EP3273306A1 - Part for clock movement - Google Patents

Part for clock movement Download PDF

Info

Publication number
EP3273306A1
EP3273306A1 EP16190278.8A EP16190278A EP3273306A1 EP 3273306 A1 EP3273306 A1 EP 3273306A1 EP 16190278 A EP16190278 A EP 16190278A EP 3273306 A1 EP3273306 A1 EP 3273306A1
Authority
EP
European Patent Office
Prior art keywords
layer
nip
pivot
copper
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP16190278.8A
Other languages
German (de)
French (fr)
Inventor
Alexandre Fussinger
Christian Charbon
Marco Verardo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nivarox Far SA
Original Assignee
Nivarox Far SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP16180226.9A external-priority patent/EP3273304B1/en
Application filed by Nivarox Far SA filed Critical Nivarox Far SA
Priority to EP16190278.8A priority Critical patent/EP3273306A1/en
Priority to EP17157065.8A priority patent/EP3273307A1/en
Priority to US15/652,287 priority patent/US11092932B2/en
Priority to RU2017125759A priority patent/RU2752467C2/en
Priority to JP2017138777A priority patent/JP6591497B2/en
Priority to RU2017125734A priority patent/RU2767960C2/en
Priority to US15/652,288 priority patent/US10761482B2/en
Priority to JP2017138776A priority patent/JP6762275B2/en
Priority to CN202110652156.8A priority patent/CN113296382A/en
Priority to CN201710584247.6A priority patent/CN107632510B/en
Priority to JP2017138778A priority patent/JP6591498B2/en
Priority to CN201710584243.8A priority patent/CN107632507B/en
Priority to CN201710584919.3A priority patent/CN107632508B/en
Priority to US15/652,283 priority patent/US11237520B2/en
Publication of EP3273306A1 publication Critical patent/EP3273306A1/en
Priority to HK18107788.1A priority patent/HK1248327A1/en
Priority to HK18108135.9A priority patent/HK1248836A1/en
Priority to HK18108785.2A priority patent/HK1249200A1/en
Priority to JP2019118340A priority patent/JP2019197061A/en
Priority to JP2019118335A priority patent/JP2019203899A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/16Barrels; Arbors; Barrel axles
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • G04B13/021Wheels; Pinions; Spindles; Pivots elastic fitting with a spindle, axis or shaft
    • G04B13/022Wheels; Pinions; Spindles; Pivots elastic fitting with a spindle, axis or shaft with parts made of hard material, e.g. silicon, diamond, sapphire, quartz and the like
    • G04B13/026
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B29/00Frameworks
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/007Antimagnetic alloys

Definitions

  • the invention relates to a piece for a watch movement and in particular to a non-magnetic pivoting axis for a mechanical clockwork movement and more particularly to a balance shaft, an anchor rod and a magnetic escape pinion. .
  • the manufacture of a clock pivot axis consists, from a bar of hardened steel, to perform machining operations to define different active surfaces (scope, shoulder, pivots etc.) and then to subject the axis Vietnameselleté to heat treatment operations comprising at least one quench to improve the hardness of the axis and one or more income to improve toughness.
  • the heat treatment operations are followed by a rolling operation of the pivots of the axes, an operation consisting in polishing the pivots to bring them to the required dimensions. During the rolling operation the hardness as well as the roughness of the pivots are further improved.
  • the pivot axes for example the balance shafts, conventionally used in mechanical watch movements are made in grades of free cutting steels which are generally carbon martensitic steels including lead and manganese sulphides to improve their performance. machinability.
  • a steel of this type designated 20AP is typically used for these applications.
  • This type of material has the advantage of being easily machinable, in particular to be able to bar-turning and has, after treatments of quenching and tempering, high mechanical properties very interesting for the realization of horological pivot axes.
  • These steels have in particular after heat treatment a high hardness, to obtain a very good resistance to shocks.
  • the hardness of the pivots of an axis made of steel AP may reach a hardness exceeding 700 HV after heat treatment and rolling.
  • this type of material has the disadvantage of being magnetic and of being able to disrupt the running of a watch after being subjected to a magnetic field, and in particular when this material is used for producing a balance shaft cooperating with a balance spring of ferromagnetic material. This phenomenon is well known to those skilled in the art. It should also be noted that these martensitic steels are also susceptible to corrosion.
  • austenitic stainless steels which have the particularity of being magnetic, that is to say of the paramagnetic or diamagnetic or antiferromagnetic type.
  • these austenitic steels have a crystallographic structure that does not allow them to be hardened and to reach hardnesses and therefore impact strengths that are compatible with the requirements required for the realization of clockwise pivot axes.
  • the axes obtained then have marks or severe damage in case of shocks which will then have a negative influence on the chronometry of the movement.
  • One way to increase the hardness of these steels is work hardening, however this hardening operation does not allow to obtain hardnesses greater than 500 HV. Therefore, in the context of parts having pivots having a high impact resistance, the use of this type of steel remains limited.
  • the pivot axes are made of cobalt or nickel alloy of the austenitic type and have an outer surface hardened to a certain depth.
  • such alloys can be difficult to machine for the manufacture of pivot axes.
  • they are relatively expensive because of the high price of nickel and cobalt.
  • the object of the present invention is to overcome the drawbacks mentioned above by proposing a pivot axis that makes it possible at the same time to limit the sensitivity to magnetic fields and to obtain mechanical properties that make it possible to meet the impact resistance requirements in the watchmaking field. .
  • the invention also aims to provide a non-magnetic pivot axis that can be manufactured simply and economically.
  • the invention relates to a pivot axis for a watch movement comprising at least one pivot in a first non-magnetic metal material at at least one of its ends in order to limit its sensitivity to magnetic fields.
  • At least the outer surface of said pivot is covered with a layer of a second material selected from the group comprising Ni and NiP.
  • the pivot axis according to the invention can combine the advantages of low sensitivity to magnetic fields, and at least in the main stress zones, excellent resistance to shocks. Therefore, the pivot axis according to the invention does not present, in case of impact, no mark or severe damage likely to affect the chronometry of the movement.
  • the invention relates to a clockwork comprising a pivot axis as defined above, and in particular a balance shaft, an anchor rod and / or an exhaust pinion comprising an axis. as defined above.
  • non-magnetic material means a paramagnetic or diamagnetic or antiferromagnetic material whose magnetic permeability is less than or equal to 1.01.
  • An alloy of an element is an alloy containing at least 50% by weight of said element.
  • the invention relates to a piece for a watch movement and in particular to a non-magnetic pivoting axis for a mechanical clockwork movement.
  • non-magnetic balance shaft 1 a non-magnetic balance shaft 1.
  • other types of clockwise pivot axes can be envisaged, such as, for example, axes of watch mobiles, typically pinions. exhaust, or anchor rods.
  • the parts of this type have at the body diameters preferably less than 2 mm, and pivots of smaller diameter preferably 0.2 mm, with an accuracy of a few microns.
  • a balance shaft 1 which comprises a plurality of sections 2 of different diameters, preferably formed by machining or any other machining by chip removal technique, and classically defining bearing surfaces 2a and shoulders 2b arranged between two end portions defining two pivots 3. These pivots are intended to each rotate in a bearing, typically in a hole of a stone or ruby.
  • the pivot 3 is made of a first nonmagnetic metallic material 4 in order to advantageously limit its sensitivity to magnetic fields.
  • the first non-magnetic metal material 4 is chosen from the group comprising a steel of the austenitic, preferably stainless, type, a cobalt alloy of the austenitic type, an alloy of nickel of the austenitic type, a non-magnetic titanium alloy, an alloy of non-magnetic aluminum, brass (Cu-Zn) or special brass (Cu-Zn with Al and / or Si and / or Mn), copper-beryllium, bronze (Cu-Sn), aluminum bronze , a copper-aluminum (optionally comprising Ni and / or Fe), a copper-nickel, a nickel silver (Cu-Ni-Zn), a copper-nickel-tin, a copper-nickel-silicon, a copper-nickel-phosphorus , a copper-titanium, the proportions of the various elements of the alloys being chosen to give them non-magnetic properties and good machinability.
  • a steel of the austenitic preferably stainless, type, a co
  • the austenitic steel is high grade stainless steel austenitic steel (HIS), such as Cr-Mn-N P2000 steel from Energytechnik Essen GmbH.
  • HIS high grade stainless steel austenitic steel
  • the cobalt alloy of the austenitic type may comprise at least 39% cobalt, typically an alloy known as "Phynox” or the DIN designation K13C20N16Fe15D7 typically having 39% Co, 19% Cr, 15% Ni and 6% Mo, 1.5% Mn, 18% Fe and additive balances.
  • the austenitic nickel alloy may comprise at least 33% nickel typically an alloy known as MP35N® typically having 35% Ni 20% Cr, 10% Mo, 33% Co and the balance of additives.
  • the titanium alloy preferably comprises at least 85% titanium.
  • the brasses may include CuZn39Pb3, CuZn37Pb2, or CuZn37 alloys.
  • Special brasses may include CuZn37Mn3Al2PbSi, CuZn23Al3Co or CuZn23Al6Mn4Fe3Pb alloys.
  • Nickel silver can include CuNi25Zn11 Pb1 Mn, CuNi7Zn39Pb3Mn2 or CuNi18Zn19Pb1 alloys.
  • Bronzes may include CuSn9 or CuSn6 alloys.
  • Aluminum bronzes may include CuAl9 or CuAl9Fe5Ni5 alloys.
  • Copper-nickel alloys can include the CuNi30 alloy.
  • the copper-nickel-tin alloys can comprise the alloys CuNi15Sn8, CuNi9Sn6 or CuNi7.5Sn5 (sold for example under the name Declafor).
  • Copper-titanium alloys can include the CuTi3Fe alloy.
  • Copper-nickel-silicon alloys may comprise the CuNi3Si alloy.
  • Copper-nickel-phosphorus alloys may comprise the CuNi1P alloy.
  • Copper-Beryllium alloys can include CuBe2Pb or CuBe2 alloys.
  • composition values are given as a percentage by mass.
  • the elements without indication of composition value are either the remainder (majority) or elements for which the percentage in the composition is less than 1% by weight.
  • the nonmagnetic copper alloy may also be an alloy having a mass composition of between 14.5% and 15.5% of Ni, between 7.5% and 8.5% of Sn, at most 0.02% of Pb and the remainder of Cu.
  • Such an alloy is marketed under the trademark Toughmet® by the company Materion.
  • the first non-magnetic metallic material generally has a hardness of less than 600 HV.
  • At least the outer surface of said pivot 3 is covered with a layer 5 of a second material selected from the group comprising Ni and NiP, in order to advantageously offer mechanical properties at the level of said external surface. to obtain the required shock resistance.
  • the phosphorus content may be preferably between 0% (then pure Ni) and 15%.
  • the level of phosphorus in the second NiP material may be an average level of between 6% and 9%, or a high level of between 9% and 12%. It is obvious, however, that the second NiP material may comprise a low level of phosphorus.
  • the layer of the second NiP material can be cured by heat treatment.
  • the layer of the second material has a hardness of preferably greater than 400 HV, more preferably greater than 500 HV.
  • the layer of the second uncured Ni or NiP material has a hardness of preferably greater than 500 HV, but less than 600 HV, that is to say preferably between 500 HV and 550 HV .
  • the pivot axis according to the invention has excellent impact resistance although the layer of the second material may have a hardness (HV) lower than that of the first material.
  • the layer of the second NiP material When cured by heat treatment, the layer of the second NiP material may have a hardness of between 900 HV and 1000 HV.
  • the layer of the second material may have a thickness of between 0.5 ⁇ m and 10 ⁇ m, preferably between 1 ⁇ m and 5 ⁇ m, and more preferably between 1 ⁇ m and 2 ⁇ m.
  • the layer of the second material is a NiP layer, and more particularly a chemical NiP layer, that is to say deposited chemically.
  • At least the outer surface of the pivot is hardened, that is to say that the rest of the axis, can remain little or no change without significant change in the mechanical properties of the balance shaft 1.
  • This selective hardening of the pivots 3 of the balance shaft 1 makes it possible to cumulate the advantages such as the low sensitivity to the magnetic fields and the mechanical properties making it possible to obtain a very good resistance to shocks, in the main stress zones.
  • the pivot axis may comprise at least one adhesion sub-layer deposited between the first material and the layer of the second material.
  • a gold underlayer and / or a galvanic nickel underlayer may be provided under the layer of the second material.
  • the layer 5 of the second material is deposited according to step b) to have a thickness of between 0.5 ⁇ m and 10 ⁇ m, preferably between 1 ⁇ m and 5 ⁇ m, and more preferably between 1 ⁇ m and 2 ⁇ m. .
  • step b) of deposition of the layer 5 of the second material may be carried out according to a process chosen from the group comprising PVD, CVD, ALD, galvanic and chemical, and preferably chemical, deposits.
  • the second material is NiP and the deposition step of the NiP layer 5 is carried out according to a chemical nickel deposition process from hypophosphite.
  • the various chemical nickel deposition parameters from hypophosphite to be taken into account such as the phosphorus content in the deposition, the pH, the temperature, or the composition of the nickel plating bath are known to those skilled in the art.
  • commercial baths are used at average rates (6-9%) and at high rates (9-12%) of phosphorus. It is obvious, however, that low-phosphorus or pure nickel baths can also be used.
  • the process according to the invention may further comprise, after the deposition step b), a step c) of heat treatment of the layer 5 of the second material.
  • a step c) of heat treatment makes it possible to obtain a layer 5 of the second material having a hardness of preferably between 900 HV and 1000 HV.
  • the chemical nickel deposition process is particularly advantageous in that it makes it possible to obtain a compliant deposit that has no peak effect. It is thus possible to provide the dimension of the pivot axis of the neck to obtain the desired geometry after recovery by the layer of the second material.
  • the chemical nickel deposition process also has the advantage of being applied in bulk.
  • the method according to the invention may further comprise, before the deposition step b), a step d) of applying at least one sub-layer of adhesion on the first material.
  • a step d) of applying at least one sub-layer of adhesion on the first material for example, in the case of an axis of pivoting in stainless steel type material HIS, it is possible to apply a gold underlayer and / or a galvanic nickel underlayer before the nickel deposition by chemical means.
  • the pivot axis according to the invention may comprise pivots treated according to the invention by applying step b) only to the pivots or be made entirely of a first non-magnetic metallic material, its outer surface being able to be entirely covered with a layer of the second material by applying step b) on all of the surfaces of the pivot axis.
  • the pivots 3 can be rolled or polished before or after the deposition step b), in order to reach the final dimensions and final surface state desired for the pivots 3.
  • the pivot axis according to the invention combines the advantages of a low sensitivity to magnetic fields, and at least in the main stress zones, excellent resistance to shocks. Therefore, the pivot axis according to the invention does not present, in case of impact, no mark or severe damage likely to affect the chronometry of the movement.
  • HIS steel pivot pins are made in a known manner.
  • the bare axles have a hardness of 600HV.
  • pivot axes A lot of these pivot axes is treated according to the method of the invention, the pivot axes being covered with a NiP layer of thickness equal to 1.5 microns obtained from a commercial bath of chemical nickel plating from hypophosphite.
  • pivot axes according to the invention have a hardness of 500 HV.
  • pivot axes are subjected to the same standard shock program for watchmaking.
  • the bare axes, without a NiP layer, are marked as shown in figure 3 .
  • the pins covered with a NiP layer according to the invention are intact, as shown in FIG. figure 4 .
  • the pivot axes according to the invention combine the advantages of low sensitivity to magnetic fields and excellent resistance to shocks.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Sliding-Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

L'invention se rapporte à un axe de pivotement pour mouvement horloger comportant au moins un pivot (3) en un premier matériau (4) métallique amagnétique à au moins une de ses extrémités afin de limiter sa sensibilité aux champs magnétiques. Au moins la surface externe dudit pivot (3) est recouverte d'une couche (5) d'un second matériau choisi parmi le groupe comprenant Ni et NiP, et de préférence NiP chimique. L'invention concerne le domaine des mouvements d'horlogerie.The invention relates to a pivot axis for a watch movement comprising at least one pivot (3) made of a first non-magnetic metal material (4) at at least one of its ends in order to limit its sensitivity to magnetic fields. At least the outer surface of said pivot (3) is covered with a layer (5) of a second material selected from the group comprising Ni and NiP, and preferably NiP chemical. The invention relates to the field of watch movements.

Description

Domaine de l'inventionField of the invention

L'invention se rapporte à une pièce pour mouvement d'horlogerie et notamment à un axe de pivotement amagnétique pour un mouvement d'horlogerie mécanique et plus particulièrement à un axe de balancier, une tige d'ancre et un pignon d'échappement a magnétiques.The invention relates to a piece for a watch movement and in particular to a non-magnetic pivoting axis for a mechanical clockwork movement and more particularly to a balance shaft, an anchor rod and a magnetic escape pinion. .

Arrière-plan de l'inventionBackground of the invention

La fabrication d'un axe de pivotement horloger consiste, à partir d'une barre en acier trempable, à réaliser des opérations de décolletage pour définir différentes surfaces actives (portée, épaulement, pivots etc.) puis à soumettre l'axe décolleté à des opérations de traitement thermique comprenant au moins une trempe pour améliorer la dureté de l'axe et un ou plusieurs revenus pour en améliorer la ténacité. Les opérations de traitements thermiques sont suivies d'une opération de roulage des pivots des axes, opération consistant à polir les pivots pour les amener aux dimensions requises. Au cours de l'opération de roulage la dureté ainsi que la rugosité des pivots sont encore améliorées.The manufacture of a clock pivot axis consists, from a bar of hardened steel, to perform machining operations to define different active surfaces (scope, shoulder, pivots etc.) and then to subject the axis décolleté to heat treatment operations comprising at least one quench to improve the hardness of the axis and one or more income to improve toughness. The heat treatment operations are followed by a rolling operation of the pivots of the axes, an operation consisting in polishing the pivots to bring them to the required dimensions. During the rolling operation the hardness as well as the roughness of the pivots are further improved.

Les axes de pivotement, par exemple les axes de balancier, utilisés classiquement dans les mouvements d'horlogerie mécaniques sont réalisés dans des nuances d'aciers de décolletage qui sont généralement des aciers martensitiques au carbone incluant du plomb et des sulfures de manganèse pour améliorer leur usinabilité. Un acier de ce type désigné 20AP est typiquement utilisé pour ces applications.The pivot axes, for example the balance shafts, conventionally used in mechanical watch movements are made in grades of free cutting steels which are generally carbon martensitic steels including lead and manganese sulphides to improve their performance. machinability. A steel of this type designated 20AP is typically used for these applications.

Ce type de matériau a l'avantage d'être facilement usinable, en particulier d'être apte au décolletage et présente, après des traitements de trempe et de revenu, des propriétés mécaniques élevées très intéressantes pour la réalisation d'axes de pivotement horlogers. Ces aciers présentent en particulier après traitement thermique une dureté élevée, permettant d'obtenir une très bonne tenue aux chocs. Typiquement la dureté des pivots d'un axe réalisé en acier 20 AP peut atteindre une dureté dépassant les 700 HV après traitement thermique et roulage.This type of material has the advantage of being easily machinable, in particular to be able to bar-turning and has, after treatments of quenching and tempering, high mechanical properties very interesting for the realization of horological pivot axes. These steels have in particular after heat treatment a high hardness, to obtain a very good resistance to shocks. Typically the hardness of the pivots of an axis made of steel AP may reach a hardness exceeding 700 HV after heat treatment and rolling.

Bien que fournissant des propriétés mécaniques satisfaisantes pour les applications horlogères décrites ci-dessus, ce type de matériau présente l'inconvénient d'être magnétique et de pouvoir perturber la marche d'une montre après avoir été soumis à un champ magnétique, et ce notamment lorsque ce matériau est utilisé pour la réalisation d'un axe de balancier coopérant avec un balancier spiral en matériau ferromagnétique. Ce phénomène est bien connu de l'homme du métier. On notera également que ces aciers martensitiques sont également sensibles à la corrosion.Although providing satisfactory mechanical properties for the horological applications described above, this type of material has the disadvantage of being magnetic and of being able to disrupt the running of a watch after being subjected to a magnetic field, and in particular when this material is used for producing a balance shaft cooperating with a balance spring of ferromagnetic material. This phenomenon is well known to those skilled in the art. It should also be noted that these martensitic steels are also susceptible to corrosion.

Des essais pour tenter de remédier à ces inconvénients ont été menés avec des aciers inoxydables austénitiques qui présentent la particularité d'être a magnétiques c'est-à-dire du type paramagnétique ou diamagnétique ou antiferromagnétique. Toutefois, ces aciers austénitiques présentent une structure cristallographique ne permettant pas de les tremper et d'atteindre des duretés et donc des résistances aux chocs compatibles avec les exigences requises pour la réalisation d'axes de pivotement horlogers. Les axes obtenus présentent alors des marques ou des endommagements sévères en cas de chocs qui vont avoir ensuite une influence négative sur la chronométrie du mouvement. Un moyen d'augmenter la dureté de ces aciers est l'écrouissage, toutefois cette opération de durcissement ne permet pas d'obtenir des duretés supérieures à 500 HV. Par conséquent, dans le cadre de pièces devant avoir des pivots présentant une grande résistance aux chocs, l'utilisation de ce type d'aciers reste limitée.Attempts to overcome these disadvantages have been carried out with austenitic stainless steels which have the particularity of being magnetic, that is to say of the paramagnetic or diamagnetic or antiferromagnetic type. However, these austenitic steels have a crystallographic structure that does not allow them to be hardened and to reach hardnesses and therefore impact strengths that are compatible with the requirements required for the realization of clockwise pivot axes. The axes obtained then have marks or severe damage in case of shocks which will then have a negative influence on the chronometry of the movement. One way to increase the hardness of these steels is work hardening, however this hardening operation does not allow to obtain hardnesses greater than 500 HV. Therefore, in the context of parts having pivots having a high impact resistance, the use of this type of steel remains limited.

Une autre approche pour tenter de remédier à ces inconvénients est décrite dans la demande EP 2 757 423 . Selon cette approche, les axes de pivotements sont réalisés en alliage de cobalt ou de nickel du type austénitique et présentent une surface externe durcie selon une certaine profondeur. Toutefois, de tels alliages peuvent s'avérer difficiles à usiner pour la fabrication d'axes de pivotement. De plus, ils sont relativement coûteux en raison du prix élevé du nickel et du cobalt.Another approach to try to remedy these disadvantages is described in the application EP 2 757 423 . According to this approach, the pivot axes are made of cobalt or nickel alloy of the austenitic type and have an outer surface hardened to a certain depth. However, such alloys can be difficult to machine for the manufacture of pivot axes. In addition, they are relatively expensive because of the high price of nickel and cobalt.

Résumé de l'inventionSummary of the invention

Le but de la présente invention est de pallier les inconvénients cités précédemment en proposant un axe de pivotement permettant à la fois de limiter la sensibilité aux champs magnétiques et d'obtenir des propriétés mécaniques permettant de répondre aux exigences de résistance aux chocs dans le domaine horloger.The object of the present invention is to overcome the drawbacks mentioned above by proposing a pivot axis that makes it possible at the same time to limit the sensitivity to magnetic fields and to obtain mechanical properties that make it possible to meet the impact resistance requirements in the watchmaking field. .

L'invention a encore pour but de fournir un axe de pivotement amagnétique qui puisse être fabriqué de manière simple et économique.The invention also aims to provide a non-magnetic pivot axis that can be manufactured simply and economically.

A cet effet, l'invention se rapporte à un axe de pivotement pour mouvement horloger comportant au moins un pivot en un premier matériau métallique amagnétique à au moins une de ses extrémités afin de limiter sa sensibilité aux champs magnétiques.For this purpose, the invention relates to a pivot axis for a watch movement comprising at least one pivot in a first non-magnetic metal material at at least one of its ends in order to limit its sensitivity to magnetic fields.

Selon l'invention, au moins la surface externe dudit pivot est recouverte d'une couche d'un second matériau choisi parmi le groupe comprenant Ni et NiP.According to the invention, at least the outer surface of said pivot is covered with a layer of a second material selected from the group comprising Ni and NiP.

Par conséquent, l'axe de pivotement selon l'invention permet de cumuler les avantages d'une faible sensibilité aux champs magnétiques, et au moins dans les zones de contrainte principales, d'une excellente tenue aux chocs. De ce fait, l'axe de pivotement selon l'invention ne présente, en cas de choc, aucune marque ni aucun endommagement sévère susceptible de nuire à la chronométrie du mouvement.Therefore, the pivot axis according to the invention can combine the advantages of low sensitivity to magnetic fields, and at least in the main stress zones, excellent resistance to shocks. Therefore, the pivot axis according to the invention does not present, in case of impact, no mark or severe damage likely to affect the chronometry of the movement.

Conformément à d'autres caractéristiques avantageuses de l'invention :

  • la couche du second matériau présente une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm ;
  • la couche du second matériau présente une dureté de préférence supérieure à 400 HV, plus préférentiellement supérieure à 500 HV ;
  • la couche du second matériau est de préférence une couche de NiP chimique, c'est-à-dire obtenue par dépôt chimique.
According to other advantageous features of the invention:
  • the layer of the second material has a thickness of between 0.5 μm and 10 μm, preferably between 1 μm and 5 μm, and more preferably between 1 μm and 2 μm;
  • the layer of the second material has a hardness of preferably greater than 400 HV, more preferably greater than 500 HV;
  • the layer of the second material is preferably a chemical NiP layer, that is to say obtained by chemical deposition.

De plus, l'invention se rapporte à un mouvement d'horlogerie comprenant un axe de pivotement tel que défini ci-dessus, et en particulier un axe de balancier, une tige d'ancre et/ou un pignon d'échappement comprenant un axe tel que défini ci-dessus.In addition, the invention relates to a clockwork comprising a pivot axis as defined above, and in particular a balance shaft, an anchor rod and / or an exhaust pinion comprising an axis. as defined above.

Enfin, l'invention se rapporte à un procédé de fabrication d'un axe de pivotement tel que défini ci-dessus comportant les étapes suivantes :

  1. a) former une axe de pivotement comportant au moins un pivot en un premier matériau métallique amagnétique à au moins une de ses extrémités pour limiter sa sensibilité aux champs magnétiques;
  2. b) déposer une couche d'un second matériau au moins sur la surface externe dudit pivot, ledit second matériau étant choisi parmi le groupe comprenant Ni et NiP.
Finally, the invention relates to a method of manufacturing a pivot axis as defined above comprising the following steps:
  1. a) forming a pivot axis comprising at least one pivot made of a first non-magnetic metallic material at at least one of its ends to limit its sensitivity to magnetic fields;
  2. b) depositing a layer of a second material at least on the outer surface of said pivot, said second material being selected from the group consisting of Ni and NiP.

Conformément à d'autres caractéristiques avantageuses de l'invention :

  • la couche du second matériau est déposée selon l'étape b) pour présenter une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm;
  • le second matériau est le NiP et l'étape b) consiste en un dépôt de NiP selon un procédé de dépôt de nickel chimique à partir d'hypophosphite.
According to other advantageous features of the invention:
  • the layer of the second material is deposited according to step b) to have a thickness of between 0.5 microns and 10 microns, preferably between 1 micron and 5 microns, and more preferably between 1 micron and 2 microns;
  • the second material is NiP and step b) consists of a NiP deposition according to a chemical nickel deposition process from hypophosphite.

Description sommaire des dessinsBrief description of the drawings

D'autres particularités et avantages ressortiront clairement de la description qui en est faite ci-après, à titre indicatif et nullement limitatif, en référence aux dessins annexés, dans lesquels :

  • la figure 1 est une représentation d'un axe de pivotement selon l'invention ;
  • la figure 2 est une coupe partielle d'un pivot d'axe de balancier selon l'invention,
  • la figure 3 est une photographie d'un axe de pivotement en acier HIS nu ayant subi un programme de chocs, et
  • la figure 4 est une photographie d'un axe de pivotement en acier HIS recouvert d'une couche de NiP selon l'invention ayant subi le même programme de chocs que l'axe de pivotement de la figure 3.
Other particularities and advantages will emerge clearly from the description which is given hereinafter, by way of indication and in no way limiting, with reference to the appended drawings, in which:
  • the figure 1 is a representation of a pivot axis according to the invention;
  • the figure 2 is a partial section of a pendulum pin according to the invention,
  • the figure 3 is a photograph of a naked steel HIS pivot shaft that has undergone a shock program, and
  • the figure 4 is a photograph of a HIS steel pivot axis covered with a NiP layer according to the invention having undergone the same program of shocks as the pivot axis of the figure 3 .

Description détaillée des modes de réalisation préférésDetailed Description of the Preferred Embodiments

Dans la présente description, le terme matériau « amagnétique » signifie un matériau paramagnétique ou diamagnétique ou antiferromagnétique, dont la perméabilité magnétique est inférieure ou égale à 1.01.In the present description, the term "non-magnetic" material means a paramagnetic or diamagnetic or antiferromagnetic material whose magnetic permeability is less than or equal to 1.01.

Un alliage d'un élément est un alliage contenant au moins 50% en poids dudit élément.An alloy of an element is an alloy containing at least 50% by weight of said element.

L'invention se rapporte à une pièce pour mouvement d'horlogerie et notamment à un axe de pivotement amagnétique pour un mouvement d'horlogerie mécanique.The invention relates to a piece for a watch movement and in particular to a non-magnetic pivoting axis for a mechanical clockwork movement.

L'invention sera décrite ci-après dans le cadre d'une application à un axe de balancier amagnétique 1. Bien évidemment, d'autres types d'axes de pivotement horlogers sont envisageables comme par exemple des axes de mobiles horlogers, typiquement des pignons d'échappement, ou encore des tiges d'ancre. Les pièces de ce type présentent au niveau du corps des diamètres inférieurs de préférence à 2 mm, et des pivots de diamètre inférieur de préférence à 0.2 mm, avec une précision de quelques microns.The invention will be described hereinafter in the context of an application to a non-magnetic balance shaft 1. Of course, other types of clockwise pivot axes can be envisaged, such as, for example, axes of watch mobiles, typically pinions. exhaust, or anchor rods. The parts of this type have at the body diameters preferably less than 2 mm, and pivots of smaller diameter preferably 0.2 mm, with an accuracy of a few microns.

En se référant à la figure 1 on peut voir un axe de balancier 1 selon l'invention qui comporte une pluralité de sections 2 de diamètres différents, formées de préférence par décolletage ou toute autre technique d'usinage par enlèvement de copeaux, et définissant classiquement des portées 2a et des épaulements 2b arrangés entre deux portions d'extrémité définissant deux pivots 3. Ces pivots sont destinés à venir chacun pivoter dans un palier, typiquement dans un orifice d'une pierre ou rubis.Referring to the figure 1 it is possible to see a balance shaft 1 according to the invention which comprises a plurality of sections 2 of different diameters, preferably formed by machining or any other machining by chip removal technique, and classically defining bearing surfaces 2a and shoulders 2b arranged between two end portions defining two pivots 3. These pivots are intended to each rotate in a bearing, typically in a hole of a stone or ruby.

Avec le magnétisme induit par les objets rencontrés au quotidien, il est important de limiter la sensibilité de l'axe de balancier 1 sous peine d'influencer la marche de la pièce d'horlogerie dans laquelle il est incorporé.With the magnetism induced by the objects encountered on a daily basis, it is important to limit the sensitivity of the pendulum axis 1, otherwise it will influence the operation of the timepiece in which it is incorporated.

Ainsi, le pivot 3 est réalisé en un premier matériau 4 métallique amagnétique afin de limiter de manière avantageuse sa sensibilité aux champs magnétiques.Thus, the pivot 3 is made of a first nonmagnetic metallic material 4 in order to advantageously limit its sensitivity to magnetic fields.

De préférence, le premier matériau 4 métallique amagnétique est choisi parmi le groupe comprenant un acier du type austénitique, de préférence inoxydable, un alliage de cobalt du type austénitique, un alliage de nickel du type austénitique, un alliage de titane amagnétique, un alliage d'aluminium amagnétique, un laiton (Cu-Zn) ou un laiton spécial (Cu-Zn avec Al et/ou Si et/ou Mn), un cuivre-béryllium, un bronze (Cu-Sn), un bronze à l'aluminium, un cuivre-aluminium (comprenant optionnellement Ni et/ou Fe), un cuivre-nickel, un Maillechort (Cu-Ni-Zn), un cuivre-nickel-étain, un cuivre-nickel-silicium, un cuivre-nickel-phosphore, un cuivre-titane, les proportions des différents éléments des alliages étant choisies pour leur conférer des propriétés amagnétiques ainsi qu'une bonne usinabilité.Preferably, the first non-magnetic metal material 4 is chosen from the group comprising a steel of the austenitic, preferably stainless, type, a cobalt alloy of the austenitic type, an alloy of nickel of the austenitic type, a non-magnetic titanium alloy, an alloy of non-magnetic aluminum, brass (Cu-Zn) or special brass (Cu-Zn with Al and / or Si and / or Mn), copper-beryllium, bronze (Cu-Sn), aluminum bronze , a copper-aluminum (optionally comprising Ni and / or Fe), a copper-nickel, a nickel silver (Cu-Ni-Zn), a copper-nickel-tin, a copper-nickel-silicon, a copper-nickel-phosphorus , a copper-titanium, the proportions of the various elements of the alloys being chosen to give them non-magnetic properties and good machinability.

Par exemple, l'acier austénitique est un acier austénitique inox HIS (High Interstitial Steels), tel que l'acier Cr-Mn-N P2000 de Energietechnik Essen GmbH.For example, the austenitic steel is high grade stainless steel austenitic steel (HIS), such as Cr-Mn-N P2000 steel from Energietechnik Essen GmbH.

L'alliage de cobalt du type austénitique peut comprendre au moins 39% de cobalt, typiquement un alliage connu sous le nom « Phynox » ou la désignation DIN K13C20N16Fe15D7 ayant typiquement 39% de Co, 19% de Cr, 15% de Ni et 6% de Mo, 1.5% de Mn, 18% de Fe et le soldes d'additifs.The cobalt alloy of the austenitic type may comprise at least 39% cobalt, typically an alloy known as "Phynox" or the DIN designation K13C20N16Fe15D7 typically having 39% Co, 19% Cr, 15% Ni and 6% Mo, 1.5% Mn, 18% Fe and additive balances.

L'alliage de nickel de type austénitique peut comprendre au moins 33% de nickel typiquement un alliage connu sous la désignation MP35N® ayant typiquement 35% de Ni 20% de Cr, 10% de Mo, 33% de Co et le solde d'additifs.The austenitic nickel alloy may comprise at least 33% nickel typically an alloy known as MP35N® typically having 35% Ni 20% Cr, 10% Mo, 33% Co and the balance of additives.

L'alliage de titane comprend de préférence au moins 85% de titane.The titanium alloy preferably comprises at least 85% titanium.

Les laitons peuvent comprendre les alliages CuZn39Pb3, CuZn37Pb2, ou CuZn37.The brasses may include CuZn39Pb3, CuZn37Pb2, or CuZn37 alloys.

Les laitons spéciaux peuvent comprendre les alliages CuZn37Mn3Al2PbSi, CuZn23Al3Co ou CuZn23Al6Mn4Fe3Pb.Special brasses may include CuZn37Mn3Al2PbSi, CuZn23Al3Co or CuZn23Al6Mn4Fe3Pb alloys.

Les Maillechort peuvent comprendre les alliages CuNi25Zn11 Pb1 Mn, CuNi7Zn39Pb3Mn2 ou CuNi18Zn19Pb1.Nickel silver can include CuNi25Zn11 Pb1 Mn, CuNi7Zn39Pb3Mn2 or CuNi18Zn19Pb1 alloys.

Les bronzes peuvent comprendre les alliages CuSn9 ou CuSn6.Bronzes may include CuSn9 or CuSn6 alloys.

Les bronzes à l'aluminium peuvent comprendre les alliages CuAl9 ou CuAl9Fe5Ni5.Aluminum bronzes may include CuAl9 or CuAl9Fe5Ni5 alloys.

Les alliages cuivre-nickel peuvent comprendre l'alliage CuNi30.Copper-nickel alloys can include the CuNi30 alloy.

Les alliages cuivre-nickel-étain peuvent comprendre les alliages CuNi15Sn8, CuNi9Sn6 ou CuNi7.5Sn5 (commercialisé par exemple sous la dénomination Declafor).The copper-nickel-tin alloys can comprise the alloys CuNi15Sn8, CuNi9Sn6 or CuNi7.5Sn5 (sold for example under the name Declafor).

Les alliages cuivre-titane peuvent comprendre l'alliage CuTi3Fe.Copper-titanium alloys can include the CuTi3Fe alloy.

Les alliages cuivre-nickel-silicium peuvent comprendre l'alliage CuNi3Si.Copper-nickel-silicon alloys may comprise the CuNi3Si alloy.

Les alliages cuivre-nickel-phosphore peuvent comprendre l'alliage CuNi1P.Copper-nickel-phosphorus alloys may comprise the CuNi1P alloy.

Les alliages cuivre-béryllium peuvent comprendre les alliages CuBe2Pb ou CuBe2.Copper-Beryllium alloys can include CuBe2Pb or CuBe2 alloys.

Les valeurs de composition sont indiquées en pourcentage massique. Les éléments sans indication de valeur de composition sont soit le reste (majoritaire) soit des éléments pour lesquels le pourcentage dans la composition est inférieur à 1% en poids.The composition values are given as a percentage by mass. The elements without indication of composition value are either the remainder (majority) or elements for which the percentage in the composition is less than 1% by weight.

L'alliage de cuivre amagnétique peut être également un alliage ayant pour composition massique entre 14.5% et 15.5% de Ni, entre 7.5% et 8.5% de Sn, au maximum 0.02% de Pb et le reste de Cu. Un tel alliage est commercialisé sous la marque Toughmet® par la société Materion.The nonmagnetic copper alloy may also be an alloy having a mass composition of between 14.5% and 15.5% of Ni, between 7.5% and 8.5% of Sn, at most 0.02% of Pb and the remainder of Cu. Such an alloy is marketed under the trademark Toughmet® by the company Materion.

Bien évidemment, d'autres alliages amagnétiques sont envisageables dès lors que la proportion de leurs constituants leur confère des propriétés amagnétiques ainsi qu'une bonne usinabilité.Of course, other non-magnetic alloys are possible since the proportion of their constituents gives them non-magnetic properties and good machinability.

Le premier matériau métallique amagnétique présente généralement une dureté inférieure à 600 HV.The first non-magnetic metallic material generally has a hardness of less than 600 HV.

Selon l'invention, au moins la surface externe dudit pivot 3 est recouverte d'une couche 5 d'un second matériau choisi parmi le groupe comprenant Ni et NiP, afin d'offrir, avantageusement, des propriétés mécaniques au niveau de ladite surface externe permettant d'obtenir la tenue aux chocs recherchée.According to the invention, at least the outer surface of said pivot 3 is covered with a layer 5 of a second material selected from the group comprising Ni and NiP, in order to advantageously offer mechanical properties at the level of said external surface. to obtain the required shock resistance.

Dans le second matériau, le taux de phosphore peut être compris de préférence entre 0% (on a alors du Ni pur) et 15%. De préférence, le taux de phosphore dans le second matériau NiP peut être un taux moyen compris entre 6% et 9%, ou un taux élevé compris entre 9% et 12%. Il est bien évident toutefois que le second matériau NiP peut comprendre un taux bas de phosphore.In the second material, the phosphorus content may be preferably between 0% (then pure Ni) and 15%. Preferably, the level of phosphorus in the second NiP material may be an average level of between 6% and 9%, or a high level of between 9% and 12%. It is obvious, however, that the second NiP material may comprise a low level of phosphorus.

En outre, lorsque le second matériau est du NiP à taux moyen ou élevé de phosphore, la couche du second matériau NiP peut être durcie par traitement thermique.In addition, when the second material is NiP at a medium or high level of phosphorus, the layer of the second NiP material can be cured by heat treatment.

La couche du second matériau présente une dureté de préférence supérieure à 400 HV, plus préférentiellement supérieure à 500 HV.The layer of the second material has a hardness of preferably greater than 400 HV, more preferably greater than 500 HV.

D'une manière particulièrement avantageuse, la couche du second matériau en Ni ou NiP non durcie présente une dureté de préférence supérieure à 500 HV, mais inférieure à 600 HV, c'est-à-dire de préférence comprise entre 500 HV et 550 HV. D'une manière surprenante et inattendue, l'axe de pivotement selon l'invention présente une excellente tenue aux chocs bien que la couche du second matériau puisse présenter une dureté (HV) inférieure à celle du premier matériau.In a particularly advantageous manner, the layer of the second uncured Ni or NiP material has a hardness of preferably greater than 500 HV, but less than 600 HV, that is to say preferably between 500 HV and 550 HV . Surprisingly and unexpectedly, the pivot axis according to the invention has excellent impact resistance although the layer of the second material may have a hardness (HV) lower than that of the first material.

Lorsqu'elle est durcie par traitement thermique, la couche du second matériau en NiP peut présenter une dureté comprise entre 900 HV et 1000 HV.When cured by heat treatment, the layer of the second NiP material may have a hardness of between 900 HV and 1000 HV.

D'une manière avantageuse, la couche du second matériau peut présenter une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm.Advantageously, the layer of the second material may have a thickness of between 0.5 μm and 10 μm, preferably between 1 μm and 5 μm, and more preferably between 1 μm and 2 μm.

De préférence, la couche du second matériau est une couche de NiP, et plus particulièrement une couche de NiP chimique, c'est-à-dire déposée par voie chimique.Preferably, the layer of the second material is a NiP layer, and more particularly a chemical NiP layer, that is to say deposited chemically.

Sont particulièrement préférées les combinaisons associant :

  • un alliage cuivre-béryllium, et plus particulièrement CuBe2Pb, comme premier matériau métallique amagnétique et une couche de NiP chimique comme couche 5 du second matériau
  • un alliage cuivre-nickel-étain, et plus particulièrement le Declafor ou le Toughmet®, comme premier matériau métallique amagnétique et une couche de NiP chimique comme couche 5 du second matériau
  • un acier inoxydable, et plus particulièrement, un acier Inox HIS, comme premier matériau métallique amagnétique et une couche de NiP chimique comme couche 5 du second matériau.
Particularly preferred combinations combining:
  • a copper-beryllium alloy, and more particularly CuBe2Pb, as the first non-magnetic metallic material and a chemical NiP layer as a layer 5 of the second material
  • a copper-nickel-tin alloy, and more particularly Declafor or Toughmet®, as the first non-magnetic metallic material and a chemical NiP layer as a layer 5 of the second material
  • a stainless steel, and more particularly, a stainless steel HIS, as the first non-magnetic metallic material and a chemical NiP layer as a layer 5 of the second material.

Par conséquent, au moins la surface externe du pivot est durcie c'est-à-dire que le reste de l'axe, peut rester peu ou pas modifié sans modification notable des propriétés mécaniques de l'axe de balancier 1. Ce durcissement sélectif des pivots 3 de l'axe de balancier 1 permet de cumuler les avantages comme la faible sensibilité aux champs magnétiques et des propriétés mécaniques permettant d'obtenir une très bonne tenue aux chocs, dans les zones de contrainte principales.Therefore, at least the outer surface of the pivot is hardened, that is to say that the rest of the axis, can remain little or no change without significant change in the mechanical properties of the balance shaft 1. This selective hardening of the pivots 3 of the balance shaft 1 makes it possible to cumulate the advantages such as the low sensitivity to the magnetic fields and the mechanical properties making it possible to obtain a very good resistance to shocks, in the main stress zones.

Afin d'améliorer la tenue de la couche du second matériau, l'axe de pivotement peut comprendre au moins une sous-couche d'adhésion déposée entre le premier matériau et la couche du second matériau. Par exemple, dans le cas notamment d'un axe de pivotement en matériau de type acier inox HIS, une sous-couche d'or et/ou une sous-couche de nickel galvanique peu(ven)t être prévue(s) sous la couche du second matériau.In order to improve the resistance of the layer of the second material, the pivot axis may comprise at least one adhesion sub-layer deposited between the first material and the layer of the second material. For example, in the case in particular of a pivot axis made of HIS stainless steel type material, a gold underlayer and / or a galvanic nickel underlayer may be provided under the layer of the second material.

L'invention se rapporte également au procédé de fabrication d'un axe de balancier comme expliqué ci-dessus. Le procédé comporte avantageusement selon l'invention les étapes suivantes :

  1. a) former, de préférence par décolletage ou toute autre technique d'usinage par enlèvement de copeaux, un axe de balancier 1 comportant au moins un pivot 3 en en premier matériau métallique amagnétique à chacune de ses extrémités, pour limiter sa sensibilité aux champs magnétiques et;
  2. b) déposer une couche 5 d'un second matériau au moins sur la surface externe dudit pivot 3, ledit second matériau étant choisi parmi le groupe comprenant Ni et NiP afin d'améliorer les propriétés mécaniques des pivots pour obtenir une résistance aux chocs appropriée au moins au niveau des zones de contraintes principales.
The invention also relates to the method of manufacturing a balance shaft as explained above. The process advantageously comprises according to the invention the following steps:
  1. a) forming, preferably by free-cutting or any other machining machining technique, a balance shaft 1 comprising at least one pivot 3 made of first non-magnetic metal material at each of its ends, to limit its sensitivity to magnetic fields and;
  2. b) depositing a layer 5 of a second material at least on the outer surface of said pivot 3, said second material being selected from the group comprising Ni and NiP in order to improve the mechanical properties of the pivots to obtain a shock resistance appropriate to the less at the level of the main stress zones.

D'une manière préférée, la couche 5 du second matériau est déposée selon l'étape b) pour présenter une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm.In a preferred manner, the layer 5 of the second material is deposited according to step b) to have a thickness of between 0.5 μm and 10 μm, preferably between 1 μm and 5 μm, and more preferably between 1 μm and 2 μm. .

Avantageusement, l'étape b) de dépôt de la couche 5 du second matériau peut être réalisée selon un procédé choisi parmi le groupe comprenant les dépôts PVD, CVD, ALD, galvanique et chimique, et de préférence chimique.Advantageously, step b) of deposition of the layer 5 of the second material may be carried out according to a process chosen from the group comprising PVD, CVD, ALD, galvanic and chemical, and preferably chemical, deposits.

Selon un mode de réalisation particulièrement préféré, le second matériau est du NiP et l'étape de dépôt de la couche 5 de NiP est réalisée selon un procédé de dépôt de nickel chimique à partir d'hypophosphite.According to a particularly preferred embodiment, the second material is NiP and the deposition step of the NiP layer 5 is carried out according to a chemical nickel deposition process from hypophosphite.

Les différents paramètres de dépôt de nickel chimique à partir d'hypophosphite à prendre en compte, tels que la teneur en phosphore dans le dépôt, le pH, la température, ou la composition du bain de nickelage sont connus de l'homme du métier. On se référera par exemple à la publication de Y. Ben Amor et al., Dépôt chimique de nickel, synthèse bibliographique, Matériaux & Techniques 102, 101 (2014 ). Toutefois, on précisera que l'on utilise de préférence des bains commerciaux à taux moyens (6-9%) et à taux élevés (9-12%) de phosphore. Il est bien évident toutefois que des bains à taux bas de phosphore ou de nickel pur peuvent aussi être utilisés.The various chemical nickel deposition parameters from hypophosphite to be taken into account, such as the phosphorus content in the deposition, the pH, the temperature, or the composition of the nickel plating bath are known to those skilled in the art. For example, the publication of Y. Ben Amor et al., Nickel Chemical Deposition, Bibliographic Synthesis, Materials & Techniques 102, 101 (2014) ). However, it will be specified that commercial baths are used at average rates (6-9%) and at high rates (9-12%) of phosphorus. It is obvious, however, that low-phosphorus or pure nickel baths can also be used.

Lorsque le second matériau est du NiP, de préférence à taux moyen ou élevé de phosphore, le procédé selon l'invention peut en outre comprendre, après l'étape de dépôt b), une étape c) de traitement thermique de la couche 5 du second matériau. Un tel traitement thermique permet d'obtenir une couche 5 du second matériau présentant une dureté comprise de préférence entre 900 HV et 1000 HV.When the second material is NiP, preferably at medium or high level of phosphorus, the process according to the invention may further comprise, after the deposition step b), a step c) of heat treatment of the layer 5 of the second material. Such a heat treatment makes it possible to obtain a layer 5 of the second material having a hardness of preferably between 900 HV and 1000 HV.

Le procédé de dépôt de nickel chimique est particulièrement avantageux en ce qu'il permet d'obtenir un dépôt conforme et ne présentant pas d'effet de pointe. Il est ainsi possible de prévoir la dimension de l'axe de pivotement décolleté pour obtenir la géométrie voulue après recouvrement par la couche du second matériau.The chemical nickel deposition process is particularly advantageous in that it makes it possible to obtain a compliant deposit that has no peak effect. It is thus possible to provide the dimension of the pivot axis of the neck to obtain the desired geometry after recovery by the layer of the second material.

Le procédé de dépôt de nickel chimique présente également l'avantage de pouvoir être appliqué en vrac.The chemical nickel deposition process also has the advantage of being applied in bulk.

Afin d'améliorer la tenue de la couche du second matériau, le procédé selon l'invention peut en outre comprendre, avant l'étape de dépôt b), une étape d) d'application d'au moins une sous-couche d'adhésion sur le premier matériau. Par exemple, dans le cas notamment d'un axe de pivotement en matériau de type acier inox HIS, il est possible d'appliquer une sous-couche d'or et/ou une sous-couche de nickel galvanique avant le dépôt de nickel par voie chimique.In order to improve the resistance of the layer of the second material, the method according to the invention may further comprise, before the deposition step b), a step d) of applying at least one sub-layer of adhesion on the first material. For example, in the case of an axis of pivoting in stainless steel type material HIS, it is possible to apply a gold underlayer and / or a galvanic nickel underlayer before the nickel deposition by chemical means.

L'axe de pivotement selon l'invention peut comprendre des pivots traités selon l'invention en appliquant l'étape b) aux seuls pivots ou être réalisé entièrement en un premier matériau métallique amagnétique, sa surface externe pouvant être recouverte entièrement d'une couche du second matériau en appliquant l'étape b) sur la totalité des surfaces de l'axe de pivotement.The pivot axis according to the invention may comprise pivots treated according to the invention by applying step b) only to the pivots or be made entirely of a first non-magnetic metallic material, its outer surface being able to be entirely covered with a layer of the second material by applying step b) on all of the surfaces of the pivot axis.

D'une manière connue, les pivots 3 peuvent être roulés ou polis avant ou après l'étape de dépôt b), afin d'atteindre les dimensions et l'état de surface finaux désirés pour les pivots 3.In a known manner, the pivots 3 can be rolled or polished before or after the deposition step b), in order to reach the final dimensions and final surface state desired for the pivots 3.

L'axe de pivotement selon l'invention cumule les avantages d'une faible sensibilité aux champs magnétiques, et au moins dans les zones de contrainte principales, d'une excellente tenue aux chocs. De ce fait, l'axe de pivotement selon l'invention ne présente, en cas de choc, aucune marque ni aucun endommagement sévère susceptible de nuire à la chronométrie du mouvement.The pivot axis according to the invention combines the advantages of a low sensitivity to magnetic fields, and at least in the main stress zones, excellent resistance to shocks. Therefore, the pivot axis according to the invention does not present, in case of impact, no mark or severe damage likely to affect the chronometry of the movement.

Les exemples suivants illustrent la présente invention sans toutefois en limiter la portée.The following examples illustrate the present invention without, however, limiting its scope.

Des axes de pivotement en acier HIS sont réalisés d'une manière connue. Les axes nus présentent une dureté de 600HV.HIS steel pivot pins are made in a known manner. The bare axles have a hardness of 600HV.

Un lot de ces axes de pivotement est traité selon le procédé de l'invention, les axes de pivotement étant recouverts d'une couche de NiP d'épaisseur égale à 1.5 µm obtenue à partir d'un bain commercial de nickelage chimique à partir d'hypophosphite.A lot of these pivot axes is treated according to the method of the invention, the pivot axes being covered with a NiP layer of thickness equal to 1.5 microns obtained from a commercial bath of chemical nickel plating from hypophosphite.

Ces axes de pivotement selon l'invention présentent une dureté de 500 HV.These pivot axes according to the invention have a hardness of 500 HV.

Tous les axes de pivotement sont soumis à un même programme de chocs standard pour l'horlogerie. Les axes nus, sans couche de NiP, sont marqués comme le montre la figure 3. Les axes recouverts d'une couche de NiP selon l'invention sont intacts, comme le montre la figure 4. Les axes de pivotement selon l'invention cumulent les avantages d'une faible sensibilité aux champs magnétiques et d'une excellente tenue aux chocs.All pivot axes are subjected to the same standard shock program for watchmaking. The bare axes, without a NiP layer, are marked as shown in figure 3 . The pins covered with a NiP layer according to the invention are intact, as shown in FIG. figure 4 . The pivot axes according to the invention combine the advantages of low sensitivity to magnetic fields and excellent resistance to shocks.

Claims (16)

Axe de pivotement (1) pour mouvement horloger comportant au moins un pivot (3) en un premier matériau (4) métallique amagnétique à au moins une de ses extrémités afin de limiter sa sensibilité aux champs magnétiques, caractérisé en ce qu'au moins la surface externe dudit pivot (3) est recouverte d'une couche (5) d'un second matériau choisi parmi le groupe comprenant Ni et NiP, et de préférence NiP chimique.Pivoting pin (1) for a watch movement comprising at least one pivot (3) made of a first non-magnetic metal material (4) at at least one end thereof in order to limit its sensitivity to magnetic fields, characterized in that at least one outer surface of said pivot (3) is covered with a layer (5) of a second material selected from the group comprising Ni and NiP, and preferably NiP chemical. Axe de pivotement (1) selon la revendication 1, caractérisé en ce qu'il est réalisé en un premier matériau métallique amagnétique afin de limiter sa sensibilité aux champs magnétiques, et en ce que sa surface externe est recouverte d'une couche d'un second matériau choisi parmi le groupe comprenant Ni et NiP, et de préférence NiP chimique.Pivot shaft (1) according to claim 1, characterized in that it is made of a first non-magnetic metallic material to limit its sensitivity to magnetic fields, and in that its outer surface is covered with a layer of a second material selected from the group consisting of Ni and NiP, and preferably NiP chemical. Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que le premier matériau (4) métallique amagnétique est choisi parmi le groupe comprenant un acier du type austénitique, un alliage de cobalt du type austénitique, un alliage de nickel du type austénitique, un alliage de titane, un alliage d'aluminium, un laiton à base de cuivre et de zinc, un cuivre-béryllium, un Maillechort, un bronze, un bronze à l'aluminium, un cuivre-aluminium, un cuivre-nickel, un cuivre-nickel-étain, un cuivre-nickel-silicium, un cuivre-nickel-phosphore, un cuivre-titane.Pivot shaft (1) according to one of the preceding claims, characterized in that the first material (4) nonmagnetic metal is selected from the group consisting of austenitic type steel, a cobalt alloy of the austenitic type, a nickel alloy austenitic type, titanium alloy, aluminum alloy, copper-zinc brass, beryllium copper, nickel silver, bronze, aluminum bronze, copper-aluminum, copper nickel, copper-nickel-tin, copper-nickel-silicon, copper-nickel-phosphorus, copper-titanium. Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que le premier matériau (4) métallique amagnétique présente une dureté inférieure à 600 HV.Pivot shaft (1) according to one of the preceding claims, characterized in that the first non-magnetic metal material (4) has a hardness of less than 600 HV. Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que la couche (5) du second matériau présente une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1µm et 5 µm, et plus préférentiellement entre 1 et 2 µm.Pivot axis (1) according to one of the preceding claims, characterized in that the layer (5) of the second material has a thickness of between 0.5 μm and 10 μm, preferably between 1 μm and 5 μm, and more preferably between 1 μm and 5 μm. and 2 μm. Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que ladite couche (5) du second matériau présente une dureté supérieure à 400 HV, de préférence supérieure à 500 HV.Pivot shaft (1) according to one of the preceding claims, characterized in that said layer (5) of the second material has a hardness greater than 400 HV, preferably greater than 500 HV. Axe de pivotement (1) selon l'une des revendications précédentes, caractérisé en ce que le premier matériau (4) métallique amagnétique est un alliage cuivre-béryllium et en ce que ladite couche (5) du second matériau est une couche de NiP chimique.Pivot pin (1) according to one of the preceding claims, characterized in that the first material (4) nonmagnetic metal is a copper-beryllium alloy and in that said layer (5) of the second material is a layer of NiP chemical . Axe de pivotement (1) selon l'une des revendications 1 à 6, caractérisé en ce que le premier matériau (4) métallique amagnétique est un alliage cuivre-nickel-étain et en ce que ladite couche (5) du second matériau est une couche de NiP chimique.Pivot shaft (1) according to one of claims 1 to 6, characterized in that the first material (4) nonmagnetic metal is a copper-nickel-tin alloy and in that said layer (5) of the second material is a chemical NiP layer. Axe de pivotement (1) selon l'une des revendications 1 à 6, caractérisé en ce que le premier matériau (4) métallique amagnétique est un acier inoxydable et en ce que ladite couche (5) du second matériau est une couche de NiP chimique.Pivot shaft (1) according to one of claims 1 to 6, characterized in that the first non-magnetic metal material (4) is a stainless steel and in that said layer (5) of the second material is a layer of chemical NiP . Mouvement pour pièce d'horlogerie, caractérisé en ce qu'il comprend un axe de pivotement (1) selon l'une des revendications précédentes.Movement for a timepiece, characterized in that it comprises a pivot pin (1) according to one of the preceding claims. Mouvement pour pièce d'horlogerie caractérisé en ce qu'il comprend un axe de balancier (1), une tige d'ancre et/ou un pignon d'échappement comprenant un axe selon l'une des revendications 1 à 9.Movement for a timepiece characterized in that it comprises a rocker shaft (1), an anchor rod and / or an exhaust pinion comprising an axis according to one of claims 1 to 9. Procédé de fabrication d'un axe de pivotement (1) pour mouvement horloger comportant les étapes suivantes : a) former un axe de pivotement (1) comportant au moins un pivot (3) en un premier matériau (4) métallique amagnétique à au moins une de ses extrémités pour limiter sa sensibilité aux champs magnétiques; b) déposer une couche (5) d'un second matériau au moins sur la surface externe dudit pivot (3), ledit second matériau étant choisi parmi le groupe comprenant Ni et NiP. A method of manufacturing a pivot axis (1) for a watch movement comprising the following steps: a) forming a pivot axis (1) comprising at least one pivot (3) of a first non-magnetic metal material (4) at at least one of its ends to limit its sensitivity to magnetic fields; b) depositing a layer (5) of a second material at least on the outer surface of said pivot (3), said second material being selected from the group consisting of Ni and NiP. Procédé selon la revendication 12, caractérisé en ce que la couche (5) du second matériau est déposée pour présenter une épaisseur comprise entre 0.5 µm et 10 µm, de préférence entre 1 µm et 5 µm, et plus préférentiellement entre 1 µm et 2 µm.Process according to Claim 12, characterized in that the layer (5) of the second material is deposited to have a thickness of between 0.5 μm and 10 μm, preferably of between 1 μm and 5 μm, and more preferentially of between 1 μm and 2 μm. . Procédé selon l'une des revendications 12 et 13, caractérisé en ce que l'étape b) de dépôt de la couche (5) du second matériau est réalisée selon un procédé choisi parmi le groupe comprenant les dépôts PVD, CVD, ALD, galvanique et chimique.Method according to one of claims 12 and 13, characterized in that step b) of depositing the layer (5) of the second material is performed by a method selected from the group consisting of PVD deposition, CVD, ALD, galvanic and chemical. Procédé selon la revendication 14, caractérisé en ce que le second matériau est du NiP et en ce que l'étape de dépôt de la couche (5) de NiP est réalisée selon un procédé de dépôt de nickel chimique à partir d'hypophosphite.Process according to Claim 14, characterized in that the second material is NiP and in that the step of depositing the NiP layer (5) is carried out according to a method of depositing chemical nickel from hypophosphite. Procédé selon l'une des revendications 12 à 15, caractérisé en en ce que le second matériau est du NiP et en ce que ledit procédé comprend en outre, après l'étape b), une étape c) de traitement thermique de la couche (5) du second matériau.Process according to one of Claims 12 to 15, characterized in that the second material is NiP and in that said process further comprises, after step b), a step c) of heat treatment of the layer ( 5) of the second material.
EP16190278.8A 2016-07-19 2016-09-23 Part for clock movement Pending EP3273306A1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
EP16190278.8A EP3273306A1 (en) 2016-07-19 2016-09-23 Part for clock movement
EP17157065.8A EP3273307A1 (en) 2016-07-19 2017-02-21 Part for clock movement
US15/652,283 US11237520B2 (en) 2016-07-19 2017-07-18 Component for a timepiece movement
CN202110652156.8A CN113296382A (en) 2016-07-19 2017-07-18 Component for a timepiece movement
CN201710584243.8A CN107632507B (en) 2016-07-19 2017-07-18 Component for a timepiece movement
JP2017138777A JP6591497B2 (en) 2016-07-19 2017-07-18 Components for watch movement
RU2017125734A RU2767960C2 (en) 2016-07-19 2017-07-18 Clockwork component
US15/652,288 US10761482B2 (en) 2016-07-19 2017-07-18 Component for a timepiece movement
JP2017138776A JP6762275B2 (en) 2016-07-19 2017-07-18 Watch movement components
US15/652,287 US11092932B2 (en) 2016-07-19 2017-07-18 Component for a timepiece movement
CN201710584247.6A CN107632510B (en) 2016-07-19 2017-07-18 Component for a timepiece movement
JP2017138778A JP6591498B2 (en) 2016-07-19 2017-07-18 Components for watch movement
RU2017125759A RU2752467C2 (en) 2016-07-19 2017-07-18 Clockwork mechanism component
CN201710584919.3A CN107632508B (en) 2016-07-19 2017-07-18 Component for a timepiece movement
HK18107788.1A HK1248327A1 (en) 2016-07-19 2018-06-15 Component for a timepiece movement
HK18108135.9A HK1248836A1 (en) 2016-07-19 2018-06-25 Component for a timepiece movement
HK18108785.2A HK1249200A1 (en) 2016-07-19 2018-07-06 Component for a timepiece movement
JP2019118340A JP2019197061A (en) 2016-07-19 2019-06-26 Component for timepiece movement
JP2019118335A JP2019203899A (en) 2016-07-19 2019-06-26 Component for timepiece movement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16180226.9A EP3273304B1 (en) 2016-07-19 2016-07-19 Part for clock movement
EP16190278.8A EP3273306A1 (en) 2016-07-19 2016-09-23 Part for clock movement

Publications (1)

Publication Number Publication Date
EP3273306A1 true EP3273306A1 (en) 2018-01-24

Family

ID=81766669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16190278.8A Pending EP3273306A1 (en) 2016-07-19 2016-09-23 Part for clock movement

Country Status (2)

Country Link
EP (1) EP3273306A1 (en)
CN (3) CN107632507B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432079A1 (en) * 2017-07-12 2019-01-23 Société anonyme de la Manufacture d'Horlogerie Audemars Piguet & Cie Horological component formed from amagnetic binary cuni alloy

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH715163A2 (en) 2018-07-10 2020-01-15 Blancpain Sa Timepiece component with non-magnetic alloy shafted part.
EP3800511B1 (en) * 2019-10-02 2022-05-18 Nivarox-FAR S.A. Pivoting shaft for a regulating organ
EP3885842B1 (en) * 2020-03-26 2024-03-20 Nivarox-FAR S.A. Non-magnetic timepiece component with improved wear resistance
EP3968095A1 (en) * 2020-09-15 2022-03-16 ETA SA Manufacture Horlogère Suisse Method for manufacturing a micromechanical component, in particular of a timepiece mobile, with optimised contact surface
EP4033307A1 (en) * 2021-01-22 2022-07-27 ETA SA Manufacture Horlogère Suisse Assembly comprising a rotating moving part made of non-magnetic material and a bearing provided with a cone
EP4075205A1 (en) * 2021-04-16 2022-10-19 ETA SA Manufacture Horlogère Suisse Method for manufacturing a timepiece mobile and timepiece mobile obtained by implementing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2015873A1 (en) 1968-08-19 1970-04-30 Inst Reinhard Straumann
CH514873A (en) * 1969-07-11 1971-07-15 Far Fab Assortiments Reunies Manufacturing process of a watch anchor
US3620005A (en) * 1967-10-04 1971-11-16 Messrs Gebruder Junghans Gmbh Ratchet wheel device for a balance wheel clock
CH572374B5 (en) * 1972-01-26 1976-02-13 Far Fab Assortiments Reunies
CH681370A5 (en) * 1992-02-25 1993-03-15 Estoppey Reber S A Solid lubricant coating prodn. for reducing friction between soft parts - by applying nickel@-phosphorus@ layer and gold@ layer and then heat treating
EP0686706A1 (en) * 1993-12-28 1995-12-13 Citizen Watch Co. Ltd. White decorative part and process for producing the same
EP1237058A1 (en) * 2001-02-28 2002-09-04 Eta SA Fabriques d'Ebauches Usage of a non-magnetic coating for covering parts in a horological movement
EP1927681A1 (en) * 2006-11-28 2008-06-04 Seiko Epson Corporation Timepiece component and timepiece having the timepiece component
EP2757423A1 (en) 2013-01-17 2014-07-23 Omega SA Part for clockwork
WO2017141222A1 (en) 2016-02-19 2017-08-24 Creaditive Ag Pinion shaft, clockwork, clock or measuring device without magnetic signature

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021229B2 (en) * 1977-12-20 1985-05-25 セイコーエプソン株式会社 electronic watch
CN100503891C (en) * 2001-09-19 2009-06-24 西铁城控股株式会社 Soft metal and method for preparation thereof, and exterior part of watch and method for preparation thereof
JP2007531824A (en) * 2004-04-05 2007-11-08 スイスメタル−ユエムエス・ユジン・メタルリュルジク・スイス・エスア Cutting lead-containing Cu-Ni-Sn alloy and method for producing the same
JP2008157912A (en) * 2006-11-28 2008-07-10 Seiko Epson Corp Timepiece component, and timepiece provided with same
US9298162B2 (en) * 2010-10-01 2016-03-29 Rolex Sa Timepiece barrel with thin disks
CH705464B1 (en) * 2011-09-05 2016-09-15 Nivarox Far Sa Ferrule for fixing a clock spring.
EP2607969B1 (en) * 2011-12-19 2014-09-17 Nivarox-FAR S.A. Clock movement with low magnetic sensitivity
EP2757424B1 (en) * 2013-01-17 2018-05-16 Omega SA Part for clockwork
CN110423968B (en) * 2013-03-14 2022-04-26 美题隆公司 Wrought copper-nickel-tin alloys and articles thereof
EP2860591A1 (en) * 2013-10-09 2015-04-15 Nivarox-FAR S.A. Assembly system using a conical resilient locking member

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3620005A (en) * 1967-10-04 1971-11-16 Messrs Gebruder Junghans Gmbh Ratchet wheel device for a balance wheel clock
FR2015873A1 (en) 1968-08-19 1970-04-30 Inst Reinhard Straumann
US3683616A (en) * 1968-08-19 1972-08-15 Straumann Inst Ag Anti-magnetic timekeeping mechanisms
CH514873A (en) * 1969-07-11 1971-07-15 Far Fab Assortiments Reunies Manufacturing process of a watch anchor
CH572374B5 (en) * 1972-01-26 1976-02-13 Far Fab Assortiments Reunies
CH681370A5 (en) * 1992-02-25 1993-03-15 Estoppey Reber S A Solid lubricant coating prodn. for reducing friction between soft parts - by applying nickel@-phosphorus@ layer and gold@ layer and then heat treating
EP0686706A1 (en) * 1993-12-28 1995-12-13 Citizen Watch Co. Ltd. White decorative part and process for producing the same
EP1237058A1 (en) * 2001-02-28 2002-09-04 Eta SA Fabriques d'Ebauches Usage of a non-magnetic coating for covering parts in a horological movement
EP1927681A1 (en) * 2006-11-28 2008-06-04 Seiko Epson Corporation Timepiece component and timepiece having the timepiece component
EP2757423A1 (en) 2013-01-17 2014-07-23 Omega SA Part for clockwork
WO2017141222A1 (en) 2016-02-19 2017-08-24 Creaditive Ag Pinion shaft, clockwork, clock or measuring device without magnetic signature
EP3417347B1 (en) * 2016-02-19 2020-06-24 Creaditive AG Pinion shaft, timepiece, clock or measuring device without magnetic signature

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. BEN AMOR ET AL.: "Dépôt chimique de nickel, synthèse bibliographique", MATÉRIAUX & TECHNIQUES, vol. 102, 2014, pages 101

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3432079A1 (en) * 2017-07-12 2019-01-23 Société anonyme de la Manufacture d'Horlogerie Audemars Piguet & Cie Horological component formed from amagnetic binary cuni alloy

Also Published As

Publication number Publication date
CN107632507A (en) 2018-01-26
CN107632508A (en) 2018-01-26
CN107632510A (en) 2018-01-26
CN107632510B (en) 2021-01-08
CN107632507B (en) 2021-01-08
CN107632508B (en) 2022-05-24

Similar Documents

Publication Publication Date Title
EP3273306A1 (en) Part for clock movement
EP3273307A1 (en) Part for clock movement
EP2757423B1 (en) Part for clockwork
EP3273303A1 (en) Part for clock movement
EP2757424A1 (en) Part for clockwork
EP3743538B1 (en) Pivoting pin of a regulator and manufacturing method therefor
CH707504A2 (en) Metal pivoting axle e.g. non-magnetic balance axle, for clockwork movement of watch, has pivot arranged at end, where axle is made of metal e.g. titanium and titanium alloy, in order to limit sensitivity of pivoting axle to magnetic fields
CH712760A2 (en) Pivot axis for watch movement.
EP3273304B1 (en) Part for clock movement
CH712718B1 (en) Pivot pin for clockwork movement.
EP3800511B1 (en) Pivoting shaft for a regulating organ
EP3273305B1 (en) Part for clock movement
EP3339968A1 (en) Part for clock movement
CH707505A2 (en) Metal pivoting axle e.g. nonmagnetic balance axle, for mechanical clockwork movement of watch, has pivot arranged at end, where axle is made of metal e.g. austenitic cobalt or nickel alloy, in order to limit sensitivity to magnetic fields
CH716664A2 (en) Non-magnetic and hard watch component, in particular the pivot axis of a regulating organ.
EP4258064A1 (en) Non-magnetic swivelling axis
CH719580A2 (en) Non-magnetic watchmaking pivot axis.
EP3885842B1 (en) Non-magnetic timepiece component with improved wear resistance
CH712720B1 (en) Pivot pin for clockwork movement.
CH713264A2 (en) Pivot axis for watch movement.
CH718550A2 (en) Watchmaking pivot pin and method of manufacturing such a watchmaking pivot pin.
CH718549A2 (en) Watch component and method of manufacturing such a watch component.
CH718939A1 (en) Pivot axis of a pivoting component of a watch movement.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180724

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210616

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230611