EP3728676B1 - A method for coating a steel substrate with a scale protection - Google Patents
A method for coating a steel substrate with a scale protection Download PDFInfo
- Publication number
- EP3728676B1 EP3728676B1 EP18833712.5A EP18833712A EP3728676B1 EP 3728676 B1 EP3728676 B1 EP 3728676B1 EP 18833712 A EP18833712 A EP 18833712A EP 3728676 B1 EP3728676 B1 EP 3728676B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating
- drying
- steel substrate
- aqueous mixture
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 60
- 239000010959 steel Substances 0.000 title claims description 60
- 239000011248 coating agent Substances 0.000 title claims description 39
- 238000000576 coating method Methods 0.000 title claims description 39
- 238000000034 method Methods 0.000 title claims description 26
- 239000000758 substrate Substances 0.000 title claims description 25
- 239000000203 mixture Substances 0.000 claims description 36
- 238000003303 reheating Methods 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 15
- 239000011230 binding agent Substances 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 150000002902 organometallic compounds Chemical class 0.000 claims description 7
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052911 sodium silicate Inorganic materials 0.000 claims description 5
- 238000000151 deposition Methods 0.000 claims description 4
- 230000008021 deposition Effects 0.000 claims description 4
- 238000005098 hot rolling Methods 0.000 claims description 4
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 claims description 4
- 238000005507 spraying Methods 0.000 claims description 4
- 239000004115 Sodium Silicate Substances 0.000 claims description 3
- 239000000654 additive Substances 0.000 claims description 2
- 230000000996 additive effect Effects 0.000 claims description 2
- 238000003618 dip coating Methods 0.000 claims description 2
- 238000004528 spin coating Methods 0.000 claims description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims 2
- 239000012535 impurity Substances 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 claims 1
- 239000000047 product Substances 0.000 description 12
- 238000005261 decarburization Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 230000004584 weight gain Effects 0.000 description 4
- 235000019786 weight gain Nutrition 0.000 description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000002064 nanoplatelet Substances 0.000 description 3
- 238000000399 optical microscopy Methods 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- FHRAKXJVEOBCBQ-UHFFFAOYSA-L 2-ethylhexanoate;manganese(2+) Chemical compound [Mn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O FHRAKXJVEOBCBQ-UHFFFAOYSA-L 0.000 description 1
- QCAHUFWKIQLBNB-UHFFFAOYSA-N 3-(3-methoxypropoxy)propan-1-ol Chemical compound COCCCOCCCO QCAHUFWKIQLBNB-UHFFFAOYSA-N 0.000 description 1
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Inorganic materials O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910001562 pearlite Inorganic materials 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/68—Temporary coatings or embedding materials applied before or during heat treatment
- C21D1/70—Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D1/00—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
- C09D1/02—Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances alkali metal silicates
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/08—Anti-corrosive paints
- C09D5/082—Anti-corrosive paints characterised by the anti-corrosive pigment
- C09D5/084—Inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/66—Additives characterised by particle size
- C09D7/69—Particle size larger than 1000 nm
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/70—Additives characterised by shape, e.g. fibres, flakes or microspheres
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
- C21D8/0215—Rapid solidification; Thin strip casting
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
- C21D8/0284—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0478—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
- C21D8/0484—Application of a separating or insulating coating
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2227—Oxides; Hydroxides of metals of aluminium
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/30—Sulfur-, selenium- or tellurium-containing compounds
- C08K2003/3045—Sulfates
- C08K2003/3081—Aluminum sulfate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/042—Graphene or derivatives, e.g. graphene oxides
Definitions
- the present invention relates to a method for the manufacturing of a steel substrate coated with a coating including nanographite, having a specific lateral size, and a binder, and a method for the manufacture of a hot rolled steel product using said coated steel substrate. It is particularly well suited for steel industry.
- the steel is casted in the continuous casting.
- Semi-products such as slabs, billets or blooms, are thus obtained.
- the semi-products are reheated at high temperature in a reheating furnace to dissolve the precipitates formed during the continuous casting and to obtain a hot workability. They are then descaled and hot-rolled.
- semi-products can have some problems such as oxidation in a form of scale or decarburization.
- the patent application CN101696328 discloses a protective coating for a surface of a steel piece in order to prevent the surface from oxidation and decarburization at high temperature and, improve hardness and abrasion resistance and ultimately increase the overall service life of the steel workpiece, for the case of oxidation and decarburization of a surface (substrate) of a steel workpiece at high temperature, and the surface oxidation decarburization under the oxidizing atmosphere during heat treatment, forging, hot rolling, roll forming heating, particularly for the case that the steel workpiece is easy to be oxidized and decarbonized at high temperature in a heat treatment, leading to reduction in carbon atoms and carbon content, and the change in the surface (substrate) microstructure results in a reduced hardness, a reduced abrasion resistance and a short overall service life.
- the coating has a composition of: graphite, water glass and surface penetrant, in which a volume ratio of the graphite to sodium silicate is 1: 3 to 1: 7, and the surface penetrant constitutes 0.05% to 0.15% by volume of the coating.
- a volume ratio of the graphite to sodium silicate is 1: 3 to 1: 7
- the surface penetrant constitutes 0.05% to 0.15% by volume of the coating.
- the purpose of the invention is to provide a method for the manufacturing of a steel substrate comprising a protection coating during the reheating that adheres well onto the steel, and to provide a method for the manufacturing of a hot rolled steel product using said coated steel substrate.
- nanographite flake (2) having this specific lateral size are well dispersed into the binder (3) in a form of tortuous path (4).
- problems such as the oxidation and decarburization are avoided.
- the use of nanographites having the lateral size between 1 and 60 ⁇ m allows for a cluster including a large amount of nanographite flakes resulting in a narrower space between each nanographite particle.
- the tortuous path is more difficult to cross allowing for a high protection of the steel substrate (5).
- the C amount is between 0.31 and 1.0% by weight.
- the Mn amount is between 0.15 and 2.0% by weight, more preferably between 0.15 and 1.5% by weight and advantageously between 0.15 and 0.7% by weight.
- the amount of Cr is below or equal to 0.3% by weight.
- the amount of Ni is below or equal to 0.1% by weight.
- the amount of Mo is below or equal to 0.1%.
- Figure 2 illustrates an example of nanographite according to the present invention.
- the lateral size means the highest length of the nanoplatelet through the X axis and the thickness means the height of the nanoplatelet through the Z axis.
- the width of the nanoplatelet is illustrated through the Y axis.
- the lateral size of the nanoparticles is between 20 and 55 ⁇ m and more preferably between 30 and 55 ⁇ m.
- the thickness of the coating is between 10 and 250 ⁇ m.
- the thickness of the coating is between 10 and 100 ⁇ m or between 100 and 250 ⁇ m.
- the coating further comprises an organometallic compound.
- the organometallic compound includes Dipropylene glycol monomethyl ether (CH 3 OC 3 H 6 OC 3 H 6 OH), 1,2-Ethanediol (HOCH 2 CH 2 OH) and 2-ethylhexanoic acid, manganese salt (C 8 H 16 MnO 2 ).
- the organometallic compound allows for a fast curing of the coating avoiding a drying step at high temperature.
- the steel substrate is a slab, a billet or a bloom.
- the invention also relates to a method for the manufacture of the coated steel substrate according to claim 1, comprising the successive steps A), B) and C).
- step B) the deposition of the coating is performed by spin coating, spray coating, dip coating or brush coating.
- the aqueous mixture comprises from 1 to 60g/L of nanographite and from 150 to 250g/L of binder.
- the aqueous mixture comprises from 1 to 35g/L of nanographite.
- step B) wherein the aqueous mixture comprises nanographite comprising above 95% and advantageously 99% by weight of C.
- step B the ratio in weight of nanographite with respect to binder is below or equal to 0.3.
- the aqueous mixture comprises an organometallic compound. More preferably, the concentration of the organometallic compound is equal or below to 0.12wt.%. Indeed, without willing to be bound by any theory, it is believed that this concentration allows for an optimized coating without any curing or with a curing at room temperature.
- the coating is dried in a step C).
- the drying step allows for an improvement of the coating adhesion. Indeed, since water evaporates, the binder becomes tackier and more viscous leading to a hardened condition.
- the drying is performed at room temperature or at a temperature between 50 and 150°C and preferably between 80 and 120°C.
- no drying step is performed.
- step C) when a drying is applied, the drying step is performed with hot air.
- step C) when a drying is applied, the drying is performed during 5 to 60minutes and for example, between 15 and 45minutes.
- the invention also relates to a method for manufacture of a hot rolled steel product comprising the following successive steps:
- the reheating is performed at a temperature between 750 and 900°C or between 900 and 1300°C.
- the descaling is performed using water under pressure.
- the water pressure is between 100 and 150 bars.
- the descaling is performed mechanically, for example, by scratching or brushing the scale layer.
- the hot product can be coiled, cold-rolled, annealed in an annealing furnace and also coated with a metallic coating.
- the invention relates to the use of a hot rolled steel product obtainable from the method according to the present invention for the manufacture of a part of an automotive vehicle, a rail, a wire or a spring.
- steels substrates having the following steel composition in weight percent were used: Steel C Mn Si Cu Cr Ti V Mo Ni 1 0.798 1.310 0.446 0.014 0.097 0.0014 0.0026 0.0018 0.016 2 0.39 0.673 1.593 0.011 0.036 0.003 0.002 0.001 0.014 3 0.901 0.309 0.244 0.017 0.215 0.002 0.002 0.001 0.019
- Trial 2 was casted in the form of slab and Trials 1 and 3 were casted in the form of billet.
- Results are in the following Table 1: Aqueous mixtures Aqueous mixture Suspension Coating adhesion Nanographite Binder (200g/L) Additive in the binder 1* Lateral size : 35-50 ⁇ m, 30g/L Na 2 SiO 3 (sodium silicate) - High stability and sprayability High adhesion (coverage 100%) 2 Lateral size : 35-50 ⁇ m, 30g/L Al 2 (SO 4 ) 3 (aluminum sulfate) - High stability No adhesion (coverage 0%) 3 Lateral size : 35-50 ⁇ m, 30g/L AlPO 4 (aluminum phosphate) - High stability No adhesion (coverage 0%) 4 Lateral size : 35-50 ⁇ m, 30g/L Na 2 SiO 3 MgO (50g/L) Low stability and good sprayability High adhesion (%coverage: 100) 5 Lateral size : 35-50 ⁇ m, 30g/L Al 2 (SO 4 ) 3 MgO (50g/
- Trials 1 and 6 according to the present invention have a high stability and sprayability, i.e. can easily be sprayed, and a high adhesion on the steel substrate.
- Trials according to the present invention show a significant increase of the percentage of weight gain. Indeed, the steel substrate having the specific steel composition according to the present invention is well protected with the aqueous mixture 1 during the reheating step.
- steel 1 or 2 was coated by spraying Aqueous mixture 1 of Example 1 onto the steel. Then, optionally, the coating was dried at room temperature or during 30 minutes at 100°C.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Nanotechnology (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/IB2017/058106 WO2019122958A1 (en) | 2017-12-19 | 2017-12-19 | A coated steel substrate |
PCT/IB2018/059869 WO2019123104A1 (en) | 2017-12-19 | 2018-12-11 | A coated steel substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3728676A1 EP3728676A1 (en) | 2020-10-28 |
EP3728676B1 true EP3728676B1 (en) | 2024-06-12 |
Family
ID=60972273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18833712.5A Active EP3728676B1 (en) | 2017-12-19 | 2018-12-11 | A method for coating a steel substrate with a scale protection |
Country Status (14)
Country | Link |
---|---|
US (1) | US20200318210A1 (ru) |
EP (1) | EP3728676B1 (ru) |
JP (1) | JP7162663B2 (ru) |
KR (1) | KR20200081484A (ru) |
CN (1) | CN111819302B (ru) |
AU (1) | AU2018392861B2 (ru) |
BR (1) | BR112020008154A2 (ru) |
CA (1) | CA3085250A1 (ru) |
ES (1) | ES2982510T3 (ru) |
MX (1) | MX2020006337A (ru) |
RU (1) | RU2758048C1 (ru) |
UA (1) | UA125326C2 (ru) |
WO (2) | WO2019122958A1 (ru) |
ZA (1) | ZA202002389B (ru) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021084299A1 (en) * | 2019-10-29 | 2021-05-06 | Arcelormittal | A coated steel substrate |
CN116457484A (zh) | 2020-10-29 | 2023-07-18 | 韦尔迪西奥解决方案A.I.E.公司 | 经涂覆的铸铁基材 |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5226485B2 (ru) * | 1973-05-21 | 1977-07-14 | ||
US3957673A (en) * | 1972-07-20 | 1976-05-18 | Nippon Steel Corporation | Scale inhibitor compositions for application onto metal substrates to be heated, and the method therefor |
US3950575A (en) * | 1973-01-23 | 1976-04-13 | Nippon Steel Corporation | Heat treatment of metals in a controlled surface atmosphere |
JPS53121033A (en) * | 1977-03-31 | 1978-10-23 | Toyo Kogyo Co | Protective coating material for iron materials contacting with corrosive liquid metal |
JPS556413A (en) * | 1978-06-26 | 1980-01-17 | Nippon Steel Metal Prod Co Ltd | Antioxidant |
CA2046501C (en) * | 1990-07-12 | 1999-04-06 | Kuniaki Sato | Anti-oxidation agent for continuous annealing of stainless steel strip and anti-oxidation method using the same |
JPH06279923A (ja) * | 1993-03-25 | 1994-10-04 | Sumitomo Metal Ind Ltd | デスケーリング性の良好な鋼材およびスケール疵のない熱延鋼板の製造方法 |
TW472089B (en) * | 1996-09-17 | 2002-01-11 | Toyo Kohan Co Ltd | Surface treated steel sheet with low contact resistance and connection terminal material produced thereof |
JP4008994B2 (ja) * | 1997-01-16 | 2007-11-14 | 協同油脂株式会社 | 高温塑性加工用潤滑剤 |
JPH10265978A (ja) * | 1997-03-25 | 1998-10-06 | Nippon Steel Corp | 熱間圧延における鋼材の水性スケール抑制剤 |
US6576336B1 (en) * | 1998-09-11 | 2003-06-10 | Unitech Corporation, Llc | Electrically conductive and electromagnetic radiation absorptive coating compositions and the like |
JP2000319758A (ja) * | 1999-03-10 | 2000-11-21 | Nippon Steel Corp | メカニカルデスケーリング後の残留スケールの少ない線材 |
JP2001073033A (ja) * | 1999-09-03 | 2001-03-21 | Nisshin Steel Co Ltd | 局部延性に優れた中・高炭素鋼板の製造方法 |
US6846779B1 (en) * | 2000-03-24 | 2005-01-25 | Omnitechnik Mikroverkapselungsgesellschaft Mbh | Coating compositions having antiseize properties for a disassemblable socket/pin and/or threaded connections |
CN100453604C (zh) * | 2002-12-20 | 2009-01-21 | 鞍钢股份有限公司 | 一种防止高碳钢坯脱碳的涂料 |
DE102004049413A1 (de) * | 2004-10-08 | 2006-04-13 | Volkswagen Ag | Verfahren zur Beschichtung von metallischen Oberflächen |
JP5050433B2 (ja) * | 2005-10-05 | 2012-10-17 | Jfeスチール株式会社 | 極軟質高炭素熱延鋼板の製造方法 |
ATE529881T1 (de) * | 2006-08-03 | 2011-11-15 | Creepservice S A R L | Verfahren zur beschichtung von substraten mit diamantähnlichen kohlenstoffschichten |
KR101236300B1 (ko) * | 2006-12-19 | 2013-02-22 | 재단법인 포항산업과학연구원 | 탄소함유 내화물용 산화방지 조성물 및 이를 사용하여탄소함유 내화물의 초기 산화를 억제하는 방법 |
GB0722850D0 (en) * | 2007-11-22 | 2008-01-02 | Advanced Interactive Materials | Net or near net shape powder metallurgy process |
CN101265372B (zh) * | 2008-04-26 | 2010-08-11 | 山西玺汇科技有限公司 | 一种不锈钢高温抗氧化涂料及其应用 |
CA2744992C (en) * | 2009-08-18 | 2014-02-11 | Nippon Steel Corporation | Pearlite rail |
CN101696328A (zh) | 2009-10-16 | 2010-04-21 | 内蒙古第一机械制造(集团)有限公司 | 一种用于钢铁工件表面的保护性涂料 |
CN102655953B (zh) * | 2009-12-17 | 2015-09-16 | 3M创新有限公司 | 磺酸根官能涂层和方法 |
US9193879B2 (en) * | 2010-02-17 | 2015-11-24 | Baker Hughes Incorporated | Nano-coatings for articles |
CN102453794B (zh) * | 2010-11-02 | 2013-11-06 | 中国科学院过程工程研究所 | 一种用于弹簧钢的高温防脱碳涂层材料 |
DE102011001140A1 (de) * | 2011-03-08 | 2012-09-13 | Thyssenkrupp Steel Europe Ag | Stahlflachprodukt, Verfahren zum Herstellen eines Stahlflachprodukts und Verfahren zum Herstellen eines Bauteils |
CN102344702B (zh) * | 2011-08-02 | 2013-07-31 | 大连理工大学 | 钢板温热成形高温纳米防氧化脱碳涂料 |
CN102585568B (zh) * | 2011-12-22 | 2014-08-06 | 二重集团(德阳)重型装备股份有限公司 | 一种钢铁的热处理抗氧化涂料及其制备方法 |
EP2931818B1 (en) * | 2013-03-08 | 2016-10-19 | BYK-Chemie GmbH | Process for providing metallic substrates with corrosion resistance |
EP3006586B1 (en) | 2013-06-07 | 2019-07-31 | Nippon Steel Corporation | Heat-treated steel material and method for producing same |
WO2015150848A1 (fr) * | 2014-03-31 | 2015-10-08 | Arcelormittal Investigación Y Desarrollo Sl | Procede de fabrication a haute productivite de pieces d'acier revêtues et durcies a la presse |
JP6492653B2 (ja) * | 2014-12-26 | 2019-04-03 | ミツミ電機株式会社 | レンズ駆動装置、カメラモジュール、及びカメラ搭載装置 |
JP2016125118A (ja) | 2015-01-07 | 2016-07-11 | 株式会社神戸製鋼所 | ばね用中空シームレス鋼管 |
EP3272893B1 (en) | 2015-03-16 | 2020-12-30 | JFE Steel Corporation | Steel material for composite pressure vessel liner, steel tubing for composite pressure vessel liner, and method for manufacturing steel tubing for composite pressure vessel liner |
TWI582267B (zh) | 2015-05-26 | 2017-05-11 | 周挺正 | 鋼件之表面處理劑及鋼件之表面處理方法 |
KR20170071678A (ko) * | 2015-12-15 | 2017-06-26 | 주식회사 포스코 | 그래핀 산화물의 분산성 향상 방법 및 이를 이용한 표면처리 강판 제조 |
CN106191637A (zh) * | 2016-08-26 | 2016-12-07 | 蚌埠市北晨微型机床厂 | 一种防腐蚀耐磨低铬合金材料的铸造方法 |
-
2017
- 2017-12-19 WO PCT/IB2017/058106 patent/WO2019122958A1/en active Application Filing
-
2018
- 2018-12-11 KR KR1020207016839A patent/KR20200081484A/ko not_active Application Discontinuation
- 2018-12-11 RU RU2020123562A patent/RU2758048C1/ru active
- 2018-12-11 CN CN201880077804.8A patent/CN111819302B/zh active Active
- 2018-12-11 US US16/768,567 patent/US20200318210A1/en active Pending
- 2018-12-11 AU AU2018392861A patent/AU2018392861B2/en active Active
- 2018-12-11 UA UAA202004591A patent/UA125326C2/uk unknown
- 2018-12-11 JP JP2020531616A patent/JP7162663B2/ja active Active
- 2018-12-11 MX MX2020006337A patent/MX2020006337A/es unknown
- 2018-12-11 EP EP18833712.5A patent/EP3728676B1/en active Active
- 2018-12-11 WO PCT/IB2018/059869 patent/WO2019123104A1/en unknown
- 2018-12-11 CA CA3085250A patent/CA3085250A1/en not_active Abandoned
- 2018-12-11 BR BR112020008154-0A patent/BR112020008154A2/pt not_active Application Discontinuation
- 2018-12-11 ES ES18833712T patent/ES2982510T3/es active Active
-
2020
- 2020-05-04 ZA ZA2020/02389A patent/ZA202002389B/en unknown
Also Published As
Publication number | Publication date |
---|---|
US20200318210A1 (en) | 2020-10-08 |
JP2021508767A (ja) | 2021-03-11 |
WO2019122958A1 (en) | 2019-06-27 |
CA3085250A1 (en) | 2019-06-27 |
ZA202002389B (en) | 2021-08-25 |
RU2758048C1 (ru) | 2021-10-25 |
AU2018392861B2 (en) | 2021-09-16 |
CN111819302B (zh) | 2022-07-01 |
AU2018392861A1 (en) | 2020-04-30 |
CN111819302A (zh) | 2020-10-23 |
EP3728676A1 (en) | 2020-10-28 |
WO2019123104A1 (en) | 2019-06-27 |
JP7162663B2 (ja) | 2022-10-28 |
KR20200081484A (ko) | 2020-07-07 |
UA125326C2 (uk) | 2022-02-16 |
BR112020008154A2 (pt) | 2020-11-03 |
MX2020006337A (es) | 2020-09-03 |
ES2982510T3 (es) | 2024-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3728677B1 (en) | A method for the manufacture of a coated steel substrate and a hot-rolled steel product | |
EP3728676B1 (en) | A method for coating a steel substrate with a scale protection | |
EP3728671B1 (en) | Method for the manufacture of a coated steel substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200720 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
RAV | Requested validation state of the european patent: fee paid |
Extension state: MA Effective date: 20200720 |
|
REG | Reference to a national code |
Ref document number: 602018070599 Country of ref document: DE Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: C22C0038020000 Ipc: C21D0001700000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22C 38/04 20060101ALI20231219BHEP Ipc: C22C 38/34 20060101ALI20231219BHEP Ipc: C21D 8/04 20060101ALI20231219BHEP Ipc: C22C 38/46 20060101ALI20231219BHEP Ipc: C22C 38/48 20060101ALI20231219BHEP Ipc: C22C 38/58 20060101ALI20231219BHEP Ipc: C09D 7/40 20180101ALI20231219BHEP Ipc: C09D 1/00 20060101ALI20231219BHEP Ipc: C22C 38/02 20060101ALI20231219BHEP Ipc: C22C 38/54 20060101ALI20231219BHEP Ipc: C22C 38/52 20060101ALI20231219BHEP Ipc: C22C 38/50 20060101ALI20231219BHEP Ipc: C22C 38/44 20060101ALI20231219BHEP Ipc: C22C 38/42 20060101ALI20231219BHEP Ipc: C21D 8/02 20060101ALI20231219BHEP Ipc: C09D 7/61 20180101ALI20231219BHEP Ipc: C09D 1/02 20060101ALI20231219BHEP Ipc: C09D 5/08 20060101ALI20231219BHEP Ipc: C21D 1/70 20060101AFI20231219BHEP |
|
INTG | Intention to grant announced |
Effective date: 20240115 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240307 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602018070599 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20240612 Ref country code: ES Ref legal event code: FG2A Ref document number: 2982510 Country of ref document: ES Kind code of ref document: T3 Effective date: 20241016 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240912 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240912 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1694294 Country of ref document: AT Kind code of ref document: T Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241014 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20241014 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20241121 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240612 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241121 Year of fee payment: 7 |