EP3743538B1 - Pivoting pin of a regulator and manufacturing method therefor - Google Patents

Pivoting pin of a regulator and manufacturing method therefor Download PDF

Info

Publication number
EP3743538B1
EP3743538B1 EP19702055.5A EP19702055A EP3743538B1 EP 3743538 B1 EP3743538 B1 EP 3743538B1 EP 19702055 A EP19702055 A EP 19702055A EP 3743538 B1 EP3743538 B1 EP 3743538B1
Authority
EP
European Patent Office
Prior art keywords
staff
regulating member
overthickness
manufacturing
pivots
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19702055.5A
Other languages
German (de)
French (fr)
Other versions
EP3743538A1 (en
Inventor
Maxime Danielou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Richemont International SA
Original Assignee
Richemont International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richemont International SA filed Critical Richemont International SA
Publication of EP3743538A1 publication Critical patent/EP3743538A1/en
Application granted granted Critical
Publication of EP3743538B1 publication Critical patent/EP3743538B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • G04B13/026Assembly and manufacture
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/16Barrels; Arbors; Barrel axles
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B13/00Gearwork
    • G04B13/02Wheels; Pinions; Spindles; Pivots
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B15/00Escapements
    • G04B15/14Component parts or constructional details, e.g. construction of the lever or the escape wheel
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/06Oscillators with hairsprings, e.g. balance
    • G04B17/063Balance construction
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B43/00Protecting clockworks by shields or other means against external influences, e.g. magnetic fields
    • G04B43/007Antimagnetic alloys
    • GPHYSICS
    • G04HOROLOGY
    • G04DAPPARATUS OR TOOLS SPECIALLY DESIGNED FOR MAKING OR MAINTAINING CLOCKS OR WATCHES
    • G04D3/00Watchmakers' or watch-repairers' machines or tools for working materials

Definitions

  • the present invention relates to the field of watchmaking. It relates, more particularly, to a pivot axis of a regulating member of a mechanical watch movement and even more particularly to a balance, lever or escapement mobile axis made of a non-magnetic material.
  • the manufacture of watchmaking pivot axes of the balance shaft, anchor rod or escapement pinion type consists of carrying out a succession of operations allowing, from a bar of raw material, to form an axis having precise dimensional characteristics. as well as sufficient mechanical strength with regard to the intended application.
  • watch pivot axes are produced in a known manner by precision turning or turning operations, from a martensitic carbon steel bar. These machining operations make it possible to define the functional surfaces necessary for the proper functioning of the axis (clearances, stops, pivots, etc.) and for the assembly of the various components (balance seat, plate bearing, ferrule bearing , etc.).
  • the turned pin then undergoes a deburring operation and then one or more heat treatment operations comprising at least quenching to improve the hardness of the pin and tempering to improve its toughness.
  • a rolling operation of the pivots intended to improve the surface condition, the hardness and the geometric precision, is generally carried out during or at the end of manufacturing. The rolling operation can be compared to a grinding and/or polishing operation of the pivots.
  • the pivot axes for example balance axes, traditionally used in mechanical watch movements are made from martensitic carbon steel bars having lead-type addition elements and/or or manganese.
  • Manganese is generally present in steels in the form of manganese sulphides and allows regular fragmentation of the cutting chip.
  • Lead tends to bind to non-metallic inclusions present in steel, or is found in the form of elementary particles. It acts as a lubricant, reduces the coefficient of friction at the tool/cutting zone interface and limits the formation of a material deposit on the cutting edge of the tool.
  • These addition elements therefore have the common objective of improving the machinability of the steel.
  • a steel of this type can be supplied by a large number of suppliers under the name 20AP or 1.1268+Pb.
  • martensitic lead steel In addition to good machinability, martensitic lead steel has, after quenching and tempering treatments, high mechanical properties in line with the stresses encountered by the pivot pins during their operation. Typically, the pivots of an axle made of martensitic lead steel have a hardness exceeding 600 HV1 after heat treatment and rolling. Such hardness values guarantee optimum wear resistance for the proper functioning of the oscillator over time.
  • martensitic lead steel has a major drawback: its sensitivity to magnetism.
  • the environment in which watches operate has greatly evolved in recent decades. Electronic devices and accessories incorporating permanent magnets have multiplied, thus exposing watches, and therefore their regulating organs, to increasingly high and increasingly frequent magnetic fields.
  • the martensitic leaded steel commonly used for the production of balance shafts has a non-negligible residual field after exposure to an external magnetic field.
  • the proximity of the axis to the hairspring generally made of ferromagnetic material, makes it a particularly strategic component when it is desired to improve the resistance to magnetism of watches.
  • martensitic carbon steels are also sensitive to corrosion. This drawback poses a problem mainly during the stages of manufacture and storage of the axles. In use, the pivot axes of the mechanical movement normally remain confined within the sealed zone of the watch, which does not represent a particularly constraining environment for a material, even oxidizable.
  • the document CH707503 describes a pivot pin formed from a composite material having a metal matrix comprising at least one metal chosen from nickel, titanium, chromium, zirconium, silver, gold, platinum, silicon, molybdenum , aluminum or an alloy thereof, said matrix being loaded with hard particles chosen from among WC, TiC, TaC, TiN, TiCN, Al2O3, ZrO2, Cr2O3, SiC, MoSi2, AlN or a combination thereof, in order to limit the shaft's sensitivity to magnetic fields.
  • the hardness of said composite material is greater than or equal to 1000 HV1.
  • the solution described here is not optimal.
  • the machining by cutting tool of metal matrices loaded with hard particles generates premature wear of the tools. In operation, the pivoting of such an axis in a ruby bearing also generates premature wear at the level of the bearing.
  • the document CH707504 describes a titanium or titanium alloy pivot pin to limit its sensitivity to magnetic fields. At least the outer surface of the pivots is partially or totally hardened with respect to the core of the axle according to a predetermined depth, the outer surface has a hardness greater than 800 HV1. The solution described here is not optimal. The surface hardening of the pivots adds a step in the already complex process of obtaining a balance shaft. In addition, titanium alloys require special precautions during machining, particularly with regard to the risk of fire.
  • the document CH707505 describes a pivot pin made of austenitic-type steel, austenitic-type cobalt alloy or austenitic-type nickel alloy in order to limit its sensitivity to magnetic fields. At least the external surface of the pivots is hardened with respect to the core of the axle according to a predetermined depth, the external surface has a hardness greater than 1000 HV1. The solution described here does not seem optimal. The surface hardening of the pivots adds a step in the already complex process of obtaining a balance shaft. This hardening occurring after the pivot termination step(s), the handling precautions taken during this processing step must be important so as not to risk marking or twisting the pivots.
  • the document EP3273303 describes a balance shaft made of a non-magnetic copper alloy.
  • the pivots are rolled or polished in order to remove an extra thickness of material and thus achieve the final dimensions and surface finish.
  • the surface is hardened by means of a thermal and/or thermochemical diffusion treatment or an ion implantation of other atoms, down to a predetermined depth.
  • This alloy after treatment, can have an interesting hardness, greater than 600 HV, but the treatment methods used are complicated, require specialized equipment and are difficult to control, in particular with regard to ionic diffusion.
  • the document EP3273304 also describes an axle made of a similar alloy, which has a layer of hard material deposited on its surface. Ideally, the aim is to avoid additional surface deposition, which again is complicated to perform and requires specialized equipment.
  • the document US9194024 describes an alloy for jewelry, the composition of which is chosen to obtain a substantially white color, comparable to platinum alloys. After hardening by aging, the alloy only reaches a hardness of up to around 240 HV, which is insufficient for a watch axis.
  • the object of the present invention is to propose a shaft made of a non-magnetic material as an alternative to the various solutions of the prior art and overcoming, at least partially, their drawbacks.
  • the invention relates to a pivot axis of a regulating member of a mechanical watch movement, and more particularly still to a balance, lever or escapement mobile axis.
  • the applicant has identified a family of alloys having particularly advantageous properties for application to the axes of regulating members of mechanical movements, in particular in terms of magnetism and resistance to oxidation.
  • an alloy of the type consisting of 41% palladium, 37.5% silver, 20% copper, 1% zinc and 0.5% platinum does not have a detectable attractive action when it is exposed to a permanent magnet. It also shows no measurable remanent magnetization after exposure to the magnet.
  • Palladium-Silver-Copper alloys have a higher resistance to oxidation than that of martensitic carbon steels thanks in particular to the presence of palladium, a chemical element of the platinum group.
  • Palladium makes it possible to improve the following characteristics of the alloy, which are particularly interesting in the case of use for a pivot pin: chemical inertness, resistance to corrosion and oxidation, low coefficient of thermal expansion and mechanical durability.
  • Another aspect of the invention relates to a method of manufacturing a pivot pin of a regulating member, the steps of which we will now describe.
  • the first step in the process of obtaining an axis according to the invention consists in obtaining a bar of bar turning of the Palladium-Silver-Copper alloy having a composition belonging to the family of alloys as defined below. above. Different shades are available from various suppliers. The latter carry out the alloying steps and the bar shaping steps (drawing, drawing, etc.) in order to offer a bar in standard bar-turning dimensions. Typically 2-3mm in diameter by 2000-3000mm long. It goes without saying that the chemical composition of the bar will be the same as that of the axis made from this bar.
  • the Vickers hardness of the stretched material used to make the shaft is preferably of the order of 260-310 HV1. After heat hardening at 380-420°C, the hardness value can rise to 460-500HV1. This heat treatment can last between 30 minutes and 2 hours, more particularly for between 45 minutes and 1h30, even more particularly for 1h, and the hardness value after hardening remains lower than what can be encountered on a 20AP steel after rolling, typically more than 700HV1.
  • the hardening heat treatment can be carried out at any time during the process of obtaining the axis.
  • This hardening can be carried out on the bar upon receipt if the machining requires high hardness.
  • the hardening is carried out after machining and before the step or steps of treating the surface state of the pin.
  • the next step in the process for obtaining an axis according to the invention consists in shaping it by a turning step. This is carried out in the traditional way on the same equipment as those used to machine pins in martensitic carbon steel according to the prior art. An adaptation of the cutting parameters is necessary in order to optimize the quality and the yield of the bar turning step. In the case of the pendulum axis, its radius being very small, even at high spindle speed, the cutting speeds reached during machining are limited.
  • the balance shaft has two small diameter zones, the pivots 10, located at the ends of the shaft as well as several larger diameter zones forming the body of the shaft 20.
  • a cutting speed of 20 to 23 m/min with a feed of 0.0015 mm/rev For example, at the level of the pivots, it is possible to use a cutting speed of 20 to 23 m/min with a feed of 0.0015 mm/rev. At the spindle body, a cutting speed of 20 to 23 m/min and a feed rate of 0.002 mm/rev to 0.005 mm/rev can be used.
  • the step of turning it is necessary to provide one or more additional thicknesses depending on the treatment operations of the surface state of the axis envisaged. If the turning step is sufficiently repeatable and makes it possible to obtain a sufficient geometric tolerance for the application envisaged, a simple polishing of the functional zones will have to be carried out.
  • An extra thickness (e1) corresponding to the quantity of material removed during polishing must be added to the part compared to the final dimensions.
  • the figure 2 illustrates, by way of example, a balance staff after the cutting step.
  • the picture 3 illustrates, by way of example, a balance staff after the polishing step. Referring to fig 4, the step of turning will make it possible to obtain profile 2 at the level of the pivot with an extra thickness (e1) compared to profile 1.
  • the polishing step will bring the profile of the pivot to the level of its final profile 1.
  • the extra thickness (e1) is typically around 2 ⁇ m in diameter but can be adapted according to the polishing envisaged (duration, type of abrasive particles used, etc.).
  • an extra thickness (e2) corresponding to the quantity of material removed during this grinding or rolling step must be added to the part or to the pivots at the turning stage.
  • the additional thickness (e2) is typically of the order of 20 ⁇ m over the length and 5 ⁇ m over the diameter but can be adapted according to the rolling or grinding function envisaged.
  • the turning should therefore be done at the level of profile 3, as shown in figure 4 .
  • Rolling will bring the pivot to the level of profile 2 as shown in figure 4 .
  • a surface treatment can be added at the end of the process to obtain profile 1.

Description

Domaine technique Technical area

La présente invention se rapporte au domaine de l'horlogerie. Elle concerne, plus particulièrement, un axe de pivotement d'un organe réglant d'un mouvement mécanique d'horlogerie et plus particulièrement encore un axe de balancier, d'ancre ou de mobile d'échappement réalisé dans un matériau amagnétique.The present invention relates to the field of watchmaking. It relates, more particularly, to a pivot axis of a regulating member of a mechanical watch movement and even more particularly to a balance, lever or escapement mobile axis made of a non-magnetic material.

Etat de la techniqueState of the art

La fabrication des axes de pivotement horloger type axe de balancier, tige d'ancre ou pignon d'échappement consiste à réaliser une succession d'opérations permettant, à partir d'une barre de matière brute, de former un axe ayant des caractéristiques dimensionnelles précises ainsi qu'une résistance mécanique suffisante au regard de l'application envisagée.The manufacture of watchmaking pivot axes of the balance shaft, anchor rod or escapement pinion type consists of carrying out a succession of operations allowing, from a bar of raw material, to form an axis having precise dimensional characteristics. as well as sufficient mechanical strength with regard to the intended application.

De par leur forme générale de révolution, les axes de pivotement horlogers sont réalisés de manière connue par des opérations de décolletage ou tournage de précision, à partir d'une barre en acier martensitique au carbone. Ces opérations d'usinage permettent de définir des surfaces fonctionnelles nécessaires au bon fonctionnement de l'axe (dégagements, butées, pivots...) et à l'assemblage des différents composants (assise de balancier, portée du plateau, portée de la virole, etc.). L'axe décolleté subit ensuite une opération d'ébavurage puis, une ou plusieurs opérations de traitement thermique comprenant au moins une trempe pour améliorer la dureté de l'axe et un revenu pour en améliorer la ténacité. Une opération de roulage des pivots, destinée à améliorer l'état de surface, la dureté et la précision géométrique, est généralement réalisée en cours ou en fin de fabrication. L'opération de roulage peut être comparée à une opération de meulage et/ou polissage des pivots.Owing to their general shape of revolution, watch pivot axes are produced in a known manner by precision turning or turning operations, from a martensitic carbon steel bar. These machining operations make it possible to define the functional surfaces necessary for the proper functioning of the axis (clearances, stops, pivots, etc.) and for the assembly of the various components (balance seat, plate bearing, ferrule bearing , etc.). The turned pin then undergoes a deburring operation and then one or more heat treatment operations comprising at least quenching to improve the hardness of the pin and tempering to improve its toughness. A rolling operation of the pivots, intended to improve the surface condition, the hardness and the geometric precision, is generally carried out during or at the end of manufacturing. The rolling operation can be compared to a grinding and/or polishing operation of the pivots.

De manière plus spécifique, les axes de pivotement, par exemple les axes de balancier, utilisés de manière traditionnelle dans les mouvements d'horlogerie mécanique sont réalisés à partir de barres en acier martensitique au carbone présentant des éléments d'addition de type plomb et/ou manganèse. Le manganèse est généralement présent dans les aciers sous forme de sulfures de manganèse et permet une fragmentation régulière du copeau de coupe. Le plomb tend à se lier aux inclusions non-métalliques présentes dans l'acier, ou se trouve sous forme de particules élémentaires. Il agit comme lubrifiant, réduit le coefficient de frottement au niveau de l'interface outil/zone de coupe et limite la formation d'un dépôt de matière sur le tranchant de l'outil. Ces éléments d'addition ont donc pour objectif commun l'amélioration de l'usinabilité de l'acier. Un acier de ce type peut être approvisionné chez un grand nombre de fournisseurs sous la dénomination 20AP ou 1.1268+Pb.More specifically, the pivot axes, for example balance axes, traditionally used in mechanical watch movements are made from martensitic carbon steel bars having lead-type addition elements and/or or manganese. Manganese is generally present in steels in the form of manganese sulphides and allows regular fragmentation of the cutting chip. Lead tends to bind to non-metallic inclusions present in steel, or is found in the form of elementary particles. It acts as a lubricant, reduces the coefficient of friction at the tool/cutting zone interface and limits the formation of a material deposit on the cutting edge of the tool. These addition elements therefore have the common objective of improving the machinability of the steel. A steel of this type can be supplied by a large number of suppliers under the name 20AP or 1.1268+Pb.

Outre une bonne usinabilité, l'acier martensitique au plomb présente, après des traitements de trempe et de revenu, des propriétés mécaniques élevées en adéquation avec les sollicitations rencontrées par les axes de pivotement lors de leur fonctionnement. Typiquement, les pivots d'un axe réalisé en acier martensitique au plomb présentent une dureté dépassant les 600 HV1 après traitement thermique et roulage. De telles valeurs de dureté garantissent une résistance à l'usure optimale pour le bon fonctionnement de l'oscillateur dans le temps.In addition to good machinability, martensitic lead steel has, after quenching and tempering treatments, high mechanical properties in line with the stresses encountered by the pivot pins during their operation. Typically, the pivots of an axle made of martensitic lead steel have a hardness exceeding 600 HV1 after heat treatment and rolling. Such hardness values guarantee optimum wear resistance for the proper functioning of the oscillator over time.

Malgré les avantages d'usinabilité et de résistance mécanique, l'acier martensitique au plomb présente un inconvénient majeur : sa sensibilité au magnétisme. L'environnement dans lequel évoluent les montres, a fortement évolué au cours de dernières décennies. Les appareils électroniques et les accessoires intégrant des aimants permanents se sont multipliés, exposant ainsi les montres, et donc les organes réglant de ces dernières, à des champs magnétiques de plus en plus élevés et de manière de plus en plus fréquente. L'acier martensitique au plomb couramment utilisé pour la réalisation d'axes de balancier présente un champ rémanent non négligeable après exposition à un champ magnétique extérieur. La proximité de l'axe avec le spiral, généralement réalisé en matériau ferromagnétique, en fait un composant particulièrement stratégique lorsque l'on souhaite améliorer la résistance au magnétisme des montres.Despite the advantages of machinability and mechanical strength, martensitic lead steel has a major drawback: its sensitivity to magnetism. The environment in which watches operate has greatly evolved in recent decades. Electronic devices and accessories incorporating permanent magnets have multiplied, thus exposing watches, and therefore their regulating organs, to increasingly high and increasingly frequent magnetic fields. The martensitic leaded steel commonly used for the production of balance shafts has a non-negligible residual field after exposure to an external magnetic field. The proximity of the axis to the hairspring, generally made of ferromagnetic material, makes it a particularly strategic component when it is desired to improve the resistance to magnetism of watches.

On notera que les aciers martensitiques au carbone sont également sensibles à la corrosion. Cet inconvénient pose problème principalement lors des étapes de fabrication et de stockage des axes. A l'usage, les axes de pivotement du mouvement mécanique restent normalement confinés à l'intérieur de la zone étanche de la montre, ce qui ne représente pas un milieu particulièrement contraignant pour une matière, même oxydable.It should be noted that martensitic carbon steels are also sensitive to corrosion. This drawback poses a problem mainly during the stages of manufacture and storage of the axles. In use, the pivot axes of the mechanical movement normally remain confined within the sealed zone of the watch, which does not represent a particularly constraining environment for a material, even oxidizable.

Le document CH707503 décrit un axe de pivotement formé d'un matériau composite ayant une matrice métallique comprenant au moins un métal choisi parmi le nickel, le titane, le chrome, le zirconium, l'argent, l'or, le platine, le silicium, le molybdène, l'aluminium ou un alliage de ces derniers, ladite matrice étant chargée de particules dures choisies parmi WC, TiC, TaC, TiN, TiCN, Al2O3, ZrO2, Cr2O3, SiC, MoSi2, AIN ou une combinaison de ces derniers, afin de limiter la sensibilité de l'axe aux champs magnétiques. La dureté dudit matériau composite est supérieure ou égale à 1000 HV1. La solution ici décrite n'est pas optimale. L'usinage par outil coupant de matrices métalliques chargées en particules dures génère une usure prématurée des outils. En fonctionnement, le pivotement d'un tel axe dans un palier en rubis génère également de l'usure prématurée au niveau du palier.The document CH707503 describes a pivot pin formed from a composite material having a metal matrix comprising at least one metal chosen from nickel, titanium, chromium, zirconium, silver, gold, platinum, silicon, molybdenum , aluminum or an alloy thereof, said matrix being loaded with hard particles chosen from among WC, TiC, TaC, TiN, TiCN, Al2O3, ZrO2, Cr2O3, SiC, MoSi2, AlN or a combination thereof, in order to limit the shaft's sensitivity to magnetic fields. The hardness of said composite material is greater than or equal to 1000 HV1. The solution described here is not optimal. The machining by cutting tool of metal matrices loaded with hard particles generates premature wear of the tools. In operation, the pivoting of such an axis in a ruby bearing also generates premature wear at the level of the bearing.

Le document CH707504 décrit un axe de pivotement en titane ou en alliage de titane afin de limiter sa sensibilité aux champs magnétiques. Au moins la surface externe des pivots est en partie ou en totalité durcie par rapport au cœur de l'axe selon une profondeur prédéterminée, la surface externe comporte une dureté supérieure à 800 HV1. La solution ici décrite n'est pas optimale. Le durcissement superficiel des pivots ajoute une étape dans le processus déjà complexe d'obtention d'un axe de balancier. De plus, les alliages de titane nécessitent des précautions particulières lors de l'usinage en particulier au regard des risques d'incendie.The document CH707504 describes a titanium or titanium alloy pivot pin to limit its sensitivity to magnetic fields. At least the outer surface of the pivots is partially or totally hardened with respect to the core of the axle according to a predetermined depth, the outer surface has a hardness greater than 800 HV1. The solution described here is not optimal. The surface hardening of the pivots adds a step in the already complex process of obtaining a balance shaft. In addition, titanium alloys require special precautions during machining, particularly with regard to the risk of fire.

Le document CH707505 décrit un axe de pivotement en acier du type austénitique, en alliage de cobalt du type austénitique ou en alliage de nickel du type austénitique afin de limiter sa sensibilité aux champs magnétiques. Au moins la surface externe des pivots est durcie par rapport au cœur de l'axe selon une profondeur prédéterminée, la surface externe comporte une dureté supérieure à 1000 HV1. La solution ici décrite ne semble pas optimale. Le durcissement superficiel des pivots ajoute une étape dans le processus déjà complexe d'obtention d'un axe de balancier. Ce durcissement intervenant après le ou les étapes de terminaison des pivots, les précautions de manipulation prises lors de cette étape de traitement doivent être importantes pour ne pas risquer de marquer ou tordre les pivots.The document CH707505 describes a pivot pin made of austenitic-type steel, austenitic-type cobalt alloy or austenitic-type nickel alloy in order to limit its sensitivity to magnetic fields. At least the external surface of the pivots is hardened with respect to the core of the axle according to a predetermined depth, the external surface has a hardness greater than 1000 HV1. The solution described here does not seem optimal. The surface hardening of the pivots adds a step in the already complex process of obtaining a balance shaft. This hardening occurring after the pivot termination step(s), the handling precautions taken during this processing step must be important so as not to risk marking or twisting the pivots.

Le document EP3273303 décrit un axe de balancier réalisé dans un alliage amagnétique de cuivre. Lors de la fabrication de l'axe, les pivots sont roulés ou polis afin d'enlever une surépaisseur de matériau et ainsi d'atteindre les dimensions et l'état de surface finaux. Par ailleurs, la surface est durcie par l'intermédiaire d'un traitement thermique et/ou thermochimique de diffusion ou une implantation ionique d'autres atomes, jusqu'à une profondeur prédéterminée. Cet alliage, après traitement, peut présenter une dureté intéressante, supérieure à 600 HV, mais les procédés de traitement utilisés sont compliqués, nécessite des équipements spécialisés et sont difficile à maitriser, notamment en ce qui concerne la diffusion ionique. Le document EP3273304 décrit également un axe fait en un alliage similaire, qui est muni d'une couche de matériau dur déposée sur sa surface. Idéalement, on vise à éviter un dépôt supplémentaire de surface, ce qui est à nouveau compliqué à effectuer et nécessite des équipements spécialisés.The document EP3273303 describes a balance shaft made of a non-magnetic copper alloy. During the production of the axle, the pivots are rolled or polished in order to remove an extra thickness of material and thus achieve the final dimensions and surface finish. In addition, the surface is hardened by means of a thermal and/or thermochemical diffusion treatment or an ion implantation of other atoms, down to a predetermined depth. This alloy, after treatment, can have an interesting hardness, greater than 600 HV, but the treatment methods used are complicated, require specialized equipment and are difficult to control, in particular with regard to ionic diffusion. The document EP3273304 also describes an axle made of a similar alloy, which has a layer of hard material deposited on its surface. Ideally, the aim is to avoid additional surface deposition, which again is complicated to perform and requires specialized equipment.

Le document US9194024 décrit un alliage pour bijouterie, dont la composition est choisie pour obtenir une couleur substantiellement blanc, comparable à des alliages de platine. Après durcissement par vieillissement, l'alliage n'atteint qu'une dureté jusqu'à environ 240 HV, ce qui est insuffisante pour un axe horloger.The document US9194024 describes an alloy for jewelry, the composition of which is chosen to obtain a substantially white color, comparable to platinum alloys. After hardening by aging, the alloy only reaches a hardness of up to around 240 HV, which is insufficient for a watch axis.

Le document WO 98/45489 dévoile des alliages prévus pour des contacts électriques, mais n'enseigne rien et n'est pas pertinent par rapport à un axe horloger.The document WO 98/45489 reveals alloys intended for electrical contacts, but does not teach anything and is not relevant to a watchmaking axis.

Le but de la présente invention est de proposer un axe réalisé dans une matière amagnétique en alternative aux différentes solutions de l'art antérieur et remédiant, au moins partiellement, à leurs inconvénients.The object of the present invention is to propose a shaft made of a non-magnetic material as an alternative to the various solutions of the prior art and overcoming, at least partially, their drawbacks.

Divulguation de l'inventionDisclosure of invention

L'invention est décrite dans les revendications annexées.The invention is described in the appended claims.

Brève description des dessins Brief description of the drawings

D'autres détails de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite en référence au dessin annexé dans lequel :

  • La fig. 1 est une représentation d'un axe de pivotement selon l'invention, au stade décolleté;
  • La fig. 2 est une représentation d'un axe de pivotement selon l'invention, au stade roulé;
  • La fig. 3 est une représentation d'un axe de pivotement selon l'invention, au stade terminé;
  • La fig. 4 est une représentation d'un axe de pivotement selon l'invention, montrant les différentes surépaisseurs susceptibles d'intervenir dans le processus.
Other details of the invention will appear more clearly on reading the following description, made with reference to the appended drawing in which:
  • The fig. 1 is a representation of a pivot pin according to the invention, at the neckline stage;
  • The fig. 2 is a representation of a pivot pin according to the invention, in the rolled stage;
  • The fig. 3 is a representation of a pivot pin according to the invention, at the finished stage;
  • The fig. 4 is a representation of a pivot axis according to the invention, showing the different extra thicknesses likely to occur in the process.

Mode de réalisation de l'inventionEmbodiment of the invention

L'invention se rapporte à un axe de pivotement d'un organe réglant d'un mouvement mécanique d'horlogerie, et plus particulièrement encore à un axe de balancier, d'ancre ou de mobile d'échappement.The invention relates to a pivot axis of a regulating member of a mechanical watch movement, and more particularly still to a balance, lever or escapement mobile axis.

La demanderesse a identifié une famille d'alliage présentant des propriétés particulièrement intéressantes pour une application à des axes d'organe réglant de mouvement mécanique, notamment en termes de magnétisme et de résistance à l'oxydation.The applicant has identified a family of alloys having particularly advantageous properties for application to the axes of regulating members of mechanical movements, in particular in terms of magnetism and resistance to oxidation.

Les alliages de cette famille présentent, en poids :

  • entre 25% et 55% de palladium
  • entre 25% et 55% d'argent
  • entre 10% et 30% de cuivre
  • entre 0% et 5% de zinc
  • entre 0% et 2% d'un ou plusieurs éléments choisis parmi rhénium, ruthénium, or et platine
  • entre 0% et 1% d'un ou plusieurs éléments choisis parmi bore et nickel.
The alloys of this family have, by weight:
  • between 25% and 55% palladium
  • between 25% and 55% silver
  • between 10% and 30% copper
  • between 0% and 5% zinc
  • between 0% and 2% of one or more elements selected from rhenium, ruthenium, gold and platinum
  • between 0% and 1% of one or more elements chosen from boron and nickel.

De préférence, les alliages en question comprennent en poids :

  • entre 38% et 43% de palladium ; et/ou
  • entre 35% et 40% d'argent ; et/ou
  • entre 18% et 23% de cuivre ; et/ou
  • entre 0.5% et 1.5% de zinc.
Preferably, the alloys in question comprise by weight:
  • between 38% and 43% palladium; and or
  • between 35% and 40% silver; and or
  • between 18% and 23% copper; and or
  • between 0.5% and 1.5% zinc.

Plus particulièrement parmi cette famille d'alliage, un alliage du type constitué de 41% de palladium, 37.5% d'argent, 20% de cuivre, 1% de zinc et 0.5% de platine ne présente pas d'action attractive décelable lorsqu'il est exposé à un aimant permanent. Il ne présente pas non plus d'aimantation rémanente mesurable après exposition à l'aimant.More particularly among this family of alloys, an alloy of the type consisting of 41% palladium, 37.5% silver, 20% copper, 1% zinc and 0.5% platinum does not have a detectable attractive action when it is exposed to a permanent magnet. It also shows no measurable remanent magnetization after exposure to the magnet.

La demanderesse a également identifié que les alliages Palladium-Argent-Cuivre présentent une résistance à l'oxydation plus élevée que celle des aciers martensitiques au carbone grâce notamment à la présence de palladium, un élément chimique du groupe du platine. Le palladium permet d'améliorer les caractéristiques suivantes de l'alliage, qui sont particulièrement intéressantes dans le cas d'une utilisation pour un axe de pivotement : inertie chimique, résistance à la corrosion et à l'oxydation, faible coefficient d'expansion thermique et durabilité mécanique.The Applicant has also identified that Palladium-Silver-Copper alloys have a higher resistance to oxidation than that of martensitic carbon steels thanks in particular to the presence of palladium, a chemical element of the platinum group. Palladium makes it possible to improve the following characteristics of the alloy, which are particularly interesting in the case of use for a pivot pin: chemical inertness, resistance to corrosion and oxidation, low coefficient of thermal expansion and mechanical durability.

Un autre aspect de l'invention concerne un procédé de fabrication d'un axe de pivotement d'un organe réglant dont nous allons maintenant décrire les étapes.Another aspect of the invention relates to a method of manufacturing a pivot pin of a regulating member, the steps of which we will now describe.

La première étape du processus d'obtention d'un axe selon l'invention consiste à se doter d'une barre de décolletage de l'alliage Palladium-Argent-Cuivre présentant une composition appartenant à la famille d'alliage telle que définie ci-dessus. Différentes nuances sont disponibles chez divers fournisseurs. Ces derniers réalisent les étapes de mise en alliage et les étapes de mise en forme de la barre (tréfilage, étirage...) afin de proposer une barre dans les dimensions standards de décolletage. Généralement 2-3mm de diamètre sur 2000-3000mm de long. Il va sans dire que la composition chimique de la barre sera pareille à celle de l'axe fabriqué à partir de cette barre.The first step in the process of obtaining an axis according to the invention consists in obtaining a bar of bar turning of the Palladium-Silver-Copper alloy having a composition belonging to the family of alloys as defined below. above. Different shades are available from various suppliers. The latter carry out the alloying steps and the bar shaping steps (drawing, drawing, etc.) in order to offer a bar in standard bar-turning dimensions. Typically 2-3mm in diameter by 2000-3000mm long. It goes without saying that the chemical composition of the bar will be the same as that of the axis made from this bar.

La dureté Vickers de la matière étirée servant à réaliser l'axe est de préférence de l'ordre de 260-310 HV1. Après durcissement thermique à 380-420°C, la valeur de dureté peut monter à 460-500HV1. Ce traitement thermique peut durer entre 30 minutes et 2 heures, plus particulièrement pendant entre 45 minutes et 1h30, encore plus particulièrement pendant 1h, et la valeur de dureté après durcissement reste inférieure à ce qu'on peut rencontrer sur un acier 20AP après roulage, typiquement plus de 700HV1.The Vickers hardness of the stretched material used to make the shaft is preferably of the order of 260-310 HV1. After heat hardening at 380-420°C, the hardness value can rise to 460-500HV1. This heat treatment can last between 30 minutes and 2 hours, more particularly for between 45 minutes and 1h30, even more particularly for 1h, and the hardness value after hardening remains lower than what can be encountered on a 20AP steel after rolling, typically more than 700HV1.

Le traitement thermique de durcissement peut être réalisé à tout moment du processus d'obtention de l'axe. Ce durcissement peut être réalisé sur la barre à réception si l'usinage nécessite une dureté élevée. Préférentiellement, le durcissement est réalisé après usinage et avant la ou les étapes de traitement de l'état de surface de l'axe.The hardening heat treatment can be carried out at any time during the process of obtaining the axis. This hardening can be carried out on the bar upon receipt if the machining requires high hardness. Preferably, the hardening is carried out after machining and before the step or steps of treating the surface state of the pin.

Lorsqu'on quantifie la pression d'Hertz au niveau du pivotement de l'axe, on remarque que le faible module d'Young de l'alliage Palladium-Argent-Cuivre permet d'abaisser la pression maximale observée au niveau du contact de l'axe avec la pierre de pivotement. Lors d'un contact entre deux matériaux de module d'Young E1 et E2, le module d'élasticité équivalent E servant à déterminer la rigidité du contact est calculé comme suit : 1 E = 1 2 1 E 1 + 1 E 2

Figure imgb0001
When one quantifies the Hertz pressure at the level of the pivoting of the axis, one notices that the low Young's modulus of the Palladium-Silver-Copper alloy makes it possible to lower the maximum pressure observed at the level of the contact of the axis with pivot stone. During a contact between two materials of Young's modulus E 1 and E 2 , the equivalent modulus of elasticity E used to determine the rigidity of the contact is calculated as follows: 1 E = 1 2 1 E 1 + 1 E 2
Figure imgb0001

La pression maximum observée au niveau du contact est donnée par la formule suivante : Pmax 0.418 F . E rr . l

Figure imgb0002

  • F = effort normal sur le contact
  • E = module d'élasticité équivalent précédemment défini rr et I = sont des paramètres géométriques du contact.
The maximum pressure observed at the level of the contact is given by the following formula: Pmax 0.418 F . E rr . I
Figure imgb0002
  • F = normal force on the contact
  • E = equivalent modulus of elasticity previously defined rr and I = are geometric parameters of the contact.

Pour un effort normal F donné, et à géométrie de contact équivalente, nous observons que la pression maximum est proportionnelle à E

Figure imgb0003
.For a given normal force F, and with equivalent contact geometry, we observe that the maximum pressure is proportional to E
Figure imgb0003
.

Avec une application numérique, nous nous apercevons que E

Figure imgb0004
est en baisse de plus de 20% lorsque nous passons d'un contact Acier (220GPa) sur rubis (350GPa) à un contact alliage PdAgCu (100GPa) sur rubis (350GPa) à géométrie équivalente. Cas n°1 Acier - Rubis Cas n°2 PdAgCu - Rubis E1 220 GPa 100 GPa E2 350 GPa 350 GPa E calculé avec (1) 270.2 GPa 155.6 GPa √E 16.4 12.5 With a numerical application, we find that E
Figure imgb0004
is down by more than 20% when we go from a Steel contact (220GPa) on ruby (350GPa) to a PdAgCu alloy contact (100GPa) on ruby (350GPa) with equivalent geometry. Case n°1 Steel - Ruby Case n°2 PdAgCu - Ruby E1 220GPa 100GPa E2 350GPa 350GPa E calculated with (1) 270.2GPa 155.6GPa √E 16.4 12.5

Ainsi, malgré une dureté plus faible, on constate que la résistance à l'usure du contact est toujours satisfaisante. Cela s'explique par la baisse de la pression de contact, permettant ainsi d'utiliser un axe avec une dureté plus faible sans compromettre la résistance à l'usure du contact, typiquement 460-500HV1 pour l'axe réalisé en alliage Palladium-Argent-Cuivre contre 600-700HV1 pour un axe standard en Acier Martensitique au carbone. L'utilisation d'un alliage de dureté plus faible facilite les opérations d'enlèvement de matière et de mise en forme.Thus, despite a lower hardness, it is found that the wear resistance of the contact is still satisfactory. This is explained by the drop in contact pressure, thus allowing the use of a pin with a lower hardness without compromising the wear resistance of the contact, typically 460-500HV1 for the pin made of Palladium-Silver alloy -Copper versus 600-700HV1 for a standard Carbon Martensitic Steel axle. The use of a lower hardness alloy facilitates material removal and shaping operations.

L'étape suivante du processus d'obtention d'un axe selon l'invention, consiste à le mettre en forme par une étape de décolletage. Celle-ci est réalisée de manière traditionnelle sur les mêmes équipements que ceux servant à usiner des axes en acier martensitique au carbone selon l'art antérieur. Une adaptation des paramètres de coupe est nécessaire afin d'optimiser la qualité et le rendement de l'étape de décolletage. Dans le cas de l'axe du balancier, son rayon étant très petit, même à forte vitesse de broche, les vitesses de coupe atteintes lors de l'usinage sont limitées. En se référant à la figure 1, l'axe de balancier présente deux zones de faible diamètre, les pivots 10, situées aux extrémités de l'axe ainsi que plusieurs zones de diamètre plus important formant le corps de l'axe 20.The next step in the process for obtaining an axis according to the invention consists in shaping it by a turning step. This is carried out in the traditional way on the same equipment as those used to machine pins in martensitic carbon steel according to the prior art. An adaptation of the cutting parameters is necessary in order to optimize the quality and the yield of the bar turning step. In the case of the pendulum axis, its radius being very small, even at high spindle speed, the cutting speeds reached during machining are limited. By referring to the figure 1 , the balance shaft has two small diameter zones, the pivots 10, located at the ends of the shaft as well as several larger diameter zones forming the body of the shaft 20.

A titre d'exemple, au niveau des pivots, il est possible d'utiliser une vitesse de coupe de 20 à 23 m/min avec une avance de 0.0015 mm/tr. Au niveau du corps de l'axe, une vitesse de coupe de 20 à 23 m/min et une avance 0.002 mm/tr à 0.005 mm/tr peuvent être utilisées.For example, at the level of the pivots, it is possible to use a cutting speed of 20 to 23 m/min with a feed of 0.0015 mm/rev. At the spindle body, a cutting speed of 20 to 23 m/min and a feed rate of 0.002 mm/rev to 0.005 mm/rev can be used.

Lors de cette étape de décolletage, il est nécessaire de prévoir une ou plusieurs surépaisseurs en fonction des opérations de traitement de l'état de surface de l'axe envisagées. Si l'étape de décolletage est suffisamment répétable et permet d'obtenir une tolérance géométrique suffisante pour l'application envisagée, un simple polissage des zones fonctionnelles devra être effectué. Une surépaisseur (e1) correspondant à la quantité de matière retirée lors du polissage devra être ajoutée sur la pièce par rapport aux dimensions finales. La figure 2 illustre, à titre d'exemple, un axe de balancier après l'étape de décolletage. La figure 3 illustre, à titre d'exemple, un axe de balancier après l'étape de polissage. En se référant à la figue 4, l'étape de décolletage permettra d'obtenir le profil 2 au niveau du pivot avec une surépaisseur (e1) par rapport au profil 1. L'étape de polissage amènera le profil du pivot au niveau de son profil final 1. La surépaisseur (e1) est typiquement de l'ordre de 2µm au diamètre mais peut être adaptée en fonction du polissage envisagé (durée, type de particules abrasives utilisées...).During this step of turning, it is necessary to provide one or more additional thicknesses depending on the treatment operations of the surface state of the axis envisaged. If the turning step is sufficiently repeatable and makes it possible to obtain a sufficient geometric tolerance for the application envisaged, a simple polishing of the functional zones will have to be carried out. An extra thickness (e1) corresponding to the quantity of material removed during polishing must be added to the part compared to the final dimensions. The figure 2 illustrates, by way of example, a balance staff after the cutting step. The picture 3 illustrates, by way of example, a balance staff after the polishing step. Referring to fig 4, the step of turning will make it possible to obtain profile 2 at the level of the pivot with an extra thickness (e1) compared to profile 1. The polishing step will bring the profile of the pivot to the level of its final profile 1. The extra thickness (e1) is typically around 2 µm in diameter but can be adapted according to the polishing envisaged (duration, type of abrasive particles used, etc.).

Selon une autre variante du procédé, si on envisage une étape de meulage ou de roulage des pivots pour un contrôle fin des dimensions et des états de surface, une surépaisseur (e2) correspondant à la quantité de matière retirée lors de cette étape de meulage ou de roulage devra être ajoutée sur la pièce ou sur les pivots au stade décolletage. La surépaisseur (e2) est typiquement de l'ordre de 20µm sur la longueur et 5 µm sur le diamètre mais peut être adaptée en fonction roulage ou meulage envisagé. Le décolletage devra donc se faire au niveau du profil 3, tel que représenté à la figure 4. Le roulage amènera le pivot au niveau du profil 2 tel que représenté à la figure 4. Un traitement de l'état de surface, pourra être ajouté en fin de processus pour obtenir le profil 1.According to another variant of the method, if a step of grinding or rolling the pivots is envisaged for a fine control of the dimensions and the surface states, an extra thickness (e2) corresponding to the quantity of material removed during this grinding or rolling step must be added to the part or to the pivots at the turning stage. The additional thickness (e2) is typically of the order of 20 μm over the length and 5 μm over the diameter but can be adapted according to the rolling or grinding function envisaged. The turning should therefore be done at the level of profile 3, as shown in figure 4 . Rolling will bring the pivot to the level of profile 2 as shown in figure 4 . A surface treatment can be added at the end of the process to obtain profile 1.

En fonction du type de traitement de l'état de surface choisi, en vrac ou localisé au niveau des pivots, l'homme du métier considèrera une surépaisseur sur la totalité de l'axe si le traitement est réalisé en vrac ou uniquement sur les zones concernées par l'enlèvement de matière si il s'agit d'un traitement localisé.Depending on the type of treatment of the surface state chosen, in bulk or localized at the level of the pivots, the person skilled in the art will consider an extra thickness on the entire axis if the treatment is carried out in bulk or only on the areas involved in the removal of material if it is a localized treatment.

D'autres étapes de traitement de l'état de surface de l'axe ou des pivots avec enlèvement de matière peuvent être envisagées sans sortir du cadre de l'invention : polissage électrolytique ou polissage laser par exemple. L'homme du métier adaptera la surépaisseur à prendre en compte à l'étape de décolletage.Other steps for treating the surface state of the pin or pivots with material removal can be envisaged without departing from the scope of the invention: electrolytic polishing or laser polishing for example. A person skilled in the art will adapt the extra thickness to be taken into account during the turning step.

Des étapes intermédiaires de lavage et de contrôle dimensionnel peuvent être intégrées au processus.Intermediate washing and dimensional control steps can be integrated into the process.

D'autres types de pièces intégrées à un mouvement horloger mécanique ou quartz, et susceptibles de venir perturber le fonctionnement du mouvement en cas d'aimantation, peuvent être réalisées dans un alliage du type décrit ci-dessus sans faire partie du périmètre de protection revendiqué. Ce type de pièce peut être notamment de type goupille, visserie, axes du rouage de finissage etc. sans toutefois présenter des problématiques similaires à celles rencontrées pour l'axe de pivotement d'un organe réglant.Other types of parts integrated into a mechanical or quartz watch movement, and liable to disturb the operation of the movement in the event of magnetization, may be made of an alloy of the type described above without being part of the claimed scope of protection. . This type of part may in particular be of the pin type, fasteners, axles of the gear train, etc. without however presenting problems similar to those encountered for the pivot axis of a regulating member.

Claims (14)

  1. Pivot staff of a mechanical timepiece movement regulating member, made of a non-magnetic material consisting of, by weight:
    - between 25% and 55% palladium
    - between 25% and 55% silver
    - between 10% and 30% copper
    - between 0% and 5% zinc
    - between 0% and 2% of one or more elements chosen from rhenium, ruthenium, gold and platinum
    - between 0% and 1% of one or more elements chosen from boron and nickel.
  2. Regulating member staff according to Claim 1, characterized in that said material comprises, by weight, between 38% and 43% palladium.
  3. Regulating member staff according to either of the preceding claims, characterized in that said material comprises, by weight, between 35% and 40% silver.
  4. Regulating member staff according to one of the preceding claims, characterized in that said material comprises, by weight, between 18% and 23% copper.
  5. Regulating member staff according to one of the preceding claims, characterized in that said material comprises, by weight, between 0.5% and 1.5% zinc.
  6. Regulating member staff according to one of the preceding claims, characterized in that said staff is a balance staff, an anchor staff or an escapement wheel staff.
  7. Regulating member staff according to one of the preceding claims, characterized in that it has a Vickers hardness of 460 HV1 to 500 HV1.
  8. Mechanical movement for a timepiece, characterized in that it comprises a regulating member staff according to one of the preceding claims.
  9. Method for manufacturing a pivot staff of a regulating member, comprising the following steps:
    - obtaining a bar of non-magnetic alloy consisting of between 25% and 55% palladium, between 25% and 55% silver, between 10% and 30% copper, between 0% and 5% zinc, between 0% and 2% of one or more elements chosen from rhenium, ruthenium, gold and platinum, and between 0% and 1% of one or more elements chosen from boron and nickel;
    - profile-turning the staff with an overthickness with respect to a predetermined dimension;
    - performing an operation of treating the surface state of the staff with removal of the overthickness so as to reach the predetermined dimension;
    - performing a hardening heat treatment step at a temperature of 380°C to 420°C.
  10. Manufacturing method according to the preceding claim, wherein said bar has a Vickers hardness of between 260 HV1 and 310 HV1.
  11. Manufacturing method according to either of Claims 9 and 10, wherein said hardening heat treatment step lasts between 30 minutes and 2 hours, more particularly between 45 minutes and 1 h 30, even more particularly for 1 h.
  12. Manufacturing method according to one of Claims 9 to 11, wherein, after said hardening heat treatment step, said staff has a Vickers hardness of between 460 HV1 and 500 HV1.
  13. Manufacturing method according to one of Claims 9 to 12, characterized in that said hardening heat treatment step is performed between the steps of obtaining said alloy bar and of profile-turning or between the steps of profile-turning and of surface treatment.
  14. Manufacturing method according to one of Claims 9 to 13, said pivot staff of a regulating member having a body provided at its ends with pivots, said method comprising the following steps:
    - obtaining said alloy bar;
    - profile-turning the body of the staff with a first overthickness with respect to a first predetermined dimension, and the pivots of the staff with a second overthickness with respect to a second predetermined dimension, said second overthickness being greater than the first overthickness;
    - burnishing the pivots so as to bring them to the first overthickness with respect to the second predetermined dimension;
    - performing an operation of treating the surface state of the body and of the pivots with removal of the first overthickness so as to reach the first and second predetermined dimensions respectively.
EP19702055.5A 2018-01-26 2019-01-24 Pivoting pin of a regulator and manufacturing method therefor Active EP3743538B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00093/18A CH714594A1 (en) 2018-01-26 2018-01-26 Pivoting axis of a regulating organ of mechanical watchmaking movement.
PCT/EP2019/051771 WO2019145434A1 (en) 2018-01-26 2019-01-24 Pivoting pin of a regulator

Publications (2)

Publication Number Publication Date
EP3743538A1 EP3743538A1 (en) 2020-12-02
EP3743538B1 true EP3743538B1 (en) 2022-09-07

Family

ID=61231019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19702055.5A Active EP3743538B1 (en) 2018-01-26 2019-01-24 Pivoting pin of a regulator and manufacturing method therefor

Country Status (3)

Country Link
EP (1) EP3743538B1 (en)
CH (1) CH714594A1 (en)
WO (1) WO2019145434A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3800511B1 (en) * 2019-10-02 2022-05-18 Nivarox-FAR S.A. Pivoting shaft for a regulating organ
CH716669B1 (en) * 2019-10-03 2023-02-15 Richemont Int Sa Method of manufacturing a balance pivot shaft.
EP3865955A1 (en) * 2020-02-17 2021-08-18 The Swatch Group Research and Development Ltd Method for manufacturing a single-piece mechanical part of a timepiece
EP4033307A1 (en) * 2021-01-22 2022-07-27 ETA SA Manufacture Horlogère Suisse Assembly comprising a rotating moving part made of non-magnetic material and a bearing provided with a cone
WO2022223479A1 (en) * 2021-04-20 2022-10-27 Acrotec R&D Sa Method for manufacturing a pivot staff of the timepiece type

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5833774A (en) * 1997-04-10 1998-11-10 The J. M. Ney Company High strength silver palladium alloy
US9194024B1 (en) * 2010-05-17 2015-11-24 Stuller, Inc. Jewelry article of white precious metals and methods for making the same
JPWO2013099682A1 (en) * 2011-12-27 2015-05-07 株式会社徳力本店 Pd alloys for electrical and electronic equipment
EP2757424B1 (en) 2013-01-17 2018-05-16 Omega SA Part for clockwork
CH707505B1 (en) 2013-01-17 2017-07-31 Omega Sa Metal pivot pin for watch movement and method of manufacturing such a pin.
CH707504B1 (en) 2013-01-17 2017-05-15 Omega Sa Metal pivot pin for watch movement and method of manufacturing such a pin.
EP3273304B1 (en) * 2016-07-19 2021-11-10 Nivarox-FAR S.A. Part for clock movement
EP3273303A1 (en) * 2016-07-19 2018-01-24 Nivarox-FAR S.A. Part for clock movement

Also Published As

Publication number Publication date
CH714594A1 (en) 2019-07-31
WO2019145434A1 (en) 2019-08-01
EP3743538A1 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
EP3743538B1 (en) Pivoting pin of a regulator and manufacturing method therefor
EP2757423B1 (en) Part for clockwork
EP2757424A1 (en) Part for clockwork
EP3273303A1 (en) Part for clock movement
EP3584640A1 (en) Timepiece oscillator
EP3273306A1 (en) Part for clock movement
CH707504A2 (en) Metal pivoting axle e.g. non-magnetic balance axle, for clockwork movement of watch, has pivot arranged at end, where axle is made of metal e.g. titanium and titanium alloy, in order to limit sensitivity of pivoting axle to magnetic fields
EP3273307A1 (en) Part for clock movement
EP3273304B1 (en) Part for clock movement
CH716669A1 (en) Method of manufacturing a pendulum pivot shaft.
EP3273305B1 (en) Part for clock movement
CH712719B1 (en) Watch component for watch movement.
CH712718A2 (en) Pivot axis for watch movement.
EP3940112A1 (en) Method for improving a material for timepiece
EP3800511B1 (en) Pivoting shaft for a regulating organ
CH718939A1 (en) Pivot axis of a pivoting component of a watch movement.
EP3339968A1 (en) Part for clock movement
CH716664A2 (en) Non-magnetic and hard watch component, in particular the pivot axis of a regulating organ.
CH707505B1 (en) Metal pivot pin for watch movement and method of manufacturing such a pin.
CH718551A2 (en) Process for manufacturing a watchmaker's type pivot pin.
EP3885842B1 (en) Non-magnetic timepiece component with improved wear resistance
CH718549A2 (en) Watch component and method of manufacturing such a watch component.
CH718550A2 (en) Watchmaking pivot pin and method of manufacturing such a watchmaking pivot pin.
WO2022223477A1 (en) Timepiece component and method for manufacturing such a timepiece component
CH712720A2 (en) Pivot axis for watch movement.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200727

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210712

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 5/06 20060101ALI20220301BHEP

Ipc: G04B 43/00 20060101ALI20220301BHEP

Ipc: G04B 17/06 20060101ALI20220301BHEP

Ipc: G04B 13/02 20060101ALI20220301BHEP

Ipc: G04B 1/16 20060101ALI20220301BHEP

Ipc: C22C 30/02 20060101ALI20220301BHEP

Ipc: C22C 5/04 20060101ALI20220301BHEP

Ipc: C22F 1/14 20060101AFI20220301BHEP

INTG Intention to grant announced

Effective date: 20220404

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1517093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019019236

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1517093

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230124

Year of fee payment: 5

Ref country code: CH

Payment date: 20230124

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230119

Year of fee payment: 5

Ref country code: DE

Payment date: 20230123

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019019236

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

26N No opposition filed

Effective date: 20230608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230124

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230124