EP3743538A1 - Pivoting pin of a regulator - Google Patents

Pivoting pin of a regulator

Info

Publication number
EP3743538A1
EP3743538A1 EP19702055.5A EP19702055A EP3743538A1 EP 3743538 A1 EP3743538 A1 EP 3743538A1 EP 19702055 A EP19702055 A EP 19702055A EP 3743538 A1 EP3743538 A1 EP 3743538A1
Authority
EP
European Patent Office
Prior art keywords
axis
manufacturing
heat treatment
regulating member
treatment step
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19702055.5A
Other languages
German (de)
French (fr)
Other versions
EP3743538B1 (en
Inventor
Maxime Danielou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richemont International SA
Original Assignee
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richemont International SA filed Critical Richemont International SA
Publication of EP3743538A1 publication Critical patent/EP3743538A1/en
Application granted granted Critical
Publication of EP3743538B1 publication Critical patent/EP3743538B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • G04B13/026
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/16Barrels; Arbors; Barrel axles
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/007Antimagnetic alloys
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials

Definitions

  • the present invention relates to the field of watchmaking. It relates, more particularly, to a pivot axis of a regulating member of a clockwork mechanical movement and more particularly to a pendulum, anchor or escapement axis made of a non-magnetic material.
  • clock-type pivot axes such as a rocker shaft, an anchor rod or an escape pinion consists in carrying out a succession of operations making it possible, from a bar of raw material, to form an axis having precise dimensional characteristics as well as a sufficient mechanical resistance with regard to the envisaged application.
  • the clockwise pivot axes are made in a known manner by machining operations or precision turning, from a carbon martensitic steel bar. These machining operations make it possible to define the functional surfaces necessary for the proper functioning of the axis (clearances, stops, pivots, etc.) and the assembly of the various components (balance seat, bearing surface, bearing surface of the ferrule , etc.).
  • the neckline then undergoes a deburring operation and then one or more heat treatment operations comprising at least one quenching to improve the hardness of the axis and income to improve toughness.
  • a rolling operation of the pivots intended to improve the surface state, the hardness and the geometric precision, is generally carried out during or at the end of manufacturing. The rolling operation can be compared to an operation of grinding and / or polishing the pivots.
  • the pivot axes for example the balance axes, used in a traditional manner in the mechanical clockwork movements are made from carbon martensitic steel bars having addition elements of the type lead and / or manganese.
  • Manganese is generally present in steels in the form of manganese sulphides and allows a regular fragmentation of the cutting chip.
  • Lead tends to bind to non-metallic inclusions present in steel, or is in the form of elementary particles. It acts as a lubricant, reduces the coefficient of friction at the tool / cutting area interface and limits the formation of a material deposit on the cutting edge of the tool.
  • These addition elements therefore have the common objective of improving the machinability of the steel.
  • a steel of this type can be supplied from a large number of suppliers under the name 20AP or 1.1268 + Pb.
  • the lead martensitic steel has, after quenching and tempering treatments, high mechanical properties in adequacy with the stresses encountered by the pivot axes during their operation.
  • the pivots of an axis made of lead martensitic steel have a hardness exceeding 600 HV1 after heat treatment and rolling. Such hardness values guarantee an optimum wear resistance for the oscillator's proper operation over time.
  • lead martensitic steel has a major disadvantage: its sensitivity to magnetism.
  • the environment in which watches operate has has evolved considerably in recent decades. Electronic devices and accessories incorporating permanent magnets have multiplied, exposing the watches, and thus the regulating organs of the latter, magnetic fields increasingly high and more and more frequent.
  • the lead martensitic steel commonly used for the production of balance shafts has a non-negligible residual field after exposure to an external magnetic field.
  • the proximity of the axis with the spiral generally made of ferromagnetic material, makes it a particularly strategic component when it is desired to improve the magnetism resistance of watches.
  • the document CH707503 describes a pivot axis formed of a composite material having a metal matrix comprising at least one metal selected from nickel, titanium, chromium, zirconium, silver, gold, platinum , silicon, molybdenum, aluminum or an alloy thereof, said matrix being charged with hard particles selected from WC, TiC, TaC, TiN, TiCN, Al 2 O 3, ZrO 2, O 2 O 3, SiC, MoSi 2, AlN or a combination of these, in order to limit the sensitivity of the axis to the magnetic fields.
  • the hardness of said composite material is greater than or equal to 1000 HV1.
  • the solution described here is not optimal.
  • Cutting tool machining of metal matrices loaded with hard particles generates premature tool wear. In operation, the pivoting of such an axis in a ruby bearing also generates premature wear at the bearing.
  • Document CH707504 describes a titanium or titanium alloy pivot pin in order to limit its sensitivity to magnetic fields. At least the outer surface of the pivots is partially or fully hardened relative to the axis core to a predetermined depth, the outer surface has a hardness greater than 800 HV1. The solution described here is not optimal. The superficial hardening of the pivots adds a step in the already complex process of obtaining a pendulum axis. In addition, titanium alloys require special precautions during machining, particularly with regard to the risk of fire.
  • the document CH707505 describes a steel pivot axis of the austenitic type, a cobalt alloy of the austenitic type or a nickel alloy of the austenitic type to limit its sensitivity to magnetic fields. At least the outer surface of the pivots is hardened relative to the heart of the axis to a predetermined depth, the outer surface has a hardness greater than 1000 HV1. The solution described here does not seem optimal.
  • the superficial hardening of the pivots adds a step in the already complex process of obtaining a pendulum axis. This hardening occurring after the step or ends of the pivots, the handling precautions taken during this processing step must be important to avoid the risk of marking or bending the pivots.
  • EP3273303 discloses a balance shaft made of a non-magnetic alloy of copper. During the manufacture of the axis, the pivots are rolled or polished in order to remove an extra thickness of material and thus to reach the final dimensions and surface condition. On the other hand, the surface is hardened by means of a heat treatment and / or thermochemical diffusion or ion implantation of other atoms, to a predetermined depth. This alloy, after treatment, may have an interesting hardness, greater than 600 HV, but the treatment processes used are complicated, require specialized equipment and are difficult to control, particularly with regard to ion diffusion.
  • EP3273304 also discloses an axis made of a similar alloy, which is provided with a layer of hard material deposited on its surface. Ideally, it is intended to avoid an additional deposit of surface, which is again complicated to perform and requires specialized equipment.
  • US9194024 discloses an alloy for jewelry, whose composition is chosen to obtain a substantially white color, comparable to platinum alloys. After curing by aging, the alloy reaches a hardness up to about 240 HV, which is insufficient for a watch axis.
  • the object of the present invention is to provide an axis made of a nonmagnetic material as an alternative to the various solutions of the prior art and remedying, at least partially, their disadvantages.
  • the invention relates to a pivot axis of a regulating member of a clockwork mechanical movement made of an alloy comprising or consisting of weight:
  • the invention relates to an alloy of the type consisting of 41% of palladium, 37.5% of silver, 20% of copper, 1% of zinc and 0.5% of platinum.
  • the invention also relates to a method of manufacturing a pivot axis of a regulating member of a mechanical clockwork movement comprising the following steps:
  • an alloy bar comprising between 25% and 55% of Palladium, between 25% and 55% of Silver, between 10% and 30% of Copper, between 0% and 5% of zinc, between 0% and 2% % of one or more elements selected from rhenium, ruthenium, gold and platinum, and between 0% and 1% of one or more elements selected from boron and nickel;
  • the manufacturing method may further comprise a curing heat treatment step between the machining and surface treatment steps.
  • Fig. 1 is a representation of a pivot axis according to the invention, in the cleavage stage;
  • Fig. 2 is a representation of a pivot axis according to the invention, the rolled stage
  • - Fig. 3 is a representation of a pivot axis according to the invention, in the finished stage;
  • - Fig. 4 is a representation of a pivot axis according to the invention, showing the different thicknesses that may be involved in the process.
  • the invention relates to a pivot axis of a regulating member of a mechanical clockwork movement, and more particularly to a balance beam axis, anchor or escape mobile.
  • the Applicant has identified an alloy family having properties of particular interest for application to axes of mechanical movement regulating member, especially in terms of magnetism and oxidation resistance.
  • the alloys of this family have, by weight:
  • the alloys in question comprise by weight:
  • an alloy of the type consisting of 41% of palladium, 37.5% of silver, 20% of copper, 1% of zinc and 0.5% of platinum does not present an attractive action. detectable when exposed to a permanent magnet. Neither does it exhibit measurable remanent magnetization after exposure to the magnet.
  • Palladium-Silver-Copper alloys exhibit a higher oxidation resistance than that of carbon martensitic steels thanks in particular to the presence of palladium, a chemical element of the platinum group.
  • Palladium makes it possible to improve the following characteristics of the alloy, which are particularly interesting in the case of use for a pivot axis: chemical inertness, resistance to corrosion and oxidation, low coefficient of thermal expansion and mechanical durability.
  • Another aspect of the invention relates to a method of manufacturing a pivot axis of a regulating member which we will now describe the steps.
  • the first step in the process of obtaining an axis according to the invention is to provide a free-cutting bar of the alloy Palladium-Silver-Copper having a composition belonging to the family of alloy such as defined above. Different shades are available from various suppliers. The latter perform the steps of alloying and the steps of shaping the bar (drawing, drawing ...) to provide a bar in the standard dimensions of bar turning. Generally 2-3mm in diameter over 2000-3000mm long. It goes without saying that the chemical composition of the bar will be similar to that of the axis made from this bar.
  • the Vickers hardness of the stretched material for producing the axis according to the invention is of the order of 260-310 HV1. After thermal hardening at 380-420 ° C, the hardness value rises to 460-500HV1. This heat treatment can last between 30 minutes and 2 hours, more particularly between 45 minutes and 1 hour 30 minutes, even more especially for 1 hour, and hardness value after curing remains lower than can be found on a 20AP steel after rolling, typically more than 700HV1.
  • the curing heat treatment can be performed at any time of the process of obtaining the axis.
  • This hardening can be carried out on the receiving bar if the machining requires a high hardness.
  • the hardening is performed after machining and before the step or steps of treatment of the surface state of the axis.
  • the next step in the process of obtaining an axis according to the invention is to shape it by a bar turning step. This is performed in a traditional manner on the same equipment as those used to machine martensitic carbon steel axes according to the prior art. An adaptation of the cutting parameters is necessary in order to optimize the quality and the efficiency of the machining step.
  • the axis of the balance its radius being very small, even at high spindle speed, the cutting speeds achieved during machining are limited.
  • the balance shaft has two zones of small diameter, the pivots 10 located at the ends of the axis as well as several zones of greater diameter forming the body of the axis 20.
  • a cutting speed of 20 to 23 m / min with an advance of 0.0015 mm / rev.
  • a cutting speed of 20 to 23 m / min and an advance of 0.002 mm / rev to 0.005 mm / rev can be used.
  • FIG. 2 illustrates, by way of example, a balance shaft after the bar turning step.
  • Figure 3 illustrates, by way of example, a balance shaft after the polishing step.
  • the bar turning step will make it possible to obtain the profile 2 at the pivot with an excess thickness (e1) with respect to the profile 1.
  • the polishing step will bring the profile of the pivot to its level. final profile 1.
  • the extra thickness (e1) is typically of the order of 2pm to the diameter but can be adapted according to the polishing envisaged (duration, type of abrasive particles used ).
  • an excess thickness (e2) corresponding to the amount of material removed during this step grinding or rolling must be added to the workpiece or to the pivots at the bar turning stage.
  • the extra thickness (e2) is typically of the order of 20 ⁇ m over the length and 5 ⁇ m over the diameter but can be adapted in rolling or grinding function envisaged.
  • the turning must therefore be at the level of the profile 3, as shown in Figure 4.
  • the rolling will bring the pivot at the level of the profile 2 as shown in Figure 4.
  • a treatment of the surface condition may be added at the end of the process to get Profile 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Adornments (AREA)
  • Heat Treatment Of Articles (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

The invention relates to a pivoting pin of a regulator of a clockmaking mechanical movement consisting of a material comprising, in weight percentage: between 25% and 55% of palladium; between 25% and 55% of silver; between 10% and 30% of copper; between 0% and 5% of zinc; between 0% and 2% of at least one element selected from rhenium, ruthenium, gold and platinum; and between 0% and 1% of at least one element selected from boron and nickel.

Description

Description  Description
Axe de pivotement d’un organe réglant  Pivot shaft of a regulating member
Domaine technique Technical area
[0001] La présente invention se rapporte au domaine de l'horlogerie. Elle concerne, plus particulièrement, un axe de pivotement d’un organe réglant d’un mouvement mécanique d’horlogerie et plus particulièrement encore un axe de balancier, d’ancre ou de mobile d’échappement réalisé dans un matériau amagnétique.  The present invention relates to the field of watchmaking. It relates, more particularly, to a pivot axis of a regulating member of a clockwork mechanical movement and more particularly to a pendulum, anchor or escapement axis made of a non-magnetic material.
Etat de la technique State of the art
[0002] La fabrication des axes de pivotement horloger type axe de balancier, tige d’ancre ou pignon d’échappement consiste à réaliser une succession d’opérations permettant, à partir d’une barre de matière brute, de former un axe ayant des caractéristiques dimensionnelles précises ainsi qu’une résistance mécanique suffisante au regard de l’application envisagée.  [0002] The manufacture of clock-type pivot axes such as a rocker shaft, an anchor rod or an escape pinion consists in carrying out a succession of operations making it possible, from a bar of raw material, to form an axis having precise dimensional characteristics as well as a sufficient mechanical resistance with regard to the envisaged application.
[0003] De par leur forme générale de révolution, les axes de pivotement horlogers sont réalisés de manière connue par des opérations de décolletage ou tournage de précision, à partir d’une barre en acier martensitique au carbone. Ces opérations d’usinage permettent de définir des surfaces fonctionnelles nécessaires au bon fonctionnement de l’axe (dégagements, butées, pivots...) et à l’assemblage des différents composants (assise de balancier, portée du plateau, portée de la virole, etc.). L’axe décolleté subit ensuite une opération d’ébavurage puis, une ou plusieurs opérations de traitement thermique comprenant au moins une trempe pour améliorer la dureté de l’axe et un revenu pour en améliorer la ténacité. Une opération de roulage des pivots, destinée à améliorer l’état de surface, la dureté et la précision géométrique, est généralement réalisée en cours ou en fin de fabrication. L’opération de roulage peut être comparée à une opération de meulage et/ou polissage des pivots. [0003] By their general shape of revolution, the clockwise pivot axes are made in a known manner by machining operations or precision turning, from a carbon martensitic steel bar. These machining operations make it possible to define the functional surfaces necessary for the proper functioning of the axis (clearances, stops, pivots, etc.) and the assembly of the various components (balance seat, bearing surface, bearing surface of the ferrule , etc.). The neckline then undergoes a deburring operation and then one or more heat treatment operations comprising at least one quenching to improve the hardness of the axis and income to improve toughness. A rolling operation of the pivots, intended to improve the surface state, the hardness and the geometric precision, is generally carried out during or at the end of manufacturing. The rolling operation can be compared to an operation of grinding and / or polishing the pivots.
[0004] De manière plus spécifique, les axes de pivotement, par exemple les axes de balancier, utilisés de manière traditionnelle dans les mouvements d’horlogerie mécanique sont réalisés à partir de barres en acier martensitique au carbone présentant des éléments d’addition de type plomb et/ou manganèse. Le manganèse est généralement présent dans les aciers sous forme de sulfures de manganèse et permet une fragmentation régulière du copeau de coupe. Le plomb tend à se lier aux inclusions non-métalliques présentes dans l’acier, ou se trouve sous forme de particules élémentaires. Il agit comme lubrifiant, réduit le coefficient de frottement au niveau de l’interface outil/zone de coupe et limite la formation d’un dépôt de matière sur le tranchant de l’outil. Ces éléments d’addition ont donc pour objectif commun l’amélioration de l’usinabilité de l’acier. Un acier de ce type peut être approvisionné chez un grand nombre de fournisseurs sous la dénomination 20AP ou 1.1268+Pb. More specifically, the pivot axes, for example the balance axes, used in a traditional manner in the mechanical clockwork movements are made from carbon martensitic steel bars having addition elements of the type lead and / or manganese. Manganese is generally present in steels in the form of manganese sulphides and allows a regular fragmentation of the cutting chip. Lead tends to bind to non-metallic inclusions present in steel, or is in the form of elementary particles. It acts as a lubricant, reduces the coefficient of friction at the tool / cutting area interface and limits the formation of a material deposit on the cutting edge of the tool. These addition elements therefore have the common objective of improving the machinability of the steel. A steel of this type can be supplied from a large number of suppliers under the name 20AP or 1.1268 + Pb.
[0005] Outre une bonne usinabilité, l’acier martensitique au plomb présente, après des traitements de trempe et de revenu, des propriétés mécaniques élevées en adéquation avec les sollicitations rencontrées par les axes de pivotement lors de leur fonctionnement. Typiquement, les pivots d’un axe réalisé en acier martensitique au plomb présentent une dureté dépassant les 600 HV1 après traitement thermique et roulage. De telles valeurs de dureté garantissent une résistance à l’usure optimale pour le bon fonctionnement de l’oscillateur dans le temps. In addition to good machinability, the lead martensitic steel has, after quenching and tempering treatments, high mechanical properties in adequacy with the stresses encountered by the pivot axes during their operation. Typically, the pivots of an axis made of lead martensitic steel have a hardness exceeding 600 HV1 after heat treatment and rolling. Such hardness values guarantee an optimum wear resistance for the oscillator's proper operation over time.
[0006] Malgré les avantages d’usinabilité et de résistance mécanique, l’acier martensitique au plomb présente un inconvénient majeur : sa sensibilité au magnétisme. L’environnement dans lequel évoluent les montres, a fortement évolué au cours de dernières décennies. Les appareils électroniques et les accessoires intégrant des aimants permanents se sont multipliés, exposant ainsi les montres, et donc les organes réglant de ces dernières, à des champs magnétiques de plus en plus élevés et de manière de plus en plus fréquente. L’acier martensitique au plomb couramment utilisé pour la réalisation d’axes de balancier présente un champ rémanent non négligeable après exposition à un champ magnétique extérieur. La proximité de l’axe avec le spiral, généralement réalisé en matériau ferromagnétique, en fait un composant particulièrement stratégique lorsque l’on souhaite améliorer la résistance au magnétisme des montres. Despite the advantages of machinability and strength, lead martensitic steel has a major disadvantage: its sensitivity to magnetism. The environment in which watches operate, has has evolved considerably in recent decades. Electronic devices and accessories incorporating permanent magnets have multiplied, exposing the watches, and thus the regulating organs of the latter, magnetic fields increasingly high and more and more frequent. The lead martensitic steel commonly used for the production of balance shafts has a non-negligible residual field after exposure to an external magnetic field. The proximity of the axis with the spiral, generally made of ferromagnetic material, makes it a particularly strategic component when it is desired to improve the magnetism resistance of watches.
[0007] On notera que les aciers martensitiques au carbone sont également sensibles à la corrosion. Cet inconvénient pose problème principalement lors des étapes de fabrication et de stockage des axes. A l’usage, les axes de pivotement du mouvement mécanique restent normalement confinés à l’intérieur de la zone étanche de la montre, ce qui ne représente pas un milieu particulièrement contraignant pour une matière, même oxydable. It will be noted that carbon martensitic steels are also susceptible to corrosion. This disadvantage is a problem mainly during the steps of manufacturing and storing axes. In use, the pivot axes of the mechanical movement normally remain confined within the sealed zone of the watch, which does not represent a particularly constraining medium for a material, even oxidizable.
[0008] Le document CH707503 décrit un axe de pivotement formé d’un matériau composite ayant une matrice métallique comprenant au moins un métal choisi parmi le nickel, le titane, le chrome, le zirconium, l’argent, l’or, le platine, le silicium, le molybdène, l’aluminium ou un alliage de ces derniers, ladite matrice étant chargée de particules dures choisies parmi WC, TiC, TaC, TiN, TiCN, AI203, Zr02, 0203, SiC, MoSi2, AIN ou une combinaison de ces derniers, afin de limiter la sensibilité de l’axe aux champs magnétiques. La dureté dudit matériau composite est supérieure ou égale à 1000 HV1. La solution ici décrite n’est pas optimale. L’usinage par outil coupant de matrices métalliques chargées en particules dures génère une usure prématurée des outils. En fonctionnement, le pivotement d’un tel axe dans un palier en rubis génère également de l’usure prématurée au niveau du palier. The document CH707503 describes a pivot axis formed of a composite material having a metal matrix comprising at least one metal selected from nickel, titanium, chromium, zirconium, silver, gold, platinum , silicon, molybdenum, aluminum or an alloy thereof, said matrix being charged with hard particles selected from WC, TiC, TaC, TiN, TiCN, Al 2 O 3, ZrO 2, O 2 O 3, SiC, MoSi 2, AlN or a combination of these, in order to limit the sensitivity of the axis to the magnetic fields. The hardness of said composite material is greater than or equal to 1000 HV1. The solution described here is not optimal. Cutting tool machining of metal matrices loaded with hard particles generates premature tool wear. In operation, the pivoting of such an axis in a ruby bearing also generates premature wear at the bearing.
[0009] Le document CH707504 décrit un axe de pivotement en titane ou en alliage de titane afin de limiter sa sensibilité aux champs magnétiques. Au moins la surface externe des pivots est en partie ou en totalité durcie par rapport au cœur de l’axe selon une profondeur prédéterminée, la surface externe comporte une dureté supérieure à 800 HV1. La solution ici décrite n’est pas optimale. Le durcissement superficiel des pivots ajoute une étape dans le processus déjà complexe d’obtention d’un axe de balancier. De plus, les alliages de titane nécessitent des précautions particulières lors de l’usinage en particulier au regard des risques d’incendie. [0009] Document CH707504 describes a titanium or titanium alloy pivot pin in order to limit its sensitivity to magnetic fields. At least the outer surface of the pivots is partially or fully hardened relative to the axis core to a predetermined depth, the outer surface has a hardness greater than 800 HV1. The solution described here is not optimal. The superficial hardening of the pivots adds a step in the already complex process of obtaining a pendulum axis. In addition, titanium alloys require special precautions during machining, particularly with regard to the risk of fire.
[0010] Le document CH707505 décrit un axe de pivotement en acier du type austénitique, en alliage de cobalt du type austénitique ou en alliage de nickel du type austénitique afin de limiter sa sensibilité aux champs magnétiques. Au moins la surface externe des pivots est durcie par rapport au cœur de l’axe selon une profondeur prédéterminée, la surface externe comporte une dureté supérieure à 1000 HV1. La solution ici décrite ne semble pas optimale. Le durcissement superficiel des pivots ajoute une étape dans le processus déjà complexe d’obtention d’un axe de balancier. Ce durcissement intervenant après le ou les étapes de terminaison des pivots, les précautions de manipulation prises lors de cette étape de traitement doivent être importantes pour ne pas risquer de marquer ou tordre les pivots. The document CH707505 describes a steel pivot axis of the austenitic type, a cobalt alloy of the austenitic type or a nickel alloy of the austenitic type to limit its sensitivity to magnetic fields. At least the outer surface of the pivots is hardened relative to the heart of the axis to a predetermined depth, the outer surface has a hardness greater than 1000 HV1. The solution described here does not seem optimal. The superficial hardening of the pivots adds a step in the already complex process of obtaining a pendulum axis. This hardening occurring after the step or ends of the pivots, the handling precautions taken during this processing step must be important to avoid the risk of marking or bending the pivots.
[0011] Le document EP3273303 décrit un axe de balancier réalisé dans un alliage amagnétique de cuivre. Lors de la fabrication de l’axe, les pivots sont roulés ou polis afin d’enlever une surépaisseur de matériau et ainsi d’atteindre les dimensions et l’état de surface finaux. Par ailleurs, la surface est durcie par l’intermédiaire d’un traitement thermique et/ou thermochimique de diffusion ou une implantation ionique d’autres atomes, jusqu’à une profondeur prédéterminée. Cet alliage, après traitement, peut présenter une dureté intéressante, supérieure à 600 HV, mais les procédés de traitement utilisés sont compliqués, nécessite des équipements spécialisés et sont difficile à maîtriser, notamment en ce qui concerne la diffusion ionique. Le document EP3273304 décrit également un axe fait en un alliage similaire, qui est muni d’une couche de matériau dur déposée sur sa surface. Idéalement, on vise à éviter un dépôt supplémentaire de surface, ce qui est à nouveau compliqué à effectuer et nécessite des équipements spécialisés. EP3273303 discloses a balance shaft made of a non-magnetic alloy of copper. During the manufacture of the axis, the pivots are rolled or polished in order to remove an extra thickness of material and thus to reach the final dimensions and surface condition. On the other hand, the surface is hardened by means of a heat treatment and / or thermochemical diffusion or ion implantation of other atoms, to a predetermined depth. This alloy, after treatment, may have an interesting hardness, greater than 600 HV, but the treatment processes used are complicated, require specialized equipment and are difficult to control, particularly with regard to ion diffusion. EP3273304 also discloses an axis made of a similar alloy, which is provided with a layer of hard material deposited on its surface. Ideally, it is intended to avoid an additional deposit of surface, which is again complicated to perform and requires specialized equipment.
[0012] Le document US9194024 décrit un alliage pour bijouterie, dont la composition est choisie pour obtenir une couleur substantiellement blanc, comparable à des alliages de platine. Après durcissement par vieillissement, l’alliage n’atteint qu’une dureté jusqu’à environ 240 HV, ce qui est insuffisante pour un axe horloger. US9194024 discloses an alloy for jewelry, whose composition is chosen to obtain a substantially white color, comparable to platinum alloys. After curing by aging, the alloy reaches a hardness up to about 240 HV, which is insufficient for a watch axis.
[0013] Le but de la présente invention est de proposer un axe réalisé dans une matière amagnétique en alternative aux différentes solutions de l’art antérieur et remédiant, au moins partiellement, à leurs inconvénients. The object of the present invention is to provide an axis made of a nonmagnetic material as an alternative to the various solutions of the prior art and remedying, at least partially, their disadvantages.
Divulguation de l’invention Disclosure of the invention
[0014] De façon plus précise, l'invention concerne un axe de pivotement d’un organe réglant d’un mouvement mécanique horloger réalisé dans un alliage comprenant ou consistant en poids :  More specifically, the invention relates to a pivot axis of a regulating member of a clockwork mechanical movement made of an alloy comprising or consisting of weight:
- entre 25% et 55% de palladium ;  between 25% and 55% of palladium;
- entre 25% et 55% d’argent ;  - between 25% and 55% silver;
- entre 10% et 30% de cuivre ;  between 10% and 30% copper;
- entre 0% et 5% de Zinc ;  between 0% and 5% of Zinc;
- entre 0% et 2% d’un ou plusieurs éléments choisis parmi rhénium, ruthénium, or et platine ;  between 0% and 2% of one or more elements selected from rhenium, ruthenium, gold and platinum;
- entre 0% et 1 % d’un ou plusieurs éléments choisis parmi bore et nickel. [0015] Préférentiellement, l’invention concerne un alliage du type constitué de 41 % de palladium, 37.5% d’argent, 20% de cuivre, 1 % de zinc et 0.5% de platine. between 0% and 1% of one or more elements chosen from boron and nickel. Preferably, the invention relates to an alloy of the type consisting of 41% of palladium, 37.5% of silver, 20% of copper, 1% of zinc and 0.5% of platinum.
[0016] L’invention se rapporte également à un procédé de fabrication d’un axe de pivotement d’un organe réglant d’un mouvement mécanique d’horlogerie comportant les étapes suivantes : The invention also relates to a method of manufacturing a pivot axis of a regulating member of a mechanical clockwork movement comprising the following steps:
- Obtenir une barre d’alliage comprenant entre 25% et 55% de Palladium, entre 25% et 55% d’Argent, entre 10% et 30% de Cuivre, entre 0% et 5% de zinc, entre 0% et 2% d’un ou plusieurs éléments choisis parmi rhénium, ruthénium, or et platine, et entre 0% et 1 % d’un ou plusieurs éléments choisis parmi bore et nickel ;  - To obtain an alloy bar comprising between 25% and 55% of Palladium, between 25% and 55% of Silver, between 10% and 30% of Copper, between 0% and 5% of zinc, between 0% and 2% % of one or more elements selected from rhenium, ruthenium, gold and platinum, and between 0% and 1% of one or more elements selected from boron and nickel;
- Décolleter l’axe avec une surépaisseur par rapport à une dimension prédéterminée ;  - Uncut the axis with an allowance relative to a predetermined dimension;
- Réaliser une opération de traitement de l’état de surface de l’axe avec enlèvement de la surépaisseur pour atteindre la dimension prédéterminée.  - Carry out a treatment operation of the surface state of the axis with removal of the extra thickness to reach the predetermined dimension.
[0017] Le procédé de fabrication peut comprendre en outre une étape de traitement thermique de durcissement entre les étapes de décolletage et de traitement de surface. The manufacturing method may further comprise a curing heat treatment step between the machining and surface treatment steps.
Brève description des dessins Brief description of the drawings
[0018] D'autres détails de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite en référence au dessin annexé dans lequel :  Other details of the invention will appear more clearly on reading the description which follows, given with reference to the accompanying drawing in which:
- La fig. 1 est une représentation d’un axe de pivotement selon l’invention, au stade décolleté;  - Fig. 1 is a representation of a pivot axis according to the invention, in the cleavage stage;
- La fig. 2 est une représentation d’un axe de pivotement selon l’invention, au stade roulé;  - Fig. 2 is a representation of a pivot axis according to the invention, the rolled stage;
- La fig. 3 est une représentation d’un axe de pivotement selon l’invention, au stade terminé; - La fig. 4 est une représentation d’un axe de pivotement selon l’invention, montrant les différentes surépaisseurs susceptibles d’intervenir dans le processus. - Fig. 3 is a representation of a pivot axis according to the invention, in the finished stage; - Fig. 4 is a representation of a pivot axis according to the invention, showing the different thicknesses that may be involved in the process.
Mode de réalisation de l’invention Embodiment of the invention
[0019] L’invention se rapporte à un axe de pivotement d’un organe réglant d’un mouvement mécanique d’horlogerie, et plus particulièrement encore à un axe de balancier, d’ancre ou de mobile d’échappement.  The invention relates to a pivot axis of a regulating member of a mechanical clockwork movement, and more particularly to a balance beam axis, anchor or escape mobile.
[0020] La demanderesse a identifié une famille d’alliage présentant des propriétés particulièrement intéressantes pour une application à des axes d’organe réglant de mouvement mécanique, notamment en termes de magnétisme et de résistance à l’oxydation. The Applicant has identified an alloy family having properties of particular interest for application to axes of mechanical movement regulating member, especially in terms of magnetism and oxidation resistance.
[0021] Les alliages de cette famille présentent, en poids : The alloys of this family have, by weight:
- entre 25% et 55% de palladium  - between 25% and 55% palladium
- entre 25% et 55% d’argent  - between 25% and 55% of silver
- entre 10% et 30% de cuivre  - between 10% and 30% copper
- entre 0% et 5% de zinc  between 0% and 5% of zinc
- entre 0% et 2% d’un ou plusieurs éléments choisis parmi rhénium, ruthénium, or et platine  between 0% and 2% of one or more elements selected from rhenium, ruthenium, gold and platinum
- entre 0% et 1 % d’un ou plusieurs éléments choisis parmi bore et nickel.  between 0% and 1% of one or more elements chosen from boron and nickel.
[0022] De préférence, les alliages en question comprennent en poids : [0022] Preferably, the alloys in question comprise by weight:
- entre 38% et 43% de palladium ; et/ou  - between 38% and 43% of palladium; and or
- entre 35% et 40% d'argent ; et/ou  - between 35% and 40% of money; and or
- entre 18% et 23% de cuivre ; et/ou  - between 18% and 23% copper; and or
- entre 0.5% et 1.5% de zinc.  - between 0.5% and 1.5% zinc.
[0023] Plus particulièrement parmi cette famille d’alliage, un alliage du type constitué de 41 % de palladium, 37.5% d’argent, 20% de cuivre, 1 % de zinc et 0.5% de platine ne présente pas d’action attractive décelable lorsqu’il est exposé à un aimant permanent. Il ne présente pas non plus d’aimantation rémanente mesurable après exposition à l’aimant. More particularly from this family of alloys, an alloy of the type consisting of 41% of palladium, 37.5% of silver, 20% of copper, 1% of zinc and 0.5% of platinum does not present an attractive action. detectable when exposed to a permanent magnet. Neither does it exhibit measurable remanent magnetization after exposure to the magnet.
[0024] La demanderesse a également identifié que les alliages Palladium- Argent-Cuivre présentent une résistance à l’oxydation plus élevée que celle des aciers martensitiques au carbone grâce notamment à la présence de palladium, un élément chimique du groupe du platine. Le palladium permet d’améliorer les caractéristiques suivantes de l’alliage, qui sont particulièrement intéressantes dans le cas d’une utilisation pour un axe de pivotement : inertie chimique, résistance à la corrosion et à l'oxydation, faible coefficient d'expansion thermique et durabilité mécanique. The Applicant has also identified that Palladium-Silver-Copper alloys exhibit a higher oxidation resistance than that of carbon martensitic steels thanks in particular to the presence of palladium, a chemical element of the platinum group. Palladium makes it possible to improve the following characteristics of the alloy, which are particularly interesting in the case of use for a pivot axis: chemical inertness, resistance to corrosion and oxidation, low coefficient of thermal expansion and mechanical durability.
[0025] Un autre aspect de l’invention concerne un procédé de fabrication d’un axe de pivotement d’un organe réglant dont nous allons maintenant décrire les étapes. Another aspect of the invention relates to a method of manufacturing a pivot axis of a regulating member which we will now describe the steps.
[0026] La première étape du processus d’obtention d’un axe selon l’invention consiste à se doter d’une barre de décolletage de l’alliage Palladium- Argent-Cuivre présentant une composition appartenant à la famille d’alliage telle que définie ci-dessus. Différentes nuances sont disponibles chez divers fournisseurs. Ces derniers réalisent les étapes de mise en alliage et les étapes de mise en forme de la barre (tréfilage, étirage...) afin de proposer une barre dans les dimensions standards de décolletage. Généralement 2-3mm de diamètre sur 2000-3000mm de long. Il va sans dire que la composition chimique de la barre sera pareille à celle de l’axe fabriqué à partir de cette barre. The first step in the process of obtaining an axis according to the invention is to provide a free-cutting bar of the alloy Palladium-Silver-Copper having a composition belonging to the family of alloy such as defined above. Different shades are available from various suppliers. The latter perform the steps of alloying and the steps of shaping the bar (drawing, drawing ...) to provide a bar in the standard dimensions of bar turning. Generally 2-3mm in diameter over 2000-3000mm long. It goes without saying that the chemical composition of the bar will be similar to that of the axis made from this bar.
[0027] La dureté Vickers de la matière étirée servant à réaliser l’axe selon l’invention est de l’ordre de 260-310 HV1. Après durcissement thermique à 380-420°C, la valeur de dureté monte à 460-500HV1. Ce traitement thermique peut durer entre 30 minutes et 2 heures, plus particulièrement pendant entre 45 minutes et 1 h30, encore plus particulièrement pendant 1 h, et la valeur de dureté après durcissement reste inférieure à ce qu’on peut rencontrer sur un acier 20AP après roulage, typiquement plus de 700HV1. The Vickers hardness of the stretched material for producing the axis according to the invention is of the order of 260-310 HV1. After thermal hardening at 380-420 ° C, the hardness value rises to 460-500HV1. This heat treatment can last between 30 minutes and 2 hours, more particularly between 45 minutes and 1 hour 30 minutes, even more especially for 1 hour, and hardness value after curing remains lower than can be found on a 20AP steel after rolling, typically more than 700HV1.
[0028] Le traitement thermique de durcissement peut être réalisé à tout moment du processus d’obtention de l’axe. Ce durcissement peut être réalisé sur la barre à réception si l’usinage nécessite une dureté élevée. Préférentiellement, le durcissement est réalisé après usinage et avant la ou les étapes de traitement de l’état de surface de l’axe. The curing heat treatment can be performed at any time of the process of obtaining the axis. This hardening can be carried out on the receiving bar if the machining requires a high hardness. Preferably, the hardening is performed after machining and before the step or steps of treatment of the surface state of the axis.
[0029] Lorsqu’on quantifie la pression d’Hertz au niveau du pivotement de l’axe, on remarque que le faible module d’Young de l’alliage Palladium- Argent-Cuivre permet d’abaisser la pression maximale observée au niveau du contact de l’axe avec la pierre de pivotement. Lors d’un contact entre deux matériaux de module d’Young Ei et E2, le module d’élasticité équivalent E servant à déterminer la rigidité du contact est calculé comme suit : When the Hertz pressure is quantified at the pivoting point of the axis, it can be seen that the low Young's modulus of the Palladium-Silver-Copper alloy makes it possible to lower the maximum pressure observed at the level of the axis. contact of the axis with the pivot stone. During a contact between two Young modulus materials Ei and E2, the equivalent modulus of elasticity E used to determine the stiffness of the contact is calculated as follows:
La pression maximum observée au niveau du contact est donnée par la formule suivante :  The maximum pressure observed at the contact is given by the following formula:
Pmax— 0.418Pmax- 0.418
F = effort normal sur le contact  F = normal force on the contact
E = module d’élasticité équivalent précédemment défini  E = modulus of elasticity previously defined
rr et I = sont des paramètres géométriques du contact.  rr and I = are geometrical parameters of the contact.
Pour un effort normal F donné, et à géométrie de contact équivalente, nous observons que la pression maximum est proportionnelle à Ë. [0030] Avec une application numérique, nous nous apercevons que Ë est en baisse de plus de 20% lorsque nous passons d’un contact Acier (220GPa) sur rubis (350GPa) à un contact alliage PdAgCu (100GPa) sur rubis (350GPa) à géométrie équivalente. For a given normal force F, and with equivalent contact geometry, we observe that the maximum pressure is proportional to Ë. With a digital application, we find that Ë is down more than 20% when we go from a contact steel (220GPa) on ruby (350GPa) to a contact PdAgCu alloy (100GPa) on ruby (350GPa) with equivalent geometry.
[0031] Ainsi, malgré une dureté plus faible, on constate que la résistance à l’usure du contact est toujours satisfaisante. Cela s’explique par la baisse de la pression de contact, permettant ainsi d’utiliser un axe avec une dureté plus faible sans compromettre la résistance à l’usure du contact, typiquement 460-500HV1 pour l’axe réalisé en alliage Palladium-Argent-Cuivre contre 600-700HV1 pour un axe standard en Acier Martensitique au carbone. L’utilisation d’un alliage de dureté plus faible facilite les opérations d’enlèvement de matière et de mise en forme. Thus, despite a lower hardness, it is found that the wear resistance of the contact is still satisfactory. This is explained by the lowering of the contact pressure, thus making it possible to use an axis with a lower hardness without compromising the resistance to wear of the contact, typically 460-500HV1 for the axis made of Palladium-Silver alloy -Cuivre against 600-700HV1 for a standard axis in Carbon Martensitic Steel. The use of an alloy of lower hardness facilitates material removal and shaping operations.
[0032] L’étape suivante du processus d’obtention d’un axe selon l’invention, consiste à le mettre en forme par une étape de décolletage. Celle-ci est réalisée de manière traditionnelle sur les mêmes équipements que ceux servant à usiner des axes en acier martensitique au carbone selon l’art antérieur. Une adaptation des paramètres de coupe est nécessaire afin d’optimiser la qualité et le rendement de l’étape de décolletage. Dans le cas de l'axe du balancier, son rayon étant très petit, même à forte vitesse de broche, les vitesses de coupe atteintes lors de l’usinage sont limitées. En se référant à la figure 1 , l’axe de balancier présente deux zones de faible diamètre, les pivots 10, situées aux extrémités de l’axe ainsi que plusieurs zones de diamètre plus important formant le corps de l’axe 20. The next step in the process of obtaining an axis according to the invention is to shape it by a bar turning step. This is performed in a traditional manner on the same equipment as those used to machine martensitic carbon steel axes according to the prior art. An adaptation of the cutting parameters is necessary in order to optimize the quality and the efficiency of the machining step. In the case of the axis of the balance, its radius being very small, even at high spindle speed, the cutting speeds achieved during machining are limited. Referring to FIG. 1, the balance shaft has two zones of small diameter, the pivots 10 located at the ends of the axis as well as several zones of greater diameter forming the body of the axis 20.
[0033] A titre d’exemple, au niveau des pivots, il est possible d’utiliser une vitesse de coupe de 20 à 23 m/min avec une avance de 0.0015 mm/tr. Au niveau du corps de l’axe, une vitesse de coupe de 20 à 23 m/min et une avance 0.002 mm/tr à 0.005 mm/tr peuvent être utilisées. For example, at the pivots, it is possible to use a cutting speed of 20 to 23 m / min with an advance of 0.0015 mm / rev. At the axle body, a cutting speed of 20 to 23 m / min and an advance of 0.002 mm / rev to 0.005 mm / rev can be used.
[0034] Lors de cette étape de décolletage, il est nécessaire de prévoir une ou plusieurs surépaisseurs en fonction des opérations de traitement de l’état de surface de l’axe envisagées. Si l’étape de décolletage est suffisamment répétable et permet d’obtenir une tolérance géométrique suffisante pour l’application envisagée, un simple polissage des zones fonctionnelles devra être effectué. Une surépaisseur (e1) correspondant à la quantité de matière retirée lors du polissage devra être ajoutée sur la pièce par rapport aux dimensions finales. La figure 2 illustre, à titre d’exemple, un axe de balancier après l’étape de décolletage. La figure 3 illustre, à titre d’exemple, un axe de balancier après l’étape de polissage. En se référant à la figue 4, l’étape de décolletage permettra d’obtenir le profil 2 au niveau du pivot avec une surépaisseur (e1) par rapport au profil 1. L’étape de polissage amènera le profil du pivot au niveau de son profil final 1. La surépaisseur (e1) est typiquement de l’ordre de 2pm au diamètre mais peut être adaptée en fonction du polissage envisagé (durée, type de particules abrasives utilisées...). During this bar turning step, it is necessary to provide one or more thicknesses depending on the processing operations of the projected surface state of the axis. If the machining step is sufficiently repeatable and provides a geometric tolerance sufficient for the intended application, a simple polishing of the functional areas should be performed. An extra thickness (e1) corresponding to the amount of material removed during polishing should be added to the part in relation to the final dimensions. FIG. 2 illustrates, by way of example, a balance shaft after the bar turning step. Figure 3 illustrates, by way of example, a balance shaft after the polishing step. Referring to FIG. 4, the bar turning step will make it possible to obtain the profile 2 at the pivot with an excess thickness (e1) with respect to the profile 1. The polishing step will bring the profile of the pivot to its level. final profile 1. The extra thickness (e1) is typically of the order of 2pm to the diameter but can be adapted according to the polishing envisaged (duration, type of abrasive particles used ...).
[0035] Selon une autre variante du procédé, si on envisage une étape de meulage ou de roulage des pivots pour un contrôle fin des dimensions et des états de surface, une surépaisseur (e2) correspondant à la quantité de matière retirée lors de cette étape de meulage ou de roulage devra être ajoutée sur la pièce ou sur les pivots au stade décolletage. La surépaisseur (e2) est typiquement de l’ordre de 20pm sur la longueur et 5 pm sur le diamètre mais peut être adaptée en fonction roulage ou meulage envisagé. Le décolletage devra donc se faire au niveau du profil 3, tel que représenté à la figure 4. Le roulage amènera le pivot au niveau du profil 2 tel que représenté à la figure 4. Un traitement de l’état de surface, pourra être ajouté en fin de processus pour obtenir le profil 1. According to another variant of the method, if we consider a step of grinding or rolling pins for fine control of the dimensions and surface conditions, an excess thickness (e2) corresponding to the amount of material removed during this step grinding or rolling must be added to the workpiece or to the pivots at the bar turning stage. The extra thickness (e2) is typically of the order of 20 μm over the length and 5 μm over the diameter but can be adapted in rolling or grinding function envisaged. The turning must therefore be at the level of the profile 3, as shown in Figure 4. The rolling will bring the pivot at the level of the profile 2 as shown in Figure 4. A treatment of the surface condition may be added at the end of the process to get Profile 1.
[0036] En fonction du type de traitement de l’état de surface choisi, en vrac ou localisé au niveau des pivots, l’homme du métier considérera une surépaisseur sur la totalité de l’axe si le traitement est réalisé en vrac ou uniquement sur les zones concernées par l’enlèvement de matière si il s’agit d’un traitement localisé. Depending on the type of treatment of the selected surface state, loose or localized at the pivots, the skilled person will consider an extra thickness on the entire axis if the treatment is carried out in bulk or only areas affected by the removal of material if it is a spot treatment.
[0037] D’autres étapes de traitement de l’état de surface de l’axe ou des pivots avec enlèvement de matière peuvent être envisagées sans sortir du cadre de l’invention : polissage électrolytique ou polissage laser par exemple. L’homme du métier adaptera la surépaisseur à prendre en compte à l’étape de décolletage. Other steps of treatment of the surface state of the axis or pivots with removal of material can be envisaged without departing from the scope of the invention: electrolytic polishing or laser polishing for example. The skilled person will adapt the extra thickness to be taken into account in the bar turning step.
[0038] Des étapes intermédiaires de lavage et de contrôle dimensionnel peuvent être intégrées au processus. Intermediate stages of washing and dimensional control can be integrated into the process.
[0039] D’autres types de pièces intégrées à un mouvement horloger mécanique ou quartz, et susceptibles de venir perturber le fonctionnement du mouvement en cas d’aimantation, peuvent être réalisées dans un alliage du type décrit ci-dessus sans faire partie du périmètre de protection revendiqué. Ce type de pièce peut être notamment de type goupille, visserie, axes du rouage de finissage etc. sans toutefois présenter des problématiques similaires à celles rencontrées pour l’axe de pivotement d’un organe réglant. Other types of parts incorporated in a mechanical watch movement or quartz, and likely to disrupt the operation of the movement in case of magnetization, can be made in an alloy of the type described above without being part of the perimeter claimed protection. This type of part can be in particular of the pin type, screws, axes of the gears of finishing etc. without presenting problems similar to those encountered for the pivot axis of a regulating member.

Claims

Revendications claims
1. Axe de pivotement d’un organe réglant de mouvement mécanique horloger réalisé en un matériau comprenant en poids : 1. Pivoting axis of a mechanical watch movement regulating member made of a material comprising by weight:
entre 25% et 55% de palladium  between 25% and 55% palladium
entre 25% et 55% d’argent  between 25% and 55% of silver
entre 10% et 30% de cuivre  between 10% and 30% copper
entre 0% et 5% de zinc  between 0% and 5% zinc
entre 0% et 2% d’un ou plusieurs éléments choisis parmi rhénium, ruthénium, or et platine  between 0% and 2% of one or more elements selected from rhenium, ruthenium, gold and platinum
entre 0% et 1 % d’un ou plusieurs éléments choisis parmi bore et nickel.  between 0% and 1% of one or more elements selected from boron and nickel.
2. Axe d’organe réglant selon la revendication 1 , caractérisé en ce que ledit matériau comprend en poids entre 38% et 43% de palladium. 2. adjusting member shaft according to claim 1, characterized in that said material comprises by weight between 38% and 43% of palladium.
3. Axe d’organe réglant selon l’une des revendications précédentes, caractérisé en ce que ledit matériau comprend en poids entre 35% et 40% d’argent. 3. axis of regulating member according to one of the preceding claims, characterized in that said material comprises by weight between 35% and 40% of silver.
4. Axe d’organe réglant selon l’une des revendications précédentes, caractérisé en ce que ledit matériau comprend en poids entre 18% et 23% de cuivre. 4. axis of regulating member according to one of the preceding claims, characterized in that said material comprises by weight between 18% and 23% of copper.
5. Axe d’organe réglant selon l’une des revendications précédentes, caractérisé en ce que ledit matériau comprend en poids entre 0.5% et 1.5% de zinc 5. axis of regulating member according to one of the preceding claims, characterized in that said material comprises by weight between 0.5% and 1.5% zinc
6. Axe d’organe réglant selon l’une des revendications précédentes, caractérisé en ce que ledit axe est un axe de balancier, un axe d’ancre ou un axe de mobile d’échappement. 6. axis of regulating member according to one of the preceding claims, characterized in that said axis is a balance shaft, an anchor axis or an exhaust axis mobile.
7. Axe d’organe réglant selon l’une des revendications précédentes, caractérisé en ce qu’il présente une dureté Vickers de 460 HV1 à 500 HV1. 7. adjusting member shaft according to one of the preceding claims, characterized in that it has a Vickers hardness of 460 HV1 to 500 HV1.
8. Mouvement mécanique pour une pièce d’horlogerie, caractérisé en ce qu’il comprend un axe d’organe réglant selon l’une des revendications précédentes. 8. Mechanical movement for a timepiece, characterized in that it comprises a regulating member shaft according to one of the preceding claims.
9. Procédé de fabrication d’un axe de pivotement d’un organe réglant comportant les étapes suivantes : 9. A method of manufacturing a pivot axis of a regulating member comprising the following steps:
Obtenir une barre d’alliage comprenant entre 25% et 55% de Palladium, entre 25% et 55% d’Argent, entre 10% et 30% de Cuivre, entre 0% et 5% de zinc, entre 0% et 2% d’un ou plusieurs éléments choisis parmi rhénium, ruthénium, or et platine, et entre 0% et 1 % d’un ou plusieurs éléments choisis parmi bore et nickel ;  Obtain an alloy bar comprising between 25% and 55% of Palladium, between 25% and 55% of Silver, between 10% and 30% of Copper, between 0% and 5% of zinc, between 0% and 2% one or more elements selected from rhenium, ruthenium, gold and platinum, and between 0% and 1% of one or more elements selected from boron and nickel;
Décolleter l’axe avec une surépaisseur par rapport à une dimension prédéterminée ;  Decollete the axis with an allowance relative to a predetermined dimension;
Réaliser une opération de traitement de l’état de surface de l’axe avec enlèvement de la surépaisseur pour atteindre la dimension prédéterminée.  Carry out a treatment operation of the surface state of the axis with removal of the excess thickness to reach the predetermined dimension.
10. Procédé de fabrication selon la revendication précédente, dans lequel ladite barre présente une dureté Vickers d’entre 260 HV1 et 310 HV1. 10. The manufacturing method according to the preceding claim, wherein said bar has a Vickers hardness of between 260 HV1 and 310 HV1.
11. Procédé de fabrication selon l’une des revendications 9 et 10, caractérisé en ce qu’il comprend en outre une étape de traitement thermique de durcissement. 11. The manufacturing method according to one of claims 9 and 10, characterized in that it further comprises a curing heat treatment step.
12. Procédé de fabrication selon la revendication précédente, caractérisé en ce que l’étape de de traitement thermique de durcissement comprend un traitement thermique à une température de 380°C à 420°C. 12. The manufacturing method according to the preceding claim, characterized in that the curing heat treatment step comprises a heat treatment at a temperature of 380 ° C to 420 ° C.
13. Procédé de fabrication selon la revendication précédente, dans lequel ladite étape de traitement thermique de durcissement dure entre 30 minutes et 2 heures, plus particulièrement pendant entre 45 minutes et 1 h30, encore plus particulièrement pendant 1 h. 13. Manufacturing process according to the preceding claim, wherein said curing heat treatment stage lasts between 30 minutes and 2 hours, more particularly for between 45 minutes and 1 hour 30 minutes, more particularly for 1 hour.
14. Procédé de fabrication selon l’une des revendications 11 à 13, dans lequel, après ladite étape de traitement thermique de durcissement, ledit axe présente une dureté Vickers d’entre 460 HV1 et 500 HV1. 14. The manufacturing method according to one of claims 11 to 13, wherein, after said curing heat treatment step, said axis has a Vickers hardness of between 460 HV1 and 500 HV1.
15. Procédé de fabrication selon l’une des revendications 11 à 14, caractérisé en ce que ladite étape de traitement thermique de durcissement est réalisée entre les étapes d’obtention de ladite barre d’alliage et de décolletage ou entre les étapes de décolletage et de traitement de surface. 15. The manufacturing method according to one of claims 11 to 14, characterized in that said curing heat treatment step is performed between the steps of obtaining said bar of alloy and bar turning or between the turning steps and surface treatment.
16. Procédé de fabrication d’un axe de pivotement d’un organe réglant comportant un corps doté à ses extrémités de pivots, ledit procédé comprenant les étapes suivantes : 16. A method of manufacturing a pivot axis of a regulating member comprising a body provided at its ends with pivots, said method comprising the following steps:
Obtenir une barre d’alliage comprenant entre 25% et 55% de Palladium, entre 25% et 55% d’Argent, entre 10% et 30% de Cuivre, entre 0% et 5% de zinc, entre 0% et 2% d’un ou plusieurs éléments choisis parmi rhénium, ruthénium, or et platine, et entre 0% et 1 % d’un ou plusieurs éléments choisis parmi bore et nickel ;  Obtain an alloy bar comprising between 25% and 55% of Palladium, between 25% and 55% of Silver, between 10% and 30% of Copper, between 0% and 5% of zinc, between 0% and 2% one or more elements selected from rhenium, ruthenium, gold and platinum, and between 0% and 1% of one or more elements selected from boron and nickel;
Décolleter le corps de l’axe avec une première surépaisseur par rapport à une première dimension prédéterminée, et les pivots de Taxe avec une deuxième surépaisseur par rapport à une deuxième dimension prédéterminée, ladite deuxième surépaisseur étant supérieure à la première surépaisseur ;  Detaching the body of the axis with a first excess thickness relative to a predetermined first dimension, and the axis pivots with a second allowance with respect to a second predetermined dimension, said second excess being greater than the first excess thickness;
Procéder à un roulage des pivots pour les amener à la première surépaisseur par rapport à la deuxième dimension prédéterminée ;  Carrying the pivots to bring them to the first oversize relative to the second predetermined dimension;
Réaliser une opération de traitement de l’état de surface du corps et des pivots avec enlèvement de la première surépaisseur pour atteindre respectivement les première et deuxième dimensions prédéterminées.  Performing a treatment operation of the surface state of the body and pivots with removal of the first thickness to reach respectively the first and second predetermined dimensions.
17. Procédé de fabrication selon la revendication précédente, dans lequel ladite barre présente une dureté Vickers d’entre 260 HV1 et 310 HV1. 17. The manufacturing method according to the preceding claim, wherein said bar has a Vickers hardness of between 260 HV1 and 310 HV1.
18. Procédé de fabrication selon l’une des revendications 16 et 17, caractérisé en ce qu’il comprend en outre une étape de traitement thermique de durcissement. 18. The manufacturing method according to one of claims 16 and 17, characterized in that it further comprises a curing heat treatment step.
19. Procédé de fabrication selon la revendication précédente, caractérisé en ce que l’étape de de traitement thermique de durcissement comprend un traitement thermique à une température de 380°C à 420°C. 19. The manufacturing method according to the preceding claim, characterized in that the curing heat treatment step comprises a heat treatment at a temperature of 380 ° C to 420 ° C.
20. Procédé de fabrication selon la revendication précédente, dans lequel ladite étape de traitement thermique de durcissement dure entre 30 minutes et 2 heures, plus particulièrement pendant entre 45 minutes et 1 h30, encore plus particulièrement pendant 1 h. 20. The manufacturing method according to the preceding claim, wherein said hardening heat treatment step lasts between 30 minutes and 2 hours, more particularly for between 45 minutes and 1 hour 30 minutes, more particularly for 1 hour.
21. Procédé de fabrication selon l’une des revendications 18 à 20, dans lequel, après ladite étape de traitement thermique de durcissement, ledit axe présente une dureté Vickers d’entre 460 HV1 et 500 HV1. 21. The manufacturing method according to one of claims 18 to 20, wherein, after said hardening heat treatment step, said axis has a Vickers hardness of between 460 HV1 and 500 HV1.
22. Procédé de fabrication selon l’une des revendications 18-21 , caractérisé en ce que ladite étape de traitement thermique de durcissement est réalisée entre les étapes d’obtention de ladite barre d’alliage et de décolletage ou entre les étapes de décolletage et de traitement de surface. 22. Manufacturing process according to one of claims 18-21, characterized in that said curing heat treatment step is performed between the steps of obtaining said alloy bar and bar turning or between the turning steps and surface treatment.
EP19702055.5A 2018-01-26 2019-01-24 Pivoting pin of a regulator and manufacturing method therefor Active EP3743538B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00093/18A CH714594A1 (en) 2018-01-26 2018-01-26 Pivoting axis of a regulating organ of mechanical watchmaking movement.
PCT/EP2019/051771 WO2019145434A1 (en) 2018-01-26 2019-01-24 Pivoting pin of a regulator

Publications (2)

Publication Number Publication Date
EP3743538A1 true EP3743538A1 (en) 2020-12-02
EP3743538B1 EP3743538B1 (en) 2022-09-07

Family

ID=61231019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19702055.5A Active EP3743538B1 (en) 2018-01-26 2019-01-24 Pivoting pin of a regulator and manufacturing method therefor

Country Status (3)

Country Link
EP (1) EP3743538B1 (en)
CH (1) CH714594A1 (en)
WO (1) WO2019145434A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800511B1 (en) * 2019-10-02 2022-05-18 Nivarox-FAR S.A. Pivoting shaft for a regulating organ
CH716669B1 (en) * 2019-10-03 2023-02-15 Richemont Int Sa Method of manufacturing a balance pivot shaft.
EP3865955A1 (en) * 2020-02-17 2021-08-18 The Swatch Group Research and Development Ltd Method for manufacturing a single-piece mechanical part of a timepiece
EP4033307A1 (en) * 2021-01-22 2022-07-27 ETA SA Manufacture Horlogère Suisse Assembly comprising a rotating moving part made of non-magnetic material and a bearing provided with a cone
WO2022223479A1 (en) * 2021-04-20 2022-10-27 Acrotec R&D Sa Method for manufacturing a pivot staff of the timepiece type

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833774A (en) * 1997-04-10 1998-11-10 The J. M. Ney Company High strength silver palladium alloy
US9194024B1 (en) * 2010-05-17 2015-11-24 Stuller, Inc. Jewelry article of white precious metals and methods for making the same
CN104024448A (en) * 2011-12-27 2014-09-03 株式会社德力本店 Pd ALLOY FOR ELECTRIC/ELECTRONIC DEVICES
CH707504B1 (en) 2013-01-17 2017-05-15 Omega Sa Metal pivot pin for watch movement and method of manufacturing such a pin.
CH707505B1 (en) 2013-01-17 2017-07-31 Omega Sa Metal pivot pin for watch movement and method of manufacturing such a pin.
CH707503A2 (en) 2013-01-17 2014-07-31 Omega Sa Pivoting axle i.e. non-magnetic balance axle, for clockwork movement of timepiece, has pivot made of composite material having metal matrix charged with hard particles in order to limit sensitivity of axle to magnetic fields
EP3273304B1 (en) * 2016-07-19 2021-11-10 Nivarox-FAR S.A. Part for clock movement
EP3273303A1 (en) * 2016-07-19 2018-01-24 Nivarox-FAR S.A. Part for clock movement

Also Published As

Publication number Publication date
EP3743538B1 (en) 2022-09-07
WO2019145434A1 (en) 2019-08-01
CH714594A1 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
EP3743538B1 (en) Pivoting pin of a regulator and manufacturing method therefor
EP2757424B1 (en) Part for clockwork
EP2757423B1 (en) Part for clockwork
EP3584640A1 (en) Timepiece oscillator
EP3273303A1 (en) Part for clock movement
EP3273307A1 (en) Part for clock movement
EP3273306A1 (en) Part for clock movement
CH707504B1 (en) Metal pivot pin for watch movement and method of manufacturing such a pin.
EP3273304B1 (en) Part for clock movement
CH712719A2 (en) Watchmaking component for watch movement.
CH712718A2 (en) Pivot axis for watch movement.
EP3800511B1 (en) Pivoting shaft for a regulating organ
EP3273305B1 (en) Part for clock movement
CH716669A1 (en) Method of manufacturing a pendulum pivot shaft.
EP3940112A1 (en) Method for improving a material for timepiece
CH718939A1 (en) Pivot axis of a pivoting component of a watch movement.
CH716664A2 (en) Non-magnetic and hard watch component, in particular the pivot axis of a regulating organ.
CH707505B1 (en) Metal pivot pin for watch movement and method of manufacturing such a pin.
CH715613A1 (en) Method for making a pendulum axis and pendulum axis.
EP3339968A1 (en) Part for clock movement
EP3885842B1 (en) Non-magnetic timepiece component with improved wear resistance
CH718551A2 (en) Process for manufacturing a watchmaker's type pivot pin.
CH712720A2 (en) Pivot axis for watch movement.
CH717261A2 (en) Non-magnetic watch component with wear resistance
WO2023232938A1 (en) Method for manufacturing a timepiece or jewellery component, and said timepiece or jewellery component

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210712

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 5/06 20060101ALI20220301BHEP

Ipc: G04B 43/00 20060101ALI20220301BHEP

Ipc: G04B 17/06 20060101ALI20220301BHEP

Ipc: G04B 13/02 20060101ALI20220301BHEP

Ipc: G04B 1/16 20060101ALI20220301BHEP

Ipc: C22C 30/02 20060101ALI20220301BHEP

Ipc: C22C 5/04 20060101ALI20220301BHEP

Ipc: C22F 1/14 20060101AFI20220301BHEP

INTG Intention to grant announced

Effective date: 20220404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1517093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019019236

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1517093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019019236

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

26N No opposition filed

Effective date: 20230608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230124

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 6

Ref country code: GB

Payment date: 20240123

Year of fee payment: 6

Ref country code: CH

Payment date: 20240202

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240122

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907