EP3737961A1 - Dispositif de capteur radar et procédé de fourniture d'une fréquence - Google Patents

Dispositif de capteur radar et procédé de fourniture d'une fréquence

Info

Publication number
EP3737961A1
EP3737961A1 EP18800596.1A EP18800596A EP3737961A1 EP 3737961 A1 EP3737961 A1 EP 3737961A1 EP 18800596 A EP18800596 A EP 18800596A EP 3737961 A1 EP3737961 A1 EP 3737961A1
Authority
EP
European Patent Office
Prior art keywords
antenna
clock
frequency
clock generator
radar sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18800596.1A
Other languages
German (de)
English (en)
Inventor
Michael Schoor
Marcel Mayer
Klaus Baur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3737961A1 publication Critical patent/EP3737961A1/fr
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/00006Changing the frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9318Controlling the steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9319Controlling the accelerator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop

Definitions

  • the invention relates to a radar sensor arrangement for transmitting and receiving radar waves according to the preamble of patent claim 1 and a method for providing a frequency according to the preamble of
  • the sensors built into the vehicles can be, for example, radar sensors or LIDAR sensors and must have the highest possible accuracy. By using precise sensors, the functional safety and reliability of the autonomous or semi-autonomous driving functions can be ensured.
  • Driver assistance functions cause faults, in particular E / E faults according to IS026262, to achieve a safe state, such as switching off the respective radar sensor or bus communication.
  • a safe state such as switching off the respective radar sensor or bus communication.
  • radar sensors with a high performance which have many antennas, RF channels and memory, the increases
  • a Component can thus according to ASIL-B or ASIL-C have a maximum of 100 FIT before it is deactivated.
  • the safe state of the respective component is not taken into account. If, for example, a quartz oscillator 30 has FIT and it is not possible to achieve the safe state, then this alone will occupy 30% of the available FIT rates of the radar sensor.
  • the object underlying the invention can be seen to propose a redundant method for providing a frequency and an improved radar sensor arrangement with a limp home mode.
  • a radar sensor arrangement for transmitting and receiving radar waves.
  • the radar sensor arrangement has a first partial sensor with at least one first antenna for transmitting and receiving radar waves and with at least one first antenna
  • Antenna control for operating the at least one first antenna.
  • the radar sensor arrangement has at least one second component sensor with at least one second antenna for transmitting and receiving radar waves and with at least one second antenna controller for operating the at least one second antenna.
  • a device for frequency generation with at least one clock generator is used to generate a useful frequency.
  • a control unit of the radar sensor arrangement is used for
  • the frequency generation device has a first clock generator and at least one second clock generator, wherein the first clock generator and the at least one second clock generator can be connected to the at least one first antenna controller via at least two multiplexers and to the at least one second antenna controller for providing a user frequency
  • Current radar sensors usually have many RF channels for generating and receiving radar waves. In normal operation, all high-frequency components can be in operation at the same time. Such radar sensors can be subdivided into a plurality of partial sensors in a symmetrical design. Each partial sensor can thus have a corresponding proportion of high-frequency components or high-frequency channels of the radar sensor.
  • a partial sensor of the radar sensor in a possible emergency operation allow autonomous driving of a vehicle at a limited speed. This can also be realized when components of other part sensors are no longer functional.
  • the construction of the radar sensor arrangement can consist, for example, of already known inexpensive base components. By parallelizing several components of the same type, an improvement in the performance and accuracy of the radar sensor assembly can be realized. Moreover, by using a plurality of similar components, redundancy can be provided to ensure reliable operation of the assembly. As a result, technically easy emergency operation of
  • High-frequency components and the microcontroller also redundancy in the clock generation be present.
  • the high frequency components may be, for example, antenna controllers or amplifiers constructed in the form of MMICs (Monolithic Microwave Integrated Circuit).
  • the frequency generation device has at least two clock generators for generating a useful frequency.
  • the useful frequency can be used, for example, for the generation of the radar waves with the useful frequency by the transmitting antenna. Alternatively, the useful frequency may be modulated prior to transmission.
  • Each of the at least two clocks is at least two
  • High frequency components such as antenna controllers, are supplied by the first clock or by the at least one second clock with a useful frequency. It can thus in case of failure of a clock, the at least one second clock the clock supply of Take over high-frequency components of the radar sensor assembly.
  • the switching operation of the clock can be controlled by the control unit, for example.
  • the radar sensor array has a high degree of coherence.
  • the different part sensors can be operated with an identical frequency.
  • a redundant and coherent clock supply of a number of high-frequency components can be made possible.
  • the first clock generator and the at least one second clock generator are each connected to the at least one first antenna controller and the at least one second antenna controller via the at least two multiplexers
  • Usable frequency connectable As a result, a redundancy of the clock generation can be created.
  • the first clock generator and the at least one second clock generator can be operated in phase-shifted relationship to each other for increasing a clock frequency.
  • the first clock generator and the at least one second clock generator are each connected to the at least one first antenna controller and the at least one second antenna controller via the at least two multiplexers
  • Multiplexer act as a switch for AC voltages of the respective clock and thus pass through or block generated frequencies.
  • only one clock from the at least two clocks can be activated by the control unit. This can be done by the control unit at a Emergency operation flexible the appropriate clock or the generated useful frequency to the high-frequency components are passed.
  • the at least one second clock generator can be activated in the event of a defect of the first clock generator. If the entire radar sensor or the entire
  • Radar sensor arrangement is constructed such that a partial sensor of several partial sensors sufficient for emergency operation, then a functionality of at least one part sensor can be realized even if at least one clock or a multiplexer is defective.
  • an alternating voltage having a frequency can be generated or the generated alternating voltage can be forwarded by the at least one second multiplexer to at least one partial sensor.
  • at least a part of the MMICs used in the radar sensor arrangement can be supplied with a clock or a usable frequency.
  • all MMICs or antenna controls the radar sensor arrangement can be supplied with the same clock from at least one clock and thus all data are charged to each other.
  • the first clock generator and the at least one second clock generator can be activated or deactivated by the control unit.
  • the clocks can be flexibly controlled or regulated by the control unit.
  • different operating modes can thereby be technically easily implemented.
  • the clocks may be voltage controlled oscillators, which are adjustable in frequency by the control unit.
  • the first clock generator or the at least one second clock generator with the at least one first clock generator in the case of a defect of one of the at least two multiplexers, the first clock generator or the at least one second clock generator with the at least one first clock generator
  • Antenna controller or the at least one second antenna controller for providing the useful frequency connectable for providing the useful frequency connectable.
  • Radar sensor arrangement thereby has a higher reliability
  • the at least two multiplexers can be activated or deactivated independently of one another by the control unit.
  • the at least two multiplexers can be connected to the control unit in such a way that the control unit can activate, switch or block the multiplexers as a function of the respective operating mode. In this way, a redundancy of the multiplexer of the radar sensor arrangement can be made possible.
  • the at least two multiplexers can be bridged independently of one another by the control unit.
  • the first sub-sensor and the at least one second sub-sensor each have at least one antenna for transmitting radar waves and at least one antenna for receiving radar waves. This allows the
  • Modular radar sensor assembly may be constructed of several sub-sensors, whereby the operation of the radar sensor assembly can be reliably maintained even with a partial failure or a partial defect of components.
  • the first clock generator and / or the at least one second clock generator is one
  • phase locked loop the frequency generated by the oscillator can be kept very stable.
  • the oscillator can be a voltage-controlled oscillator.
  • a voltage controlled oscillator can also be used directly be used as a clock, whereby the device for frequency generation can be technically particularly simple design.
  • the phase-locked loop can also be implemented digitally in the form of a microcontroller. Such a microcontroller can be arranged separately or combined with the control unit in the radar sensor arrangement.
  • the device for frequency generation can be integrated in the control unit.
  • Providing a useful frequency, in particular for a radar sensor arrangement provided.
  • a useful frequency by a first clock via at least two multiplexers arranged in parallel at least one first antenna control and at least one second
  • the useful frequency is provided by at least one second clock switch which can be connected via a control unit via the at least two multiplexers of the at least one first antenna control and the at least one second antenna control arranged in parallel.
  • the useful frequency is transmitted through the first clock generator and / or through the at least one second clock generator via at least one
  • a simultaneous clock supply of all antenna controllers or MMICs takes place by means of at least one clock generator.
  • the clock supply can be constructed from a plurality of clocks operated in parallel. If a clock generator has a defect, for example, then at least one further clock generator for generating a frequency can be activated or switched on via the control unit. Thus, despite a defective clock all antenna controls can be operated properly. For example, if a multiplexer is omitted due to a defect, at least a part of the
  • Radar sensor arrangement further comprises an electrically conductive connection to at least one clock and thus a clock supply.
  • a Such radar sensor arrangement can be used in an emergency operation of a vehicle.
  • Fig. 1 is a schematic representation of a division of a
  • Fig. 2 is a schematic representation of a radar sensor assembly according to the first embodiment of the invention.
  • the radar sensor arrangement 1 shows a schematic representation for illustrating a division of a radar sensor arrangement 1 according to a first embodiment of the invention.
  • the radar sensor arrangement 1 comprises a first part sensor 2 and a second part sensor 4.
  • the first part sensor 2 has two first antenna controls 6, 8 and the second part sensor 4 has two second antenna controls 10, 12.
  • the other components of the radar sensor arrangement 1, such as antennas, amplifiers and the like, are not shown.
  • the two sub-sensors 2, 4 can be used parallel to each other and separately from each other for generating and receiving radar waves.
  • FIG. 2 shows a schematic illustration of the radar sensor arrangement 1 according to the first embodiment of the invention.
  • a detailed view of the frequency generation device 14 is provided
  • the frequency generation device 14 consists of a first clock 16 and a second clock 18.
  • the two clocks 16, 18 are connected to a control unit 20.
  • control unit 20 For example can clock 16, 18 voltage controlled oscillators or
  • the control unit 20 can set the respective clocks 16, 18 in their frequency and in particular the clocks 16, 18 individually and selectively turn on or off. Furthermore, by the control unit 20, a phase shift of the two clocks 16, 18 are configured to each other. Each clock 16, 18 is connected to two multiplexers 22, respectively.
  • Multiplexers 22 are arranged parallel to each other.
  • the clocks 16, 18 are coupled in parallel to each other with the two multiplexers 22 arranged in parallel, so that each clock 16, 18 can independently conduct an alternating voltage with a frequency via both multiplexers 22.
  • a partial sensor 2, 4 is connected at each of the two multiplexers 22 at each of the two multiplexers 22 at each of the two multiplexers 22 at each of the two multiplexers 22, a partial sensor 2, 4 is connected.
  • the two first antenna controllers 6, 8 with a frequency from the device for
  • Frequency generation 14 are supplied.
  • the two second antenna controllers 10, 12 are electrically connected, whereby a clock supply is ensured by the device for frequency generation 14.
  • the two multiplexers 22 are also coupled in the control unit 20 and can be controlled by the control unit 20.
  • the multiplexers 22 can be activated independently of each other, which are activated or controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention concerne un système de capteur radar pour l'émission et la réception d'ondes radar, comprenant un premier capteur partiel doté d'au moins une première antenne pour l'émission et la réception d'ondes radar et d'au moins une première commande d'antenne pour faire fonctionner la ou les premières antennes, au moins un deuxième capteur partiel doté d'au moins une deuxième antenne pour l'émission et la réception d'ondes radar et d'au moins une deuxième commande d'antenne pour faire fonctionner la ou les deuxièmes antennes, un dispositif de génération de fréquence comportant au moins un générateur d'horloge pour générer une fréquence utile et une unité de commande pour commander et réguler la première commande d'antenne, la ou les deuxièmes commandes d'antenne et le dispositif de génération de fréquence, le dispositif de génération de fréquence comportant un premier générateur d'horloge et au moins un deuxième générateur d'horloge, le premier générateur d'horloge et le ou les deuxièmes générateurs d'horloge pouvant être reliés par l'intermédiaire d'au moins deux multiplexeurs respectivement à la ou aux premières commandes d'antenne et à la ou aux deuxièmes commandes d'antenne pour fournir une fréquence utile. L'invention concerne par ailleurs un procédé permettant de fournir une fréquence utile.
EP18800596.1A 2018-01-11 2018-11-08 Dispositif de capteur radar et procédé de fourniture d'une fréquence Pending EP3737961A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018200385.8A DE102018200385A1 (de) 2018-01-11 2018-01-11 Radarsensoranordnung und Verfahren zum Bereitstellen einer Frequenz
PCT/EP2018/080606 WO2019137652A1 (fr) 2018-01-11 2018-11-08 Dispositif de capteur radar et procédé de fourniture d'une fréquence

Publications (1)

Publication Number Publication Date
EP3737961A1 true EP3737961A1 (fr) 2020-11-18

Family

ID=64270874

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18800596.1A Pending EP3737961A1 (fr) 2018-01-11 2018-11-08 Dispositif de capteur radar et procédé de fourniture d'une fréquence

Country Status (8)

Country Link
US (1) US11435436B2 (fr)
EP (1) EP3737961A1 (fr)
JP (1) JP7138176B2 (fr)
KR (1) KR20200103107A (fr)
CN (1) CN111566504A (fr)
DE (1) DE102018200385A1 (fr)
MX (1) MX2020007082A (fr)
WO (1) WO2019137652A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11467250B2 (en) * 2020-01-30 2022-10-11 Aptiv Technologies Limited Scalable cascading radar system

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4010468A (en) * 1975-10-10 1977-03-01 The United States Of America As Represented By The Secretary Of The Army Methods and apparatus for eliminating interference in radar systems
JPS534932A (en) * 1976-05-29 1978-01-18 Nissan Motor Co Ltd Device for collision avoidance of moving body
US4143369A (en) * 1977-10-25 1979-03-06 Northrop Corporation Iff diversity switch
JPS60100779A (ja) * 1983-11-07 1985-06-04 Mitsubishi Electric Corp レ−ダ装置
CA1225451A (fr) * 1984-02-27 1987-08-11 Alan Sewards Appareil d'identification a distance
JP2622972B2 (ja) * 1987-09-17 1997-06-25 三洋電機株式会社 Fmラジオ受信機
DE69226627T2 (de) * 1992-05-15 1998-12-24 Sgs Thomson Microelectronics Generator für Signale mit höher Frequenz und nicht-überlappenden Phasen
US5625324A (en) * 1995-06-07 1997-04-29 Hughes Electronics Ultra low noise frequency generator producing the sum of plural signal sources
US6069581A (en) * 1998-02-20 2000-05-30 Amerigon High performance vehicle radar system
KR19990033305U (ko) * 1999-04-06 1999-08-05 황조연 레이더 전시기용 자동 채널 선택기 회로
KR20040034985A (ko) * 2002-10-18 2004-04-29 엘지전자 주식회사 클럭신호 생성회로
DE10252091A1 (de) * 2002-11-08 2004-05-19 Siemens Ag Verfahren und Anordnung für multistatische Nachdistanzradarmessungen
US6989782B2 (en) * 2003-05-22 2006-01-24 General Atomics Ultra-wideband radar system using sub-band coded pulses
DE102005022558A1 (de) * 2005-05-17 2006-11-23 Vega Grieshaber Kg Taktsteuervorrichtung eines Mikrowellenpulsradars
CN102239598B (zh) * 2008-12-05 2014-09-17 樱花技术株式会社 阵列天线
DE102009026927A1 (de) * 2009-06-15 2010-12-16 Robert Bosch Gmbh Antennensteuerung für einen Radarsensor
US9229102B1 (en) * 2009-12-18 2016-01-05 L-3 Communications Security And Detection Systems, Inc. Detection of movable objects
WO2011123065A1 (fr) * 2010-03-30 2011-10-06 Agency For Science, Technology And Research Dispositif et procédé de traitement de signaux pour localisation d'un autre dispositif
US9418551B2 (en) * 2011-09-27 2016-08-16 Sensys Networks, Inc. Position and/or distance measurement, parking and/or vehicle detection, apparatus, networks, operations and/or systems
DE102012101303A1 (de) * 2012-02-17 2013-08-22 Hella Kgaa Hueck & Co. Sensorvorrichtung
EP2706660B1 (fr) * 2012-09-05 2015-11-25 Swiss Timing Ltd. Dispositif d'émission de signaux de données et/ou de commande avec des agencements d'antenne
US9261587B1 (en) * 2013-03-15 2016-02-16 Raytheon Company Methods and apparatus for highly reliable signal distribution
KR101682652B1 (ko) * 2013-05-28 2016-12-06 한국전자통신연구원 펄스 레이더 장치
EP2881752B1 (fr) * 2013-12-03 2017-05-10 Nxp B.V. Système radar automobile multipuces, puce de radar pour un tel système et procédé permettant de faire fonctionner un tel système
DE102014112806A1 (de) * 2014-09-05 2016-03-10 Hella Kgaa Hueck & Co. Radarsensor
US9685961B2 (en) * 2014-09-17 2017-06-20 Htc Corporation High resolution timing device and radar detection system having the same
US20160306034A1 (en) * 2014-12-23 2016-10-20 Infineon Technologies Ag RF System with an RFIC and Antenna System
WO2016174659A1 (fr) * 2015-04-27 2016-11-03 Snapaid Ltd. Estimation et utilisation de posture de tête relative et champ de vision de caméra
DE102015218542A1 (de) * 2015-09-28 2017-03-30 Robert Bosch Gmbh Integrierter Hochfrequenzschaltkreis, Radarsensor und Betriebsverfahren
US10061015B2 (en) * 2015-09-30 2018-08-28 Texas Instruments Incorporated Multi-chip transceiver testing in a radar system
CN105743463B (zh) * 2016-03-16 2019-03-01 珠海全志科技股份有限公司 时钟占空比校准及倍频电路
EP3339899A1 (fr) * 2016-12-21 2018-06-27 Nxp B.V. Circuit intégré d'émetteur-récepteur en cascade

Also Published As

Publication number Publication date
JP7138176B2 (ja) 2022-09-15
MX2020007082A (es) 2020-09-09
KR20200103107A (ko) 2020-09-01
CN111566504A (zh) 2020-08-21
WO2019137652A1 (fr) 2019-07-18
US20200348391A1 (en) 2020-11-05
JP2021510203A (ja) 2021-04-15
DE102018200385A1 (de) 2019-07-11
US11435436B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
DE4323795C2 (de) Funksteuerungseinrichtung
EP1902426B1 (fr) Systeme de controle d'acces pour un vehicule automobile
EP3137342A1 (fr) Dispositif d'alimentation d'au moins un dissipateur
DE3510580A1 (de) Verfahren und schaltungsanordnung zur verbesserung des empfangs von radiowellen
DE102008032997B4 (de) Energieversorgungssystem für einen verringerten Energieverbrauch
WO2017017092A1 (fr) Consommateur électrique pour un véhicule automobile
WO2019137652A1 (fr) Dispositif de capteur radar et procédé de fourniture d'une fréquence
DE102017128507A1 (de) Erzeugung einer Radarwellenform mit mehreren Modulationselementen
WO2019170277A1 (fr) Système de capteur radar et procédé de fonctionnement d'un système de capteur radar
EP3759511A1 (fr) Système de détection radar et procédé de fonctionnement d'un système de détection radar
DE636020C (de) Verfahren zur Konstanthaltung der Frequenz eines Senders
DE102016216086A1 (de) Verfahren zum Betrieb zweier Gleichspannungswandler in einem Fahrzeugbordnetz und Spannungswandlerschaltung
DE102016106547A1 (de) Schaltereinrichtung für einen elektromotor, steuereinrichtung, lenksystem
EP3192165B1 (fr) Procédé de transmission commune de signaux de commande et de signaux de données numériques
DE2907183A1 (de) Abschalteinrichtung fuer eine schaltbare energieversorgungseinrichtung
DE102014212795B4 (de) Positionssensor für die Erfassung einer Lageposition eines Aktuators
DE3520516A1 (de) Verfahren und vorrichtung zum uebertragen von informationen und elektrischer energie fuer ein fahrzeug
EP1627456A1 (fr) Procede et ensemble pour surveiller un etage de puissance
DE102020101438A1 (de) Elektronische Recheneinrichtung für ein Kraftfahrzeug mit einer Schaltung, die über eine Steuereinrichtung außerhalb der Recheneinrichtung mit einer Spannung versorgt wird, Anordnung sowie Verfahren
DE69122533T2 (de) Regelsystem für die Erregung einer Synchronmaschine
WO2004049619A1 (fr) Procede de detection automatique de la frequence d'une cadence systeme pour la configuration d'un dispositif peripherique
DE2938043C2 (fr)
EP0127172B1 (fr) Circuit pour le décalage de la phase d'un signal d'horloge
DE19605606A1 (de) Einrichtung zum Rücksetzen eines Rechenelements
WO2019174796A1 (fr) Système de capteurs radar et procédé pour faire fonctionner un système de capteurs radar

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20230124