EP3728850B1 - Fluidfördereinrichtung - Google Patents

Fluidfördereinrichtung Download PDF

Info

Publication number
EP3728850B1
EP3728850B1 EP18829267.6A EP18829267A EP3728850B1 EP 3728850 B1 EP3728850 B1 EP 3728850B1 EP 18829267 A EP18829267 A EP 18829267A EP 3728850 B1 EP3728850 B1 EP 3728850B1
Authority
EP
European Patent Office
Prior art keywords
pump
fluid
main pump
gear
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18829267.6A
Other languages
English (en)
French (fr)
Other versions
EP3728850A1 (de
Inventor
Reinhard Pippes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eckerle Technologies GmbH
Original Assignee
Eckerle Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eckerle Technologies GmbH filed Critical Eckerle Technologies GmbH
Publication of EP3728850A1 publication Critical patent/EP3728850A1/de
Application granted granted Critical
Publication of EP3728850B1 publication Critical patent/EP3728850B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/001Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C11/00Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations
    • F04C11/005Combinations of two or more machines or pumps, each being of rotary-piston or oscillating-piston type; Pumping installations of dissimilar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C14/26Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/10Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F04C2/101Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with a crescent-shaped filler element, located between the inner and outer intermeshing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts

Definitions

  • the invention relates to a fluid delivery device with a backing pump and a main pump fluidically connected to the backing pump, the backing pump being drivable via a backing pump input shaft and the main pump being drivable via a main pump input shaft.
  • the object of the invention is to propose a fluid delivery device which has advantages over known fluid delivery devices, in particular an ideal coordination of the backing pump and the main pump with one another and consequently a long service life of the fluid delivery device, especially the main pump.
  • the backing pump has a backing pump drive wheel coupled to the backing pump input shaft and a backing pump delivery wheel that interacts with the backing pump drive wheel for fluid delivery, the backing pump and the main pump being drive-coupled to a common drive shaft, and the backing pump delivery wheel and the main pump input shaft being connected to one another via a connecting shaft are connected so that the foreline pump input shaft is coupled directly and the main pump input shaft is coupled to the drive shaft via the connecting shaft.
  • the fluid delivery device serves to deliver a fluid, for example a liquid or a gas.
  • the fluid delivery device has the backing pump and the main pump, the main pump being fluidically connected to the backing pump. That means, that the fluid is first fed to the backing pump, which conveys the fluid in the direction of the main pump.
  • the fluid delivered by the backing pump is thus made available to the main pump, which delivers the fluid further, namely, for example, in the direction of a fluid outlet of the fluid delivery device, which can also be referred to as a delivery device fluid outlet.
  • Each of the pumps has an input shaft via which it can be driven, namely the backing pump via the backing pump input shaft and the main pump via the main pump input shaft.
  • the backing pump also has two wheels for pumping fluid, namely the backing pump drive wheel and the backing pump delivery wheel.
  • the backing pump drive wheel and the backing pump feed wheel are provided for pumping fluid and for this reason are designed in such a way that when the fore pump input shaft rotates, they interact to deliver the fluid and, for example, intervene in one another.
  • the foreline drive gear is coupled to the foreline input shaft, preferably rigidly and / or permanently.
  • the backing pump drive wheel is preferably arranged on the backing pump input shaft so that it always has the same speed as the backing pump input shaft during operation of the backing pump.
  • the backing pump input shaft is coupled in terms of drive technology to the common drive shaft, preferably in turn rigidly and / or permanently.
  • the backing pump input shaft and the common drive shaft are designed in one piece, so that the backing pump input shaft is formed from the drive shaft and / or vice versa. In this respect, the backing pump can be driven directly and immediately via the drive shaft.
  • the main pump should only be drivable indirectly via the drive shaft.
  • the main pump is connected in terms of drive technology to the drive shaft via the backing pump, so that when the drive shaft rotates, the main pump is driven via the backing pump.
  • the backing pump drive wheel and the backing pump feed wheel are connected to one another in terms of drive technology. This means that the backing pump drive wheel is provided and configured for driving the backing pump feed wheel, so that when the backing pump input shaft rotates, both the backing pump drive wheel and the backing pump feed wheel are rotated.
  • the backing pump impeller is now connected in terms of drive technology to the main pump input shaft, namely via the connecting shaft.
  • the main pump is with the foreline pump impeller Connected in terms of drive technology, so that there is preferably also a rotary movement of the main pump input shaft when the backing pump impeller is rotated.
  • the main pump input shaft and the connecting shaft can be configured separately or in one piece with one another. In the latter case, the main pump input shaft forms the connecting shaft and / or vice versa.
  • the backing pump impeller is rotatably mounted by means of the connecting shaft and / or the main pump input shaft.
  • the fluid delivery device is designed in such a way that the backing pump input shaft is coupled directly and immediately to the drive shaft.
  • the main pump input shaft is only indirectly coupled to the drive shaft via the connecting shaft and / or the backing pump.
  • Such a configuration of the fluid delivery device has the advantage that the speed of the backing pump and the main pump or the respective input shaft are in a fixed relationship with one another, so that, for example, there is a certain ratio between the speeds. This achieves very good coordination between the backing pump and the main pump during the operation of the fluid delivery device.
  • Another embodiment of the invention provides that the backing pump drive wheel and the backing pump feed wheel form a transmission gear for the main pump with a specific transmission ratio.
  • the specific transmission ratio exists between the fore pump drive wheel and the fore pump feed wheel and therefore also between the fore pump input shaft and / or the drive shaft on the one hand and the connecting shaft and / or main pump input shaft on the other.
  • the transmission ratio is preferably different from one, so that due to the transmission gear during operation of the fluid delivery device, the fore pump impeller has a speed which is different from a speed of the fore pump drive wheel or a certain speed ratio exists between the speed of the fore pump impeller and the speed of the fore pump drive wheel, which corresponds to the transmission ratio is equivalent to.
  • the speed of the drive shaft for the main pump is adjusted with the aid of the backing pump.
  • an optimal speed can be achieved for both the backing pump and the main pump without having to provide an additional gear via which the backing pump input shaft and the main pump input shaft are connected to one another are.
  • by driving the main pump via the backing pump a particularly compact design of the fluid delivery device is implemented.
  • the backing pump is designed as a gear pump and / or the main pump is designed as a rotary piston pump.
  • the configuration of the backing pump as a gear pump enables a particularly advantageous and reliable use of the backing pump as a transmission gear.
  • the gear pump is understood to mean, for example, an external gear pump or an internal gear pump.
  • the backing pump or the gear pump is particularly preferably gap-compensated. If the backing pump is in the form of a gear pump, the backing pump drive gear can be referred to as the backing pump drive gear and the backing pump conveying gear can be referred to as the backing pump conveying gear and, according to their designation, are present as gears.
  • the interaction of the gears for fluid delivery takes place by engaging with one another or by meshing with one another.
  • the forepump drive gear meshes with the forepump feed gear for fluid delivery, the transmission gear being formed at the same time.
  • a toothing of the backing pump drive gear and a toothing of the backing pump delivery gear are preferably designed as helical gears. As a result, noise from the backing pump can be significantly reduced compared to straight teeth.
  • the toothing can alternatively also be designed as straight toothing.
  • the main pump is a rotary piston pump.
  • the rotary piston pump is understood to mean, for example, a rotary piston pump, a rotary vane pump, a rotary piston pump or a gear pump.
  • the gear pump can in turn be designed as an external gear pump and as an internal gear pump.
  • the main pump is also particularly preferably designed to be gap-compensated, namely in particular in the case of its design as a gear pump.
  • the main pump is particularly preferably designed as a gear pump, that is to say, for example, as an external gear pump or as an internal gear pump, the latter being the case in the context of a particularly preferred embodiment of the fluid delivery device.
  • the backing pump and the main pump being designed as gear pumps, so that both pumps are therefore each in the form of a gear pump.
  • the backing pump is designed as an external gear pump and the main pump as an internal gear pump. A particularly reliable provision of the fluid for the main pump by the backing pump is thereby achieved.
  • the backing pump has a larger delivery volume than the main pump.
  • the delivery volume can also be referred to as the displacement volume.
  • the delivery volume of the backing pump is at least 5%, at least 10%, at least 15%, at least 20% or at least 25% greater than the delivery volume of the main pump.
  • a further embodiment of the invention provides that the main pump has a main pump drive wheel and a main pump feed wheel interacting with the main pump drive wheel for fluid delivery, the backing pump feed wheel and the main pump drive wheel being drive-connected to the connecting shaft.
  • the main pump drive wheel also interacts with the main pump feed wheel to convey fluid, for example by engaging or meshing with one another. If the main pump is designed as a gear pump, the main pump drive gear can be referred to as the main pump drive gear and the main pump feed gear can be referred to as the main pump feed gear.
  • the main pump drive wheel is drive-coupled to the main pump input shaft, preferably rigidly and / or permanently.
  • the main pump drive wheel is seated on the main pump input shaft, so that when the fluid delivery device is in operation, the speed of the main pump drive wheel corresponds to the speed of the main pump input shaft.
  • the main pump drive wheel and the main pump feed wheel cooperate to convey fluid in such a way that the main pump feed wheel is driven by the main pump drive wheel during operation of the fluid feed device.
  • a rotary movement of the main pump drive wheel there is also a rotary movement of the main pump feed wheel, as a result of which the fluid feed effect is achieved overall.
  • the backing pump delivery wheel and the main pump drive wheel are connected to the connecting shaft in terms of drive technology, namely preferably rigidly and / or permanently.
  • the connecting shaft is designed in one piece with the main pump input shaft or forms it.
  • Both the backing pump impeller and the are preferred Main pump drive wheel arranged on the connecting shaft and connected to it in terms of drive technology.
  • the foreline pump impeller and the main pump drive wheel are rotatably supported by the connecting shaft. This avoids additional mounting of the backing pump delivery wheel or the main pump drive wheel, so that the space requirement of the fluid delivery device is further reduced.
  • the main pump is an internal gear pump, in particular a sickle pump, the main pump drive gear being configured as a pinion gear and the main pump delivery gear being configured as a ring gear.
  • the internal gear pump is particularly preferably designed to be gap-compensated.
  • the internal gear pump can be designed without a filler piece, that is to say without a filler piece, or with a filler piece.
  • the sickle pump in which the (sickle-shaped) filler piece is arranged between the pinion gear and the ring gear, so that the filler piece - seen in cross section with respect to an axis of rotation of the pinion gear and / or an axis of rotation of the main pump impeller - with an in inner side located radially inward on the pinion gear, in particular on teeth of the pinion gear, and with its side located on the outside in radial direction on the ring gear, in particular on teeth of the ring gear.
  • the design of the main pump as an internal gear pump enables the fluid delivery device to be particularly efficient.
  • a further transmission gear is arranged in the operative connection between the backing pump delivery wheel and the main pump input shaft.
  • the further step-up gear is added to the step-up gear formed by the backing pump drive wheel and the backing-pump feed wheel, so that the main pump is connected to the drive shaft via the step-up gear and the further step-up gear, which are connected in series with one another.
  • the further transmission gear is present, for example, as a gear transmission, for example as a spur gear transmission. In particular, it is designed as a planetary gear or planetary gear.
  • the further transmission gear has a transmission ratio which is preferably different from one, so that there is a certain speed ratio between the speed of the main pump input shaft and the speed of the backing pump impeller, which corresponds to the transmission ratio of the further transmission gear.
  • the speeds of the backing pump delivery wheel and the main pump input shaft are during operation of the fluid delivery device different from each other.
  • the use of the further transmission gear enables both the backing pump and the main pump to operate at an optimal speed in each case.
  • the invention provides that the backing pump has a backing pump fluid inlet and a backing pump fluid outlet, and the main pump has a main pump fluid inlet and a main pump fluid outlet, a delivery device fluid inlet of the fluid delivery device being connected to the backing pump fluid inlet, the backing pump fluid outlet being fluidly connected to the main pump fluid inlet and the main pump fluid inlet and the main pump fluid inlet.
  • the fluid delivery device itself thus has the delivery device fluid inlet and the delivery device fluid outlet.
  • the fluid is provided to the fluid delivery device via the delivery device fluid inlet, and the fluid delivered by means of the backing pump and the main pump is provided through the delivery device fluid outlet. In other words, fluid is supplied to the fluid delivery device via the delivery device fluid inlet and fluid is withdrawn via the delivery device fluid outlet.
  • the foreline pump has the foreline fluid inlet and the foreline fluid outlet.
  • the backing pump is provided with fluid via the backing pump fluid inlet and the fluid conveyed by means of the backing pump is withdrawn via the backing pump fluid outlet.
  • the main pump is provided with the fluid via the main pump fluid outlet, which fluid is withdrawn through the main pump fluid outlet after it has been conveyed by the main pump.
  • the backing pump and the main pump are fluidically connected in series.
  • the backing pump fluid inlet is fluidically connected to the delivery device fluid inlet, so that the fluid that is fed to the fluid delivery device is fed directly to the backing pump.
  • the backing pump fluid outlet is connected to the main pump inlet, so that the main pump is provided with fluid delivered by means of the backing pump.
  • the main pump fluid outlet in turn, is fluidically connected to the delivery device fluid outlet, so that the fluid delivered by means of the backing pump and the main pump is or can be removed via the delivery device fluid outlet of the fluid delivery device.
  • the invention provides that the backing pump fluid outlet is fluidically connected to the backing pump fluid inlet via a bypass line having a check valve.
  • fluid can flow back via the bypass line from the backing pump fluid outlet to the backing pump fluid inlet, bypassing the backing pump.
  • the valve arrangement by means of which the flow connection can be adjusted, is arranged in the bypass line. For example, in a first setting of the valve arrangement, the flow connection between the fore-pump fluid outlet and the fore-pump fluid inlet via the bypass line is interrupted, whereas it is established in a second setting.
  • the valve arrangement is particularly preferably in the form of the check valve or at least has one. This is designed in such a way that it allows a flow from the fore-pump fluid outlet to the fore-pump fluid inlet, but prevents a flow in the opposite direction.
  • the check valve is designed in such a way that it only establishes the flow connection between the fore pump fluid outlet and the fore pump fluid inlet in the direction of the fore pump fluid inlet when a pressure difference between the fore pump fluid outlet and the fore pump fluid inlet exceeds a certain pressure difference.
  • the check valve acts in particular as a pressure limiting valve, so that the pressure applied to the main pump on the inlet side and caused by the backing pump is limited to a specific value.
  • bypass line and the check valve or pressure relief valve are used to supply the main pump with fluid as required. They are particularly necessary if, in at least one operating state, the backing pump conveys more fluid in the direction of the main pump than it can absorb.
  • An embodiment is therefore particularly ideal in which the bypass line and the valve arrangement or the non-return valve are omitted and the backing pump is matched to the main pump in such a way that the fluid is always ideally applied to the main pump.
  • the backing pump of the main pump provides exactly or at least almost exactly the amount of fluid that it can take up, in particular at exactly one speed of the drive shaft, at least one speed of the drive shaft or several different speeds of the drive shaft, particularly preferably over a nominal speed range of the drive shaft, which occurs or at least can occur during normal operation of the fluid delivery device.
  • the backing pump and the main pump are arranged in a common pump housing.
  • the two pumps that is to say the backing pump and the main pump, are therefore not present in different housings, but rather are integrated in the fluid delivery device.
  • both the backing pump drive wheel and the backing pump feed wheel of the backing pump and the main pump drive wheel and the main pump feed wheel of the main pump are rotatably mounted in or on the common pump housing. This results in a particularly compact design of the fluid delivery device.
  • the Figure 1 shows a schematic representation of a fluid delivery device 1, which has a backing pump 2 and a main pump 3.
  • the backing pump 2 has a backing pump fluid inlet 4, which is fluidically connected to a delivery device fluid inlet 5.
  • a backing pump fluid outlet 6 of the backing pump 2 is fluidically connected to a main pump fluid inlet 7.
  • the backing pump 2 and the main pump 3 are connected in series in terms of flow between the delivery device fluid inlet 5 and the delivery device fluid outlet 9.
  • the foreline fluid outlet 6 and the foreline fluid inlet 4 are fluidically connected to one another via a bypass line 10.
  • a valve arrangement 11 is provided which has a check valve 12 or is designed as such.
  • the backing pump 2 can be driven via a backing pump input shaft 13 and the main pump 3 via a main pump input shaft 14.
  • the backing pump 2 and the main pump 3 are drive-connected to a common drive shaft 15.
  • the backing pump input shaft 13 and the main pump input shaft 14 are both connected to the drive shaft 15 in terms of drive technology.
  • the backing pump input shaft 13 there is a direct connection.
  • the backing pump input shaft 13 is formed in one piece with the drive shaft 15.
  • the main pump input shaft 14, on the other hand, is drive-connected to the drive shaft 15 via the backing pump 2.
  • a backing pump drive wheel 16 and a backing pump feed wheel 17 of the backing pump 2 form a transmission gear 18 for the main pump 3.
  • the backing pump drive wheel 16 is coupled to the backing pump input shaft 13, preferably it sits on this and is rigidly and / or permanently connected to it.
  • the backing pump delivery wheel 17, is driven by the backing pump drive wheel 16 during operation of the fluid delivery device 1, that is to say when the drive shaft 15 is rotating.
  • the backing pump 2 is a gear pump, namely an external gear pump.
  • the backing pump drive wheel 16 and the backing pump feed wheel 17 are provided as gear wheels which mesh with one another to form the transmission gear 18.
  • the backing pump drive wheel 16 and the backing pump feed wheel 17 work together to convey fluid.
  • the main pump 3 has a main pump drive wheel 19 and a main pump delivery wheel 20. These also work together to provide a fluid delivery effect of the main pump 3.
  • a connecting shaft 21 is provided which connects the backing pump feed wheel 17 and the main pump input shaft 14 and therefore the main pump drive wheel 19 to one another.
  • the backing pump input shaft 13 is directly coupled to the drive shaft 15, whereas the main pump input shaft 14 is only indirectly coupled to the drive shaft 15 via the connecting shaft 21 and the backing pump 2, i.e. is driven by the drive shaft 15 via the backing pump 2.
  • a configuration of the fluid delivery device 1 in which both the backing pump 2 and the main pump 3 are configured as gear pumps is particularly advantageous.
  • the backing pump 2 is an external gear pump and the main pump 3 is an internal gear pump.
  • the main pump drive wheel 19 represents a pinion gear 22 and the main pump feed wheel 20 represents a ring gear 23 of the internal gear pump.
  • the pinion gear 22 and the ring gear 23 are rotatably mounted about axes of rotation that are offset parallel to one another.
  • the pinion gear 2 has outer dimensions which are smaller than the inner dimensions of the ring gear 23, so that only part of a toothing of the pinion gear 22 meshes with a toothing of the ring gear 23.
  • the internal gear pump is designed as a sickle pump, so that a sickle-shaped filler piece 24 is arranged in some areas between the pinion gear 22 and the ring gear 23.
  • Either the backing pump 2 or the main pump 3 are preferably designed to be gap-compensated.
  • the main pump 3, but not the backing pump 2 is gap-compensated.
  • the backing pump 2 is present without any gap compensation.
  • both the backing pump 2 and the main pump 3 can also be gap-compensated.
  • the Figure 2 shows a further schematic representation of the fluid delivery device 1. It can be seen that the backing pump 2 or the backing pump drive wheel 16 and the backing pump feed wheel 17 each have helical teeth. This significantly improves the running smoothness of the backing pump 2. With regard to the further configuration of the fluid delivery device 1, reference is made to the above statements.
  • the Figure 3 shows a further schematic representation of the fluid delivery device 1.
  • the backing pump 2 and the main pump 3 are arranged in a common pump housing 25.
  • the fore pump drive wheel 16, the fore pump feed wheel 17, the main pump drive wheel 19 and the main pump feed wheel 20 are preferably rotatably mounted in and / or on the pump housing 25.
  • a direction of flow of the fluid through the fluid delivery device 1 is indicated by the arrows 26.
  • the fluid delivery device 1 shown here has excellent delivery properties for the fluid with a long service life because the backing pump 2 and the main pump 3 are ideally matched to one another, namely by means of the transmission gear 18.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Description

  • Die Erfindung betrifft eine Fluidfördereinrichtung mit einer Vorpumpe und einer strömungstechnisch an die Vorpumpe angeschlossene Hauptpumpe, wobei die Vorpumpe über eine Vorpumpeneingangswelle und die Hauptpumpe über eine Hauptpumpeneingangswelle antreibbar sind.
  • Aus dem Stand der Technik ist beispielsweise die Druckschrift DE 10 2007 032 103 A1 bekannt. Diese betrifft eine Pumpeneinheit mit einer Hauptpumpe und einer in ihrem Fördervolumen verstellbaren Ladepumpe. Zur Verstellung des Fördervolumens der Ladepumpe ist ein Hubring vorgesehen. Der Hubring ist mit einer vom Eingangsdruck der Hauptpumpe abhängigen Stellkraft beaufschlagt. Die Druckschrift JP S61 175366 A beschreibt eine andere Fluidfördereinrichtung nach dem Stand der Technik.
  • Es ist Aufgabe der Erfindung, eine Fluidfördereinrichtung vorzuschlagen, welche gegenüber bekannten Fluidfördereinrichtungen Vorteile aufweist, insbesondere eine ideale Abstimmung der Vorpumpe und der Hauptpumpe aufeinander und mithin eine lange Lebensdauer der Fluidfördereinrichtung, vor allem der Hauptpumpe, realisiert.
  • Dies wird erfindungsgemäß mit einer Fluidfördereinrichtung mit den Merkmalen des Anspruchs 1 erreicht. Dabei ist vorgesehen, dass die Vorpumpe über ein mit der Vorpumpeneingangswelle gekoppeltes Vorpumpenantriebsrad und ein mit dem Vorpumpenantriebsrad zur Fluidförderung zusammenwirkendes Vorpumpenförderrad verfügt, wobei die Vorpumpe und die Hauptpumpe mit einer gemeinsamen Antriebswelle antriebstechnisch gekoppelt sind, und wobei das Vorpumpenförderrad und die Hauptpumpeneingangswelle über eine Verbindungswelle miteinander verbunden sind, sodass die Vorpumpeneingangswelle direkt und die Hauptpumpeneingangswelle über die Verbindungswelle mit der Antriebswelle gekoppelt ist.
  • Die Fluidfördereinrichtung dient dem Fördern eines Fluids, beispielsweise einer Flüssigkeit oder eines Gases. Hierzu verfügt die Fluidfördereinrichtung über die Vorpumpe und die Hauptpumpe, wobei die Hauptpumpe strömungstechnisch an die Vorpumpe angeschlossen ist. Das bedeutet, dass das Fluid zunächst der Vorpumpe zugeführt wird, welche das Fluid in Richtung der Hauptpumpe fördert. Das von der Vorpumpe geförderte Fluid wird also der Hauptpumpe zur Verfügung gestellt, welche das Fluid weiterfördert, nämlich beispielsweise in Richtung eines Fluidauslasses der Fluidfördereinrichtung, welche auch als Fördereinrichtungsfluidauslass bezeichnet werden kann.
  • Jede der Pumpen verfügt über eine Eingangswelle, über welche sie antreibbar ist, nämlich die Vorpumpe über die Vorpumpeneingangswelle und die Hauptpumpe über die Hauptpumpeneingangswelle. Die Vorpumpe weist zudem zur Fluidförderung zwei Räder, nämlich das Vorpumpenantriebsrad und das Vorpumpenförderrad auf. Das Vorpumpenantriebsrad und das Vorpumpenförderrad sind zur Fluidförderung vorgesehen und aus diesem Grund derart ausgestaltet, dass sie bei einer Drehbewegung der Vorpumpeneingangswelle zum Fördern des Fluids zusammenwirken und hierbei beispielsweise ineinander eingreifen.
  • Das Vorpumpenantriebsrad ist mit der Vorpumpeneingangswelle gekoppelt, vorzugsweise starr und/oder permanent. Das Vorpumpenantriebsrad ist dabei bevorzugt auf der Vorpumpeneingangswelle angeordnet, sodass es während des Betriebs der Vorpumpe stets dieselbe Drehzahl aufweist wie die Vorpumpeneingangswelle. Die Vorpumpeneingangswelle ist mit der gemeinsamen Antriebswelle antriebstechnisch gekoppelt, vorzugsweise wiederum starr und/oder permanent. Beispielsweise sind die Vorpumpeneingangswelle und die gemeinsame Antriebswelle einstückig ausgestaltet, sodass die Vorpumpeneingangswelle von der Antriebswelle ausgebildet ist und/oder umgekehrt. Insoweit ist die Vorpumpe über die Antriebswelle direkt und unmittelbar antreibbar.
  • Die Hauptpumpe hingegen soll lediglich mittelbar über die Antriebswelle antreibbar sein. Hierzu ist die Hauptpumpe über die Vorpumpe an die Antriebswelle antriebstechnisch angeschlossen, sodass bei einer Drehbewegung der Antriebswelle die Hauptpumpe über die Vorpumpe angetrieben wird. Hierzu sind das Vorpumpenantriebsrad und das Vorpumpenförderrad antriebstechnisch miteinander verbunden. Hierunter ist zu verstehen, dass das Vorpumpenantriebsrad zum Antreiben des Vorpumpenförderrad vorgesehen und ausgestaltet ist, sodass bei einer Drehbewegung der Vorpumpeneingangswelle eine Drehbewegung sowohl des Vorpumpenantriebsrads als auch des Vorpumpenförderrads vorliegt.
  • Das Vorpumpenförderrad ist nun mit der Hauptpumpeneingangswelle antriebstechnisch verbunden, nämlich über die Verbindungswelle. In anderen Worten ist die Hauptpumpe mit dem Vorpumpenförderrad antriebstechnisch verbunden, sodass bevorzugt bei einer Drehbewegung des Vorpumpenförderrads auch eine Drehbewegung der Hauptpumpeneingangswelle vorliegt. Die Hauptpumpeneingangswelle und die Verbindungswelle können separat oder einstückig miteinander ausgestaltet sein. In letzterem Fall bildet die Hauptpumpeneingangswelle die Verbindungswelle aus und/oder umgekehrt. Beispielsweise ist also das Vorpumpenförderrad mittels der Verbindungswelle und/oder der Hauptpumpeneingangswelle drehbar gelagert.
  • In anderen Worten ist die Fluidfördereinrichtung derart ausgestaltet, dass die Vorpumpeneingangswelle direkt und unmittelbar mit der Antriebswelle gekoppelt ist. Die Hauptpumpeneingangswelle ist hingegen lediglich mittelbar über die Verbindungswelle und/oder die Vorpumpe mit der Antriebswelle gekoppelt. Eine derartige Ausgestaltung der Fluidfördereinrichtung hat den Vorteil, dass die Drehzahl der Vorpumpe und der Hauptpumpe beziehungsweise der jeweiligen Eingangswelle in einer festen Beziehung miteinander stehen, sodass beispielsweise zwischen den Drehzahlen ein bestimmtes Verhältnis vorliegt. Hierdurch wird eine sehr gute Abstimmung zwischen der Vorpumpe und der Hauptpumpe während des Betriebs der Fluidfördereinrichtung erzielt.
  • Eine weitere Ausgestaltung der Erfindung sieht vor, dass das Vorpumpenantriebsrad und das Vorpumpenförderrad ein Übersetzungsgetriebe für die Hauptpumpe mit einem bestimmten Übersetzungsverhältnis ausbilden. In anderen Worten liegt das bestimmte Übersetzungsverhältnis zwischen dem Vorpumpenantriebsrad und dem Vorpumpenförderrad vor und mithin auch zwischen der Vorpumpeneingangswelle und/oder der Antriebswelle einerseits und der Verbindungswelle und/oder Hauptpumpeneingangswelle andererseits.
  • Das Übersetzungsverhältnis ist vorzugsweise von eins verschieden, sodass aufgrund des Übersetzungsgetriebes während eines Betriebs der Fluidfördereinrichtung das Vorpumpenförderrad eine Drehzahl aufweist, welche von einer Drehzahl des Vorpumpenantriebsrads verschieden ist beziehungsweise zwischen der Drehzahl des Vorpumpenförderrads und der Drehzahl des Vorpumpenantriebsrads ein bestimmtes Drehzahlverhältnis vorliegt, welches dem Übersetzungsverhältnis entspricht.
  • Mithilfe der Vorpumpe wird insoweit die Drehzahl der Antriebswelle für die Hauptpumpe angepasst. Hierdurch kann sowohl für die Vorpumpe als auch für die Hauptpumpe jeweils eine optimale Drehzahl realisiert werden, ohne ein zusätzliches Getriebe vorsehen zu müssen, über welches die Vorpumpeneingangswelle und die Hauptpumpeneingangswelle miteinander verbunden sind. In anderen Worten wird durch das Antreiben der Hauptpumpe über die Vorpumpe eine besonders kompakte Ausgestaltung der Fluidfördereinrichtung realisiert.
  • Im Rahmen einer weiteren Ausführungsform der Erfindung ist vorgesehen, dass die Vorpumpe als Zahnradpumpe und/oder die Hauptpumpe als Rotationskolbenpumpe ausgebildet ist. Die Ausgestaltung der Vorpumpe als Zahnradpumpe ermöglicht eine besonders vorteilhafte und zuverlässige Verwendung der Vorpumpe als Übersetzungsgetriebe. Unter der Zahnradpumpe wird beispielsweise eine Außenzahnradpumpe oder eine Innenzahnradpumpe verstanden. Besonders bevorzugt ist die Vorpumpe beziehungsweise die Zahnradpumpe spaltkompensiert. Liegt die Vorpumpe in Form der Zahnradpumpe vor, so kann das Vorpumpenantriebsrad als Vorpumpenantriebszahnrad und das Vorpumpenförderrad als Vorpumpenförderzahnrad bezeichnet werden und liegen entsprechend ihrer Bezeichnung als Zahnräder vor. Das Zusammenwirken der Zahnräder zur Fluidförderung erfolgt durch ein Eingreifen ineinander beziehungsweise ein Kämmen miteinander. Anders ausgedrückt kämmt das Vorpumpenantriebszahnrad mit dem Vorpumpenförderzahnrad zur Fluidförderung, wobei gleichzeitig das Übersetzungsgetriebe ausgebildet ist. Eine Verzahnung des Vorpumpenantriebszahnrads und eine Verzahnung des Vorpumpenförderzahnrads sind vorzugsweise als Schrägverzahnungen ausgestaltet. Hierdurch kann eine Geräuschbildung der Vorpumpe im Vergleich zu einer Geradverzahnung deutlich reduziert werden. Selbstverständlich können jedoch alternativ die Verzahnungen auch als Geradverzahnungen ausgebildet sein.
  • Zusätzlich oder alternativ liegt die Hauptpumpe als Rotationskolbenpumpe vor. Unter der Rotationskolbenpumpe wird beispielsweise eine Drehkolbenpumpe, eine Drehschieberpumpe, eine Kreiskolbenpumpe oder eine Zahnradpumpe verstanden. Die Zahnradpumpe kann wiederum als Außenzahnradpumpe und als Innenzahnradpumpe ausgestaltet sein. Auch die Hauptpumpe ist besonders bevorzugt spaltkompensiert ausgestaltet, nämlich insbesondere im Falle ihrer Ausgestaltung als Zahnradpumpe. Besonders bevorzugt ist die Hauptpumpe als Zahnradpumpe ausgestaltet, also beispielsweise als Außenzahnradpumpe oder als Innenzahnradpumpe, wobei letzteres im Rahmen einer besonders bevorzugten Ausgestaltung der Fluidfördereinrichtung der Fall ist. Besonders hervorragende Eigenschaften der Fluidfördereinrichtung ergeben sich im Falle der Ausgestaltung der Vorpumpe sowie der Hauptpumpe als Zahnradpumpen, sodass also beide Pumpen jeweils als Zahnradpumpe vorliegen. Beispielsweise ist die Vorpumpe als Außenzahnradpumpe und die Hauptpumpe als Innenzahnradpumpe ausgestaltet. Hierdurch wird eine besonders zuverlässige Bereitstellung des Fluids für die Hauptpumpe durch die Vorpumpe realisiert.
  • Die Erfindung sieht vor, dass die Vorpumpe ein größeres Fördervolumen aufweist als die Hauptpumpe. Das Fördervolumen kann auch als Verdrängungsvolumen bezeichnet werden. Beispielsweise ist das Fördervolumen der Vorpumpe um mindestens 5 %, mindestens 10 %, mindestens 15 %, mindestens 20 % oder mindestens 25 % größer als das Fördervolumen der Hauptpumpe. Mit einer derartigen Ausgestaltung der Fluidfördereinrichtung wird sichergestellt, dass der Hauptpumpe stets eine ausreichende Menge an Fluid von der Vorpumpe zur Verfügung gestellt wird. Hierdurch wird ein besonders guter Wirkungsgrad der Hauptpumpe und mithin eine gute Effizienz der Fluidfördereinrichtung erzielt.
  • Eine weitere Ausführungsform der Erfindung sieht vor, dass die Hauptpumpe ein Hauptpumpenantriebsrad und ein mit dem Hauptpumpenantriebsrad zur Fluidförderung zusammenwirkendes Hauptpumpenförderrad aufweist, wobei das Vorpumpenförderrad und das Hauptpumpenantriebsrad antriebstechnisch mit der Verbindungswelle verbunden sind. Für das Hauptpumpenantriebsrad und das Hauptpumpenförderrad gilt insoweit vorzugsweise das für das Vorpumpenantriebsrad und das Vorpumpenförderrad Gesagte. Auch das Hauptpumpenantriebsrad wirkt mit dem Hauptpumpenförderrad zur Fluidförderung zusammen, beispielsweise durch ineinander Eingreifen beziehungsweise miteinander Kämmen. Im Falle der Ausgestaltung der Hauptpumpe als Zahnradpumpe kann das Hauptpumpenantriebsrad als Hauptpumpenantriebszahnrad und das Hauptpumpenförderrad als Hauptpumpenförderzahnrad bezeichnet werden.
  • Das Hauptpumpenantriebsrad ist mit der Hauptpumpeneingangswelle antriebstechnisch gekoppelt, vorzugsweise starr und/oder permanent. Beispielsweise sitzt das Hauptpumpenantriebsrad auf der Hauptpumpeneingangswelle, sodass bei einem Betrieb der Fluidfördereinrichtung die Drehzahl des Hauptpumpenantriebsrads der Drehzahl der Hauptpumpeneingangswelle entspricht. Das Hauptpumpenantriebsrad und das Hauptpumpenförderrad wirken zur Fluidförderung derart zusammen, dass das Hauptpumpenförderrad während des Betriebs der Fluidfördereinrichtung von dem Hauptpumpenantriebsrad angetrieben wird. Bei einer Drehbewegung des Hauptpumpenantriebsrads liegt insoweit auch eine Drehbewegung des Hauptpumpenförderrads vor, wodurch insgesamt die Fluidförderwirkung erzielt wird.
  • Zur antriebstechnischen Kopplung der Hauptpumpe mit der Vorpumpe sind das Vorpumpenförderrad und das Hauptpumpenantriebsrad antriebstechnisch mit der Verbindungswelle verbunden, nämlich vorzugsweise starr und/oder permanent. Hierzu ist es beispielsweise vorgesehen, dass die Verbindungswelle einstückig mit der Hauptpumpeneingangswelle ausgebildet ist beziehungsweise diese ausbildet. Bevorzugt sind sowohl das Vorpumpenförderrad als auch das Hauptpumpenantriebsrad auf der Verbindungswelle angeordnet und antriebstechnisch mit ihr verbunden. Zum Beispiel sind das Vorpumpenförderrad und das Hauptpumpenantriebsrad über die Verbindungswelle drehbar gelagert. Hierdurch wird eine zusätzliche Lagerung des Vorpumpenförderrads beziehungsweise des Hauptpumpenantriebsrads vermieden, sodass der Bauraumbedarf der Fluidfördereinrichtung weiter reduziert wird.
  • Eine bevorzugte Ausgestaltung der Erfindung sieht vor, dass die Hauptpumpe als Innenzahnradpumpe, insbesondere als Sichelpumpe, vorliegt, wobei das Hauptpumpenantriebsrad als Ritzelzahnrad und das Hauptpumpenförderrad als Hohlrad ausgestaltet sind. Die Innenzahnradpumpe ist besonders bevorzugt spaltkompensiert ausgestaltet. Die Innenzahnradpumpe kann ohne Füllstück, insoweit also füllstücklos, oder mit Füllstück ausgebildet sein. In letzterem Fall liegt sie in Form der Sichelpumpe vor, bei welcher das (sichelförmige) Füllstück zwischen dem Ritzelzahnrad und dem Hohlrad angeordnet ist, sodass das Füllstück - im Querschnitt bezüglich einer Drehachse des Ritzelzahnrads und/oder einer Drehachse des Hauptpumpenförderrads gesehen - mit einer in radialer Richtung innen gelegenen Innenseite an dem Ritzelzahnrad, insbesondere an Zähnen des Ritzelzahnrads, und mit seiner in radialer Richtung außen gelegenen Seite an dem Hohlrad, insbesondere an Zähnen des Hohlrads, anliegt. Die Ausgestaltung der Hauptpumpe als Innenzahnradpumpe ermöglicht eine besonders hohe Effizienz der Fluidfördereinrichtung.
  • Eine weitere bevorzugte Ausführungsform der Erfindung sieht vor, dass in der Wirkverbindung zwischen dem Vorpumpenförderrad und der Hauptpumpeneingangswelle ein weiteres Übersetzungsgetriebe angeordnet ist. Das weitere Übersetzungsgetriebe tritt also zu dem von dem Vorpumpenantriebsrad und dem Vorpumpenförderrad ausgebildeten Übersetzungsgetriebe hinzu, sodass die Hauptpumpe über das Übersetzungsgetriebe und das weitere Übersetzungsgetriebe, welche in Reihe miteinander geschaltet sind, an die Antriebswelle angeschlossen ist. Das weitere Übersetzungsgetriebe liegt beispielsweise als Zahnradgetriebe, beispielsweise als Stirnzahnradgetriebe, vor. Insbesondere ist es als Umlaufrädergetriebe beziehungsweise Planetengetriebe ausgestaltet.
  • Das weitere Übersetzungsgetriebe weist ein Übersetzungsverhältnis auf, welches vorzugsweise von eins verschieden ist, sodass zwischen der Drehzahl der Hauptpumpeneingangswelle und der Drehzahl des Vorpumpenförderrads ein bestimmtes Drehzahlverhältnis vorliegt, welches dem Übersetzungsverhältnis des weiteren Übersetzungsgetriebes entspricht. Bei der von eins verschiedenen Übersetzung des weiteren Übersetzungsgetriebes sind während eines Betriebs der Fluidfördereinrichtung die Drehzahlen von Vorpumpenförderrad und Hauptpumpeneingangswelle voneinander verschieden. Die Verwendung des weiteren Übersetzungsgetriebes ermöglicht einen Betrieb sowohl der Vorpumpe als auch der Hauptpumpe bei einer jeweils optimalen Drehzahl.
  • Die Erfindung sieht vor, dass die Vorpumpe einen Vorpumpenfluideinlass und einen Vorpumpenfluidauslass sowie die Hauptpumpe einen Hauptpumpenfluideinlass und einen Hauptpumpenfluidauslass aufweist, wobei ein Fördereinrichtungsfluideinlass der Fluidfördereinrichtung an den Vorpumpenfluideinlass, der Vorpumpenfluidauslass an den Hauptpumpenfluideinlass und der Hauptpumpenfluidauslass an den Fördereinrichtungsfluidauslass der Fördereinrichtung strömungstechnisch angeschlossen ist. Die Fluidfördereinrichtung selbst verfügt also über den Fördereinrichtungsfluideinlass und den Fördereinrichtungsfluidauslass. Über den Fördereinrichtungsfluideinlass wird der Fluidfördereinrichtung das Fluid bereitgestellt, über den Fördereinrichtungsfluidauslass stellt sie das mittels der Vorpumpe und der Hauptpumpe geförderte Fluid bereit. In anderen Worten wird der Fluidfördereinrichtung über den Fördereinrichtungsfluideinlass Fluid zugeführt und über den Fördereinrichtungsfluidauslass Fluid entnommen.
  • Die Vorpumpe weist den Vorpumpenfluideinlass und den Vorpumpenfluidauslass auf. Über den Vorpumpenfluideinlass wird der Vorpumpe Fluid bereitgestellt und über den Vorpumpenfluidauslass das mittels der Vorpumpe geförderte Fluid entnommen. Entsprechend verhält es sich für die Hauptpumpe, welche insoweit den Hauptpumpenfluideinlass und den Hauptpumpenfluidauslass aufweist. Der Hauptpumpe wird das Fluid über den Hauptpumpenfluidauslass bereitgestellt, welches nach seinem Fördern durch die Hauptpumpe durch den Hauptpumpenfluidauslass entnommen wird.
  • Die Vorpumpe und die Hauptpumpe sind strömungstechnisch in Reihe geschaltet. Hierzu ist der Vorpumpenfluideinlass strömungstechnisch an den Fördereinrichtungsfluideinlass angeschlossen, sodass der Vorpumpe unmittelbar das Fluid zugeführt wird, welches der Fluidfördereinrichtung zugeführt wird. Der Vorpumpenfluidauslass ist an den Hauptpumpeneinlass angeschlossen, sodass der Hauptpumpe mittels der Vorpumpe gefördertes Fluid bereitgestellt wird. Der Hauptpumpenfluidauslass wiederum ist an den Fördereinrichtungsfluidauslass strömungstechnisch angeschlossen, sodass über den Fördereinrichtungsfluidauslass der Fluidfördereinrichtung das mittels der Vorpumpe und der Hauptpumpe geförderte Fluid entnommen wird beziehungsweise entnommen werden kann.
  • Die Erfindung sieht vor, dass der Vorpumpenfluidauslass über eine ein Rückschlagventil aufweisende Bypassleitung an den Vorpumpenfluideinlass strömungstechnisch angeschlossen ist. Über die Bypassleitung ist eine unmittelbare Strömungsverbindung zwischen dem Vorpumpenfluideinlass und dem Vorpumpenfluidauslass herstellbar, welche nicht über die Vorpumpe selbst verläuft. Über die Bypassleitung kann insoweit Fluid von dem Vorpumpenfluidauslass zu dem Vorpumpenfluideinlass unter Umgehung der Vorpumpe zurückströmen. In der Bypassleitung ist die Ventilanordnung angeordnet, mittels welcher die Strömungsverbindung einstellbar ist. So ist beispielsweise in einer ersten Einstellung der Ventilanordnung die Strömungsverbindung zwischen dem Vorpumpenfluidauslass und dem Vorpumpenfluideinlass über die Bypassleitung unterbrochen, wohingegen sie bei einer zweiten Einstellung hergestellt ist.
  • Die Ventilanordnung liegt besonders bevorzugt in Form des Rückschlagventils vor oder weist ein solches zumindest auf. Dieses ist derart ausgestaltet, dass es eine Strömung von dem Vorpumpenfluidauslass hin zu dem Vorpumpenfluideinlass zulässt, eine Strömung in umgekehrter Richtung jedoch unterbindet. Beispielsweise ist das Rückschlagventil derart ausgestaltet, dass es die Strömungsverbindung zwischen dem Vorpumpenfluidauslass und dem Vorpumpenfluideinlass in Richtung des Vorpumpenfluideinlasses lediglich herstellt, wenn eine Druckdifferenz zwischen dem Vorpumpenfluidauslass und dem Vorpumpenfluideinlass eine bestimmte Druckdifferenz überschreitet. Mithilfe der Bypassleitung und der darin vorliegenden Ventilanordnung wird eine bedarfsgerechte Versorgung der Hauptpumpe mit Fluid sichergestellt. Hierbei wirkt das Rückschlagventil insbesondere als Druckbegrenzungsventil, sodass der eingangsseitig an der Hauptpumpe anliegende, mittels der Vorpumpe bewirkte Druck auf einen bestimmten Wert begrenzt ist.
  • Die Bypassleitung und das Rückschlagventil beziehungsweise Druckbegrenzungsventil dienen einer bedarfsgerechten Beaufschlagung der Hauptpumpe mit Fluid. Sie sind insbesondere dann notwendig, falls die Vorpumpe in zumindest einem Betriebszustand mehr Fluid in Richtung Hauptpumpe fördert als diese aufnehmen kann. Besonders ideal ist daher eine Ausgestaltung, bei welcher die Bypassleitung und die Ventilanordnung beziehungsweise das Rückschlagventil entfallen und die Vorpumpe derart auf die Hauptpumpe abgestimmt ist, dass stets eine ideale Beaufschlagung der Hauptpumpe mit dem Fluid erfolgt. Hierzu stellt die Vorpumpe der Hauptpumpe exakt oder zumindest nahezu exakt die Fluidmenge bereit, die diese aufnehmen kann, insbesondere bei genaue einer Drehzahl der Antriebswelle, wenigstens einer Drehzahl der Antriebswelle oder mehreren unterschiedlichen Drehzahlen der Antriebswelle, besonders bevorzugt über einen Nenndrehzahlbereich der Antriebswelle hinweg, der bei einem bestimmungsgemäßen Betrieb der Fluidfördereinrichtung auftritt oder zumindest auftreten kann.
  • Schließlich kann im Rahmen einer weiteren bevorzugten Ausführungsform der Erfindung vorgesehen sein, dass die Vorpumpe und die Hauptpumpe in einem gemeinsamen Pumpengehäuse angeordnet sind. Die beiden Pumpen, also die Vorpumpe und die Hauptpumpe, liegen mithin nicht in unterschiedlichen Gehäusen vor, sondern sind vielmehr integriert in der Fluidfördereinrichtung zusammengefasst. Insbesondere sind sowohl das Vorpumpenantriebsrad und das Vorpumpenförderrad der Vorpumpe als auch das Hauptpumpenantriebsrad und das Hauptpumpenförderrad der Hauptpumpe in beziehungsweise an dem gemeinsamen Pumpengehäuse drehbar gelagert. Hieraus resultiert eine besonders kompakte Ausgestaltung der Fluidfördereinrichtung.
  • Die Erfindung wird nachfolgend anhand der in der Zeichnung dargestellten Ausführungsbeispiele näher erläutert, ohne dass eine Beschränkung der Erfindung erfolgt. Dabei zeigt:
  • Figur 1
    eine schematische Darstellung einer Fluidfördereinrichtung mit einer Vorpumpe und einer Hauptpumpe in einer ersten Ansicht,
    Figur 2
    eine schematische Darstellung der Fluidfördereinrichtung in einer zweiten Ansicht, sowie
    Figur 3
    eine schematische Schnittdarstellung durch die Fluidfördereinrichtung, wobei die Vorpumpe und die Hauptpumpe in einem gemeinsamem Pumpengehäuse vorliegen.
  • Die Figur 1 zeigt eine schematische Darstellung einer Fluidfördereinrichtung 1, die eine Vorpumpe 2 und eine Hauptpumpe 3 aufweist. Die Vorpumpe 2 verfügt über einen Vorpumpenfluideinlass 4, der an einen Fördereinrichtungsfluideinlass 5 strömungstechnisch angeschlossen ist. Ein Vorpumpenfluidauslass 6 der Vorpumpe 2 ist an einen Hauptpumpenfluideinlass 7 strömungstechnisch angeschlossen. Ein Hauptpumpenfluidauslass 8 der Hauptpumpe 3 wiederum ist an einen Fördereinrichtungsfluidauslass 9 der Fluidfördereinrichtung 1 strömungstechnisch angeschlossen. Schlussendlich liegen also die Vorpumpe 2 und die Hauptpumpe 3 strömungstechnisch in Reihe geschaltet zwischen dem Fördereinrichtungsfluideinlass 5 und dem Fördereinrichtungsfluidauslass 9 vor. Es ist erkennbar, dass der Vorpumpenfluidauslass 6 und der Vorpumpenfluideinlass 4 über eine Bypassleitung 10 strömungstechnisch aneinander angeschlossen sind. In der Bypassleitung 10 ist eine Ventilanordnung 11 vorgesehen, welche ein Rückschlagventil 12 aufweist oder als ein solches ausgestaltet ist.
  • Die Vorpumpe 2 ist über eine Vorpumpeneingangswelle 13 und die Hauptpumpe 3 über eine Hauptpumpeneingangswelle 14 antreibbar. Die Vorpumpe 2 und die Hauptpumpe 3 sind antriebstechnisch an eine gemeinsame Antriebswelle 15 angeschlossen. In anderen Worten sind die Vorpumpeneingangswelle 13 und die Hauptpumpeneingangswelle 14 beide antriebstechnisch mit der Antriebswelle 15 verbunden. Im Falle der Vorpumpeneingangswelle 13 liegt eine direkte Verbindung vor. Beispielsweise ist die Vorpumpeneingangswelle 13 einstückig mit der Antriebswelle 15 ausgebildet. Die Hauptpumpeneingangswelle 14 ist hingegen über die Vorpumpe 2 mit der Antriebswelle 15 antriebstechnisch verbunden. Hierzu bilden ein Vorpumpenantriebsrad 16 und ein Vorpumpenförderrad 17 der Vorpumpe 2 ein Übersetzungsgetriebe 18 für die Hauptpumpe 3 aus.
  • Das Vorpumpenantriebsrad 16 ist mit der Vorpumpeneingangswelle 13 gekoppelt, vorzugsweise sitzt es auf dieser und ist mit ihr starr und/oder permanent verbunden. Das Vorpumpenförderrad 17 wird hingegen während eines Betriebs der Fluidfördereinrichtung 1, also bei einer Drehbewegung der Antriebswelle 15 von dem Vorpumpenantriebsrad 16 angetrieben. In dem hier dargestellten Ausführungsbeispiel liegt die Vorpumpe 2 als Zahnradpumpe, nämlich als Außenzahnradpumpe vor. Das Vorpumpenantriebsrad 16 und das Vorpumpenförderrad 17 liegen insoweit als Zahnräder vor, welche zur Ausbildung des Übersetzungsgetriebes 18 miteinander kämmen. Zudem wirken das Vorpumpenantriebsrad 16 und das Vorpumpenförderrad 17 zur Fluidförderung zusammen.
  • Analog hierzu verfügt die Hauptpumpe 3 über ein Hauptpumpenantriebsrad 19 und ein Hauptpumpenförderrad 20. Auch diese wirken zum Bereitstellen einer Fluidförderwirkung der Hauptpumpe 3 zusammen. Zum antriebstechnischen Verbinden der Hauptpumpe 3 mit der Vorpumpe 2 ist eine Verbindungswelle 21 vorgesehen, welche das Vorpumpenförderrad 17 und die Hauptpumpeneingangswelle 14 und mithin das Hauptpumpenantriebsrad 19 miteinander verbindet. Insoweit wird deutlich, dass die Vorpumpeneingangswelle 13 direkt an die Antriebswelle 15 gekoppelt ist, wohingegen die Hauptpumpeneingangswelle 14 lediglich mittelbar über die Verbindungswelle 21 und die Vorpumpe 2 mit der Antriebswelle 15 antriebstechnisch gekoppelt ist, also über die Vorpumpe 2 von der Antriebswelle 15 angetrieben wird.
  • Besonders vorteilhaft ist eine Ausgestaltung der Fluidfördereinrichtung 1, bei welcher sowohl die Vorpumpe 2 als auch die Hauptpumpe 3 als Zahnradpumpe ausgestaltet ist. In dem hier dargestellten Ausführungsbeispiel liegt die Vorpumpe 2 als Außenzahnradpumpe und die Hauptpumpe 3 als Innenzahnradpumpe vor. Hierbei stellt das Hauptpumpenantriebsrad 19 ein Ritzelzahnrad 22 und das Hauptpumpenförderrad 20 ein Hohlrad 23 der Innenzahnradpumpe dar. Das Ritzelzahnrad 22 und das Hohlrad 23 sind um parallel zueinander versetzt angeordnete Drehachsen drehbar gelagert. Das Ritzelzahnrad 2 weist im Querschnitt gesehen Außenabmessungen auf, welche kleiner sind als Innenabmessungen des Hohlrads 23, sodass lediglich ein Teil einer Verzahnung des Ritzelzahnrads 22 mit einer Verzahnung des Hohlrads 23 kämmt. Die Innenzahnradpumpe ist als Sichelpumpe ausgeführt, sodass zwischen dem Ritzelzahnrad 22 und dem Hohlrad 23 bereichsweise ein sichelförmiges Füllstück 24 angeordnet ist. Bevorzugt sind entweder die Vorpumpe 2 oder die Hauptpumpe 3 spaltkompensiert ausgebildet. Insbesondere ist eine Ausgestaltung bevorzugt, bei welcher die Hauptpumpe 3, nicht jedoch die Vorpumpe 2, spaltkompensiert ist. Die Vorpumpe 2 liegt insoweit spaltkompensationslos vor. Es können jedoch auch sowohl die Vorpumpe 2 als auch die Hauptpumpe 3 spaltkompensiert sein.
  • Die Figur 2 zeigt eine weitere schematische Darstellung der Fluidfördereinrichtung 1. Es ist erkennbar, dass die Vorpumpe 2 beziehungsweise das Vorpumpenantriebsrad 16 und das Vorpumpenförderrad 17 jeweils eine Schrägverzahnung aufweisen. Hierdurch wird die Laufruhe der Vorpumpe 2 deutlich verbessert. Hinsichtlich der weiteren Ausgestaltung der Fluidfördereinrichtung 1 wird auf die vorstehenden Ausführungen verwiesen.
  • Die Figur 3 zeigt eine weitere schematische Darstellung der Fluidfördereinrichtung 1. Erneut wird vollumfänglich auf die vorstehenden Ausführungen Bezug genommen. Zusätzlich wird nun deutlich, dass die Vorpumpe 2 und die Hauptpumpe 3 in einem gemeinsamen Pumpengehäuse 25 angeordnet sind. Hierbei sind bevorzugt das Vorpumpenantriebsrad 16, das Vorpumpenförderrad 17, das Hauptpumpenantriebsrad 19 und das Hauptpumpenförderrad 20 drehbar in und/oder an dem Pumpengehäuse 25 gelagert. Eine Strömungsrichtung des Fluids durch die Fluidfördereinrichtung 1 ist durch die Pfeile 26 angedeutet.
  • Die hier dargestellte Fluidfördereinrichtung 1 weist hervorragende Fördereigenschaften für das Fluid bei langer Lebensdauer auf, weil die Vorpumpe 2 und die Hauptpumpe 3 ideal aufeinander abgestimmt sind, nämlich mittels des Übersetzungsgetriebes 18.

Claims (7)

  1. Fluidfördereinrichtung (1) mit einer Vorpumpe (2) und einer strömungstechnisch an die Vorpumpe (2) angeschlossenen Hauptpumpe (3), wobei die Vorpumpe (2) über eine Vorpumpeneingangswelle (13) und die Hauptpumpe (3) über eine Hauptpumpeneingangswelle (14) antreibbar sind, und wobei die Vorpumpe (2) einen Vorpumpenfluideinlass (4) und einen Vorpumpenfluidauslass (6) sowie die Hauptpumpe (3) einen Hauptpumpenfluideinlass (7) und einen Hauptpumpenfluidauslass (8) aufweist, wobei ein Fördereinrichtungsfluideinlass (5) der Fluidfördereinrichtung (1) an den Vorpumpenfluideinlass (4), der Vorpumpenfluidauslass (6) an den Hauptpumpenfluideinlass (7) und der Hauptpumpenfluidauslass (8) an den Fördereinrichtungsfluidauslass (9) der Fluidfördereinrichtung (1) strömungstechnisch angeschlossen ist, dadurch gekennzeichnet, dass die Vorpumpe (2) über ein mit der Vorpumpeneingangswelle (13) gekoppeltes Vorpumpenantriebsrad (16) und ein mit dem Vorpumpenantriebsrad (16) zur Fluidförderung zusammenwirkendes Vorpumpenförderrad (17) verfügt, wobei die Vorpumpe (2) und die Hauptpumpe (3) mit einer gemeinsamen Antriebswelle (15) antriebstechnisch gekoppelt sind, und wobei das Vorpumpenförderrad (17) und die Hauptpumpeneingangswelle (14) über eine Verbindungswelle (21) miteinander verbunden sind, sodass die Vorpumpeneingangswelle (13) direkt und die Hauptpumpeneingangswelle (14) über die Verbindungswelle (21) mit der Antriebswelle (15) gekoppelt ist, wobei der Vorpumpenfluidauslass (6) über eine ein Rückschlagventil (12) aufweisende Bypassleitung (10) an den Vorpumpenfluideinlass (4) strömungstechnisch angeschlossen ist und die Vorpumpe (2) ein größeres Fördervolumen aufweist als die Hauptpumpe (3).
  2. Fluidfördereinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Vorpumpenantriebsrad (16) und das Vorpumpenförderrad (17) ein Übersetzungsgetriebe (18) für die Hauptpumpe (3) mit einem bestimmten Übersetzungsverhältnis ausbilden.
  3. Fluidfördereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorpumpe (2) als Zahnradpumpe und/oder die Hauptpumpe (3) als Rotationskolbenpumpe ausgebildet ist.
  4. Fluidfördereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hauptpumpe (3) ein Hauptpumpenantriebsrad (19) und ein mit dem Hauptpumpenantriebsrad (19) zur Fluidförderung zusammenwirkendes Hauptpumpenförderrad (20) aufweist, wobei das Vorpumpenförderrad (17) und das Hauptpumpenantriebsrad (19) antriebstechnisch mit der Verbindungswelle (21) verbunden sind.
  5. Fluidfördereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hauptpumpe (3) als Innenzahnradpumpe, insbesondere als Sichelpumpe, vorliegt, wobei das Hauptpumpenantriebsrad (19) als Ritzelzahnrad (22) und das Hauptpumpenförderrad (20) als Hohlrad (23) ausgestaltet sind.
  6. Fluidfördereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in der Wirkverbindung zwischen dem Vorpumpenförderrad (17) und der Hauptpumpeneingangswelle (14) ein weiteres Übersetzungsgetriebe angeordnet ist.
  7. Fluidfördereinrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorpumpe (2) und die Hauptpumpe (3) in einem gemeinsamen Pumpengehäuse (25) angeordnet sind.
EP18829267.6A 2017-12-22 2018-12-13 Fluidfördereinrichtung Active EP3728850B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017223675.2A DE102017223675B4 (de) 2017-12-22 2017-12-22 Fluidfördereinrichtung
PCT/EP2018/084721 WO2019121307A1 (de) 2017-12-22 2018-12-13 Fluidfördereinrichtung

Publications (2)

Publication Number Publication Date
EP3728850A1 EP3728850A1 (de) 2020-10-28
EP3728850B1 true EP3728850B1 (de) 2021-10-27

Family

ID=64902009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18829267.6A Active EP3728850B1 (de) 2017-12-22 2018-12-13 Fluidfördereinrichtung

Country Status (5)

Country Link
US (1) US11248602B2 (de)
EP (1) EP3728850B1 (de)
CN (1) CN111566349B (de)
DE (1) DE102017223675B4 (de)
WO (1) WO2019121307A1 (de)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06100259B2 (ja) * 1985-01-30 1994-12-12 カヤバ工業株式会社 多段可変容量油圧駆動装置
DE4439545A1 (de) * 1994-11-05 1996-05-09 Gerhard Hestermann Vorrichtung zur teilweisen Trennung flüssiger Lösungen nach dem Prinzip der Querfiltration
US5820354A (en) * 1996-11-08 1998-10-13 Robbins & Myers, Inc. Cascaded progressing cavity pump system
KR100449312B1 (ko) * 1996-11-11 2004-11-26 라필찬 쌍원통임펠러형펌프
JP3760298B2 (ja) * 1998-07-29 2006-03-29 株式会社日立製作所 複合型ギヤポンプ
US6679692B1 (en) * 2002-07-12 2004-01-20 James J. Feuling Oil pump
JP2006161616A (ja) 2004-12-03 2006-06-22 Hitachi Ltd タンデム型トロコイドポンプおよびその組み付け方法
BRPI0716188A2 (pt) * 2006-09-08 2013-11-12 Hybra Drive Systems Llc Dispositivo de motor/bomba de tipo telescópico
DE102007032103B4 (de) 2007-05-16 2022-02-24 Robert Bosch Gmbh Pumpeneinheit mit einer Hauptpumpe und einer in ihrem Fördervolumen verstellbaren Ladepumpe
EP2516860B1 (de) * 2009-12-21 2014-03-12 Schaeffler Technologies GmbH & Co. KG Hydrauliksteuerung
JP6129483B2 (ja) * 2012-04-19 2017-05-17 株式会社ミクニ オイルポンプ
DE102012210925A1 (de) * 2012-06-27 2014-05-15 Robert Bosch Gmbh Doppelinnenzahnradpumpe
DE102012112720B4 (de) 2012-12-20 2017-01-12 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Pumpe
DE102013223860A1 (de) * 2013-11-21 2015-05-21 Robert Bosch Gmbh Innenzahnradpumpe
FR3022951B1 (fr) * 2014-06-26 2020-01-24 Safran Aircraft Engines Pompe a deux etages, prevue notamment comme pompe principale d'alimentation d'un moteur d'avion en carburant

Also Published As

Publication number Publication date
DE102017223675B4 (de) 2023-01-26
CN111566349A (zh) 2020-08-21
US20200318635A1 (en) 2020-10-08
US11248602B2 (en) 2022-02-15
DE102017223675A1 (de) 2019-06-27
CN111566349B (zh) 2022-09-02
WO2019121307A1 (de) 2019-06-27
EP3728850A1 (de) 2020-10-28

Similar Documents

Publication Publication Date Title
DE102011122642B4 (de) Reversible Gerotorpumpe
DE2830598A1 (de) Stroemungsmittelpumpeinrichtung
EP1927754A1 (de) Innenzahnradpumpe
DE202011052114U1 (de) Innenzahnradpumpe
DE102012001462A1 (de) Innenzahnradpumpe
EP3728850B1 (de) Fluidfördereinrichtung
DE102006025367B4 (de) Zahnradpumpe, insbesondere Zahnradölpumpe für Fahrzeuge
EP1832750B1 (de) Außenzahnradpumpe mit Entlastungstasche
DE102021214256A1 (de) Gerotoreinrichtung und Pumpeneinrichtung mit Gerotoreinrichtung
DE102017204145A1 (de) Ölmehrfachpumpe und Kraftfahrzeug mit einer solchen Ölmehrfachpumpe
DE102013207096A1 (de) Innenzahnradpumpe für eine hydraulische Fahrzeugbremsanlage
DE102018212497A1 (de) Fluidfördereinrichtung
DE102011084828A1 (de) Förderaggregat
EP3337929B1 (de) Antriebsvorrichtung mit umlauffilterung
DE102016207093A1 (de) Zahnradfluidmaschine
WO2013164111A2 (de) Innenzahnradpumpe
DE202014006761U1 (de) Hydrostatische Kreiskolbenmaschine nach dem Orbitprinzip
EP2882976A1 (de) Pumpeneinrichtung
DE102012217484A1 (de) Innenzahnradpumpe, insbesondere für eine hydraulische Fahrzeugbremsanlage
DE102010005984B4 (de) Regelölpumpe
DE102011009221A1 (de) Zahnradpumpe
DE102010064193A1 (de) Innenzahnradpumpe
DE102016206790A1 (de) Innenzahnradpumpe
DE10343549B4 (de) Verdrängerpumpe mit Überdruckventil
DE102012210686A1 (de) Innenzahnradpumpe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210531

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1442031

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018007628

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220227

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220127

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220128

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018007628

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211231

26N No opposition filed

Effective date: 20220728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211213

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211213

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211227

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181213

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221213

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231215

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211027