EP3745146B1 - Procédé, dispositif et système de détermination d'une propriété d'une ligne de transmission d'énergie - Google Patents

Procédé, dispositif et système de détermination d'une propriété d'une ligne de transmission d'énergie Download PDF

Info

Publication number
EP3745146B1
EP3745146B1 EP19177359.7A EP19177359A EP3745146B1 EP 3745146 B1 EP3745146 B1 EP 3745146B1 EP 19177359 A EP19177359 A EP 19177359A EP 3745146 B1 EP3745146 B1 EP 3745146B1
Authority
EP
European Patent Office
Prior art keywords
arc
transmission line
signal
power transmission
test signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19177359.7A
Other languages
German (de)
English (en)
Other versions
EP3745146A1 (fr
Inventor
Robert Frankenberg
Gottfried Ira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP19177359.7A priority Critical patent/EP3745146B1/fr
Priority to AU2020202799A priority patent/AU2020202799B2/en
Priority to ZA2020/02637A priority patent/ZA202002637B/en
Priority to BR102020010058-0A priority patent/BR102020010058B1/pt
Priority to US16/885,397 priority patent/US11360156B2/en
Publication of EP3745146A1 publication Critical patent/EP3745146A1/fr
Application granted granted Critical
Publication of EP3745146B1 publication Critical patent/EP3745146B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/46Monitoring; Testing
    • H04B3/462Testing group delay or phase shift, e.g. timing jitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/144Measuring arrangements for voltage not covered by other subgroups of G01R15/14
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/16Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using capacitive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1263Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation
    • G01R31/1272Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of solid or fluid materials, e.g. insulation films, bulk material; of semiconductors or LV electronic components or parts; of cable, line or wire insulation of cable, line or wire insulation, e.g. using partial discharge measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/0007Details of emergency protective circuit arrangements concerning the detecting means
    • H02H1/0015Using arc detectors

Definitions

  • the invention relates to a method for determining an arc on an energy transmission line, wherein at least one test signal is coupled into the energy transmission line, and an interference signal is generated at an interference point, which is formed by the arc, along the energy transmission line using the at least one test signal, which interference signal is detected as at least one measurement signal, and the arc is determined from the at least one measurement signal.
  • the invention also relates to a device and a system for determining an arc on an energy transmission line, comprising at least one coupling means for coupling in at least one test signal and for coupling out at least one measurement signal into and out of the energy transmission line, and a processing device with a control device, at least a generator device and at least one measuring device, wherein the control device is set up to generate the at least one test signal using the at least one generator device, and to feed it into the energy transmission line using the at least one coupling means, and at least one interference signal, which at least one defect, which is formed by the arc, is generated along the energy transmission line using the at least one test signal, is decoupled from the energy transmission line using the at least one coupling means, and is detected as the at least one measurement signal using the at least one measuring device.
  • the reliable detection of faults that can be caused by a flashover or discharges in the form of an intermittent arc in a power supply network is of high relevance.
  • the detection of small fault currents is particularly important, i.e. "high-impedance faults" with less than ten amperes.
  • Such disturbances, particularly arcs can be described as a conductive characteristic of a power transmission line.
  • arc faults Arcs that occur during switching operations in electrical energy technology are referred to as switching arcs. Unwanted arc flashes, which often result in damage or accidents, are known as arc faults.
  • An arc is created by impact ionization when the electrical potential difference and current density are sufficiently high.
  • the gas discharge forms a plasma in which the particles such as atoms or molecules are at least partially ionized.
  • the free charge carriers cause the gas to become electrically conductive.
  • Most plasmas are quasi-neutral, so the number of ions and electrons is identical. Since the ions are much slower than the much lighter electrons, the electrons are often almost exclusively relevant for the transport of electricity.
  • An interference signal generated directly by an arc can be very broadband in the frequency range.
  • the high dispersion of power lines can have such an adverse effect on the broadband interference signal that, after a corresponding distance along a power line, it is no longer meaningful for reliable detection.
  • the font CN 108 008 244 A relates to a multi-stage progressive classification and identification method for small current ground faults.
  • the object is achieved by a method of the type mentioned at the outset, wherein the arc is determined by detecting at least one intermodulation product from the at least one test signal and the network signal of the energy transmission line in the at least one measurement signal.
  • a flashover in the form of an arc or a continuous, stationary arc can occur between the contacts of a switch.
  • Such an arc can cause an electrical signal that is fed into the high-voltage line to generate an interference signal at the location of the arc.
  • a switch can be, for example, an isolator connected in series with the energy transmission line.
  • An electrically non-linear behavior is characteristic of such an arc, which can be described using a negative differential resistance.
  • test signal If a test signal is applied to a fault with a negative differential resistance, intermodulation products of the test signal and the useful signal, i.e. the mains voltage with the mains frequency, are generated, which can be measured and evaluated.
  • Intermodulation refers to the creation of frequencies when two or more different frequencies are processed by a system with a nonlinear transfer function.
  • intermodulation forms a sum of frequencies, which are referred to as intermodulation products, in the form: k 1 f 1 ⁇ k 2 f 2 respectively k 1 f 1 ⁇ k 2 f 2 ⁇ k 3 f 3 for a case with three frequencies, with k 1 , k 2 , k 3 ⁇ Z .
  • Table 1 Order of intermodulation signals Order Intermodulation products at two frequencies Intermodulation products at three frequencies 2nd order f1 ⁇ f2 _ 3rd order 2 f 1 ⁇ f 2 f1 ⁇ f2 ⁇ f3 _ f1 ⁇ 2 f2 4th order 3 f 1 ⁇ f 2 2 f 1 ⁇ f 2 ⁇ f 3 f1 ⁇ 3 f2 f 1 ⁇ 2 f 2 ⁇ f 3 2 f 1 ⁇ 2 f 2 5th order 3 f 1 ⁇ 2 f 2 2 f 1 ⁇ 2 f 2 ⁇ f 3 f 1 ⁇ 2 f 2 ⁇ 2 f 3 2 f 1 ⁇ 3 f 2 2 f 1 ⁇ 3 f 2 2 f 1 ⁇ 3 f 2 2 f 1 ⁇ 3 f 2 2 f 1 ⁇ 3 f 2 2 f 1 ⁇ 3 f 2 2 f 1 ⁇ 3 f 2 2 f 1 ⁇ 3 f
  • the frequency f 1 can be, for example, the network frequency of a network signal (eg 50 or eg 60 Hz), and the frequencies f 2 or f 3 can be included in a test signal.
  • a network signal eg 50 or eg 60 Hz
  • the frequencies f 2 or f 3 can be included in a test signal.
  • Intermodulation products can also be generated with more than three frequencies in a test signal.
  • the method according to the invention also has the advantage that flashovers in the network can be reliably detected even at a great distance from a central point, such as a substation.
  • the method can be used for any type of line that is suitable for energy transmission.
  • types of lines include overhead lines, cables and gas-insulated lines Pipe conductors (GIL) or overhead lines for railways in various configurations such as multi-phase lines, single-phase lines or direct current lines.
  • GIL Gas-insulated lines Pipe conductors
  • Multi-phase lines are mostly used to transmit energy in the high and medium voltage range.
  • an indicator can be formed for the detection of a cable break or a high-resistance ground fault without a line interruption, such as can be caused, for example, by a sagging overhead line or a tree touching the line.
  • the arc can also indicate the location of a detected fault.
  • the fault is formed by an arc.
  • a test signal fed into an energy transmission line can be generated by the non-linear properties of the arc, which has intermodulation products and can be detected and evaluated as a measurement signal by a processing device.
  • test signals can also be fed into the same power transmission line, for example at different locations, in order to increase the range of the test device.
  • a common test signal with several test frequencies can be used to specifically generate intermodulation products which, due to their frequency position, have particularly advantageous properties, for example when propagating in the energy transmission network, and thereby further improve the detection rate or its reliability.
  • the arc is caused by a switching operation of a high-voltage switch connected to the energy transmission line.
  • High voltage switches can be circuit breakers, load switches, load disconnectors or isolators. High-voltage switches are used in substations, load distribution stations or in power plants and are controlled remotely from control centers. They can be equipped with a motor, spring-loaded or compressed air drive. Compact designs can be found in gas-insulated switchgear.
  • a high-voltage switch When used in the railway or transport sector, a high-voltage switch can also be understood as a current collector of a vehicle, such as an electric locomotive or a trolleybus, for connection to a trackside-mounted contact wire.
  • the time of the switching process is taken into account when determining the at least one line parameter.
  • the arc is determined by detecting odd-numbered intermodulation products in the measurement signal.
  • the arc is determined by at least one intermodulation product which has a maximum of the tenth order.
  • the at least one arc is determined by at least two intermodulation products.
  • the arc is determined by the ratio of amplitude and/or phase amounts of the at least two intermodulation products.
  • the at least one arc is additionally determined by at least one harmonic of the at least one test signal and/or the at least one intermodulation product.
  • the at least one test signal is narrow-band, that is to say a ratio between the bandwidth and the center frequency of the test signal of less than 10%, preferably less than 5%, particularly preferably less than 3% or less than 1.5%.
  • the at least one reference signal has a frequency which is greater by a factor of 20 than the network frequency of the energy transmission line, preferably greater by a factor of 50, particularly preferably greater by a factor of 500 or 1000 .
  • the line dispersion of a power transmission line can be considered substantially constant for signals of less than 1 kHz bandwidth.
  • the relative amplitudes of individual mixed products can be viewed as being approximately independent of the power line, between the flashover and the measuring device.
  • At least one phase relationship is determined between the at least one test signal and the at least one measurement signal, which is used to determine the location of the occurrence of the fault in the energy transmission line.
  • the object of the invention is also achieved by a device of the type mentioned at the beginning, the processing device being set up to carry out the method according to the invention to carry out and to determine the at least one arc from the at least one measurement signal.
  • the energy transmission line be an overhead line, a cable or a gas-insulated pipeline of an energy transmission network.
  • the object of the invention is also achieved by a system for determining an arc of an energy transmission line in the form of an overhead line, comprising an electrically operated means of transport with a pantograph for connection to the overhead line and a device according to the invention, the fault point being caused by an arc between the overhead line and the pantograph is formed.
  • the overhead line is intended for an electrically operated means of transport, which draws the energy to operate the means of transport from the energy transmission line, for example via a pantograph.
  • the electrically operated vehicle or means of transport can be, for example, a train, a tram, a bus or a truck.
  • Fig. 1 shows a first exemplary embodiment of a device according to the invention with a coupling of a reference signal to all phases of a three-phase energy transmission line.
  • the invention can be formed by an electronic circuit which represents a device for determining at least one arc of an energy transmission line K1-K3, L1-L3 in the form of a multi-phase line.
  • the energy transmission line K1-K3 represents a high-voltage line and the energy transmission line L1-L3 represents a medium-voltage line, the individual lines of the two energy transmission lines K1-K3, L1-L3 being coupled to one another via a corresponding transformer T0.
  • a processing device 10 has a control device 20, a generator device TX1 and a measuring device RX1.
  • the control device 20 is set up to generate a test signal U11 using the generator device TX1 and to feed it into the energy transmission line L1-L3 using the coupling means.
  • the device of Fig. 1 has a coupling means for coupling a signal U11 into the energy transmission line L1-L3 and for coupling out a signal U12 from the energy transmission line L1-L3.
  • the coupling means is formed by a corresponding coupling circuit with a transformer T1 with windings N11, N12, N13 and N14, capacitors C11-C13 and an inductor L11.
  • the windings N11, N12, N13 and N14 of the transformer T1 are strongly coupled to one another via a common iron or ferrite core.
  • the coupling circuit allows the test signal U11 to be fed in and the measurement signal U12 to be coupled out by means of the transformer T1 and the capacitors C11-C13 into/from the individual lines of the energy transmission line L1-L3.
  • the transformer T1 ensures a galvanic decoupling of the generator device TX1 or the measuring device RX1 from the medium voltage on the power supply line L1-L3.
  • the control device 20 is also set up to decouple an interference signal, which is generated at an interference point 100 along the energy transmission line L1-L3, from the energy transmission line L1-L3 using the coupling agent and to detect it as a measurement signal U12 using the measuring device RX1.
  • the impurity 100, 101 can be an impurity which is formed by an arc at the location of the arc.
  • the interference point 100 causes the test signal U11 fed into the line K1-K3, L1-L3 to generate an interference signal with intermodulation products, which can be detected by the processing device 10 as a measurement signal U12.
  • the processing device 10 is also set up to carry out the method according to the invention and to determine the arc from the measurement signal U12.
  • the test signal U11 is coupled into the energy transmission line L1-L3. At the interference point 100 along the energy transmission line L1-L3, which is caused by an arc, an interference signal with intermodulation products is generated and received again as the measurement signal U12.
  • the fault 100 can occur along the energy transmission line of the medium-voltage network L1-L3 through an arc, but also along the energy transmission line of the high-voltage network K1-K3 as a fault 101, the transformer T0 signals at measurement frequencies in the measurement signal U12, i.e. intermodulation products, from one side K1- K3 is coupled to the other side L1-L3 of the transformer T0. It may be necessary to provide appropriate measures that improve the desired overcoupling at the relevant frequencies.
  • the arc is determined from the measurement signal U12, the arc being an indicator for the occurrence of the defect 100.
  • the line property is determined by detecting an intermodulation product from the test signal U11 and the network signal of the energy transmission line K1-K3, L1-L3 in the measurement signal U12.
  • the intermodulation product in the measurement signal U12 is generated at an arc at the fault point 100 of the energy transmission line L1-L3.
  • the arc can be caused in a controlled manner by a switching operation of a high-voltage switch, such as a scissor isolator, along the power transmission line, whereby the timing of the switching operation can be detected or can be predetermined.
  • a high-voltage switch such as a scissor isolator
  • the time of the switching process can be taken into account when determining the line parameter in order to simplify the evaluation of the measurement signal U12.
  • the arc can also be determined by two or more intermodulation products.
  • the arc can also be determined by a harmonic of the test signal U11.
  • the test signal U11 is sinusoidal and narrow-band, which means in this example it has a ratio between the bandwidth and the center frequency of less than 1%.
  • the test signal U11 has a frequency of 30 kHz and is as follows Fig. 3 at a frequency which is a factor of 600 greater than the network frequency of, for example, 50 or, for example, 60 Hz of the energy transmission line K1-K3, L1-L3.
  • Switching operations in electrical power supply networks are generally accompanied by arcs. These can be incorrectly recognized as errors.
  • a switching action can also be used to check the function of the coupling means and the measuring device by feeding in a test signal at the same time as the switching action and evaluating it accordingly.
  • a communication signal from a PLC system can also be used as a test signal.
  • the reference signal can be fed into each phase of the multi-phase network.
  • the measurement signal can be decoupled in a similar way.
  • the range of the method i.e. the distance between a measuring device and a fault location, can be limited by regulatory provisions, such as a maximum permissible transmission power for PLC-type devices.
  • Measuring devices can work at different frequencies to reduce or prevent mutual interference.
  • the location of the error can be narrowed down after synchronizing the measurement signals using reference signals or using GPS time references.
  • An evaluation of the phase rotation of a measurement signal taking into account switching actions carried out in the network, can allow a functional check or an automatic recalibration of the distance determination, since the locations of the measuring devices and the activated high-voltage switch are known.
  • Fig. 2 shows a second exemplary embodiment of a device according to the invention with a coupling of a three-phase reference signal to the virtual star point of the energy transmission line.
  • a separate test signal U21, U31, U41 is generated by respective generators TX2-TX4 and is received as the associated measurement signal U22 by a receiver RX2.
  • the coupling means is formed by transformers T2-T5 with windings N21, N22, N31, N32, N41, N42, N51 and N52, capacitors C21-C23 and inductors L21-L23.
  • harmonics of the respective reference signal can also be evaluated.
  • phase-sensitive methods such as synchronous demodulation, can also be used to determine intermodulation products.
  • the test signal can have different signal curves, such as sinusoidal, coded or modulated.
  • test signal can be modulated in different ways and corresponding detection can be carried out using known digital signal processing methods.
  • test signals When sending a test signal with two or more frequencies (multi-tone signal), as well as when receiving two or more reference signals at different frequencies from different test devices in the same line network, test signals can also be viewed as their mixed products.
  • the components of the harmonic distortions in the mains voltage due to the defect can be eliminated.
  • the detected line error can be classified based on the measured intermodulation products.
  • the coupling means for a single-phase power supply line can be provided by a corresponding coupling circuit analogous to Fig. 1 , but only with a single coupling capacity to the energy supply line.
  • the following figures each show examples of a sinusoidal measurement signal with a power of 1 over a frequency range of 2.
  • Fig. 3 shows a first example of a sinusoidal measurement signal at a center frequency of 30.0 kHz, which has odd-numbered intermodulation products, which can be used for arc detection.
  • the characteristic of non-linearity of an arc leads to odd-numbered mixed products in the measurement signal.
  • the characteristic of nonlinearity which can be caused by system components in medium-voltage networks, such as transformers or capacitors, predominantly leads to even-numbered mixed products in the measurement signal.
  • the type of mixed products (even/odd) in the measurement signal can also be used to differentiate between the causes of faults, which is used to determine an arc.
  • Fig. 4 shows a second example of a sinusoidal test signal with a center frequency of 30.0 kHz, but measured at its first harmonic frequency of 60.0 kHz, and which also has intermodulation products at 60.0 kHz.
  • Fig. 5 shows a third example of a narrow-band, sinusoidal measurement signal at a center frequency of 30.0 kHz, which has no intermodulation products. Consequently, there are no odd-numbered intermodulation products and therefore no arc.
  • Fig. 6 shows a fourth example of a narrow-band, sinusoidal measurement signal at a center frequency of 30.0 kHz, which has intermodulation products.
  • Odd intermodulation products can be seen at 30 kHz ⁇ 100 Hz, at 30 kHz ⁇ 200 Hz and at 30 kHz ⁇ 300 Hz.
  • the criterion for detecting an arc 100 can therefore be, on the one hand, the high intermodulation level and, on the other hand, the identification of odd-numbered intermodulation products.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing Relating To Insulation (AREA)
  • Locating Faults (AREA)

Claims (14)

  1. Procédé de détermination d'un arc électrique sur une ligne de transmission d'énergie (K1-K3, L1-L3), dans lequel au moins un signal d'essai (U11, U21, U31, U41) est injecté dans la ligne de transmission d'énergie (K1-K3, L1-L3), et un signal parasite est généré au niveau d'un point de perturbation (100), qui est formé par l'arc électrique, le long de la ligne de transmission d'énergie (K1-K3, L1-L3) à l'aide de l'au moins un signal d'essai (U11, U21, U31, U41), lequel signal parasite est détecté à titre de signal de mesure (U12, U22), et l'arc électrique est déterminé à partir de l'au moins un signal de mesure (U12, U22), caractérisé en ce que l'arc électrique est déterminé dans l'au moins un signal de mesure (U12, U22) par une détection d'au moins un produit d'intermodulation de l'au moins un signal d'essai (U11, U21, U31, U41) et du signal réseau de la ligne de transmission d'énergie (K1-K3, L1-L3).
  2. Procédé selon la revendication précédente, dans lequel l'arc électrique est provoqué par un processus de commutation d'un commutateur à haute tension relié à la ligne de transmission d'énergie.
  3. Procédé selon la revendication précédente, dans lequel le moment du processus de commutation est pris en compte dans la détermination de l'au moins un paramètre de ligne.
  4. Procédé selon l'une des revendications précédentes, dans lequel l'arc électrique est déterminé par une détection de produits d'intermodulation impairs.
  5. Procédé selon l'une des revendications précédentes, dans lequel l'arc électrique est déterminé par au moins un produit d'intermodulation jusqu'au dixième ordre.
  6. Procédé selon l'une des revendications précédentes, dans lequel l'arc électrique est déterminé par au moins deux produits d'intermodulation.
  7. Procédé selon l'une des revendications précédentes, dans lequel l'arc électrique est déterminé par le rapport des amplitudes et/ou des contributions de phase des au moins deux produits d'intermodulation.
  8. Procédé selon l'une des revendications précédentes, dans lequel l'arc électrique est déterminé en outre par au moins un harmonique de l'au moins un signal d'essai (U11, U21, U31, U41) et/ou de l'au moins un produit d'intermodulation.
  9. Procédé selon l'une des revendications précédentes, dans lequel l'au moins un signal d'essai (U11, U21, U31, U41) présente un rapport entre la largeur de bande passante et la fréquence centrale inférieur à 10 %, de préférence inférieur à 5 %, et de manière préférée inférieur à 3 % ou inférieur à 1,5 %.
  10. Procédé selon l'une des revendications précédentes, dans lequel l'au moins un signal d'essai (U11, U21, U31, U41) a une fréquence qui est supérieure d'un facteur 20 à la fréquence réseau de la ligne de transmission d'énergie (K1-K3, L1-L3), de préférence supérieure d'un facteur 50, et de manière préférée supérieure d'un facteur 500 ou 1000.
  11. Procédé selon l'une des revendications précédentes, dans lequel au moins une relation de phase entre l'au moins un signal d'essai (U11, U21, U31, U41) et l'au moins un signal de mesure (U12, U22) est déterminée, laquelle est utilisée pour déterminer le site de survenue du point de perturbation (100, 101) de la ligne de transmission d'énergie (K1-K3, L1-L3).
  12. Dispositif pour déterminer un arc électrique sur une ligne de transmission d'énergie (K1-K3, L1-L3), comprenant :
    au moins un moyen de couplage pour injecter au moins un signal d'essai (U11, U21, U31, U41) et pour extraire au moins un signal de mesure (U12, U22) dans et à partir de la ligne de transmission d'énergie (K1-K3, L1-L3), et
    un dispositif de traitement (10, 11) comprenant un dispositif de commande (20, 21), au moins un appareil de générateur (TX1, TX2, TX3, TX4) et au moins un dispositif de mesure (RX1, RX2),
    dans lequel le dispositif de commande (20, 21) est configuré pour générer l'au moins un signal d'essai (U11, U21, U31, U41) au moyen de l'au moins un appareil de générateur (TX1, TX2, TX3, TX4) et
    pour introduire l'au moins un moyen de couplage dans la ligne de transmission d'énergie (K1-K3, L1-L3), et
    pour extraire de la ligne de transmission d'énergie (K1-K3, L1-L3), en utilisant l'au moins un moyen de couplage (T1-T5, C11-C13, C21-C23, L11, L21-L23), au moins un signal parasite, qui est généré à l'aide de l'au moins un signal d'essai (U11, U21, U31, U41) au niveau d'au moins un point de perturbation (100) formé par l'arc électrique, le long de la ligne de transmission d'énergie (K1-K3, L1-L3), et pour détecter ledit signal parasite à titre de l'au moins un signal de mesure (U12, U22) au moyen de l'au moins un dispositif de mesure (RX1, RX2),
    caractérisé en ce que le dispositif de traitement (10, 11) est configuré pour exécuter le procédé selon l'une des revendications précédentes et pour déterminer l'arc électrique à partir de l'au moins un signal de mesure (U12, U22).
  13. Dispositif selon la revendication précédente, dans lequel la ligne de transmission d'énergie (K1-K3, L1-L3) est une ligne aérienne, un câble, un conducteur tubulaire à isolation gazeuse ou une ligne de contact pour un moyen de transport à entraînement électrique.
  14. Système permettant de déterminer un arc électrique sur une ligne de transmission d'énergie (K1-K3, L1-L3) sous forme d'une ligne de contact, comprenant un moyen de transport à entraînement électrique comprenant un pantographe à relier à la ligne de contact et un dispositif selon la revendication 12, dans lequel le point de perturbation (100, 101) est formé par un arc électrique entre la ligne de contact et le pantographe.
EP19177359.7A 2019-05-29 2019-05-29 Procédé, dispositif et système de détermination d'une propriété d'une ligne de transmission d'énergie Active EP3745146B1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19177359.7A EP3745146B1 (fr) 2019-05-29 2019-05-29 Procédé, dispositif et système de détermination d'une propriété d'une ligne de transmission d'énergie
AU2020202799A AU2020202799B2 (en) 2019-05-29 2020-04-28 Method, device and system for determining an arc on a power transmission line
ZA2020/02637A ZA202002637B (en) 2019-05-29 2020-05-12 Method, device and system for determining an arc on a power transmission line
BR102020010058-0A BR102020010058B1 (pt) 2019-05-29 2020-05-20 Método, dispositivo e sistema para determinação de um arco em uma linha de transmissão de energia
US16/885,397 US11360156B2 (en) 2019-05-29 2020-05-28 Method, device and system for determining an arc on a power transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19177359.7A EP3745146B1 (fr) 2019-05-29 2019-05-29 Procédé, dispositif et système de détermination d'une propriété d'une ligne de transmission d'énergie

Publications (2)

Publication Number Publication Date
EP3745146A1 EP3745146A1 (fr) 2020-12-02
EP3745146B1 true EP3745146B1 (fr) 2023-10-25

Family

ID=66676421

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19177359.7A Active EP3745146B1 (fr) 2019-05-29 2019-05-29 Procédé, dispositif et système de détermination d'une propriété d'une ligne de transmission d'énergie

Country Status (5)

Country Link
US (1) US11360156B2 (fr)
EP (1) EP3745146B1 (fr)
AU (1) AU2020202799B2 (fr)
BR (1) BR102020010058B1 (fr)
ZA (1) ZA202002637B (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112910505A (zh) * 2021-02-03 2021-06-04 青岛鼎信通讯股份有限公司 一种应用于中压电力线通信设备的噪声消除电路
CN116699339B (zh) * 2023-08-04 2023-11-17 武汉朗德电气有限公司 基于双模态声导波的gil电弧故障定位方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3588611A (en) * 1969-10-31 1971-06-28 Westinghouse Electric Corp Transmission line arc detection and location system
US4868506A (en) * 1988-12-02 1989-09-19 International Business Machines Corporation Defect detection using intermodulation signals
US9063191B2 (en) * 2012-02-24 2015-06-23 Power Probe, Inc. Electrical test device and method
US5825598A (en) * 1997-02-11 1998-10-20 Square D Company Arcing fault detection system installed in a panelboard
US6798211B1 (en) * 1997-10-30 2004-09-28 Remote Monitoring Systems, Inc. Power line fault detector and analyzer
US7003435B2 (en) * 2002-10-03 2006-02-21 Leviton Manufacturing Co., Inc. Arc fault detector with circuit interrupter
US6850073B2 (en) * 2003-03-06 2005-02-01 Eaton Corporation Power circuit tester apparatus and method
BR112013001525A2 (pt) * 2010-07-21 2016-05-10 Kaelus Pty Ltd método e aparelho para localizar falhas em redes de comunicações
KR101129634B1 (ko) * 2011-01-10 2012-03-28 성균관대학교산학협력단 고조파 비율를 이용한 재폐로 제어를 위한 장치 및 방법
ES2565504T3 (es) * 2011-02-23 2016-04-05 Ellenberger & Poensgen Gmbh Procedimiento para detectar arcos de luz parásita y disyuntor
US9689925B2 (en) * 2011-04-06 2017-06-27 Unique Technologies, Llc Reliable arc fault circuit interrupter tester utilizing a dynamic fault voltage
US9945894B2 (en) * 2012-02-29 2018-04-17 Innovative Scientific Solutions, Inc. Arc fault detection
US9329220B2 (en) * 2012-08-27 2016-05-03 The Texas A&M University System Method and system for detecting arc faults and flashes using wavelets
US9366713B2 (en) * 2013-05-23 2016-06-14 Pentair Thermal Management Llc Arc fault detection system and method
JP6464836B2 (ja) * 2015-03-09 2019-02-06 オムロン株式会社 アーク検出装置およびアーク検出方法
WO2017066476A1 (fr) * 2015-10-13 2017-04-20 Schweitzer Engineering Laboratories, Inc. Surveillance de système d'alimentation électrique à l'aide de signaux haute fréquence
KR101820162B1 (ko) * 2016-10-06 2018-01-18 이엠아이솔루션즈(주) 직렬아크의 고정도 검출시스템
GB201617809D0 (en) * 2016-10-21 2016-12-07 Analog Devices Global A method of detecting arc events in a power system, and a power system including an arc detector
FR3065533B1 (fr) * 2017-04-19 2019-04-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede et systeme de detection d'un defaut dans une ligne de transmission a partir d'une mesure de phase
CN108008244B (zh) * 2017-10-25 2019-07-26 国网湖北省电力公司电力科学研究院 一种小电流接地故障多层次递进式分类识别方法

Also Published As

Publication number Publication date
AU2020202799A1 (en) 2020-12-17
US11360156B2 (en) 2022-06-14
EP3745146A1 (fr) 2020-12-02
BR102020010058B1 (pt) 2023-12-19
US20200379055A1 (en) 2020-12-03
AU2020202799B2 (en) 2021-04-22
ZA202002637B (en) 2021-05-26
BR102020010058A2 (pt) 2020-12-08

Similar Documents

Publication Publication Date Title
EP2446283B1 (fr) Procédé d'identification de type de défaut de ligne électrique
DE102007049667B4 (de) Anordnung und Verfahren zur Kompensation eines Fehlerstromes bei einem Erdschluss
WO1990005919A1 (fr) Ensemble d'accouplement pour le controle d'installations haute tension par decharges partielles
EP3745146B1 (fr) Procédé, dispositif et système de détermination d'une propriété d'une ligne de transmission d'énergie
DE112014001200T5 (de) Überstromschutzvorrichtung und -verfahren
DE112018005677T5 (de) Verfahren und vorrichtung zur fehlererkennung und zum schutz von elektrischen netzwerken
EP3968037A1 (fr) Procédé et dispositif de détermination d'un emplacement défectueux dans un réseau de distribution d'énergie électrique
DE102018114540B3 (de) Verfahren zur Erkennung von Lichtbögen in Gleichstromkreisen
EP1090303A1 (fr) Procede et dispositif pour la surveillance d'une ligne d'electrode d'une installation bipolaire de transport de courant continu a haute tension (c.c.h.t)
EP2978091A1 (fr) Procédé de transmission d'énergie électrique
DE4428118C2 (de) Erdschlußortung in elektrischen Netzen mit einer Erdschlußspule
DE2604311A1 (de) Phasenvergleichsrelais
EP2998750B1 (fr) Procede et systeme pour la determination de localisation de defaut en cas de court-circuit le long d'une section d'alimentation d'energie a plusieurs conducteurs
AT509837B1 (de) Vorrichtung zur fehlerstromreduktion
EP0759221B1 (fr) Circuits de detection de pertes a la terre dans des cables de transmission d'energie
EP3251187A1 (fr) Dispositif de protection, système et procédé pour une protection d'écartement d'une caténaire d'une alimentation électrique de traction ferroviaire
DE102021112016B3 (de) Verfahren und Vorrichtung zum Ermitteln einer Erdschlussrichtung
DE102011082554B4 (de) Verfahren zur Bestimmung eines Erdschlussstroms in einem erdschlussbehafteten Drehstromnetz
EP3385731B1 (fr) Dispositif de mesure de courant de fuite à la terre
DE4026799A1 (de) Verfahren zur selektiven erfassung von fehlern der leiter in hoch- und hoechstspannungsnetzen
EP3143417B1 (fr) Procédé et système permettant de vérifier une installation de distribution destinée à une installation de transmission d'énergie
EP3524467B1 (fr) Procédé et dispositif de surveillance des conducteurs électriques et des raccordements dans des sous-stations à redresseur et des sections de route des voies électriques associées
EP3300201A1 (fr) Procédé et dispositif destinés à la surveillance d'un dispositif de transmission d'énergie
DE2735756A1 (de) Verfahren und vorrichtung zur erdschlussrichtungsbestimmung in kompensierten netzen
DE102006054940A1 (de) Schaltfeldanlage mit Redundanz

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210519

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230215

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230612

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019009742

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231025

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240226