und dadurch die andere Kupplungseinrichtung zu öffnen.
Derart kann in einfacher Weise ein gefordertes Konzept umgesetzt werden, bei dem im Verbrennungsmotorbetrieb eine der beiden elektrischen Maschinen nicht als Antrieb dient und nicht im Generatorbetrieb läuft. Entsprechend ist keine Energie aufzubringen, um diese elektrische Maschine bzw. ihren Rotor in Rotation zu versetzen. Mit anderen Worten sorgt die vorliegende Erfindung dafür, dass eine ansonsten leerlaufende elektrische Maschine abgekoppelt werden kann.
In einer Ausgestaltung des erfindungsgemäßen Hybridmoduls ist vorgesehen, dass der Rotor der ersten elektrischen Maschine drehfest mit der ersten Antriebswelle verbunden ist und der Rotor der zweiten elektrischen Maschine drehfest mit dem Abtriebselement verbunden ist.
Das bedeutet, dass die erste Antriebswelle fest mit dem Rotor der ersten elektrischen Maschine verbunden ist und an die erste Kupplungseinrichtung angeschlossen ist.
Die zweite elektrische Maschine ist direkt dem Abtriebselement bzw. der Abtriebswelle zugeordnet.
In weiterer vorteilhafter Ausgestaltung des Hybridmoduls ist vorgesehen, dass die erste Kupplungseinrichtung und die zweite Kupplungseinrichtung beide Bestandteile einer Doppelkupplungsvorrichtung sind, die einen für die beiden
Kupplungseinrichtungen gemeinsamen Außenlamellenträger aufweist. Bei Ausführung der Doppelkupplungsvorrichtung mit gemeinsamem Außenlamellenträger sind an der ersten Antriebswelle und dem Abtriebselement angeschlossene Bestandteile der beiden Kupplungseinrichtungen Innenlamellenträger. Dabei ist die Erfindung nicht auf die erwähnte Anbindung der Antriebs-bzw. Abtriebsseite an Innenlamellenträger und Außenlamellenträger eingeschränkt, sondern Innenlamellenträger und
Außenlamellenträger können auch der jeweils anderen Seite zugeordnet sein. Das bedeutet, dass die Doppelkupplungsvorrichtung derart konzipiert ist, dass immer nur eine der beiden Kupplungseinrichtungen geschlossen ist, wobei in diesem
geschlossenen Zustand die andere Kupplungseinrichtung geöffnet ist. Die Betätigung einer der beiden Kupplungseinrichtungen führt automatisch auch zur Betätigung der anderen Kupplungseinrichtung, sodass die wechselseitige Betätigung gewährt ist.
In einer günstigen Ausgestaltung des Hybridmoduls weisen die beiden
Kupplungseinrichtungen ein Verbindungselement auf, welches mit dem
Betätigungselement mechanisch verbunden ist und oder welches das
Betätigungselement zumindest teilweise ausbildet, und mit welchem Anpressplatten der ersten Kupplungseinrichtung und der zweiten Kupplungseinrichtung axial fest verbindbar oder verbunden sind, sodass eine axiale Verlagerung axiale Freigabe der ersten Anpressplatte gleichzeitig zur axialen Verlagerung oder axialen Freigabe der zweiten Anpressplatte führt, sodass eine gleichzeitige Betätigung der
Kupplungseinrichtungen mit gegensätzlicher Funktion realisierbar ist. Die
gegensätzlichen Funktionen sind jeweils das Öffnen und Schließen der jeweiligen Kupplungseinrichtungen. Der Vorteil dieser Ausgestaltung ist, dass lediglich eine Betätigungseinrichtung bzw. ein Aktor zur Betätigung der beiden
Kupplungseinrichtungen benötigt wird, welche bzw. welcher auf das
Betätigungselement bzw. auf das Verbindungselement vorzugsweise mit einer axialen Kraft wirkt.
Als einen festen Bestandteil kann das Hybridmodul eine Betätigungseinrichtung aufweisen, welche zur gleichzeitigen Betätigung der ersten Kupplungseinrichtung sowie auch der zweiten Kupplungseinrichtung eingerichtet ist.
Vorzugsweise ist dabei die Betätigungseinrichtung derart angeordnet und eingerichtet, dass mit ihr eine Betätigungskraft auf das Betätigungselement zwecks dessen
Verschiebung aufbringbar ist. Insbesondere können die Betätigungseinrichtung und das Betätigungselement derart eingerichtet sein, dass eine unmittelbare
Kraftübertragung realisierbar ist.
In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Hybridmoduls ist vorgesehen, dass wenigstens eine der Kupplungseinrichtungen eine
Federeinrichtung, insbesondere eine Tellerfeder, aufweist, deren Federkraft bei Spannung der Federeinrichtung eine Schließung einer der beiden Kupplungseinrichtungen unterstützt und/oder bewirkt und eine Öffnung der jeweils anderen Kupplungseinrichtung unterstützt und/oder bewirkt.
Dabei kann sowohl die erste Kupplungseinrichtung eine erste Federeinrichtung aufweisen als auch die zweite Kupplungseinrichtung eine zweite Federeinrichtung aufweisen, wobei die erste Federeinrichtung als auch die zweite Federeinrichtung die Schließung der ersten Kupplungseinrichtung unterstützt und/oder bewirkt und die Öffnung der zweiten Kupplungseinrichtung unterstützt und/oder bewirkt.
Vorzugsweise ist dabei die von der ersten Federeinrichtung bewirkte erste Federkraft deutlich geringer als die Kraft, die zur vollständigen Schließung der zweiten
Kupplungseinrichtung von der Betätigungseinrichtung aufzubringen ist. Dies hat den Vorteil, dass von der Betätigungseinrichtung insgesamt, d.h. zur Betätigung beider Kupplungseinrichtungen in beide Richtungen, eine Betätigungskraft mit geringer Schwankungsbreite aufzubringen ist. Entsprechend gering fällt der aufzubringende Steuerungsaufwand aus und die Betätigungseinrichtung ist mit entsprechend einfachen Mitteln realisierbar.
In einer weiteren vorteilhaften Ausgestaltung des Flybridmoduls ist vorgesehen, dass die zweite Kupplungseinrichtung einen zweiten Innenlamellenträger aufweist, der mit dem Abtriebselement drehfest und axial verschiebbar verbunden ist, wobei das Flybridmodul weiterhin eine Druckfedereinrichtung, insbesondere eine
Schraubenfeder, aufweist, welche sich axial an dem Abtriebselement abstützt und gegen den zweiten Innenlamellenträger drückt, der sich wiederum axial an einem der ersten Kupplungseinrichtung und zweiten Kupplungseinrichtung gemeinsamen
Kupplungsträger abstützt. Dieser gemeinsame Kupplungsträger wiederum kann sich axial direkt oder indirekt an der ersten Antriebswelle abstützen. Vorzugsweise befindet sich axial zwischen dem Innenlamellenträger und dem Kupplungsträger und zwischen dem Kupplungsträger und der ersten Antriebswelle jeweils ein Rotationslager, welches der axialen Übertragung der von der Druckfedereinrichtung aufgebrachten axialen Kraft dient. Ein weiterer Aspekt der vorliegenden Erfindung ist eine Antriebsanordnung für ein Kraftfahrzeug mit einer Verbrennungskraftmaschine und einem erfindungsgemäßen Hybridmodul sowie mit einem Getriebe, wobei das Hybridmodul mit der
Verbrennungskraftmaschine und dem Getriebe mechanisch über
Kupplungseinrichtungen des Hybridmoduls verbunden ist.
Die oben beschriebene Erfindung wird nachfolgend vor dem betreffenden technischen Hintergrund unter Bezugnahme auf die zugehörigen Zeichnungen, welche bevorzugte Ausgestaltungen zeigen, detailliert erläutert. Die Erfindung wird durch die rein schematischen Zeichnungen in keiner Weise beschränkt, wobei anzumerken ist, dass die in den Zeichnungen gezeigten Ausführungsbeispiele nicht auf die dargestellten Maße eingeschränkt sind. Es ist dargestellt in
Figur 1 : ein Teilschnitt eines erfindungsgemäßen Hybridmoduls,
Figur 2: ein Kraft-Weg-Diagramm mit dargestellten Kennlinien der ersten
Federeinrichtung und der Betätigungseinrichtung, und
Figur 3: ein Kraft-Weg-Diagramm mit dargestellter Summen-Kennlinie.
Das in Figur 1 dargestellte erfindungsgemäße Hybridmodul umfasst in einem
Gehäuse 1 , welches hier nur angedeutet ist, auf einer gemeinsamen Rotationsachse 2 eine erste Antriebswelle 10, auf der der Rotor 12 einer ersten elektrischen Maschine 11 drehfest gelagert ist.
Auf einem Abtriebselement 30 in Form einer Abtriebswelle sitzt drehfest der Rotor 22 einer zweiten elektrischen Maschine 21. Die erste Antriebswelle 10und das
Abtriebselement 30 sind rotationssymmetrisch zueinander positioniert. Eine zweite Antriebswelle 20 ist dafür vorgesehen, mechanisch, gegebenenfalls über eine
Trennkupplung, mit einer Verbrennungskraftmaschine, die ebenfalls Bestandteil des Hybridmoduls sein kann, verbunden zu werden.
Die erste Antriebswelle 10 ist über eine erste Kupplungseinrichtung 13 mit einem gemeinsamen Kupplungsträger 51 verbunden. Ebenso ist das Abtriebselement 30, über eine zweite Kupplungseinrichtung 23 mit dem gemeinsamen Kupplungsträger 51 verbunden. Dieser gemeinsame Kupplungsträger 51 ist über eine Verzahnung 31 mit der zweiten Antriebswelle 20drehfest verbunden.
In der hier dargestellten Ausführungsform bilden die erste Kupplungseinrichtung 13 und die zweite Kupplungseinrichtung 23 zusammen eine Doppelkupplungsvorrichtung 50 aus. Diese Doppelkupplungsvorrichtung 50 umfasst einen den beiden
Kupplungseinrichtungen 13,23 gemeinsamen Außenlamellenträger 52, der drehfest, hier verschweißt, mit dem gemeinsamen Kupplungsträger 51 verbunden ist.
Die erste Antriebswelle 10 selbst bildet einen ersten Innenlamellenträger 53 aus, an dem Innenlamellen der ersten Kupplungseinrichtung 13 angeordnet sind, alternierend mit am Außenlamellenträger 52 axial verschieblich angeordneten Außenlamellen der ersten Kupplungseinrichtung 13.
In ähnlicher Weise trägt ein zweiter Innenlamellenträger 54, der über eine drehfeste Verbindung 55 mit dem Abtriebselement 30gekoppelt ist, Innenlamellen der zweiten Kupplungseinrichtung 23, die alternierend mit Außenlamellen der zweiten
Kupplungseinrichtung 23 angeordnet sind. Die Außenlamellen der zweiten
Kupplungseinrichtung 23 sind dabei axial verschieblich am Außenlamellenträger 52 angeordnet.
Eine erste Anpressplatte 14 der ersten Kupplungseinrichtung 13 ist bei axialer Anlage an einem Anschlagpunkt axial fest mit einem Verbindungselement 56, welches auch als Druckstück bezeichnet wird, mit einer zweiten Anpressplatte der zweiten
Kupplungseinrichtung 23 gekoppelt. Derart können beide Anpressplatten 14,24 immer nur zusammen axial verlagert werden, so dass bei Betätigung einer
Kupplungseinrichtung 13,23 in einer Funktionsweise automatisch die jeweils andere Kupplungseinrichtung 13,23 in der entgegengesetzten Funktionsweise betätigt wird. Das bedeutet, dass bei einer Schließung der ersten Kupplungseinrichtung 13 automatisch die zweite Kupplungseinrichtung 23 geöffnet wird, und umgekehrt. Derart ist sichergestellt, dass bei Betrieb der zweiten elektrischen Maschine21 die erste elektrische Maschine 11 von dem Abtriebselement 30 bzw. der Abtriebswelle abgekoppelt ist und demzufolge keine Energie zur Realisierung einer Drehbewegung des ersten Rotors sowie zur Überwindung der dort auftretenden magnetischen Kräfte erbracht werden muss. Dabei ist das vorliegende erfindungsgemäße Flybridmodul nicht auf diese Ausführungsform eingeschränkt, sondern es kann auch vorgesehen sein, dass jeder Kupplungseinrichtung 13,23 eine eigene Betätigungseinrichtung zugeordnet ist, wobei allerdings auch dann diese extra Betätigungseinrichtungen derart ausgestaltet und angeordnet sein sollten, dass die beiden
Kupplungseinrichtungen 13,23 gleichzeitig mit entgegengesetzter Funktionsweise betätigt werden können.
Zur Betätigung der hier dargestellten Doppelkupplungsvorrichtung 50 ist eine hier nicht extra dargestellte Betätigungseinrichtung vorgesehen, welche sich vorzugsweise am Gehäuse 1 abstützt. Die Betätigungseinrichtung kann insbesondere ein
hydraulisches System oder auch ein elektromechanisches System sein. Die von der Betätigungseinrichtung aufgebrachte Betätigungskraft 41 in axialer Richtung ist in Figur 1 ersichtlich, die auf ein Betätigungselement 40 wirkt, welches sich axial an einem Drehlager 57 abstützt.
Das Drehlager 57 stützt sich wiederum axial an dem Verbindungselement 56 ab, welches axial fest mit den Anpressplatten 14,24 der beiden Kupplungseinrichtungen 13,23 verbindbar bzw. verbunden ist. Derart kann durch Ausübung der
Betätigungskraft 41 eine gleichzeitige Betätigung der beiden Kupplungseinrichtungen 13,23 erfolgen.
In der hier dargestellten Ausführungsform ist der ersten Kupplungseinrichtung 13 eine erste Federeinrichtung 15 in Form einer ersten Tellerfeder zugeordnet; und der zweiten Kupplungseinrichtung 23 ist eine zweite Federeinrichtung 25 in Form einer zweiten Tellerfeder zugeordnet. Die erste Federeinrichtung 15 bewirkt eine erste Federkraft 16 in derselben Richtung wie die von der zweiten Federeinrichtung 25 bewirkte zweite Federkraft 26.
Das bedeutet, dass beide Federeinrichtungen 15,25 in Richtung der Schließung der ersten Kupplungseinrichtung 13 und Öffnung der zweiten Kupplungseinrichtung 23 wirken. In der hier dargestellten Ausführungsform ist vorgesehen, dass im
Wesentlichen die erste Federeinrichtung 15 die Öffnung der zweiten
Kupplungseinrichtung 23 über einen ersten Teilweg bewirkt und die zweite
Federeinrichtung 25 die Öffnung über einen zweiten Teilweg bewirkt.
Die zweite Federeinrichtung 25 sichert zudem ab, dass das Verbindungselement 56 nicht vom Drehlager 57 abhebt. Zudem umfasst das hier dargestellte Hybridmodul eine Druckfedereinrichtung 60 in Form einer Schraubenfeder, die sich indirekt am Gehäuse 1 axial abstützt. An der axial gegenüberliegenden Seite drückt die Druckfedereinrichtung 60 gegen den zweiten Innenlamellenträger 54, der sich wiederum axial an einem ersten
Rotationslager 61 abstützt. Dieses erste Rotationslager 61 stützt sich selbst am gemeinsamen Kupplungsträger 51 axial ab, der sich wiederum über ein zweites Rotationslager 62 an der ersten Antriebswelle 10 axial abstützt. Dadurch lassen sich in einfacher Weise gegebenenfalls im Hybridmodul bzw. in den einzelnen Bauteilen vorhandene Toleranzen und durch ständige Druckkraftbeaufschlagung in axialer Richtung reduzieren. Zudem werden die beteiligten Lager, nämlich das Drehlager 57 sowie das erste Rotationslager 61 und das zweite Rotationslager 62, axial
vorgespannt, sodass sie ein nur noch geringes bzw. kein Axialspiel mehr aufweisen.
Zur Schmierung der Doppelkupplungsvorrichtung 50 sind in der ersten Antriebswelle 10 Bohrungen 63 zur Ermöglichung des Transports von Schmiermitteln, die auch der Kühlung dienen können, integriert.
Eine Relativ-Rotationsbewegung zwischen der zweiten Antriebswelle 20 und dem koaxial angeordneten Abtriebselement 30 wird durch ein Nadellager 64 gewährleistet. Die dargestellten Kupplungseinrichtungen 13,23 sind nicht auf Lamellenkupplungen eingeschränkt, sondern es lassen sich stattdessen auch andere reibschlüssig arbeitende Kupplungen oder auch formschlüssig wirkende Kupplungen einsetzen.
Die in den Figuren 2 und 3 dargestellten Diagramme zeigen typische Kennlinien des Kraft-Weg-Verlaufs einer Federeinrichtung sowie der angeschlossenen
Betätigungseinrichtung.
In Figur 2 ist dabei die Kennlinie 70 der ersten Tellerfeder, die hier als erste
Federeinrichtung 15 vorgesehen ist, dargestellt. Dabei ist der Betriebspunkt K1 ersichtlich, bei dem die erste Kupplungseinrichtung 13 vollständig geschlossen ist. Bei Betätigung der ersten Kupplungseinrichtung 13 durch axiale Verschiebung der ersten Anpressplatte 14 entlang der Richtung der Betätigungskraft 41 über einen im
Diagramm in Figur 2 dargestellten positiven Weg s verändert sich die von der ersten Federeinrichtung 15 bzw. ersten Tellerfeder aufgebrachte Kraft F. Es ist ersichtlich, dass nach einem kurzzeitigen Anstieg der Kraft F diese bei weiterer Vergrößerung des Weges s deutlich geringer wird.
Weiterhin ist in Figur 2 die Kennlinie 80 der Betätigungseinrichtung dargestellt. Es ist ersichtlich, dass nach zunächst geringer benötigter Kraft F zur Zurücklegung eines relativ langen Weges s ein Knick in der Kennlinie 80 erfolgt, und dann die Kennlinie 80 einen steileren Anstieg aufweist. Dies ist dadurch begründet, dass bei Schließung der zweiten Kupplungseinrichtung 23 nach zunächst erfolgtem Zusammenschieben der Lamellen der zweiten Kupplungseinrichtung 23 und Kontaktieren der Lamellen diese mit verstärkter Kraft F zusammengedrückt werden müssen, um einen weiteren
Betätigungsweg zu realisieren und um entsprechend eine hohe axiale Anpresskraft zu übertragen, die die Übertragung eines hohen Reibmomentes gewährleistet.
Das Maß des Anstieges der Kennlinie 80 wird durch die Bauteilsteifigkeiten der beteiligten Bauelemente sowie durch die Kompression der Beläge der Lamellen sowie der wirkenden zweiten Federeinrichtung 25 beeinflusst.
Hier ist weiterhin der Punkt K2 ersichtlich, der den Weg-Punkt verdeutlicht, bei dem die zweite Kupplungseinrichtung 23 vollständig geschlossen ist. Für das hier dargestellte Ausführungsbeispiel beträgt dieser Weg s 1 ,8 mm, der neben den von den Lamellen zurückzulegenden Wegen auch von den Toleranzen der
Kupplungseinrichtungen 13,23 abhängig ist.
Es ist erkennbar, dass bei dem zur Schließung der zweiten Kupplungseinrichtung 23 zurückgelegten Weg s die von der ersten Federeinrichtung 15 bzw. der ersten
Tellerfeder aufgebrachte Kraft F bereits relativ gering ist. Diese relativ geringe Kraft F ist aber ausreichend, um bei Aufhebung der von der Betätigungseinrichtung bewirkten Betätigungskraft 41 eine selbsttätige Rückstellung in die Ausgangsposition vornehmen zu können und dabei die Reibung im System zu überwinden.
Das erfindungsgemäße Hybridmodul kann des Weiteren mit einer Einrichtung zur Schlupferkennung ausgestaltet sein, mit der die Kupplungseinrichtungen 13,23 gegebenenfalls auch automatisch gesteuert betätigt werden können und mit der die herrschenden Anpresskräfte in den Kupplungseinrichtungen 13,23 eingestellt werden können. Figur 3 zeigt das rechnerische Ergebnis einer Addition der beiden zu Figur 2 erläuterten Kennlinien 70, 80, wobei ersichtlich ist, dass die zur Realisierung der beiden charakteristischen Punkte K1 und K2 benötigten Kräfte F nur unwesentlich voneinander differieren. Zudem ist ersichtlich, dass die Summen-Kennlinie 90 in Figur 2 nur geringe Schwankungen zwischen den beiden Punkten K1 und K2 aufweist. In entsprechender Weise wird deutlich, dass eine vorzusehende Betätigungseinrichtung im Wesentlichen für nur einen relativ geringen, zu realisierenden Kraftbereich eingerichtet sein muss. Mit dem hier vorgeschlagenen Flybridmodul wird eine Antriebseinrichtung für ein Kraftfahrzeug zur Verfügung gestellt, die mit Beanspruchung eines geringen
Bauraums einen energieeffizienten Betrieb in mehreren unterschiedlichen
Betriebsmodi bietet.
Bezuqszeichenliste
1 Gehäuse
2 Rotationsachse
10 erste Antriebswelle
11 erste elektrische Maschine
12 Rotor der ersten elektrischen Maschine
13 erste Kupplungseinrichtung
14 erste Anpressplatte
15 Erste Federeinrichtung
16 Erste Federkraft
20 zweite Antriebswelle
21 zweite elektrische Maschine
22 Rotor der zweiten elektrischen Maschine
23 zweite Kupplungseinrichtung
24 zweite Anpressplatte
25 zweite Federeinrichtung
26 zweite Federkraft
30 Abtriebselement
31 Verzahnung
40 Betätigungselement
41 Betätigungskraft
50 Doppelkupplungsvorrichtung
51 Gemeinsamer Kupplungsträger
52 Außenlamellenträger
53 Erster Innenlamellenträger
54 Zweiter Innenlamellenträger
55 drehfeste Verbindung
56 Verbindungselement
57 Drehlager
60 Druckfedereinrichtung
61 Erstes Rotationslager 62 Zweites Rotationslager
63 Bohrung für Schmiermittel
64 Nadellager
70 Kennlinie der ersten Tellerfeder
80 Kennlinie der Betätigungseinrichtung
90 Summen-Kennlinie der ersten Tellerfeder und der Betätigungseinrichtung

Claims

Patentansprüche
1. Hybridmodul für ein Kraftfahrzeug zum Ankoppeln einer
Verbrennungskraftmaschine, umfassend eine erste Antriebswelle (10) und dieser zugeordnet eine erste elektrische Maschine (11 ) sowie eine erste
Kupplungseinrichtung (13), und umfassend eine zweite Antriebswelle (20) und eine zweite elektrische Maschine (21 ) sowie eine zweite Kupplungseinrichtung (23); sowie weiterhin umfassend ein Abtriebselement (30), und die jeweilige Antriebswelle (10,20) über eine jeweilige Kupplungseinrichtung (13,23) mit dem Abtriebselement (30) verbindbar bzw. verbunden ist, dadurch gekennzeichnet, dass die beiden Kupplungseinrichtungen (13,23) durch eine Bewegung eines mit beiden Kupplungseinrichtungen (13,23) mechanisch gekoppelten
Betätigungselements (40) gleichzeitig betätigbar sind.
2. Hybridmodul nach Anspruch 1 , dadurch gekennzeichnet, dass der Rotor (12) der ersten elektrischen Maschine (11 ) drehfest mit der ersten Antriebswelle (10) verbunden ist; und dass der Rotor (22) der zweiten elektrischen Maschine (21 ) drehfest mit dem Abtriebselement (30) verbunden ist.
3. Hybridmodul nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die erste Kupplungseinrichtung (13) und die zweite
Kupplungseinrichtung (23) beide Bestandteile einer Doppelkupplungsvorrichtung (50) sind, die einen für die beiden Kupplungseinrichtungen (13,23) gemeinsamen Außenlamellenträger (52) aufweist.
4. Hybridmodul nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die beiden Kupplungseinrichtungen (13,23) ein
Verbindungselement (56) aufweisen, welches mit dem Betätigungselement (40) mechanisch verbunden ist und oder welches das Betätigungselement (40) zumindest teilweise ausbildet, und mit welchem Anpressplatten (14,24) der ersten Kupplungseinrichtung (13) und der zweiten Kupplungseinrichtung (23) axial fest verbindbar oder verbunden sind, sodass eine axiale Verlagerung der ersten Anpressplatte (14) gleichzeitig zur axialen Verlagerung der zweiten Anpressplatte (24) führt, sodass eine gleichzeitige Betätigung der Kupplungseinrichtungen (13,23) mit gegensätzlicher Funktion realisierbar ist.
5. Hybridmodul nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass das Hybridmodul eine Betätigungseinrichtung aufweist, welche zur gleichzeitigen Betätigung der ersten Kupplungseinrichtung (13) sowie auch der zweiten Kupplungseinrichtung (23) eingerichtet ist.
6. Hybridmodul nach Anspruch 5, dadurch gekennzeichnet, dass die
Betätigungseinrichtung derart angeordnet und eingerichtet ist, dass mit ihr eine Betätigungskraft (41 ) auf das Betätigungselement (40) zwecks dessen
Verschiebung aufbringbar ist.
7. Hybridmodul nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine der Kupplungseinrichtungen (13,23) eine Federeinrichtung (15,25), insbesondere eine Tellerfeder, aufweist, deren
Federkraft (16,26) bei Spannung der Federeinrichtung (15,25) eine Schließung einer der beiden Kupplungseinrichtungen (13,23) unterstützt und/oder bewirkt und eine Öffnung der jeweils anderen Kupplungseinrichtung (13,23) unterstützt und/oder bewirkt.
8. Hybridmodul nach Anspruch 7, dadurch gekennzeichnet, dass sowohl die erste Kupplungseinrichtung (13) eine erste Federeinrichtung (15) aufweist als auch die zweite Kupplungseinrichtung (23) eine zweite Federeinrichtung (25) aufweist, wobei die erste Federeinrichtung (15) als auch die zweite Federeinrichtung (25) die Schließung der ersten Kupplungseinrichtung (13) unterstützt und/oder bewirkt und die Öffnung der zweiten Kupplungseinrichtung (23) unterstützt und/oder bewirkt.
9. Hybridmodul nach einem der vorhergehenden Ansprüche, dadurch
gekennzeichnet, dass die zweite Kupplungseinrichtung (23) einen zweiten Innenlamellenträger (54) aufweist, der mit dem Abtriebselement (30) drehfest und axial verschiebbar verbunden ist, wobei das Hybridmodul weiterhin eine
Druckfedereinrichtung (60), insbesondere eine Schraubenfeder, aufweist, welche sich axial an dem Abtriebselement (30) abstützt und gegen den zweiten
Innenlamellenträger (54) drückt, der sich wiederum axial an einem der ersten Kupplungseinrichtung (13) und zweiten Kupplungseinrichtung (23) gemeinsamen Kupplungsträger (51 ) abstützt.
10. Antriebsanordnung für ein Kraftfahrzeug mit einer Verbrennungskraftmaschine und einem Hybridmodul gemäß einem der Ansprüche 1 bis 9 sowie mit einem Getriebe, wobei das Hybridmodul mit der Verbrennungskraftmaschine und dem Getriebe mechanisch über Kupplungseinrichtungen (13,23) des Hybridmoduls verbunden ist.
EP19706874.5A 2018-02-14 2019-02-04 Hybridmodul und antriebsanordnung für ein kraftfahrzeug Withdrawn EP3752379A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018103336.2A DE102018103336A1 (de) 2018-02-14 2018-02-14 Hybridmodul und Antriebsanordnung für ein Kraftfahrzeug
PCT/DE2019/100117 WO2019158156A1 (de) 2018-02-14 2019-02-04 Hybridmodul und antriebsanordnung für ein kraftfahrzeug

Publications (1)

Publication Number Publication Date
EP3752379A1 true EP3752379A1 (de) 2020-12-23

Family

ID=65520020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19706874.5A Withdrawn EP3752379A1 (de) 2018-02-14 2019-02-04 Hybridmodul und antriebsanordnung für ein kraftfahrzeug

Country Status (6)

Country Link
US (1) US11440396B2 (de)
EP (1) EP3752379A1 (de)
KR (1) KR20200118403A (de)
CN (1) CN111565955B (de)
DE (2) DE102018103336A1 (de)
WO (1) WO2019158156A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018114382A1 (de) 2018-06-15 2019-12-19 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs und Antriebsanordnung
DE102021114641A1 (de) 2021-06-08 2022-12-08 Schaeffler Technologies AG & Co. KG Antriebseinheit und Antriebsanordnung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248715A1 (de) 2002-10-18 2004-05-13 Compact Dynamics Gmbh Hybridantrieb für ein Kraftfahrzeug
CA2430157A1 (fr) * 2003-05-30 2004-11-30 Tm4 Inc. Systeme de traction pour vehicule electrique
US7513349B2 (en) * 2005-11-30 2009-04-07 Tm4 Inc. Multi-position clutch
CN101353043B (zh) * 2007-07-25 2011-06-15 比亚迪股份有限公司 混合动力输出装置中的离合器接合控制方法及控制系统
US9186974B2 (en) * 2010-06-28 2015-11-17 Magna Steyr Fahrzeugtechnik Ag & Co Kg Drive train
JP5136660B2 (ja) * 2010-07-08 2013-02-06 株式会社デンソー 車両用動力伝達装置
DE102011106399A1 (de) * 2011-07-02 2013-01-03 Magna E-Car Systems Gmbh & Co Og Antriebsstrang
DE102015201931A1 (de) * 2015-02-04 2016-08-04 Bayerische Motoren Werke Aktiengesellschaft Antriebssystem für ein Hybridfahrzeug
DE102015222690A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222691A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Verfahren zum Steuern einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222694A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
DE102015222692A1 (de) 2015-11-17 2017-05-18 Volkswagen Aktiengesellschaft Betreiben einer Antriebseinrichtung eines Hybridfahrzeuges und Hybridfahrzeug
JP6480978B2 (ja) * 2017-04-27 2019-03-13 本田技研工業株式会社 車両のクラッチ装置
DE102017127695A1 (de) 2017-11-23 2019-05-23 Schaeffler Technologies AG & Co. KG Hybrid-Antriebsstrang mit zwei elektrischen Maschinen und einer Verbrennungskraftmaschine

Also Published As

Publication number Publication date
US11440396B2 (en) 2022-09-13
CN111565955A (zh) 2020-08-21
CN111565955B (zh) 2023-06-30
US20210053432A1 (en) 2021-02-25
WO2019158156A1 (de) 2019-08-22
KR20200118403A (ko) 2020-10-15
DE112019000787A5 (de) 2020-11-12
DE102018103336A1 (de) 2019-08-14

Similar Documents

Publication Publication Date Title
EP3516249B1 (de) Mehrfachkupplungseinrichtung und hybridmodul für ein kraftfahrzeug
EP2655113B1 (de) Hybridmodul für einen triebstrang eines fahrzeuges
EP2449286B1 (de) Zwei-gang-getriebe
EP1275867B1 (de) Doppelkupplung
WO2018157879A1 (de) Mehrfachkupplungseinrichtung und hybridmodul für ein kraftfahrzeug
WO2012167767A1 (de) Hvbridmodul für einen triebstrang eines fahrzeuges
EP3593002B1 (de) Kupplungseinrichtung und hybridmodul
EP1925486B1 (de) Hybridantriebssystem für ein Fahrzeug
DE102009045562A1 (de) Kupplungsanordnung und Ankopplungsverfahren für ein Fahrzeug mit einer ersten und einer zweiten Antriebsvorrichtung
WO2019086073A1 (de) Mehrfachkupplungseinrichtung und hybridmodul für ein kraftfahrzeug
WO2016045672A1 (de) Zuschaltkupplung für hybriden antriebsstrang mit momentenfühler
EP3797044A1 (de) Mehrfachkupplungseinrichtung und hybridmodul für ein kraftfahrzeug
WO2012149924A1 (de) Hybridmodul für einen triebstrang eines fahrzeuges
WO2018219385A1 (de) Hybridmodul und antriebsanordnung für ein kraftfahrzeug
WO2019158156A1 (de) Hybridmodul und antriebsanordnung für ein kraftfahrzeug
DE102016209019B3 (de) Kupplungseinrichtung und Hybridmodul
EP1586784A1 (de) Verfahren und Kupplungsaktorik zum Betätigen zumindest einer Kupplung in einem Antriebsstrang eines Fahrzeugs
DE102016222420A1 (de) Kupplungsantrieb für einen Hybridantriebsstrang
WO2022258111A1 (de) Antriebseinheit und antriebsanordnung
DE10038334A1 (de) Kupplungsanordnung
DE10393512B4 (de) Vorrichtung zum Betrieb eines Kraftfahrzeuges, insbesondere zum Betätigen eines automatisierten Getriebes eines Kraftfahrzeuges
DE102019117059A1 (de) Hybridmodul sowie Antriebsanordnung für ein Kraftfahrzeug
DE102019100969B4 (de) Trockendoppelkupplung für eine elektrische Achse sowie elektrische Achse mit der Trockendoppelkupplung
DE102020005358A1 (de) Antriebseinrlchtung für ein Kraftfahrzeug, insbesondere für einen Kraftwagen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200914

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220428

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20230920