WO2022258111A1 - Antriebseinheit und antriebsanordnung - Google Patents

Antriebseinheit und antriebsanordnung Download PDF

Info

Publication number
WO2022258111A1
WO2022258111A1 PCT/DE2022/100425 DE2022100425W WO2022258111A1 WO 2022258111 A1 WO2022258111 A1 WO 2022258111A1 DE 2022100425 W DE2022100425 W DE 2022100425W WO 2022258111 A1 WO2022258111 A1 WO 2022258111A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive unit
shaft
separating clutch
rotary machine
rotor
Prior art date
Application number
PCT/DE2022/100425
Other languages
English (en)
French (fr)
Inventor
Steffen Lehmann
Alexander Voit
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2022258111A1 publication Critical patent/WO2022258111A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D11/00Clutches in which the members have interengaging parts
    • F16D11/14Clutches in which the members have interengaging parts with clutching members movable only axially
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D13/00Friction clutches
    • F16D13/22Friction clutches with axially-movable clutching members
    • F16D13/38Friction clutches with axially-movable clutching members with flat clutching surfaces, e.g. discs
    • F16D13/52Clutches with multiple lamellae ; Clutches in which three or more axially moveable members are fixed alternately to the shafts to be coupled and are pressed from one side towards an axially-located member
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/264Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators with outer rotor and inner stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/266Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators with two coaxial motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D21/00Systems comprising a plurality of actuated clutches
    • F16D21/02Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways
    • F16D21/06Systems comprising a plurality of actuated clutches for interconnecting three or more shafts or other transmission members in different ways at least two driving shafts or two driven shafts being concentric

Definitions

  • the invention relates to a drive unit for a drive train of an electrically drivable motor vehicle, in particular a hybrid motor vehicle, and a drive arrangement.
  • DE 11 2015 006 071 T5 discloses a hybrid vehicle drive system with a generator that can generate electrical energy using the power of an internal combustion engine; an electric motor driven by electric energy to drive wheels; a housing accommodating the generator and the electric motor, and a power control unit for controlling the generator and the electric motor.
  • the generator and the electric motor are arranged in parallel on the same axis in the housing.
  • WO 2019 101 264 A1 discloses a drive train for a hybrid motor vehicle.
  • the drive train comprises a transmission input shaft, which is in operative relationship via a first drive train with a first electric machine and an internal combustion engine for torque transmission and is in operative relationship with a second electric machine for torque transmission via a second drive train.
  • the two electrical machines are arranged coaxially and axially adjacent to one another.
  • US 2016/0218584 A1 describes a control unit which is used to control electrical machines, the control unit being mounted on a housing of the drive unit comprising the electrical machines.
  • the drive unit comprises two electrical machines which are arranged coaxially and axially adjacent to one another.
  • EP 1502791 B1 and EP1847411 B1 each disclose a hybrid transmission for a hybrid vehicle having a plurality of rotary electric machines. The electrical machines are arranged in a radially nested manner. The radially outer electrical rotary machine is designed as an external rotor.
  • hybrid transmissions with two electric machines which enable switching between serial operation and parallel operation.
  • serial operation an internal combustion engine drives a first electric machine that works as a generator.
  • the electrical energy thus generated is used to drive the second electrical machine, the torque of which is transmitted to the wheels of a motor vehicle equipped with the hybrid transmission.
  • the torque of a connected internal combustion engine is directed to the wheels of a motor vehicle equipped with the hybrid transmission, with the second electric machine running idle, supporting the ferry operation or even recuperating.
  • Figure 1 shows such a conventional concept with two electrical systems in a nested arrangement:
  • An internal combustion engine 110 is connected via a first transmission stage 70 directly to a first electrical rotary machine 10 running as a generator, which is designed here as an internal rotor.
  • a second electric rotary machine 20 serving as an electric traction drive is defined here as an external rotor and two further transmission stages 71 , 72 are connected to the wheel drive shafts 103 .
  • first separating clutch 50 In the torque transmission path between the two rotary electric machines 10, 20 there is a first separating clutch 50, which enables serial driving in the open state and parallel driving in the closed state.
  • the object of the present invention is to provide a drive unit and a drive arrangement equipped therewith which ensure efficient operation in a cost-effective design and space-saving manner.
  • the terms “axial” and “radial” always refer to the axis of rotation of the drive unit, which corresponds to the axis of rotation of at least one of the electrical rotary machines comprised by the drive unit.
  • the invention relates to a drive unit for a drive train of an electrically drivable motor vehicle, in particular a hybrid motor vehicle.
  • the drive unit comprises a first rotary electric machine and a second rotary electric machine and a first shaft and a second shaft, with a rotor of the first rotary electric machine being non-rotatably connected to the first shaft.
  • the drive unit also has a first separating clutch, with which the rotor of the first electric rotary machine can be connected or is connected to the second shaft for torque transmission. According to the invention, it is provided that the drive unit also has a second separating clutch, with which a rotor of the second electric rotary machine can be connected or is connected to the second shaft for torque transmission.
  • the second electric rotary machine By opening the second separating clutch, the second electric rotary machine can thus be decoupled from the drive axles or wheels of the vehicle in its capacity as a drive machine.
  • the ferry operation can be guaranteed with a pure combustion engine drive without having to accept efficiency losses caused by the second electric rotary machine.
  • the second separating clutch makes it possible to quickly switch the second electrical rotary machine back into the torque transmission path by closing it and consequently to bring the drive unit into a series connection of the electrical rotary machines, e.g. to perform high accelerations.
  • one of the two electrical rotary machines can be arranged at least in some areas radially and axially within a space delimited radially by the respective other electrical rotary machine.
  • the first separating clutch is arranged in a torque transmission path running from the first electric rotary machine to the second shaft or is set up to open and close this torque transmission path.
  • the axes of rotation of the rotors of the electric rotary machines are positioned coaxially.
  • the radial nesting of the two electric rotary machines has the advantage that when the individual sheets of the rotor packet and the stator packet of both electric rotary machines are produced from a circuit board with a stamping Hub both a sheet metal of the rotor of the radially inner electric rotary machine and the stator of the radially inner electric rotary machine and the stator of the radially outer electric rotary machine and the rotor of the ra dial outer electric rotary machine can be cut out.
  • the rotor of the radially outer electric rotary machine can be carried by a rotor carrier, which is connected to the second shaft via the second separating clutch, the rotor of the second electric rotary machine being connected to the rotor carrier in a non-positive and/or positive manner is.
  • the drive unit can have a central bearing or a central bearing unit which is designed in one or more parts and by means of which the first shaft and/or the second shaft is mounted on a housing of the drive unit are.
  • the rotor carrier of the radially outer rotary electric machine can be mounted directly on the central bearing or be mounted indirectly on the second shaft on the central bearing.
  • the central bearing is designed, for example, as a roller, ball or angular contact ball bearing.
  • the drive unit may include a fastener bolted to one of the first and second shafts for securing the position of the rotor carrier of the radially outer rotary electric machine relative to the position of the second shaft.
  • the radially inner rotary electric machine can be operated as a generator.
  • the rotor of the radially inner rotary electric machine is relatively small and thus has a lower mass moment of inertia than the rotor of the radially outer rotary machine.
  • the radially outer rotary electric machine can advantageously be used as a drive unit, since the rotor of this rotary electric machine is relatively large and can generate a correspondingly large torque.
  • both the radially inner electric rotary machine and the radially outer electric rotary machine can be used for the purpose of driving a motor vehicle equipped with the drive unit.
  • the radially inner rotary electric machine can be used to conduct torque to an input side of the drive unit, so that an internal combustion engine that can be connected to the input side can be started.
  • one or both electric rotary machines can also provide torque and, together with a connected internal combustion engine, implement hybrid operation of the drive unit.
  • the second separating clutch can be a dog clutch and/or the first separating clutch can be a multi-plate clutch.
  • the present invention is not limited to these embodiments of the clutches, but instead the second separating clutch can be a multi-plate clutch and/or the first separating clutch can be a claw clutch, or both separating clutches are designed as claw or multi-plate clutches.
  • the second separating clutch is designed as a claw clutch, it is provided that when this clutch is engaged, the speeds of the input side and the output side or a first engagement element and a second engagement element are adapted to each other by adjusting the speed of the second rotary electric machine, so that the claw clutch only a small difference in speed is actuated.
  • differential speeds can also be synchronized via the second rotary electric machine.
  • the drive unit can have an actuation system with which the closing of the first separating clutch and the opening of the second separating clutch can be undertaken at the same time.
  • the actuation system can include an axially displaceable pressure piece, with which a force can be applied to a disk pack of the first separating clutch, which is designed as a disk clutch, in the event of axial displacement, so that this is compressed and the first separating clutch is thereby closed.
  • This pressure piece can be mechanically connected or connected to a first engagement element of the second separating clutch designed as a claw clutch, with the axial displacement of the pressure piece causing the first separating clutch being engaged canceling the engagement of the first engagement element in a second engagement element of the claw clutch, and the second separating clutch thereby canceling out is opened.
  • the exertion of force on the first separating clutch can be done indirectly, in particular via a special engagement bearing, which is arranged between the pressure piece and the disk pack.
  • the actuating system can be depressurized so that a spring element reverses the described axial movement again, so that the first engagement element of the second separating clutch is brought into engagement with the second engagement element again and the second separating clutch, designed as a claw clutch, is closed . At the same time, this moves the pressure piece away from the disk pack of the first separating clutch, so that it opens.
  • the first electric rotary machine is arranged at least partially radially and axially within a space radially delimited by the second electric rotary machine, the first electric rotary machine being designed as an internal rotor motor and the second electric rotary machine being designed as an external rotor motor, and where in the Stator of the first rotary electric machine and the stator of the second rotary electric machine are mechanically fixed to each other.
  • one embodiment provides that the rotor of the first rotary electric machine is arranged within a space that is radially delimited by the stator of the second rotary electric machine.
  • stators of the two electric rotary machines are arranged on a common stator carrier.
  • the stator carrier is in turn fixed to a housing of the drive unit.
  • this stator carrier can be arranged between the stators of the two electric rotary machines with regard to its radial position and can be mechanically connected to them, so that the stator carrier fixes both stators.
  • the stators of the rotary electric machines are integral components of a stator unit.
  • This stator unit can in turn be fixed to a housing of the drive unit.
  • This alternative embodiment therefore does not use an extra stator carrier between the individual stators, but rather includes a compact unit that is formed only by the two stators.
  • the fixing of the stator unit to a housing of the drive unit can be realized by several screw connections.
  • a respective screw of a screw connection is guided through the stator unit in particular in the axial direction and screwed into a housing of the drive unit.
  • the drive unit comprises a first housing and a second housing, which together define a housing interior in which the two electric rotary machines are arranged and in which the first shaft and the second shaft are arranged at least in regions.
  • a common stator carrier or a stator unit is mechanically connected to the first housing, with the rotors of the two rotary electric machines being mounted on the second housing.
  • the second shaft can be mounted on the second housing, it being possible for the first shaft to be mounted on the first housing and on the second shaft.
  • power electronics for controlling the electric rotary machines can be carried by the second housing.
  • the two shafts are arranged coaxially.
  • the second shaft is designed as a hollow shaft and the first shaft runs in sections within the second shaft.
  • the first electric rotary machine is set up for generator operation.
  • the radially inner rotary electric machine can advantageously be operated as a generator.
  • the rotor of the radially inner electrical rotating machine is relatively small and thus has a lower mass inertia than the rotor of the radially outer rotating machine.
  • the second rotary electric machine can be set up for drive motor operation.
  • the second rotary electric machine can be set up for operation as a drive motor.
  • the radially outer rotary electric machine can advantageously be used as a drive unit, since the rotor of this rotary electric machine is relatively large and can generate a correspondingly large torque.
  • the drive unit can include a first transmission stage, with the first transmission stage being formed by a connection element of the drive unit, which comprises an internally toothed gear wheel, and the first shaft, which has an element with external teeth, and the toothing of the internally toothed gear wheel as well as the external teeth mesh with each other for the purpose of transmitting the rotary motion from the connecting element to the first shaft.
  • a connection element of the drive unit which comprises an internally toothed gear wheel
  • the first shaft which has an element with external teeth, and the toothing of the internally toothed gear wheel as well as the external teeth mesh with each other for the purpose of transmitting the rotary motion from the connecting element to the first shaft.
  • the drive unit according to the invention is designed as a so-called hybrid transmission.
  • the drive unit also includes a gearbox in addition to the electrical rotary machines and the shafts.
  • the element with the external toothing can be a gearwheel arranged in a rotationally fixed manner on the first shaft.
  • the drive unit can have a second transmission stage, which is formed by teeth, in particular external teeth, of the second shaft and a first gear meshing with the teeth of the second shaft.
  • the first gear wheel can be coupled in a torque-proof manner to an intermediate shaft of the gear.
  • This gear can include a differential gear in the output area.
  • An external toothing of the intermediate shaft can mesh with an input gear of the differential gear, whereby a third gear ratio is realized.
  • the second shaft thus functions here as a transmission input shaft and is in operative connection with the transmission, so that a torque provided by the second shaft or the rotational movement realized by the second shaft can be increased or reduced via the transmission to another transmission unit
  • Motor vehicle ge can be forwarded, or can be directed directly to the drive wheels of a motor vehicle.
  • the drive unit according to the invention has the advantage that, due to the axial nesting of the electric rotary machines, significantly less installation space is required axially than in conventional drive units with two electric rotary machines.
  • a drive arrangement which has a drive unit according to the invention and an internal combustion engine, wherein an output element of the internal combustion engine is coupled or can be coupled in a rotationally fixed manner to the rotor of the first electric rotary machine.
  • a motor vehicle in particular a hybrid vehicle
  • a drive arrangement according to the invention comprising a drive unit according to the invention and an internal combustion engine
  • the first separating clutch is open, as a result of which the second rotary electric machine is decoupled from the first rotary electric machine and the internal combustion engine.
  • the second separating clutch is closed.
  • the second electrical cal rotary machine is thus controlled separately as a traction machine or as a generator.
  • the internal combustion engine and the first rotary electric machine are not in operation.
  • the first separating clutch is open.
  • the internal combustion engine is started by means of the first rotary electric machine, the internal combustion engine being able to drive the first rotary electric machine and consequently the first rotary electric machine being driven as a generator in order to charge the battery of the motor vehicle.
  • the second separating clutch is closed.
  • the second electrical rotary machine is controlled as a traction machine.
  • the first separating clutch and the second separating clutch are closed, as a result of which the first rotary electric machine, the second rotary electric machine and the internal combustion engine are coupled to one another.
  • the motor vehicle is driven by the internal combustion engine and/or one or both electric rotary machines.
  • the two electric rotary machines can be controlled here as traction machines or as generators.
  • the drive arrangement also comprises at least one wheel drive shaft, on which wheels of a motor vehicle equipped with the drive arrangement are to be arranged, and which is connected to the second shaft of the drive unit via the transmission of the drive unit, so that a rotational movement realized by the second shaft is caused by the Transmission to the wheel drive shaft and can be transferred there to the wheels.
  • the drive arrangement can have a vibration damper connected in a torque-proof manner to the connection element of the drive unit and a housing element mechanically connected to the internal combustion engine, the vibration damper being arranged in the housing element.
  • the housing element is advantageously connected to the second housing of the drive unit.
  • a pump actuator of a cooling circuit of the drive unit can be mounted in the housing element.
  • FIG. 5 a more enlarged section of the drive unit according to the invention in the area of the closed second separating clutch
  • FIG. 6 a more enlarged section of the drive unit according to the invention in the area of the opened second separating clutch.
  • FIG. 2 shows a schematic representation of a drive arrangement 100 according to the invention with a drive unit 1 according to the invention.
  • the drive unit 1 comprises a first rotary electric machine 10, a second rotary electric machine 20, a first shaft 40 and a second shaft 41.
  • the drive arrangement 100 comprises an internal combustion engine 110 and a vibration damper 101 , an output element 111 of the internal combustion engine 110 being coupled to the vibration damper 101 .
  • the vibration damper 101 is also connected to a connecting element 4 to the drive assembly 1, which as an input side 2 of the Drive assembly 1 acts.
  • the internal combustion engine 110 is thus coupled to the drive arrangement 1 via the vibration damper 110 .
  • connection element 4 is coupled to the first shaft 40 in such a way that a first transmission stage 70 is formed between the connection element 4 and the first shaft 40 .
  • a rotor 11 of the first rotary electric machine 10 is connected in a torque-proof manner to the first shaft 40 and a rotor 21 of the second rotary electric machine 20 is connected or can be connected to the second shaft 41 via a second separating clutch 120 .
  • the rotor 11 of the first rotary electric machine 10 is connected to the first shaft 40 in such a way that the rotor 11 of the first rotary electric machine 10 is arranged directly on the first shaft 40 .
  • the rotor 21 of the second rotary electric machine 20 is, however, carried by a rotor carrier 30 and the rotor carrier 30 is connected to the second shaft 41 via the second release 120 .
  • the first electric rotary machine 10 is arranged radially and in some areas axially within a space delimited radially by the second electric rotary machine 20 .
  • the first rotary electric machine 10 is designed as an internal rotor motor and the second rotary electric machine 20 is designed as an external rotor motor, with a stator 12 of the first rotary electric machine 10 and a stator 22 of the second rotary electric machine 20 being mechanically fixed to one another.
  • a first separating clutch 50 of the drive unit 1 is connected to the first shaft 40 by its input side 51 and to the second shaft 41 by its output side 52 .
  • the first separating clutch 50 thus serves to transmit torque between the first shaft 40 and the second shaft 41 .
  • a torque transmission path between the rotor 11 of the first electric rotary machine 10 and the rotor 21 of the second electric rotary machine 20 can be opened or closed by means of the first separating clutch 50 .
  • the second shaft 41 is designed as a hollow shaft and the first shaft 40 extends radially inside the second shaft 41 in sections.
  • the two shafts 40, 41 thus run coaxially with one another, with the rotors 11, 21 of the two electrical rotary machines 10, 20 also being arranged coaxially with one another and coaxially with the shafts 40, 41.
  • the second shaft 41 is connected to an intermediate shaft 81 via a second gear stage 71 .
  • the intermediate shaft 81 runs parallel to the second shaft 41.
  • the intermediate shaft 81 is connected via a third transmission stage 72 to a gear element of a differential gear 80 of the drive unit 1 for the purpose of transmitting torque.
  • the differential gear 80 forms an output side 3 of the drive unit 1 .
  • Wheel drive shafts 103 on which wheels of a motor vehicle equipped with drive assembly 100 are to be arranged, form the output of differential gear 80, so that a rotational movement realized by second shaft 41 via second gear stage 71 and third gear stage 72 and via the differential gear 80 can be transferred to the wheel drive shaft 103 and thus to the wheels.
  • a torque provided by internal combustion engine 110 is transmitted to first shaft 40 of drive unit 1 via vibration damper 101 and via first transmission stage 70 . If the first separating clutch 50 is opened, the torque of the internal combustion engine 110 is only passed to the rotor 11 of the first rotary electric machine 10 . In this way, the first electrical rotary machine 10 can be used in generator mode to charge a battery. If the first separating clutch 50 is closed, the torque provided by the internal combustion engine 110 is transmitted from the first shaft 40 to the second shaft 41 . The torque of the combustion engine 110 is passed from the second shaft 41 via the second transmission stage 71 to the intermediate shaft 81 and via the third transmission stage 72 into the differential gear 80 . About the differential gear 80, the torque passes by means of Wheel drive shaft 103 to wheels of a motor vehicle equipped with the drive assembly 100 .
  • a torque provided by the rotor 11 of the first rotary electric machine 10 can be transmitted to the internal combustion engine 110 via the first transmission stage 70 when the first separating clutch 50 is disengaged.
  • the torque is transmitted via the second translation stage 71 and the third translation stage 72 to the differential gear 80 and thus to the wheel drive shaft 103 .
  • a torque provided by the rotor 21 of the second rotary electric machine 20 is transmitted independently of a shift of the first separating clutch 50 via the second separating clutch 120 and the second transmission stage 71 and the third transmission stage 72 to the differential gear 80 and thus to the wheel drive shaft 103.
  • the drive arrangement 100 can be operated in a large number of driving operating modes.
  • the second electric rotary machine 20 can be decoupled from the operation of the first electric rotary machine 10 and the internal combustion engine 110, so that no energy is required to rotate the rotor 21 of the second electric rotary machine 20.
  • Fig. 3 shows a section of the drive assembly 100 according to the invention in ge cut side view.
  • FIG. 2 is a more detailed representation of individual components indicated in FIG. 1, the internal combustion engine not being shown in FIG. 2 and the driven element 111 of the internal combustion engine coupled to the vibration damper 101 being only partially shown.
  • a first housing 60, a second housing 61 and a housing element 62 can be seen in FIG.
  • the first and second housing 60, 61 are used to accommodate the two electric machines Rotationsma 10, 20, wherein the housing member 62 is used, the first housing 60 and to couple the second housing 61 to a housing of the internal combustion engine (not shown).
  • the first housing 60 is fixedly connected to the second housing 61 in the axial direction, with the housing element 62 being fixedly connected to the second housing 61 on the side of the second housing 61 axially opposite the first housing 60 .
  • the first shaft 40 is mounted with its first axial end region 42 via a single-row support bearing 92 in the first housing 60 and with its second axial end region 43 is mounted radially inwardly on a second axial end region 45 of the second shaft 41 by means of needle bearings.
  • the second shaft 41 is mounted on the first shaft 40 with its first axial end area 44 and with its second axial end area 45 .
  • the stators 12, 22 of the rotary electric machines 10, 20 tra gender common stator carrier 32 is fixedly connected to the first housing 60, so that the stators 12, 22 of the rotary electric machines 10, 20 as a stator unit 31 from the first Housing 60 are worn.
  • the stator unit 31 is fixed to the first housing 60 by a support screw 33 which is passed through the entire stator unit 31 in the axial direction and is screwed in the first housing 60 in the axial direction.
  • the rotor carrier 30 of the rotor 21 of the second electric rotary machine 20 is mounted on the second housing 61 via a rotor flange 35 by means of the central bearing unit 90 .
  • This central bearing unit 90 comprises two coaxially arranged Wälzla ger, which are positioned axially close to each other.
  • a transmitter element of a rotor position sensor 34 is also connected to rotor carrier 30, with a detector element of rotor position sensor 34 being connected to second housing 61, so that an angular position and/or a rotational speed of rotor 21 of second electric rotary machine 20 or of the rotor carrier 30 can be carried out by the rotor position sensor 34 .
  • the intermediate shaft 81 and the wheel drive shaft 103 are each mounted on their axial side facing the electrical rotary machines 10, 20 in the second housing 61 and on the opposite axial side in the housing element 62 ge superimposed.
  • the connecting element 4 of the drive unit 1 is mounted on the housing element 62 via a two-row bearing unit 93 .
  • This double-row bearing unit 93 includes two coaxially arranged roller bearings that are positioned axially close together.
  • the vibration damper 101 is arranged in the housing element 62 .
  • power electronics 102 are arranged radially on the outside on the first and second housing 60, 61, the power electronics 102 being set up to control the electric rotary machines 10, 20.
  • a heat exchanger 105 of a cooling circuit for cooling at least one of the rotary electric machines 10, 20 on the second housing 61 is also arranged between the second housing 61 and the power electronics 102.
  • a pump actuator 104 of this cooling circuit is carried by the housing element 62 .
  • Figure 3 also shows a detailed structure of the transmission stages 70, 71, 72.
  • the first transmission stage 70 is designed in such a way that the connecting element 4 includes an internally toothed gear wheel 5, which meshes with external teeth 46 on the second axial end region 43 of the first shaft 40.
  • the second shaft 41 also has external teeth 47 on its second axial end region 45, with which it meshes with a first gear 82 the second shaft 41 and the intermediate shaft 81 is formed.
  • An external toothing 84 of the intermediate shaft 81 is in engagement with a second gear 83 as an input element of the differential gear 80, whereby the third translation stage 72 between the intermediate shaft 81 and the differential gear 80 is formed.
  • Outer disks are formed, which are arranged axially next to the rotor 11 of the first electrical rotary machine 10 on the first shaft 40, with inner disks of the first separating clutch 50 being twisted and axially displaceable as their output side 52 with an external toothing of the second shaft 41.
  • An actuation system 53 for actuating the first separating clutch 50 and also the second separating clutch 120 on the second housing 61 is arranged radially outside of the central bearing unit 90 .
  • the actuation system 53 includes a hydraulic receiver unit 54, which can be pressurized with oil by means of a transmitter unit that is not described in detail. When this pressure is applied, a piston 55 moves in the cylinder 56 and displaces a thrust bearing 57 that presses axially on the thrust piece 121 .
  • Pressure piece 121 designed as a pressure pot, of actuation system 53 reaches axially through rotor carrier 30 in order to transmit an actuation force provided by actuation system 53 to first separating clutch 50 for the purpose of closing it, while at the same time opening second separating clutch 120.
  • the second separating clutch 120 comprises a rear bearing 122 arranged on the pressure piece 121, which is designed here as an axial ball bearing.
  • the second separating clutch 120 is designed as a claw clutch in the embodiment shown here.
  • the input side 121 of the second disconnect clutch 120 is formed by a first element 125 which has a plurality of axially aligned claws. In the closed state of the second separating clutch 120, these claws or these first engaging elements 125 also engage in an axially aligned claw, which forms the second engaging elements as the output side 124 of the second separating clutch 120.
  • FIG. 5 shows the second separating clutch 120 in an enlarged view.
  • a spring element 130 designed as a disc spring and supported radially on the outside of the housing, is supported radially on the inside of the pressure piece 121 and applies a compressive force to it in a direction such that the second separating clutch 120 is closed by the input side 123 and the output side 124 of the second disconnect clutch 120 are engaged.
  • FIG. 5 shows the component positions at the operating point of serial driving.
  • the input side 123 of the second separating clutch 120 is non-rotatably connected to the output side 124 of the second separating clutch 120 .
  • the second electric rotary machine 20 can drive the wheels, being supplied with electrical energy either via the first electric rotary machine 10, which is driven by the internal combustion engine and operated as a generator, or via a battery.
  • the torque transmission path is indicated here by dashed lines.
  • FIG. 6 now shows the state when the actuating system 53 is actuated and the component positions at the parallel driving operating point.
  • This actuation of the actuation system 53 leads to an axial movement of the piston 55 so that it displaces the thrust bearing 57 .
  • the engaging bearing 122 arranged on the pressure piece 121 presses axially against the disk set of the first separating clutch 50.
  • the disks of the disk set are pressed together and the first separating clutch 50 is closed.
  • a torque can be conducted from the input side 51 of the first disconnect clutch 50 to the output side 52 and thus to the second shaft 41 .
  • a connected internal combustion engine drives the wheels in this position, with the first electric rotary machine 10 connected to it being able to be used as a generator for recuperation or as a motor for boosting.
  • the torque transmission path is indicated here by dashed lines.
  • the second separating clutch 120 is to be closed again, i.e. to be switched from parallel operation to serial operation, and the first separating clutch 50 is to be opened again, only the second electric rotary machine is load-free up to a synchronous speed with the second shaft rotate and depressurize the actuating system 53, so that the pressure piece 121 is pushed back into the initial situation due to the compressive force realized by the spring element 130.
  • stator unit 32 common stator carrier

Abstract

Die Erfindung betrifft eine Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs, insbesondere eines Hybridkraftfahrzeuges, sowie eine Antriebsanordnung. Die Antriebseinheit (1) umfasst eine erste elektrische Rotationsmaschine (10) sowie eine zweite elektrische Rotationsmaschine (20) und eine erste Welle (40) sowie eine zweite Welle (41), wobei ein Rotor (11) der ersten elektrischen Rotationsmaschine (10) drehfest mit der ersten Welle (40) verbunden ist und die Antriebseinheit (1) weiterhin eine erste Trennkupplung (50) aufweist, wobei erfindungsgemäß vorgesehen ist, dass die Antriebseinheit (1) weiterhin eine zweite Trennkupplung (120) aufweist, mit der ein Rotor (21) der zweiten elektrischen Rotationsmaschine (20) zur Drehmomentübertragung mit der zweiten Welle (41) verbindbar oder verbunden ist.

Description

Antriebseinheit und Antriebsanordnunq
Die Erfindung betrifft eine Antriebseinheit für einen Antriebsstrang eines elektrisch an- treibbaren Kraftfahrzeugs, insbesondere eines Hybridkraftfahrzeuges, sowie eine An triebsanordnung.
Aus dem Stand der Technik sind diverse Antriebseinheiten bekannt, die in Antriebsan ordnungen oder Antriebseriellssträngen integriert sind.
Die DE 11 2015 006 071 T5 offenbart ein Hybridfahrzeugantriebssystem mit einem Generator, der unter Verwendung der Leistung eines Verbrennungsmotors elektrische Energie generieren kann; einem Elektromotor, der durch elektrische Energie angetrie ben wird, um Räder anzutreiben; einem Gehäuse, das den Generator und den Elekt romotor aufnimmt, und mit einer Leistungssteuereinheit zum Steuern des Generators und des Elektromotors. Der Generator und der Elektromotor sind dabei nebeneinan der auf einer gleichen Achse in dem Gehäuse angeordnet.
In der WO 2019 101 264 A1 ist ein Antriebsstrang für ein Hybridkraftfahrzeug offen bart. Der Antriebsstrang umfasst eine Getriebeeingangswelle, die über einen ersten Teilantriebsstrang mit einer ersten elektrischen Maschine und einer Verbrennungs kraftmaschine zur Drehmomentübertragung in Wirkbeziehung steht und die über ei nen zweiten Teilantriebsstrang mit einer zweiten elektrischen Maschine zur Drehmo mentübertragung in Wirkbeziehung steht. Die beiden elektrischen Maschinen sind da bei koaxial sowie axial benachbart zueinander angeordnet.
Die US 2016 / 0218584 A1 beschreibt eine Steuerungseinheit, welche zur Steuerung elektrischer Maschinen dient, wobei die Steuerungseinheit an einem Gehäuse der die elektrischen Maschinen umfassenden Antriebseinheit montiert ist. Die Antriebseinheit umfasst dabei zwei elektrische Maschinen, welche koaxial sowie axial benachbart zu einander angeordnet sind. EP 1502791 B1 und EP1847411 B1 offenbaren jeweils ein Hybridgetriebe für ein Hyb ridfahrzeug, mit einer Mehrzahl von elektrischen Rotationsmaschinen. Die elektri schen Maschinen sind radial verschachtelt angeordnet, Dabei ist die radial äußere elektrische Rotationsmaschine als Außenläufer konzipiert.
Eine Antriebseinheit mit mehreren elektrischen Rotationsmaschinen in einer An triebsanordnung zu integrieren, die für ein Hybridkraftahrzeug vorgesehen ist, unter liegt besonders in axialer Richtung strengen Bauraumanforderungen.
Insbesondere bei Einsatz einer derartigen Antriebseinheit in sogenannten Front-Quer- Anordnungen in Kraftfahrzeugen, in welchen die elektrischen Rotationsmaschinen und die Verbrennungskraftmaschine als Frontantriebe eingesetzt werden und eine jewei lige Rotationsachse einer elektrischen Rotationsmaschine und der Verbrennungskraft maschine quer zur Längsrichtung des Kraftfahrzeugs angeordnet ist, ist eine axial be sonders kurz bauende Antriebsanordnung vorteilhaft.
Bekannt sind unter anderem sogenannte Hybridgetriebe mit zwei elektrischen Maschi nen, die eine Umschaltung zwischen seriellem Betrieb und einem parallelen Betrieb ermöglichen. Bei einem seriellen Betrieb treibt eine Verbrennungskraftmaschine eine erste elektrische Maschine an, die als Generator arbeitet. Die damit generierte elektri sche Energie wird zum Antrieb der zweiten elektrischen Maschine verwendet, deren Drehmoment an die Räder eines mit dem Hybridgetriebe ausgestatteten Kraftfahr zeugs geleitet wird.
Im parallelen Betrieb wird das Drehmoment einer angeschlossenen Verbrennungs kraftmaschine auf die Räder eines mit dem Hybridgetriebe ausgestatteten Kraftfahr zeugs geleitet, wobei die zweite elektrische Maschine leer mitläuft, den Fährbetrieb unterstützt oder auch rekuperiert.
In Figur 1 ist ein solches herkömmliches Konzept mit zwei elektrischen in ineinander geschachtelter Anordnung dargestellt:
Eine Verbrennungskraftmaschine 110 ist über eine erste Übersetzungsstufe 70 direkt mit einer als Generator laufenden ersten elektrischen Rotationsmaschine 10 verbun den, die hier als Innenläufer ausgelegt ist. Eine als elektrischer Fahrantrieb dienende zweite elektrische Rotationsmaschine 20 ist hier als Außenläufer definiert und zwei weitere Übersetzungsstufen 71 ,72 mit den Radantriebswellen 103 verbunden.
Im Drehmoment-Übertragungspfad zwischen beiden elektrischen Rotationsmaschinen 10,20 befindet sich eine erste Trennkupplung 50, die im offenen Zustand das serielle und im geschlossenen Zustand das parallele Fahren ermöglicht.
Der Nachteil diese Anordnung besteht darin, dass bei parallelem Betrieb die zweite elektrische Rotationsmaschine 20 oft leer mitläuft, durch Induktion entsprechenden Widerstand generiert und deshalb sogar aktiv mitgedreht werden muss, wozu elektri sche Energie aufgewendet werden muss. Dadurch sinkt der Wirkungsgrad.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine An triebseinheit sowie eine damit ausgestattete Antriebsanordnung zur Verfügung zu stel len, die in kostengünstiger Ausgestaltung sowie bauraumsparender Weise einen effi zienten Betrieb gewährleisten.
Die Aufgabe wird durch die erfindungsgemäße Antriebseinheit nach Anspruch 1 ge löst. Vorteilhafte Ausgestaltungen der Antriebseinheit sind in den Unteransprüchen 2 bis 9 angegeben.
Ergänzend wird eine Antriebsanordnung, welche die Antriebseinheit aufweist, gemäß Anspruch 10 zur Verfügung gestellt.
Die Merkmale der Ansprüche können in jeglicher technisch sinnvollen Art und Weise kombiniert werden, wobei hierzu auch die Erläuterungen aus der nachfolgenden Be schreibung sowie Merkmale aus den Figuren hinzugezogen werden können, die er gänzende Ausgestaltungen der Erfindung umfassen.
Die Begriffe „axial“ und „radial“ beziehen sich im Rahmen der vorliegenden Erfindung immer auf die Rotationsachse der Antriebseinheit, die der Rotationsachse zumindest einer der von der Antriebseinheit umfassten elektrischen Rotationsmaschinen ent spricht. Die Erfindung betrifft eine Antriebseinheit für einen Antriebsstrang eines elektrisch an- treibbaren Kraftfahrzeugs, insbesondere eines Hybridkraftfahrzeuges. Die Antriebsein heit umfasst eine erste elektrische Rotationsmaschine sowie eine zweite elektrische Rotationsmaschine und eine erste Welle sowie eine zweite Welle, wobei ein Rotor der ersten elektrischen Rotationsmaschine drehfest mit der ersten Welle verbunden ist.
Die Antriebseinheit weist weiterhin eine erste Trennkupplung auf, mit der der Rotor der ersten elektrischen Rotationsmaschine zur Drehmomentübertragung mit der zwei ten Welle verbindbar oder verbunden ist. Erfindungsgemäß ist vorgesehen, dass die Antriebseinheit weiterhin eine zweite Trennkupplung aufweist, mit der ein Rotor der zweiten elektrischen Rotationsmaschine zur Drehmomentübertragung mit der zweiten Welle verbindbar oder verbunden ist.
Mittels Öffnung der zweiten Trennkupplung lässt sich somit die zweite elektrische Ro tationsmaschine in ihrer Eigenschaft als Antriebsmaschine von den Antriebsachsen bzw. Rädern des Fahrzeugs abkoppeln. Entsprechend lässt sich der Fährbetrieb mit einem reinen verbrennungsmotorischen Antrieb gewährleisten, ohne von der zweiten elektrischen Rotationsmaschine bewirkte Effizienzverluste hinnehmen zu müssen.
Die zweite Trennkupplung ermöglicht es, durch Schließung die zweite elektrische Ro tationsmaschine wieder schnell in den Drehmoment-Übertragungspfad einzuschalten und demzufolge die Antriebseinheit in eine serielle Schaltung der elektrischen Rotati onsmaschinen zu bringen, z.B. um hohe Beschleunigungen durchzuführen.
Dabei kann eine der beiden elektrischen Rotationsmaschinen zumindest bereichs weise radial sowie axial innerhalb eines von der jeweils anderen elektrischen Rotati onsmaschine radial begrenzten Raums angeordnet sein.
Die erste Trennkupplung ist in einem von der ersten elektrischen Rotationsmaschine zur zweiten Welle verlaufenden Drehmoment-Übertragungspfad angeordnet bzw. dazu eingerichtet, diesen Drehmoment-Übertragungspfad zu öffnen und zu schließen. Vorteilhafterweise sind die Drehachsen der Rotoren der elektrischen Rotationsmaschi nen koaxial positioniert.
Die radiale Verschachtelung der beiden elektrischen Rotationsmaschinen bewirkt den Vorteil, dass bei der Herstellung der einzelnen Bleche des Rotor-Pakets und des Sta tor-Pakets beider elektrischer Rotationsmaschinen aus einer Platine mit einem Stanz- Hub sowohl ein Blech des Rotors der radial inneren elektrischen Rotationsmaschine als auch des Stators der radial inneren elektrischen Rotationsmaschine und auch des Stators der radial äußeren elektrischen Rotationsmaschine sowie des Rotors der ra dial äußeren elektrischen Rotationsmaschine ausgeschnitten werden kann.
Der Rotor der radial äußeren elektrischen Rotationsmaschine kann zwecks seiner Verbindung zur zweiten Welle von einem Rotorträger getragen sein, welcher mit der zweiten Welle über die zweite Trennkupplung verbunden ist, wobei der Rotor der zweiten elektrische Rotationsmaschine kraft- und/oder formschlüssig mit dem Rotor träger verbunden ist.
Zwecks drehbarer Lagerung der ersten Welle und/oder der zweiten Welle kann die Antriebseinheit ein Zentrallager bzw. eine zentrale Lagereinheit aufweisen, welches ein- oder mehrteilig ausgestaltet ist, und mittels welchem die erste Welle und/oder die zweite Welle an einem Gehäuse der Antriebseinheit gelagert sind. Der Rotorträger der radial äußeren elektrischen Rotationsmaschine kann dabei unmittelbar über das Zent rallager gelagert sein oder mittelbar über die zweite Welle am Zentrallager gelagert sein. Das Zentrallager ist beispielsweise als Rollen-, Kugel- oder Schrägkugellager ausgestaltet.
Die Antriebseinheit kann ein Befestigungselement umfassen, welches mit der ersten oder zweiten Welle verschraubt ist, zwecks Sicherung der Position des Rotorträgers der radial äußeren elektrischen Rotationsmaschine in Bezug zur Position der zweiten Welle.
Vorteilhafterweise kann die radial innere elektrische Rotationsmaschine als Generator betrieben werden. Der Rotor der radial inneren elektrischen Rotationsmaschine ist re lativ klein ausgeführt und hat somit ein geringeres Massenträgheitsmoment als der Rotor der radial äußeren Rotationsmaschine.
Entsprechend kann die radial äußere elektrische Rotationsmaschine vorteilhafter weise als Antriebseinheit eingesetzt werden, da der Rotor dieser elektrischen Rotati onsmaschine relativ groß ist und ein entsprechend großes Drehmoment erzeugen kann.
Damit ist nicht ausgeschlossen, dass sowohl die radial innere elektrische Rotations maschine als auch die radial äußere elektrische Rotationsmaschine zwecks Antriebes eines mit der Antriebseinheit ausgestatteten Kraftfahrzeugs einsetzbar ist. Beispielsweise kann die radial innere elektrische Rotationsmaschine dazu eingesetzt werden, Drehmoment an eine Eingangsseite der Antriebseinheit zu leiten, sodass ein Start einer an die Eingangsseite anschließbaren Verbrennungskraftmaschine realisiert werden kann. Alternativ kann auch eine oder können auch beide elektrischen Rotati onsmaschinen Drehmoment zur Verfügung stellen und zusammen mit einer ange schlossenen Verbrennungskraftmaschine einen Hybrid-Betrieb der Antriebseinheit re alisieren.
Insbesondere kann die zweite Trennkupplung eine Klauenkupplung sein, und/ oder die erste Trennkupplung eine Lamellenkupplung sein.
Dabei ist die vorliegende Erfindung nicht auf diese Ausführungsformen der Kupplun gen eingeschränkt, sondern stattdessen kann auch die zweite Trennkupplung eine La mellenkupplung sein, und/ oder die erste Trennkupplung eine Klauenkupplung sein, oder beide Trennkupplungen sind als Klauen- oder Lamellenkupplungen ausgeführt. Bei Ausführung der zweiten Trennkupplung als Klauenkupplung ist vorgesehen, dass beim Schließen dieser Kupplung die Drehzahlen der Eingangsseite und der Aus gangsseite bzw. einem ersten Eingriffselement und einem zweiten Eingriffselement mittels Anpassung der Drehzahl der zweiten elektrische Rotationsmaschine aneinan der angepasst werden, so dass die Klauenkupplung bei nur geringer Drehzahldiffe renz betätigt wird.
Ebenso lassen sich auch bei einer Ausführung der zweiten Trennkupplung als Lamel lenkupplung Differenzdrehzahlen über die zweite elektrische Rotationsmaschine syn chronisieren.
Weiterhin kann die Antriebseinheit ein Betätigungssystem aufweisen, mit dem gleich zeitig die Schließung der ersten Trennkupplung und die Öffnung der zweiten Trenn kupplung vornehmbar ist.
Dabei kann das Betätigungssystem ein axial verlagerbares Druckstück umfassen, mit welchem bei axialer Verlagerung eine Kraft auf ein Lamellenpaket der als Lamellen kupplung ausgestalteten ersten Trennkupplung aufbringbar ist, so dass dieses zusammengedrückt wird und die erste Trennkupplung dadurch geschlossen wird. Die ses Druckstück ist mit einem ersten Eingriffselement der als Klauenkupplung ausge stalteten zweiten Trennkupplung mechanisch verbindbar oder verbunden, wobei die die Schließung der ersten Trennkupplung verursachende axiale Verlagerung des Druckstücks ein Eingreifen des ersten Eingriffselements in ein zweites Eingriffsele ment der Klauenkupplung aufhebt und die zweite Trennkupplung dadurch geöffnet wird.
Die Kraftausübung auf die erste Trennkupplung kann dabei indirekt erfolgen, insbe sondere über ein Einrücklager, welches zwischen dem Druckstück und dem Lamellen paket angeordnet ist.
In umgekehrter Betriebsweise kann das Betätigungssystem drucklos geschaltet wer den, so dass ein Federelement die beschriebene axiale Bewegung wieder rückgängig macht, so dass das erste Eingriffselement der zweiten Trennkupplung wieder mit dem zweiten Eingriffselement in Eingriff gebracht wird und die als Klauenkupplung ausge staltete zweite Trennkupplung geschlossen wird. Gleichzeitig wird dadurch das Druck stück von dem Lamellenpaket der ersten Trennkupplung wegbewegt, so dass diese geöffnet wird.
In einer Ausführungsform ist die erste elektrische Rotationsmaschine zumindest be reichsweise radial sowie axial innerhalb eines von der zweiten elektrischen Rotations maschine radial begrenzten Raums angeordnet, wobei die erste elektrische Rotationsmaschine als Innenläufermotor ausgebildet ist und die zweite elektrische Rotationsmaschine als Außenläufermotor ausgebildet ist, und wo bei der Stator der ersten elektrischen Rotationsmaschine sowie der Stator der zweiten elektrischen Rotationsmaschine mechanisch aneinander fixiert sind.
Entsprechend ist in einer Ausführungsform vorgesehen, dass der Rotor der ersten elektrischen Rotationsmaschine innerhalb eines vom Stator der zweiten elektrischen Rotationsmaschine radial begrenzten Raums angeordnet ist.
Dabei kann es sein, dass die Statoren der beiden elektrischen Rotationsmaschinen auf einem gemeinsamen Stator-Träger angeordnet sind.
Der Stator-Träger ist wiederum an einem Gehäuse der Antriebseinheit fixiert. Insbesondere kann dieser Stator-Träger hinsichtlich seiner radialen Position zwischen den Statoren der beiden elektrischen Rotationsmaschinen angeordnet sein und mit diesen mechanisch verbunden sein, sodass der Stator-Träger beide Statoren fixiert.
Gegebenenfalls sind gemäß einer alternativen Ausführungsform die Statoren der bei den elektrischen Rotationsmaschinen integrale Bestandteile einer Stator-Einheit.
Diese Stator-Einheit kann wiederum an einem Gehäuse der Antriebseinheit fixiert sein. Diese alternative Ausgestaltungsform nutzt also keinen extra Stator-Träger zwi schen den einzelnen Statoren, sondern umfasst eine kompakte Einheit, die lediglich durch die beiden Statoren ausgebildet ist.
Die Fixierung der Stator-Einheit an einem Gehäuse der Antriebseinheit kann durch mehrere Schraubverbindungen realisiert sein. Eine jeweilige Schraube einer Schraub verbindung ist dabei insbesondere in axialer Richtung durch die Stator-Einheit durch geführt und in einem Gehäuse der Antriebseinheit verschraubt.
In einer Ausführungsform der Antriebseinheit umfasst diese ein erstes Gehäuse sowie ein zweites Gehäuse, welche zusammen einen Gehäuseinnenraum definieren, in wel chem die beiden elektrischen Rotationsmaschinen angeordnet sind und in welchem die erste Welle und die zweite Welle zumindest bereichsweise angeordnet sind. Insbesondere sind ein gemeinsamer Stator-Träger oder eine Stator-Einheit mit dem ersten Gehäuse mechanisch verbunden, wobei die Rotoren der beiden elektrischen Rotationsmaschinen am zweiten Gehäuse gelagert sind.
Insbesondere kann die zweite Welle am zweiten Gehäuse gelagert sein, wobei die erste Welle am ersten Gehäuse und an der zweiten Welle gelagert sein kann.
Zudem kann eine Leistungselektronik zur Steuerung der elektrischen Rotationsma schinen vom zweiten Gehäuse getragen sein.
In einer konstruktiv vorteilhaften Ausführungsform sind die beiden Wellen koaxial an geordnet.
Zu diesem Zweck ist insbesondere vorgesehen, dass sie zweite Welle als Hohlwelle ausgestaltet ist und die erste Welle abschnittsweise innerhalb der zweiten Welle ver läuft. In einer Ausführungsform ist vorgesehen, dass die erste elektrische Rotationsma schine für einen Generatorbetrieb eingerichtet ist.
Das heißt, dass vorteilhafterweise die radial innere elektrische Rotationsmaschine als Generator betrieben werden kann. Der Rotor der radial inneren elektrischen Rotati onsmaschine ist relativ klein ausgeführt und hat somit ein geringeres Massenträg heitsmoment als der Rotor der radial äußeren Rotationsmaschine.
Die zweite elektrische Rotationsmaschine kann für einen Antriebsmotorbetrieb einge richtet sein.
Entsprechend kann die zweite elektrische Rotationsmaschine für einen Antriebsmotor betrieb eingerichtet sein. Das bedeutet, dass die radial äußere elektrische Rotations maschine vorteilhafterweise als Antriebseinheit eingesetzt werden kann, da der Rotor dieser elektrischen Rotationsmaschine relativ groß ist und ein entsprechend großes Drehmoment erzeugen kann.
Weiterhin kann die Antriebseinheit eine erste Übersetzungsstufe umfassen, wobei die erste Übersetzungsstufe durch ein Anschlusselement der Antriebseinheit, welches ein innenverzahntes Zahnrad umfasst, und die erste Welle, welche ein Element mit einer Außenverzahnung aufweist, ausgebildet ist, und wobei die Verzahnung des innenver zahnten Zahnrades sowie die Außenverzahnung zwecks Übertragung der Drehbewe gung vom Anschlusselement auf die erste Welle miteinander kämmen.
Entsprechend ist die erfindungsgemäße Antriebseinheit als ein sogenanntes Hybrid- Getriebe ausgestaltet. Das bedeutet also, dass die Antriebseinheit neben den elektri schen Rotationsmaschinen und den Wellen auch ein Getriebe umfasst.
Insbesondere kann das Element mit der Außenverzahnung ein drehfest auf der ersten Welle angeordnetes Zahnrad sein.
Des Weiteren kann die Antriebseinheit eine zweite Übersetzungsstufe aufweisen, wel che durch eine Verzahnung, insbesondere eine Außenverzahnung, der zweiten Welle und ein erstes, mit der Verzahnung der zweiten Welle kämmendes, Zahnrad ausgebil det ist. In einer Ausführungsform, in der die Antriebseinheit ein Getriebe aufweist, kann das erste Zahnrad drehfest mit einer Zwischenwelle des Getriebes gekoppelt sein.
Dieses Getriebe kann im Abtriebsbereich ein Differenzial-Getriebe umfassen. Dabei kann eine Außenverzahnung der Zwischenwelle mit einem Eingangs-Zahnrad des Dif ferenzial-Getriebes kämmen, wodurch eine dritte Übersetzungsstufe realisiert wird.
Die zweite Welle fungiert somit hier als Getriebeeingangswelle und steht mit dem Ge triebe in Wirkverbindung, so dass ein von der zweiten Welle zur Verfügung gestelltes Drehmoment bzw. die von der zweiten Welle realisierte Drehbewegung über das Ge triebe über- oder untersetzt an eine weitere Getriebeeinheit eines Kraftfahrzeugs ge leitet werden kann, oder auch direkt auf Antriebsräder eines Kraftfahrzeuges geleitet werden kann.
Die erfindungsgemäße Antriebseinheit weist den Vorteil auf, dass durch die axiale Schachtelung der elektrischen Rotationsmaschinen axial deutlich weniger Bauraum benötigt wird als in herkömmlichen Antriebseinheiten mit zwei elektrischen Rotations maschinen.
Des Weiteren wird erfindungsgemäß eine Antriebsanordnung zur Verfügung gestellt, die eine erfindungsgemäße Antriebseinheit sowie eine Verbrennungskraftmaschine aufweist, wobei ein Abtriebselement der Verbrennungskraftmaschine drehfest mit dem Rotor der ersten elektrischen Rotationsmaschine gekoppelt oder koppelbar ist.
Im Betrieb eines Kraftfahrzeugs, insbesondere eines Hybridfahrzeugs, mit einer erfin dungsgemäßen Antriebsanordnung, umfassend eine erfindungsgemäße Antriebsein heit sowie eine Verbrennungskraftmaschine, werden z.B. folgende Fahrbetriebsmodi ermöglicht:
Elektrisches Fahren und Rekuperieren:
Die erste Trennkupplung ist geöffnet, wodurch die zweite elektrische Rotationsma schine von der ersten elektrischen Rotationsmaschine und der Verbrennungskraftma schine abgekoppelt ist. Die zweite Trennkupplung ist geschlossen. Die zweite elektri sche Rotationsmaschine wird somit separat als Traktionsmaschine oder als Generator angesteuert. Die Verbrennungskraftmaschine und die erste elektrische Rotationsma schine sind nicht in Betrieb.
Seriell Fahren und Laden: Die erste Trennkupplung ist geöffnet. Die Verbrennungskraftmaschine wird mittels der ersten elektrischen Rotationsmaschine gestartet, wobei die Verbrennungskraftma schine die erste elektrische Rotationsmaschine antreiben kann und folglich die erste elektrische Rotationsmaschine als Generator angesteuert wird, um die Batterie des Kraftfahrzeugs zu laden. Die zweite Trennkupplung ist geschlossen. Die zweite elektri sche Rotationsmaschine wird als Traktionsmaschine angesteuert.
Parallel Hybridantrieb, Laden und Boosten:
Die erste Trennkupplung und die zweite Trennkupplung sind geschlossen, wodurch die erste elektrische Rotationsmaschine, die zweite elektrische Rotationsmaschine so wie die Verbrennungskraftmaschine miteinander gekoppelt sind. Das Kraftfahrzeug wird mittels der Verbrennungskraftmaschine und / oder einer oder beider elektrischen Rotationsmaschinen angetrieben. Die beiden elektrischen Rotationsmaschinen kön nen hier als Traktionsmaschine oder als Generator angesteuert werden.
In weiterer Ausgestaltung umfasst die Antriebsanordnung auch wenigstens eine Rad antriebswelle, an welcher Räder eines mit der Antriebsanordnung ausgestalteten Kraftfahrzeugs anzuordnen sind, und welche über das Getriebe der Antriebseinheit mit der zweiten Welle der Antriebseinheit verbunden ist, sodass eine von der zweiten Welle realisierte Drehbewegung durch das Getriebe auf die Radantriebswelle und da mit auf die Räder übertragen werden kann.
Gemäß einer Ausführungsform der Antriebsanordnung kann die Antriebsanordnung einen mit dem Anschlusselement der Antriebseinheit drehfest verbundenen Schwin gungsdämpfer sowie ein mechanisch an die Verbrennungskraftmaschine angeschlos senes Gehäuseelement aufweisen, wobei der Schwingungsdämpfer in dem Gehäu seelement angeordnet ist.
Das Gehäuseelement ist dabei vorteilhafterweise an das zweite Gehäuse der An triebseinheit angeschlossen.
Im Gehäuseelement kann ein Pumpenaktor eines Kühlkreislaufs der Antriebseinheit gelagert sein.
Weiterhin kann vorgesehen sein, die Zwischenwelle und/oder die Radantriebswelle axial einerseits im Gehäuseelement und andererseits im zweiten Gehäuse zu lagern. Die oben beschriebene Erfindung wird nachfolgend vor dem betreffenden technischen Hintergrund unter Bezugnahme auf die zugehörigen Zeichnungen, welche bevorzugte Ausgestaltungen zeigen, detailliert erläutert. Die Erfindung wird durch die rein sche matischen Zeichnungen in keiner Weise beschränkt, wobei anzumerken ist, dass die in den Zeichnungen gezeigten Ausführungsbeispiele nicht auf die dargestellten Maße eingeschränkt sind. Es ist dargestellt in
Fig. 1 : eine schematische Darstellung einer Antriebsanordnung mit Antriebseinheit ge mäß Stand der Technik,
Fig. 2: eine schematische Darstellung einer erfindungsgemäßen Antriebsanordnung mit erfindungsgemäßer Antriebseinheit,
Fig. 3: einen Ausschnitt der erfindungsgemäßen Antriebsanordnung in geschnittener Seitenansicht,
Fig. 4: einen vergrößerten Ausschnitt der erfindungsgemäßen Antriebseinheit,
Fig. 5: einen stärker vergrößerten Ausschnitt der erfindungsgemäßen Antriebseinheit im Bereich der geschlossenen zweiten Trennkupplung, und Figur 6: einen stärker vergrößerten Ausschnitt der erfindungsgemäßen Antriebseinheit im Bereich der geöffneten zweiten Trennkupplung.
Auf Figur 1 wurde bereits zur Erläuterung des Standes der Technik eingegangen.
In Fig. 2 ist eine schematische Darstellung einer erfindungsgemäßen Antriebsanord nung 100 mit einer erfindungsgemäßen Antriebseinheit 1 dargestellt.
Die Antriebseinheit 1 umfasst eine erste elektrische Rotationsmaschine 10, eine zweite elektrische Rotationsmaschine 20, eine erste Welle 40 sowie eine zweite Welle 41.
Des Weiteren umfasst die Antriebsanordnung 100 eine Verbrennungskraftmaschine 110 und einen Schwingungsdämpfer 101 , wobei ein Abtriebselement 111 der Ver brennungskraftmaschine 110 mit dem Schwingungsdämpfer 101 gekoppelt ist. Der Schwingungsdämpfer 101 ist außerdem mit einem Anschlusselement 4 der An triebsanordnung 1 verbunden, welches als eine Eingangsseite 2 der Antriebsanordnung 1 fungiert. Die Verbrennungskraftmaschine 110 ist damit über den Schwingungsdämpfer 110 mit der Antriebsanordnung 1 gekoppelt.
Das Anschlusselement 4 ist mit der ersten Welle 40 derart gekoppelt, dass eine erste Übersetzungsstufe 70 zwischen dem Anschlusselement 4 und der ersten Welle 40 ausgebildet ist.
Ein Rotor 11 der ersten elektrische Rotationsmaschine 10 ist mit der ersten Welle 40 drehfest verbunden und ein Rotor 21 der zweiten elektrische Rotationsmaschine 20 ist über eine zweite Trennkupplung 120 mit der zweiten Welle 41 verbunden bzw. ver bindbar. Die Verbindung des Rotors 11 der ersten elektrischen Rotationsmaschine 10 mit der ersten Welle 40 ist derart realisiert, dass der Rotor 11 der ersten elektrische Rotationsmaschine 10 direkt auf der ersten Welle 40 angeordnet ist. Der Rotor 21 der zweiten elektrischen Rotationsmaschine 20 ist hingegen von einem Rotorträger 30 ge tragen und der Rotorträger 30 ist mit der zweiten Welle 41 über die zweite Trennkupp lung 120 verbunden.
Die erste elektrische Rotationsmaschine 10 ist radial sowie bereichsweise axial inner halb eines von der zweiten elektrischen Rotationsmaschine 20 radial begrenzten Raums angeordnet. Dabei ist die erste elektrische Rotationsmaschine 10 als Innen läufermotor ausgebildet und die zweite elektrische Rotationsmaschine 20 als Außen läufermotor ausgebildet, wobei ein Stator 12 der ersten elektrischen Rotationsma schine 10 sowie ein Stator 22 der zweiten elektrischen Rotationsmaschine 20 mecha nisch aneinander fixiert sind.
Eine erste Trennkupplung 50 der Antriebseinheit 1 ist mit ihrer Eingangsseite 51 mit der ersten Welle 40 verbunden und mit ihrer Ausgangsseite 52 mit der zweiten Welle 41 verbunden. Die erste Trennkupplung 50 dient somit zur Drehmomentübertragung zwischen der ersten Welle 40 und der zweiten Welle 41 . Entsprechend kann mittels der ersten Trennkupplung 50 ein Drehmoment-Übertagungspfad zwischen dem Rotor 11 der ersten elektrischen Rotationsmaschine 10 und dem Rotor 21 der zweiten elektrischen Rotationsmaschine 20 geöffnet oder geschlossen werden. Die zweite Welle 41 ist als Hohlwelle ausgestaltet und die erste Welle 40 verläuft ab schnittsweise radial innerhalb der zweiten Welle 41 . Die beiden Wellen 40, 41 verlau fen somit koaxial zueinander, wobei auch die Rotoren 11 , 21 der beiden elektrischen Rotationsmaschinen 10, 20 koaxial zueinander und koaxial zu den Wellen 40, 41 an geordnet sind.
Die zweite Welle 41 ist über eine zweite Übersetzungsstufe 71 mit einer Zwischen welle 81 verbunden. Die Zwischenwelle 81 verläuft dabei parallel zur zweiten Welle 41.
Die Zwischenwelle 81 ist über eine dritte Übersetzungsstufe 72 mit einem Ein gangselement eines Differentialgetriebes 80 der Antriebseinheit 1 zwecks Übertra gung von Drehmoment verbunden. Das Differentialgetriebe 80 bildet eine Ausgangs seite 3 der Antriebseinheit 1 .
Radantriebswellen 103, an welchen Räder eines mit der Antriebsanordnung 100 aus gestatteten Kraftfahrzeugs anzuordnen sind, bilden den Ausgang des Differentialge triebes 80, so dass eine von der zweiten Welle 41 realisierte Drehbewegung über die zweite Übersetzungsstufe 71 und die dritte Übersetzungsstufe 72 sowie über das Dif ferenzialgetriebe 80 auf die Radantriebswelle 103 und damit auf die Räder übertragen werden kann.
Ein von der Verbrennungskraftmaschine 110 bereitgestelltes Drehmoment wird über den Schwingungsdämpfer 101 und über die erste Übersetzungsstufe 70 an die erste Welle 40 der Antriebseinheit 1 übertragen. Ist die erste Trennkupplung 50 dabei geöff net, wird das Drehmoment der Verbrennungskraftmaschine 110 lediglich an den Rotor 11 der ersten elektrischen Rotationsmaschine 10 geleitet. Derart kann die erste elekt rische Rotationsmaschine 10 im Generatorbetrieb zum Laden einer Batterie genutzt werden. Ist die erste Trennkupplung 50 geschlossen, wird das von der Verbrennungs kraftmaschine 110 bereitgestellte Drehmoment von der ersten Welle 40 auf die zweite Welle 41 übertragen. Von der zweiten Welle 41 wird das Drehmoment der Verbren nungskraftmaschine 110 über die zweite Übersetzungsstufe 71 auf die Zwischenwelle 81 und über die dritte Übersetzungsstufe 72 in das Differentialgetriebe 80 geleitet. Über das Differentialgetriebe 80 gelangt das Drehmoment mittels der Radantriebswelle 103 an Räder eines mit der Antriebsanordnung 100 ausgestatteten Kraftfahrzeugs.
Ein vom Rotor 11 der ersten elektrischen Rotationsmaschine 10 bereitgestelltes Dreh moment kann bei geöffneter erster Trennkupplung 50 über die erste Übersetzungs stufe 70 an die Verbrennungskraftmaschine 110 übertragen werden. Bei geschlosse ner erster Trennkupplung 50 wird das Drehmoment über die zweite Übersetzungs stufe 71 und die dritte Übersetzungsstufe 72 an das Differentialgetriebe 80 und damit an die Radantriebswelle 103 übertragen.
Ein vom Rotor 21 der zweiten elektrischen Rotationsmaschine 20 bereitgestelltes Drehmoment wird unabhängig einer Schaltung der ersten Trennkupplung 50 über die zweite Trennkupplung 120 und die zweite Übersetzungsstufe 71 sowie die dritte Über setzungsstufe 72 an das Differentialgetriebe 80 und damit an die Radantriebswelle 103 übertragen.
Die Antriebsanordnung 100 kann entsprechend in einer Vielzahl an Fahrbetriebsmodi betrieben werden.
Durch die Öffnung der zweiten Trennkupplung 120 kann die zweite elektrische Rotati onsmaschine 20 vom Betrieb der ersten elektrischen Rotationsmaschine 10 sowie der Verbrennungskraftmaschine 110 abgekoppelt werden, so dass keine Energie zum Drehen des Rotors 21 der zweiten elektrischen Rotationsmaschine 20 notwendig ist.
Fig. 3 zeigt einen Ausschnitt der erfindungsgemäßen Antriebsanordnung 100 in ge schnittener Seitenansicht.
Die Figur 2 ist eine detailliertere Darstellung einzelner der in Figur 1 angedeuteten Komponenten, wobei in Figur 2 die Verbrennungskraftmaschine nicht gezeigt ist und das an den Schwingungsdämpfer 101 gekoppelte Abtriebselement 111 der Verbren nungskraftmaschine nur teilweise dargestellt ist.
In Figur 3 sind ein erstes Gehäuse 60, ein zweites Gehäuse 61 sowie ein Gehäusee lement 62 erkennbar, welche miteinander verbunden sind und ein Gesamt-Gehäuse der Antriebsanordnung 100 bzw. der Antriebseinheit 1 ausbilden. Das erste und zweite Gehäuse 60, 61 dienen der Aufnahme der beiden elektrischen Rotationsma schinen 10, 20, wobei das Gehäuseelement 62 dazu dient, das erste Gehäuse 60 und das zweite Gehäuse 61 mit einem Gehäuse der Verbrennungskraftmaschine (nicht dargestellt) zu koppeln. Das erste Gehäuse 60 ist dazu in axialer Richtung fest mit dem zweiten Gehäuse 61 verbunden, wobei das Gehäuseelement 62 auf der dem ersten Gehäuse 60 axial gegenüberliegenden Seite des zweiten Gehäuses 61 mit dem zweiten Gehäuse 61 fest verbunden ist.
Die erste Welle 40 ist mit ihrem ersten axialen Endbereich 42 über ein einreihiges Stützlager 92 im ersten Gehäuse 60 gelagert und mit ihrem zweiten axialen Endbe reich 43 mittel Nadellager radial innen an einem zweiten axialen Endbereich 45 der zweiten Welle 41 gelagert.
Die zweite Welle 41 ist mit ihrem ersten axialen Endbereich 44 und mit ihrem zwiten axialen Endbereich 45 auf der ersten Welle 40 gelagert.
Weiterhin ist ein die Statoren 12, 22 der elektrischen Rotationsmaschinen 10, 20 tra gender gemeinsamer Stator-Träger 32 fest mit dem ersten Gehäuse 60 verbunden, so dass die Statoren 12, 22 der elektrischen Rotationsmaschinen 10, 20 als Stator-Ein heit 31 vom ersten Gehäuse 60 getragen sind.
Die Stator-Einheit 31 ist am ersten Gehäuse 60 durch eine Trägerschraube 33 fixiert, die in axialer Richtung durch die gesamte Stator-Einheit 31 hindurchgeführt ist und im ersten Gehäuse 60 in axialer Richtung verschraubt ist.
Der Rotorträger 30 des Rotors 21 der zweiten elektrischen Rotationsmaschine 20 ist über einen Rotorflansch 35 mittels der zentralen Lagereinheit 90 am zweiten Gehäuse 61 gelagert. Diese zentrale Lagereinheit 90 umfasst zwei koaxial angeordnete Wälzla ger, die axial dicht nebeneinander positioniert sind.
Mit dem Rotorträger 30 ist zudem ein Geberelement eines Rotorlagesensors 34 ver bunden, wobei ein Detektorelement des Rotorlagesensors 34 mit dem zweiten Ge häuse 61 verbunden ist, so dass eine Detektion einer Winkelposition und/oder einer Drehgeschwindigkeit des Rotors 21 der zweiten elektrischen Rotationsmaschine 20 bzw. des Rotorträgers 30 von dem Rotorlagesensor 34 durchführbar ist. Die Zwischenwelle 81 und die Radantriebswelle 103 sind jeweils auf ihrer den elektri schen Rotationsmaschinen 10, 20 zugewandten axialen Seite im zweiten Gehäuse 61 gelagert und an deren gegenüberliegenden axialen Seite im Gehäuseelement 62 ge lagert. Das Anschlusselement 4 der Antriebseinheit 1 ist über eine zweireihige La gereinheit 93 am Gehäuseelement 62 gelagert. Diese zweireihige Lagereinheit 93 um fasst zwei koaxial angeordnete Wälzlager, die axial dicht nebeneinander positioniert sind. Der Schwingungsdämpfer 101 ist im Gehäuseelement 62 angeordnet.
Des Weiteren ist eine Leistungselektronik 102 radial außen auf dem ersten und zwei ten Gehäuse 60, 61 angeordnet, wobei die Leistungselektronik 102 zur Steuerung der elektrischen Rotationsmaschinen 10, 20 eingerichtet ist. Zwischen dem zweiten Ge häuse 61 und der Leistungselektronik 102 ist zudem ein Wärmetauscher 105 eines Kühlkreislaufs zur Kühlung zumindest einer der elektrischen Rotationsmaschinen 10, 20 am zweiten Gehäuse 61 angeordnet. Ein Pumpenaktor 104 dieses Kühlkreislaufs ist vom Gehäuseelement 62 getragen.
Figur 3 zeigt außerdem einen detaillierten Aufbau der Übersetzungsstufen 70, 71 , 72. Die erste Übersetzungsstufe 70 ist derart ausgebildet, dass das Anschlusselement 4 ein innenverzahntes Zahnrad 5 umfasst, welches mit einer Außenverzahnung 46 am zweiten axialen Endbereich 43 der ersten Welle 40 kämmt.
Die zweite Welle 41 weist ebenfalls eine Außenverzahnung 47 an deren zweitem axia len Endbereich 45 auf, mit welcher sie mit einem ersten Zahnrad 82 in Eingriff steht, wobei das erste Zahnrad 82 drehfest auf der Zwischenwelle 81 angeordnet ist, so dass die zweite Übersetzungsstufe 71 zwischen der zweiten Welle 41 und der Zwi schenwelle 81 ausgebildet ist.
Eine Außenverzahnung 84 der Zwischenwelle 81 steht mit einem zweiten Zahnrad 83 als Eingangselement des Differentialgetriebes 80 in Eingriff, wodurch die dritte Über setzungsstufe 72 zwischen der Zwischenwelle 81 und dem Differentialgetriebe 80 ausgebildet ist.
Wie vergrößert in Figur 4 dargestellt, entspricht die erste Trennkupplung 50 einer reib schlüssig schließbaren Lamellenkupplung, deren Eingangsseite 51 durch Außenlamellen ausgebildet ist, welche axial neben dem Rotor 11 der ersten elektri schen Rotationsmaschine 10 auf der ersten Welle 40 angeordnet sind, wobei Innenla mellen der ersten Trennkupplung 50 verdrehtest und axial verschiebbar als deren Ausgangsseite 52 mit einer Außenverzahnung der zweiten Welle 41 verbunden sind. Radial außerhalb der zentralen Lagereinheit 90 ist ein Betätigungssystem 53 zur Betä tigung der ersten Trennkupplung 50 sowie auch der zweiten Trennkupplung 120 am zweiten Gehäuse 61 angeordnet. Das Betätigungssystem 53 umfasst eine Hydrau liknehmereinheit 54, die mittels einer nicht näher beschriebenen Gebereinheit mit Öl druck beaufschlagt werden kann. Bei dieser Druckbeaufschlagung verfährt ein_Kolben 55 im Zylinder 56 und verschiebt ein Drucklager 57, das axial auf das Druckstück 121 drückt.
Das als Drucktopf ausgebildetes Druckstück 121 des Betätigungssystems 53 greift axial durch den Rotorträger 30 hindurch, um eine vom Betätigungssystem 53 bereitge stellte Betätigungskraft an die erste Trennkupplung 50 zwecks deren Schließung zu übertragen, bei gleichzeitiger Öffnung der zweiten Trennkupplung 120.
Die zweite Trennkupplung 120 umfasst an dem Druckstück 121 angeordnet ein Ein rücklager 122, welches hier als Axial-Kugellager ausgeführt ist. Die zweite Trennkupp lung 120 ist in der hier dargestellten Ausführungsform als Klauenkupplung ausgeführt. In Eingangsseite 121 der zweiten Trennkupplung 120 ist durch ein erstes Eingriffsele ment 125 ausgebildet, welches mehrere axial ausgerichtete Klauen aufweist. Im ge schlossenen Zustand der zweiten Trennkupplung 120 greifen diese Klauen bzw. diese ersten Eingriffselemente 125 in ebenfalls axial ausgerichtete Klauen ein, die als Aus gangsseite 124 der zweiten Trennkupplung 120 deren zweite Eingriffselemente ausbil den. In dem in Figur 4 dargestellten Zustand ist die zweite Trennkupplung 120 ge schlossen, sodass ein Drehmoment-Übertragungspfad vom Rotor 22 der zweiten elektrischen Rotationsmaschine 20 auf die zweite Welle 41 geschlossen ist und ent sprechend die zweite elektrische Rotationsmaschine 20 zum Antrieb angeschlossen ist. Figur 5 zeigt die zweite Trennkupplung 120 in vergrößerter Ansicht. Hier ist zudem er sichtlich, dass sich ein radial außen am Gehäuse abgestütztes, als Tellerfeder ausge führtes Federelement 130 radial innen am Druckstück 121 abstützt und dieses in eine Richtung mit einer Druckkraft beaufschlagt, dass die zweite Trennkupplung 120 ge schlossen ist, indem die Eingangsseite 123 und die Ausgangsseite 124 der zweiten Trennkupplung 120 ineinander eingreifen.
Figur 5 zeigt die Bauteillagen im Betriebspunkt serielles Fahren.
Der Kolben 55 wird im drucklosen Zustand durch das Federelement 130 in hinterster Position gehalten.
Die Eingangsseite123 der zweiten Trennkupplung 120 ist verdrehfest mit der Aus gangsseite 124 der zweiten Trennkupplung 120 verbunden.
Die zweite elektrische Rotationsmaschine 20 kann in dieser Position die Räder antrei ben, wobei sie wahlweise über die durch die Verbrennungskraftmaschine angetrie bene und als Generator betriebene erste elektrische Rotationsmaschine 10 oder über eine Batterie mit elektrischer Energie versorgt wird.
Gestrichelt ist hier der Drehmoment-Übertragungspfad angedeutet.
Figur 6 zeigt nun den Zustand bei betätigtem Betätigungssystem 53 und die Bauteilla gen im Betriebspunkt paralleles Fahren. Diese Betätigung des Betätigungssystems 53 führt zu einer axialen Bewegung des Kolbens 55, so dass dieser das Drucklager 57 verschiebt. Dieses drückt auf das Druckstück 121 , das sowohl das als Klaue ausge staltete erste Eingriffselement 125 der zweiten Trennkupplung 120 als auch das Ein rücklager 122 bewegt.
Derart drückt das am Druckstück 121 angeordnete Einrücklager 122 axial gegen das Lamellenpaket der ersten Trennkupplung 50. Dadurch werden die Lamellen des La mellenpakets zusammengedrückt und die erste Trennkupplung 50 wird geschlossen. Entsprechend kann ein Drehmoment von der Eingangsseite 51 der ersten Trennkupp lung 50 auf die Ausgangsseite 52 geleitet werden, und somit auf die zweite Welle 41 .
Durch die axiale Bewegung des Druckstücks 121 wird gleichzeitig die Eingangsseite 123 der zweite Trennkupplung 120 bzw. deren ersten Eingriffselemente 125 außer Eingriff mit der Ausgangsseite 124 der zweiten Trennkupplung 120 bzw. deren zweite Eingriffselemente 126 gebracht. Mit anderen Worten, greifen die Klauen der zweiten Trennkupplung in diesem Zustand nicht mehr ineinander ein. In Figur 6 ist dies deut lich ersichtlich aus dem axialen Abstand der Eingangsseite 123 von der Ausgangs seite 124 der zweiten Trennkupplung 120. Entsprechend ist dadurch die zweite Trenn kupplung 120 geöffnet, sodass ein Drehmoment-Übertragungspfad zwischen der zweiten elektrischen Rotationsmaschine 20 und der zweiten Welle 41 unterbrochen ist. Die zweite elektrische Rotationsmaschine 20 kann abgeschaltet werden.
Eine angeschlossene Verbrennungskraftmaschine treibt in dieser Position die Räder an, wobei wahlweise die mit ihr verbundene erste elektrische Rotationsmaschine 10 als Generator zum Rekuperieren oder als Motor zum Boosten genutzt werden kann. Gestrichelt ist hier der Drehmoment-Übertragungspfad angedeutet.
Insofern die zweite Trennkupplung 120 wieder geschlossen werden soll, also vom pa rallelen Betrieb auf seriellen Betrieb umgeschaltet werden soll, und die erste Trenn kupplung 50 wieder geöffnet werden soll, ist lediglich von der zweiten elektrischen Rotationsmaschine lastfrei bis auf eine Synchrondrehzahl mit der zweiten Welle zu drehen und das Betätigungssystem 53 drucklos zu schalten, sodass aufgrund der von dem Federelement 130 realisierten Druckkraft das Druckstück 121 wieder in die Aus gangssituation geschoben wird.
Bezuqszeichenliste
I Antriebseinheit 2 Eingangsseite der Antriebseinheit
3 Ausgangsseite der Antriebseinheit
4 Anschlusselement der Antriebseinheit
5 innenverzahntes Zahnrad des Anschlusselements 10 erste elektrische Rotationsmaschine
I I Rotor der ersten elektrischen Rotationsmaschine 12 Stator der ersten elektrischen Rotationsmaschine
20 zweite elektrische Rotationsmaschine 21 Rotor der zweiten elektrischen Rotationsmaschine
22 Stator der zweiten elektrischen Rotationsmaschine
30 Rotorträger der zweiten elektrischen Rotationsmaschine
31 Stator-Einheit 32 gemeinsamer Stator-Träger
34 Rotorlagesensor
35 Rotorflansch
40 erste Welle 41 zweite Welle
42 erster axialer Endbereich der ersten Welle
43 zweiter axialer Endbereich der ersten Welle
44 erster axialer Endbereich der zweiten Welle
45 zweiter axialer Endbereich der zweiten Welle 46 Außenverzahnung der ersten Welle
47 Außenverzahnung der zweiten Welle 50 erste Trennkupplung
51 Eingangsseite der ersten Trennkupplung
52 Ausgangsseite der ersten Trennkupplung
53 Betätigungssystem 54 Hydrauliknehmereinheit
55 Kolben
56 Zylinder
60 erstes Gehäuse 61 zweites Gehäuse
62 Gehäuseelement
70 erste Übersetzungsstufe
71 zweite Übersetzungsstufe 72 dritte Übersetzungsstufe
80 Differentialgetriebe
81 Zwischenwelle
82 erstes Zahnrad 83 zweites Zahnrad
84 Außenverzahnung der Zwischenwelle
90 zentrale Lagereinheit
92 Stützlager 93 zweireihige Lagereinheit
100 Antriebsanordnung
101 Schwingungsdämpfer
102 Leistungselektronik 103 Radantriebswelle
104 Pumpenaktor
105 Wärmetauscher Verbrennungskraftmaschine
Abtriebselement der Verbrennungskraftmaschine zweite Trennkupplung
Druckstück
Einrücklager
Eingangsseite der zweiten Trennkupplung Ausgangsseite der zweiten Trennkupplung erstes Eingriffselement zweites Eingriffselement Federelement

Claims

Patentansprüche
1 . Antriebseinheit (1 ) für einen Antriebsstrang eines elektrisch antreibbaren Kraft fahrzeugs, mit einer ersten elektrischen Rotationsmaschine (10) sowie einer zweiten elektrischen Rotationsmaschine (20) und einer ersten Welle (40) sowie einer zweiten Welle (41 ), wobei ein Rotor (11 ) der ersten elektrischen Rotationsmaschine (10) dreh fest mit der ersten Welle (40) verbunden ist und wobei die Antriebseinheit (1 ) weiterhin eine erste Trennkupplung (50) aufweist, mit der der Rotor (11 ) der ersten elektrischen Rotationsmaschine (10) zur Drehmomentübertragung mit der zweiten Welle (41 ) ver bindbar oder verbunden ist, dadurch gekennzeichnet, dass die Antriebseinheit (1 ) wei terhin eine zweite Trennkupplung (120) aufweist, mit der ein Rotor (21 ) der zweiten elektrischen Rotationsmaschine (20) zur Drehmomentübertragung mit der zweiten Welle (41 ) verbindbar oder verbunden ist.
2. Antriebseinheit nach Anspruch 1 , dadurch gekennzeichnet, dass die zweite Trennkupplung (120) eine Klauenkupplung ist.
3. Antriebseinheit nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass die erste Trennkupplung (50) eine Lamellenkupplung ist.
4. Antriebseinheit nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass die Antriebseinheit ein Betätigungssystem (53) aufweist, mit dem gleichzeitig die Schließung der ersten Trennkupplung (50) und die Öffnung der zwei ten Trennkupplung (120) vornehmbar ist.
5. Antriebseinheit nach den Ansprüchen 2, 3 und 4, dadurch gekennzeichnet, dass das Betätigungssystem (53) ein axial verlagerbares Druckstück (121 ) umfasst, mit welchem bei axialer Verlagerung eine Kraft auf ein Lamellenpaket der als Lamel lenkupplung ausgestalteten ersten Trennkupplung (50) aufbringbar ist, so dass dieses zusammengedrückt wird und die erste Trennkupplung (50) dadurch geschlossen wird, und welches mit einem ersten Eingriffselement (125) der als Klauenkupplung ausge stalteten zweiten Trennkupplung (120) mechanisch verbindbar oder verbunden ist, wobei die die Schließung der ersten Trennkupplung (50) verursachende axiale Verla gerung des Druckstücks (121 ) ein Eingreifen des ersten Eingriffselements (125) in ein zweites Eingriffselement (126) der Klauenkupplung aufhebt und die zweite Trennkupp lung (120) dadurch geöffnet wird.
6. Antriebseinheit (1 ) nach einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass die erste elektrische Rotationsmaschine (10) zumindest bereichs weise radial sowie axial innerhalb eines von der zweiten elektrischen Rotationsma schine (20) radial begrenzten Raums angeordnet ist, wobei die erste elektrische Rotationsmaschine (10) als Innenläufermotor ausgebildet ist und die zweite elektrische Rotationsmaschine (20) als Außenläufermotor ausgebildet ist, und wobei der Stator (12) der ersten elektrischen Rotationsmaschine (10) sowie der Stator (22) der zweiten elektrischen Rotationsmaschine (20) mechanisch aneinander fixiert sind.
7. Antriebseinheit (1 ) nach einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass die beiden Wellen (40, 41) koaxial angeordnet sind.
8. Antriebseinheit (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekenn zeichnet, dass die erste elektrische Rotationsmaschine (10) für einen Generatorbe trieb eingerichtet ist.
9. Antriebseinheit (1 ) nach einem der vorhergehenden Ansprüche, dadurch ge kennzeichnet, dass die zweite elektrische Rotationsmaschine (20) für einen An triebsmotorbetrieb eingerichtet ist.
10. Antriebsanordnung (100) mit einer Antriebseinheit (1 ) gemäß einem der An sprüche 1 bis 9 sowie mit einer Verbrennungskraftmaschine (110), die mittels eines Abtriebselements (111 ) der Verbrennungskraftmaschine (110) drehfest mit dem Rotor (11 ) der ersten elektrischen Rotationsmaschine (10) gekoppelt oder koppelbar ist.
PCT/DE2022/100425 2021-06-08 2022-06-08 Antriebseinheit und antriebsanordnung WO2022258111A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021114641.0A DE102021114641A1 (de) 2021-06-08 2021-06-08 Antriebseinheit und Antriebsanordnung
DE102021114641.0 2021-06-08

Publications (1)

Publication Number Publication Date
WO2022258111A1 true WO2022258111A1 (de) 2022-12-15

Family

ID=82156653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2022/100425 WO2022258111A1 (de) 2021-06-08 2022-06-08 Antriebseinheit und antriebsanordnung

Country Status (2)

Country Link
DE (1) DE102021114641A1 (de)
WO (1) WO2022258111A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11850943B2 (en) * 2022-04-28 2023-12-26 Hyundai Motor Company Hybrid powertrain for vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847411B1 (de) 2002-02-26 2010-05-19 Nissan Motor Co., Ltd. Hybridantrieb
WO2011054097A1 (en) * 2009-11-03 2011-05-12 Tm4 Inc. Hybrid vehicle transmission
EP2508378A1 (de) * 2009-12-04 2012-10-10 Saic Motor Corporation Ltd. Hybride elektrische antriebseinheit, hybridantriebssystem und steuerverfahren dafür
EP1502791B1 (de) 2003-07-30 2013-10-30 Nissan Motor Company Limited Hybridgetriebe und Schaltmodussteuerung für ein Hybridfahrzeug
US20130288854A1 (en) * 2011-02-08 2013-10-31 Honda Motor Co., Ltd. Driving device for hybrid vehicle
US20160218584A1 (en) 2015-01-28 2016-07-28 Honda Motor Co., Ltd. Integrated system
DE112015006071T5 (de) 2015-01-28 2017-10-12 Honda Motor Co., Ltd. Hybridfahrzeugantriebssystem
WO2019101264A1 (de) 2017-11-23 2019-05-31 Schaeffler Technologies AG & Co. KG Hybrid-antriebsstrang mit zwei elektrischen maschinen und einer verbrennungskraftmaschine
DE102019202961A1 (de) * 2019-03-05 2020-09-10 Zf Friedrichshafen Ag Kupplungsanordnung, Kraftfahrzeugantriebsstrang und Verfahren zum Betreiben eines Antriebsstranges

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018103336A1 (de) 2018-02-14 2019-08-14 Schaeffler Technologies AG & Co. KG Hybridmodul und Antriebsanordnung für ein Kraftfahrzeug

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1847411B1 (de) 2002-02-26 2010-05-19 Nissan Motor Co., Ltd. Hybridantrieb
EP1502791B1 (de) 2003-07-30 2013-10-30 Nissan Motor Company Limited Hybridgetriebe und Schaltmodussteuerung für ein Hybridfahrzeug
WO2011054097A1 (en) * 2009-11-03 2011-05-12 Tm4 Inc. Hybrid vehicle transmission
EP2508378A1 (de) * 2009-12-04 2012-10-10 Saic Motor Corporation Ltd. Hybride elektrische antriebseinheit, hybridantriebssystem und steuerverfahren dafür
US20130288854A1 (en) * 2011-02-08 2013-10-31 Honda Motor Co., Ltd. Driving device for hybrid vehicle
US20160218584A1 (en) 2015-01-28 2016-07-28 Honda Motor Co., Ltd. Integrated system
DE112015006071T5 (de) 2015-01-28 2017-10-12 Honda Motor Co., Ltd. Hybridfahrzeugantriebssystem
WO2019101264A1 (de) 2017-11-23 2019-05-31 Schaeffler Technologies AG & Co. KG Hybrid-antriebsstrang mit zwei elektrischen maschinen und einer verbrennungskraftmaschine
DE102019202961A1 (de) * 2019-03-05 2020-09-10 Zf Friedrichshafen Ag Kupplungsanordnung, Kraftfahrzeugantriebsstrang und Verfahren zum Betreiben eines Antriebsstranges

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11850943B2 (en) * 2022-04-28 2023-12-26 Hyundai Motor Company Hybrid powertrain for vehicle

Also Published As

Publication number Publication date
DE102021114641A1 (de) 2022-12-08

Similar Documents

Publication Publication Date Title
EP1809505B1 (de) Antriebseinheit für kraftfahrzeug mit hybridantrieb in längsanordnung
DE102010036884B4 (de) Antriebssystem und Kraftfahrzeug mit einem derartigen Antriebssystem
DE102012100865B4 (de) Antriebsanordnung mit elektrischer Maschine und Kraftfahrzeug mit einer solchen Antriebsanordnung
EP2608977B1 (de) Hybridantriebsordnung für ein kraftfahrzeug
DE102011088647B4 (de) Elektromechanische Antriebseinrichtung für ein Kraftfahrzeug
EP2608976B1 (de) Hybridantriebsordnung für ein kraftfahrzeug
DE102012006730A1 (de) Kupplungseinrichtung
EP2718132A1 (de) Hvbridmodul für einen triebstrang eines fahrzeuges
WO2018157879A1 (de) Mehrfachkupplungseinrichtung und hybridmodul für ein kraftfahrzeug
DE102019132941B4 (de) Antriebseinheit und Antriebsanordnung
WO2020164846A1 (de) Antriebsvorrichtung für eine fahrzeugachse eines fahrzeugs
EP2904285A1 (de) Antriebsstrang
WO2012149924A1 (de) Hybridmodul für einen triebstrang eines fahrzeuges
DE102019122813B4 (de) Axialkraftaktor
WO2022258111A1 (de) Antriebseinheit und antriebsanordnung
EP3363669B1 (de) Antriebseinrichtung für ein kraftfahrzeug
EP3810449A1 (de) Antriebseinheit für einen antriebsstrang eines elektrisch antreibbaren kraftfahrzeugs und antriebsanordnung
WO2021190699A1 (de) Antriebseinheit und antriebsanordnung
WO2018010721A1 (de) Kupplungseinheit, hybridmodul und antriebsstrang für ein kraftfahrzeug
WO2020119928A1 (de) Getriebeanordnung für einen hybridantrieb
DE102018103336A1 (de) Hybridmodul und Antriebsanordnung für ein Kraftfahrzeug
WO2021052557A1 (de) Hybridantriebsanordnung mit schaltgetriebe, antriebsstranganordnung und verfahren zum steuern einer solchen
WO2021089166A1 (de) Hybridantriebsanordnung, antriebsstranganordnung und verfahren zum steuern einer solchen
DE102021210740B3 (de) Getriebe für ein Fahrzeug sowie Antriebsstrang mit einem solchen Getriebe
DE102013219397A1 (de) Antriebsvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22732390

Country of ref document: EP

Kind code of ref document: A1