EP3728020B1 - Method for controlling the buoyancy of a submarine vehicle - Google Patents

Method for controlling the buoyancy of a submarine vehicle Download PDF

Info

Publication number
EP3728020B1
EP3728020B1 EP18808366.1A EP18808366A EP3728020B1 EP 3728020 B1 EP3728020 B1 EP 3728020B1 EP 18808366 A EP18808366 A EP 18808366A EP 3728020 B1 EP3728020 B1 EP 3728020B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
buoyancy
density
variation
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18808366.1A
Other languages
German (de)
French (fr)
Other versions
EP3728020C0 (en
EP3728020A1 (en
Inventor
Christophe Borel
Eric Rouvier
Cyril BOUYER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3728020A1 publication Critical patent/EP3728020A1/en
Application granted granted Critical
Publication of EP3728020C0 publication Critical patent/EP3728020C0/en
Publication of EP3728020B1 publication Critical patent/EP3728020B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • B63G8/22Adjustment of buoyancy by water ballasting; Emptying equipment for ballast tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/001Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations
    • B63G2008/002Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned
    • B63G2008/004Underwater vessels adapted for special purposes, e.g. unmanned underwater vessels; Equipment specially adapted therefor, e.g. docking stations unmanned autonomously operating

Definitions

  • the field of the invention is that of underwater vehicles. These vehicles are capable of exhibiting negative buoyancy, that is to say capable of being completely submerged. It relates more particularly to unmanned underwater vehicles, also called UUVs with reference to the Anglo-Saxon expression "Unmanned Underwater Vehicles”, which can be autonomous vehicles also called AUVs with reference to the Anglo-Saxon expression (“ Autonomous Underwater Vehicle”) or non-autonomous vehicles also called ROV in reference to the Anglo-Saxon expression “remotely operated vehicle” or vehicles commonly called fish when they are devoid of thrusters.
  • UUVs unmanned underwater vehicles
  • AUVs with reference to the Anglo-Saxon expression
  • ROV non-autonomous vehicles also called ROV in reference to the Anglo-Saxon expression “remotely operated vehicle” or vehicles commonly called fish when they are devoid of thrusters.
  • Buoyancy is the force acting on the underwater vehicle resulting from the difference between Archimedes' thrust and the weight of the vehicle. This force can be directed from bottom to top (positive buoyancy, weight less than Archimedes' buoyancy) or from top to bottom (negative buoyancy, weight greater than Archimedes' buoyancy).
  • An underwater vehicle must conventionally have positive buoyancy when launched. Thus, the vehicle naturally returns to float on the surface of the water when it is only subjected to Archimedes' thrust and its weight. This allows its recovery from a surface platform when the vehicle no longer has energy for its propulsion. This also allows the underwater vehicle to communicate with a surface platform by radio communication means of the underwater vehicle which are then emerged. This also allows the underwater vehicle to be supplied with energy from a surface platform without it consuming energy for its propulsion.
  • the underwater vehicle Once the underwater vehicle has been launched, it is conventionally intended to carry out underwater missions, for example inspection, so that it is brought to dive, by means of a thruster, to join positions at great depth before returning to the surface, for example, to refuel, to communicate with a high transmission rate, to be retrieved from a surface platform.
  • a thruster to join positions at great depth before returning to the surface, for example, to refuel, to communicate with a high transmission rate, to be retrieved from a surface platform.
  • the underwater vehicle which has positive buoyancy, must overcome forces which are all the greater as its buoyancy is significant. He may thus find himself unable to dive underwater or have to consume, to dive, an energy all the more important as his buoyancy is important which has the effect of limiting his endurance and the duration of his mission. .
  • the vehicle When its positive buoyancy is too high, the vehicle may also have difficulty diving due to disturbances generated by the sea surface state which partially and randomly uncovers the craft's actuators, such as its thruster, becoming ineffective out of water. Adjusting the buoyancy of the vehicle (or balancing by adjusting its buoyancy) is therefore essential and this step must be carried out with great precision.
  • Underwater vehicles can also be balanced with negative buoyancy when launched. This makes it possible to be in a configuration where the underwater vehicle will naturally come to rest on the seabed and thus be invisible from the surface. During its mission, the underwater vehicle will be brought to the surface punctually or towards the surface. However, in order to rise to the surface the underwater vehicle which has negative buoyancy, must overcome forces which are all the greater as its negative buoyancy is low, that is to say has a high absolute value. It may thus find itself unable to ascend or having to consume, in order to ascend, an energy which is all the more important as its negative buoyancy is low, which has the effect of limiting its autonomy and the duration of its mission.
  • the underwater vehicle must be able to adjust its buoyancy according to the stages of the mission: positive buoyancy when launching, neutral during the diving phases and negative to be discreet.
  • One solution for adjusting the buoyancy of underwater vehicles is to carry out a static weighing before launching it so as to substantially balance the weight and the buoyancy of Archimedes. Flaws of this solution are that this setting is fixed for the duration of the mission (buoyancy cannot be controlled) and that this setting is not robust to local variations in water density (the vehicle initially weighed to be slightly buoyant in sea water can become sinking when arriving in fresh water) nor to variations in the mass of the underwater vehicle, for example when a shell or seaweed comes to be fixed on its hull, nor to the variations in volume of the body of the vehicle, for example, by compression of the hull under the effect of the pressure.
  • a solution consists in equipping the underwater vehicle with means for varying its density of the underwater vehicle.
  • a method for adjusting the buoyancy of an underwater vehicle when it is put in place conventionally consists in manually controlling the means for varying the density.
  • the vehicle initially has a positive buoyancy which is not precisely known, an operator controls the means for varying the density to slowly increase the density of the underwater vehicle so that its buoyancy decreases continuously until that the vehicle reaches a lower positive target buoyancy.
  • This solution is long, delicate and difficult to automate. For example, a small change in the mass of the underwater vehicle can cause the buoyancy of the underwater vehicle to vary significantly, so the adjustment of the buoyancy of the underwater vehicle must be carried out with great precision and very slowly. to prevent the underwater vehicle from sinking which may prevent the operator from recovering the vehicle.
  • the documents US 4,266,500A , US2007/125289 A1 , JP H10 86894 A And US 2016/107735 A1 constitute the prior art.
  • An object of the invention is to limit at least one of the above drawbacks.
  • the variation in density of the vehicle during the third step is predetermined.
  • the first step is implemented so that the vehicle has a predetermined buoyancy when detecting the crossing of the threshold.
  • the target buoyancy has the same sign as the initial buoyancy and has an absolute value less than the absolute value of the initial buoyancy.
  • the vehicle moves, along the vertical axis, solely under the effect of a variation in its buoyancy.
  • the first surface is the surface of the liquid, that is to say its upper surface, and the initial buoyancy is positive, the first step of modifying the density being a step of increasing the density of the vehicle , the distance threshold being an immersion threshold.
  • the first surface is a bottom of the volume of liquid
  • the initial buoyancy is negative
  • the first step of modifying the density being a step of reducing the density
  • the distance threshold being an altitude threshold with respect to on the first surface.
  • the mass of the vehicle is varied, at constant volume of the underwater vehicle, and/or the volume of the marine vehicle is varied at constant mass of the underwater vehicle .
  • the vehicle comprises a first tank with variable density, whose variation in density varies the density of the vehicle, arranged close to a first longitudinal end of the vehicle, and a second tank with variable density, whose density variation varies the density of the vehicle and which is disposed close to a second longitudinal end of the vehicle, in which, during the first step, the density of a single predetermined tank is varied, taken from among the first tank and the second tank.
  • the invention also relates to a balancing method comprising the method of adjusting the buoyancy followed by a step of adjusting the longitudinal attitude of the vehicle.
  • the first step is implemented so that the vehicle has a predetermined buoyancy when detecting the crossing of the threshold.
  • the variation of the density during the third step is predetermined.
  • the target buoyancy has the same sign as the initial buoyancy and has an absolute value less than the absolute value of the initial buoyancy.
  • the invention also relates to a vehicle comprising the buoyancy adjustment variation device according to the invention.
  • the vertical and horizontal directions are defined in a terrestrial frame of reference.
  • the upper and lower positions being determined along a vertical axis z of the terrestrial reference.
  • the invention relates to a method for adjusting the buoyancy of the underwater vehicle 1 so that it has a final buoyancy substantially equal to a target buoyancy.
  • the underwater vehicle 1 initially has a buoyancy, called initial, such that it maintains the underwater vehicle 1 at the level of a surface S, called initial, delimiting the volume of liquid in which the underwater vehicle is immersed , for example water E , for example sea water or fresh water, in a vertical direction (defined in a terrestrial frame of reference).
  • initial a buoyancy
  • the vehicle 1 is maintained at the level of the initial surface S solely by its buoyancy.
  • This initial surface is, for example, the upper surface of the volume of the liquid, for example the surface of the water S.
  • the initial buoyancy of the underwater vehicle 1 is then positive and the underwater vehicle initially floats on the surface of the water.
  • the volume of liquid in which the underwater vehicle is immersed is delimited, in the vertical direction z, by two surfaces spaced from each other in the vertical direction, including the upper surface and a lower surface.
  • this volume is delimited by the surface of the water S (upper surface) and by the seabed Fd (lower surface).
  • the initial surface may alternatively be the lower surface of the volume of the liquid, that is to say the bottom of the volume of the liquid, for example the seabed.
  • the initial buoyancy of the vehicle is then negative and the vehicle is initially placed on the lower surface of the volume of the liquid, that is to say on the ground or the seabed.
  • an underwater vehicle 1 initially having a positive buoyancy.
  • the underwater vehicle 1 in its initial situation represented on the picture 1a , floats on the surface of the water S.
  • the underwater vehicle 1 initially has a negative buoyancy so as to be maintained against the seabed Fd.
  • the initial positive buoyancy of the vehicle is of the order of 5% of its weight.
  • the purpose of the process is to give the underwater vehicle a final buoyancy closest to 0 while remaining positive. It is typically sought to achieve a setpoint buoyancy of between 0.05% and 0.01% of the weight of the vehicle. For a 1000 kg vehicle, this amounts to having to balance the vehicle with an accuracy of 100 g.
  • the underwater vehicle has very low positive buoyancy, its ascent to the surface, in the event of failure of its thruster, is ensured and its energy consumption for diving towards the seabed is minimal.
  • the fact that the setpoint buoyancy is positive gives a buoyancy margin which makes it possible to guarantee that the final buoyancy of the underwater vehicle at the end of the implementation of the method is positive.
  • the method includes the steps shown in the figures 1a to 1c .
  • This method comprises a first step 100 of modifying the density of the vehicle 1 so that it moves away from the initial surface S while approaching the other surface delimiting the volume of liquid.
  • the vehicle moves in the vertical direction.
  • the variation in the density of the vehicle varies the buoyancy of the vehicle.
  • this step 100 is a step of increasing the density of the underwater vehicle 1 so that the underwater vehicle 1 sinks, that is to say moves away from the surface of the water S or approaches the seabed Fd.
  • this step is a step of decreasing the density of the underwater vehicle 1 so that the underwater vehicle 1 rises towards the surface of the water S , i.e. away from the seabed Fd.
  • the first step 100 of modifying the density is implemented up to a second step 200.
  • the attitude of the vehicle can vary under the effect of the variation in the density, which does not impact the buoyancy adjustment method according to the invention.
  • This second step 200 is a step of detecting the crossing, by the underwater vehicle 1, of a predetermined non-zero distance threshold SD with respect to the initial surface S, along a vertical axis z.
  • the distance threshold SD is an immersion threshold or distance threshold relative to the water surface.
  • the distance threshold SD is an altitude threshold, that is to say of distance relative to the seabed along the axis z.
  • the first step 100 is stopped as soon as the detection 200 of the crossing of the threshold SD by the vehicle 1.
  • the method then comprises a third step 300 of modifying the density of the underwater vehicle 1 until the buoyancy of the underwater vehicle 1 is substantially equal to the target buoyancy.
  • the density of the vehicle 1 advantageously varies in a single direction during the third step 300.
  • the buoyancy of the vehicle varies only in one direction during the step 300.
  • the underwater vehicle 1 crosses the distance threshold SD, it has a known or determinable buoyancy.
  • the vehicle crosses the predetermined distance threshold SD, it always has the same buoyancy, regardless of its initial buoyancy, if the buoyancy variation conditions, during the first step 100, are the same for the same initial longitudinal attitude.
  • This buoyancy serves as a reference. Once this reference is available, it is possible to determine a density variation which will make it possible to reach the target buoyancy during step 300 whatever the initial buoyancy. It is then sufficient to evaluate this density variation only once.
  • the method according to the invention requires a relative precision of adjustment of the buoyancy of the vehicle, which is easier to obtain than an absolute precision of the buoyancy of the vehicle. It is independent of the initial buoyancy of the vehicle and is therefore reproducible.
  • This method can be implemented at any time, that is to say, when launching the vehicle or during a mission or during a reconfiguration of the underwater vehicle (adding or removing sensors, for example).
  • This method can be easily automated because its steps are few and sequential, it therefore adapts well to UUV unmanned vehicles and does not require the intervention of an outside operator.
  • the method according to the invention is independent of the mass and/or volume of the underwater vehicle 1. It makes it possible to achieve the target buoyancy even if one of these two parameters varies, for example in the event of addition or removal voluntary or not of components or particles, in particular in the event of loss of a blade of a propeller thruster after its initial launch.
  • the method according to the invention is much faster than a series of weighings carried out by an operator in water having a certain density, making it possible to calculate the quantity of ballast to be added or removed from the vehicle.
  • This solution only requires an immersion or pressure sensor in order to detect the crossing of the threshold.
  • This type of sensor is simple and inexpensive.
  • the proposed solution is inexpensive, simple to implement and makes it possible to balance the underwater vehicle in a reliable, repeatable and easily automatable manner (simple algorithm simply requiring an immersion sensor).
  • the initial buoyancy is positive
  • the target buoyancy is positive and lower than the initial buoyancy
  • the buoyancy of the vehicle when it crosses the threshold SD is negative.
  • the vehicle is made slightly sinking for a short time, it then moves away from the surface of the water S, before making it float again.
  • the buoyancy of the underwater vehicle increases during the third stage 300 until positive buoyancy, it then rises to the surface S of the water where it floats during the third stage 300.
  • the final buoyancy is negative or zero.
  • the buoyancy varies in one direction during step 100 and in the opposite direction during step 300 but alternatively, the variation of the density during these steps could be such that the buoyancy varies in the same meaning during these two stages.
  • the initial buoyancy is negative
  • the buoyancy on crossing the threshold is positive
  • the target buoyancy is positive
  • the final buoyancy is negative or zero.
  • the target buoyancy has an absolute value lower than the absolute value of the initial buoyancy.
  • the target buoyancy is negative and of absolute value less than the absolute value of the negative initial buoyancy and the buoyancy when crossing the threshold is positive. This makes it possible to limit the energy necessary for the vehicle to subsequently rise to the surface under the effect of its propulsion. This process is faster than a continuous variation of the vehicle and avoids an unexpected rise of the vehicle to the surface. This process is also more reliable than static weighing.
  • the density of the underwater vehicle 1 is varied by varying its mass at constant volume of the underwater vehicle and/or by modifying its volume at constant mass of the underwater vehicle.
  • the variation in density of the vehicle during step 300 that is to say the variation in mass or volume of the vehicle during step 300 depends on the buoyancy of the vehicle when crossing the threshold is detected 20 .
  • the variation of the density during step 300 depends on the distance threshold SD and on the target buoyancy Fc.
  • the method is implemented in such a way that the vehicle 1 has a predetermined buoyancy when the crossing of the threshold is detected, that is to say when the first step 100 stops.
  • the change in density or mass or volume in step 300 is predetermined. It depends on the buoyancy of the vehicle when the crossing of the threshold is detected.
  • This variation during step 300 therefore depends on the initial conditions and the conditions for carrying out step 100. It is the same for the same initial conditions and the conditions for carrying out step 100.
  • the variation in density necessary to reach the target buoyancy during step 300 can be obtained beforehand iteratively or by trial and error.
  • the method according to the invention is implemented several times with predetermined initial conditions and predetermined density variation conditions during step 100 and, once the crossing of the threshold is detected and the step 100 stopped, the volume (or mass) of the vehicle is varied.
  • the volume is varied by different values and the final buoyancy is compared each time with the target buoyancy.
  • This comparison step can be carried out by measuring a magnitude representative of the final buoyancy and by comparing this value with the value that this magnitude should have for the target buoyancy. This is for example a distance, taken in the vertical direction, of the vehicle relative to a predetermined surface of the liquid.
  • the buoyancy of the vehicle at the time of detection of the crossing of the distance threshold SD or at the stoppage of the first step depends on adjustable conditions of variations in the density of the vehicle during step 100 which have an influence on the buoyancy of the underwater vehicle 1 when the crossing of the threshold is detected. For example, if vehicle 1 has several tanks whose density can be varied independently to vary that of the vehicle, the choice of tank has an influence on the buoyancy of the vehicle when crossing the threshold, just like the speed of variation. the mass or volume of the vehicle (i.e. the rate of change in mass or volume of each tank). These parameters are predetermined so that the vehicle 1 has a predetermined buoyancy when detecting the crossing of the threshold, that is to say when the first step 100 is stopped.
  • variations in mass or volume to be applied to the vehicle during step 300 to reach the target buoyancy Fc or different target buoyancy can be determined prior to the implementation of the method for different values of these parameters and of the target buoyancy and listed in a table as explained above.
  • the method advantageously comprises, prior to step 300, a step of determining the variation in mass or volume to be applied to the vehicle during step 300 to reach the target buoyancy Fc from the value of at least one parameter, for example by consulting a table.
  • the parameters may also include a volume density of the liquid.
  • the change in mass or volume can be determined for several densities.
  • the method can then comprise a step of determining a density of the liquid in which the vehicle is immersed, for example from a measurement of the salinity of the water obtained from a salinity sensor 35. Alternatively, the density is predetermined.
  • At least one initial condition for implementing step 100 having an influence on the buoyancy of the underwater vehicle at the time of detection of the threshold is predetermined, such as for example the initial longitudinal trim of the underwater vehicle.
  • predetermined initial sailor for example zero or of a different value.
  • the method can then comprise, prior to step 100, a step of adjusting the attitude of the vehicle so that the vehicle has a predetermined longitudinal attitude, if the attitude of the vehicle is different from the predetermined longitudinal attitude.
  • the variation in mass or volume is determined independently of this initial condition.
  • the speed of the underwater vehicle along the vertical axis is only induced by a variation of its buoyancy in calm sea conditions.
  • the vehicle 1 has a substantially zero speed, relative to the liquid in which it is immersed, in a horizontal plane.
  • the initial speed of the vehicle relative to the liquid in which it is immersed is zero.
  • the underwater vehicle 1 may comprise a thruster 22 intended to propel the marine vehicle 1.
  • the thruster 22 is stopped for the entire duration of the implementation of the buoyancy adjustment method.
  • the vehicle has no propellant.
  • the vehicle 1 comprises means DET for detecting the crossing of the distance threshold SD making it possible to check whether the vehicle exceeds the distance threshold.
  • These means comprise at least one sensor 2, also represented on the figures 1a to 1c , capable of measuring a quantity representative of the distance separating the vehicle from the initial surface along the z axis. This sensor is for example an immersion or pressure sensor.
  • the detection means DET also comprise a comparator COMP making it possible to check whether a distance of the vehicle 1, with respect to the surface S, determined on the basis of this measurement is equal to the distance threshold SD.
  • the sensor 2 is fixed relative to the body 3 of the vehicle 1.
  • the underwater vehicle 1 comprises a device REG for adjusting the buoyancy of the underwater vehicle 1 making it possible to adjust the buoyancy of the underwater vehicle 1.
  • the adjustment device REG comprises means VAR for varying the density of the vehicle 1 and a control member 26 making it possible to control these means so as to implement the method according to the invention.
  • the control member is configured to control the VAR means to implement the method according to the invention.
  • the VAR means for varying the density comprise at least one reservoir 20 or 21 of variable density, that is to say of variable mass and fixed volume (as in the example of the figures 1a to 1c ) and/or at least one reservoir of variable volume and fixed mass, and means making it possible to vary this mass or this volume controllable by the control member 26.
  • the tanks 20, 21 are able to communicate with the environment in which the underwater vehicle is immersed so that the liquid in which the underwater vehicle 1 is immersed can circulate between these tanks and the marine environment so as to fill or empty the tanks of this liquid.
  • This medium is for example the marine environment but can be any other liquid. In the rest of the text, reference will be made to the marine environment but the invention is of course applicable to any other liquid.
  • the tanks 20, 21 are able to communicate with the marine environment by respective hydraulic circuits 24, 25 which can be opened or closed by respective AV and AR valves 22, 23, the circulation of water from the marine environment to the tanks 20 , 21 (or vice versa) being caused by a pump 29 actuated by an actuator 30, for example, a motor.
  • the actuator 30 and the AV and AR valves are controlled by the control member 26 to vary the masses of the reservoirs 20 and 21 by varying the volume of water contained in these reservoirs 20 and 21 (by rejection of the water contained in the tanks in the marine environment or vice versa) during steps 100 and 300.
  • the control member 26 can also make it possible to control the actuator and the valves to vary the conditions of variation of the density (flow rate of the pump, distribution of the variations in mass between the reservoirs.) Alternatively, these conditions are fixed.
  • the mass of the tanks varying and the volume remaining fixed, the Archimedes thrust acting on the underwater vehicle is fixed during the implementation of the method (if it is considered that the portion of the vehicle situated outside water is negligible when the underwater vehicle floats) while its weight varies.
  • the variation in weight (in Newtons) necessary for the buoyancy of the underwater vehicle to reach the setpoint buoyancy Fc is constant and depends on the immersion threshold SD and the setpoint buoyancy Fc .
  • the variation in weight that the underwater vehicle to reach the set buoyancy is 25 Newton.
  • the tanks 20 and 21 are spaced along an axis x of the underwater vehicle 1 which is, in the non-limiting example of the figures, a longitudinal axis along which the underwater vehicle extends longitudinally.
  • the two tanks 20, 21 are then each placed close to one of the ends of the underwater vehicle 1.
  • the tank 21 is placed close to the front front end and the tank 20 to the rear rear end of the vehicle under -marine.
  • the means for varying the buoyancy comprise a single reservoir or more than two reservoirs.
  • the vehicle is intended to move mainly along the longitudinal axis in the direction of the rear rear end towards the front front end.
  • the VAR means for varying the density comprise at least one tank, called an external tank of variable volume arranged so that a variation in the volume of the tank causes a modification of the volume of the underwater vehicle 1.
  • This tank communicates for example with an internal tank disposed inside the body of the underwater vehicle via a valve so as to allow a fluid to pass from one of the tanks to the other or to block the passage of this fluid between the two tanks, a pump causing the circulation of the fluid via the valve.
  • An actuator for example a motor is provided to actuate the pump.
  • the valve and the pump are controlled by a control member receiving measurements from an immersion sensor making it possible to measure immersion of the underwater vehicle and controlling the valve to vary the volume of the external tank so that the vehicle submarine has a set immersion received by the control unit.
  • This solution causes less corrosion and reliability problems than the previous solution at the expense of the vehicle submarine.
  • Two tanks may be provided, one at each longitudinal end of the underwater vehicle.
  • the weight of the underwater vehicle is constant but the buoyancy force varies during the implementation of the method.
  • the control member 26 triggers the implementation of the method when the buoyancy adjustment condition is verified.
  • the buoyancy adjustment condition can be verified when the control member receives a buoyancy adjustment setpoint C.
  • the method comprises a verification step consisting in verifying whether the buoyancy adjustment condition is verified, this step being implemented by the control member. This step can be performed from a measurement of the density of the liquid.
  • the buoyancy adjustment setpoint is for example checked when the density of the water goes below or beyond a certain threshold or for example when a variation in the volume or the mass of the underwater vehicle exceeds a certain threshold (for example when shells have invested the hull of the underwater vehicle or during the installation of new equipment).
  • the density of a single predetermined tank is modified, among the two tanks 20 and 21.
  • the method is therefore faster (the quantity of water to be withdrawn from the reservoirs during step 200 is also less important) and requires less energy.
  • the volume of the underwater vehicle 1 is modified during step 100, it is possible to modify the volume of only one of the two variable-volume tanks located at one of the ends of the underwater vehicle so as to vary the volume of the underwater vehicle only near this end.
  • the tank whose density is varied during step 100 is the tank 20 located close to an end (here AR) opposite to another longitudinal end AV of the vehicle close to which a sensor or a vehicle radio wave transmitter for use when said sensor or detector is emerged for the vehicle to communicate with a sensor/detector external to the vehicle. This makes it possible to maintain communication between the vehicle and the outside for longer when it comes to dive.
  • the density of the reservoirs is modified according to a predetermined order of the reservoirs. For example, the tank 21 is first filled, then the tank 20 when the tank 21 is filled.
  • the invention also relates to a balancing method comprising the method for adjusting the buoyancy described above and a step of adjusting the longitudinal trim so that the vehicle has, at the end of the method, a set longitudinal trim .
  • the underwater vehicle 1 advantageously comprises means for adjusting the longitudinal trim of the body 11 of the underwater vehicle 10.
  • These means for adjusting the longitudinal trim of the body 11 comprise means for varying the longitudinal trim of the body of the underwater vehicle comprising, on the non-limiting example of the picture 2 , the two tanks 20, 21 spaced along the longitudinal axis x and placed respectively close to the rear rear end and the front front end of the body 11.
  • the means for varying the longitudinal attitude of the body 10 comprise a hydraulic circuit 36 by which the reservoirs 21 communicate with each other so that the passage of a fluid from one to the other is possible via a valve 37 which can close the hydraulic circuit 36 or open it to allow or not this fluidic communication.
  • a second pump 38 makes it possible to circulate the liquid between the two tanks via the valve 37 and a second associated actuator 39 making it possible to actuate the pump 38.
  • the same pump can be used for the variation of the longitudinal trim and the buoyancy.
  • a distributor or one or more additional valves are then provided to connect the pump to one of the two hydraulic circuits.
  • the distributor or each valve is controlled by means of the control member.
  • the means for adjusting the longitudinal trim also comprise a control member making it possible to control the means making it possible to vary the longitudinal trim as a function of a set longitudinal trim and measurements of a trim sensor 40, allowing to measure the longitudinal attitude of the underwater vehicle, comprising for example immersion sensors arranged at the two respective longitudinal ends of the underwater vehicle or a gravity sensor measuring the verticality of the underwater vehicle or an inertial unit.
  • This control member is the control member 26 of the buoyancy adjustment means on the picture 2 but may be another control device.
  • the means for adjusting the longitudinal trim are advantageously configured so that the step of adjusting the longitudinal trim of the underwater vehicle consists in transferring water (or other liquid) from a tank placed close to one end of the underwater vehicle, for example the tank 21, towards the other tank arranged close to the other longitudinal end of the underwater vehicle, for example the tank 20.
  • the buoyancy is not modified, only the plate varies.
  • controllable internal means can be used to vary the attitude of the underwater vehicle such as mobile masses in translations along the x axis, an example of which is described in the document UK 2,335,888 , but this system requires an additional and dedicated actuator.
  • the reservoirs 20, 21 are replaced by variable volume reservoirs as described previously.
  • the vehicle includes both types of tanks.
  • Each controller and the comparator may each include one or more dedicated electronic circuits or a general purpose circuit.
  • Each electronic circuit can comprise a machine of reprogrammable calculation (a processor or a microcontroller for example) and/or a computer executing a program comprising a sequence of instructions and/or a dedicated calculation machine (for example a set of logic gates such as an FPGA, a DSP or an ASIC , or any other hardware module).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

Le domaine de l'invention est celui des véhicules sous-marins. Ces véhicules sont aptes à présenter une flottabilité négative, c'est-à-dire aptes à être totalement immergés. Elle concerne plus particulièrement les véhicules sous-marins sans équipage, aussi appelés UUV en référence à l'expression anglo-saxonne « Unmanned Underwater Vehicles », qui peuvent être des véhicules autonomes aussi appelés AUV en référence à l'expression anglo-saxonne (« Autonomous Underwater Vehicle ») ou des véhicules non autonomes aussi appelés ROV en référence à l'expression anglo-saxonne « remotely operated vehicle » ou des véhicules couramment appelés poissons lorsqu'ils sont dépourvus de propulseurs.The field of the invention is that of underwater vehicles. These vehicles are capable of exhibiting negative buoyancy, that is to say capable of being completely submerged. It relates more particularly to unmanned underwater vehicles, also called UUVs with reference to the Anglo-Saxon expression "Unmanned Underwater Vehicles", which can be autonomous vehicles also called AUVs with reference to the Anglo-Saxon expression (" Autonomous Underwater Vehicle”) or non-autonomous vehicles also called ROV in reference to the Anglo-Saxon expression “remotely operated vehicle” or vehicles commonly called fish when they are devoid of thrusters.

La flottabilité est la force agissant sur le véhicule sous-marin est la résultante de la différence entre la poussée d'Archimède et le poids de l'engin. Cette force peut être dirigée de bas en haut (flottabilité positive, poids inférieur à la poussée d'Archimède) ou de haut en bas (flottabilité négative, poids supérieur à la poussée d'Archimède).Buoyancy is the force acting on the underwater vehicle resulting from the difference between Archimedes' thrust and the weight of the vehicle. This force can be directed from bottom to top (positive buoyancy, weight less than Archimedes' buoyancy) or from top to bottom (negative buoyancy, weight greater than Archimedes' buoyancy).

Un véhicule sous-marin doit classiquement présenter une flottabilité positive à sa mise à l'eau. Ainsi, le véhicule revient naturellement flotter à la surface de l'eau lorsqu'il est uniquement soumis à la poussée d'Archimède et à son poids. Cela permet sa récupération depuis une plate-forme de surface lorsque le véhicule ne dispose plus d'énergie pour sa propulsion. Cela permet également au véhicule sous-marin de communiquer avec une plate-forme de surface par de moyens de communication radioélectriques du véhicule sous-marin qui sont alors émergés. Cela permet également l'approvisionnement du véhicule sous-marin en énergie depuis une plate-forme de surface sans qu'il ne consomme d'énergie pour sa propulsion. Une fois le véhicule sous-marin mis à l'eau, il est classiquement destiné à effectuer des missions sous-marines, par exemple d'inspection, de sorte qu'il est amené à plonger, au moyen d'un propulseur, pour rejoindre des positions de grande profondeur avant de remonter à la surface, par exemple, pour faire le plein d'énergie, pour communiquer avec un débit de transmission important, pour être récupéré depuis une plate-forme de surface.An underwater vehicle must conventionally have positive buoyancy when launched. Thus, the vehicle naturally returns to float on the surface of the water when it is only subjected to Archimedes' thrust and its weight. This allows its recovery from a surface platform when the vehicle no longer has energy for its propulsion. This also allows the underwater vehicle to communicate with a surface platform by radio communication means of the underwater vehicle which are then emerged. This also allows the underwater vehicle to be supplied with energy from a surface platform without it consuming energy for its propulsion. Once the underwater vehicle has been launched, it is conventionally intended to carry out underwater missions, for example inspection, so that it is brought to dive, by means of a thruster, to join positions at great depth before returning to the surface, for example, to refuel, to communicate with a high transmission rate, to be retrieved from a surface platform.

Or, afin de plonger sous l'eau pour effectuer sa mission et maintenir sa position immergée, le véhicule sous-marin qui présente une flottabilité positive, doit vaincre des forces d'autant plus importantes que sa flottabilité est importante. Il peut ainsi se retrouver dans l'incapacité de plonger sous l'eau ou à devoir consommer, pour plonger, une énergie d'autant plus importante que sa flottabilité est importante ce qui a pour effet de limiter son endurance et la durée de sa mission. Lorsque sa flottabilité positive est trop élevée, le véhicule peut également avoir des difficultés pour plonger à cause de perturbations générées par l'état de surface de la mer qui découvre partiellement et aléatoirement les actionneurs de l'engin, tels que son propulseur, devenant inefficaces hors de l'eau. L'ajustement de la flottabilité du véhicule (ou équilibrage par ajustement de sa flottabilité) est donc primordial et cette étape doit être réalisée avec une très grande précision.However, in order to dive under water to carry out its mission and maintain its submerged position, the underwater vehicle which has positive buoyancy, must overcome forces which are all the greater as its buoyancy is significant. He may thus find himself unable to dive underwater or have to consume, to dive, an energy all the more important as his buoyancy is important which has the effect of limiting his endurance and the duration of his mission. . When its positive buoyancy is too high, the vehicle may also have difficulty diving due to disturbances generated by the sea surface state which partially and randomly uncovers the craft's actuators, such as its thruster, becoming ineffective out of water. Adjusting the buoyancy of the vehicle (or balancing by adjusting its buoyancy) is therefore essential and this step must be carried out with great precision.

Les véhicules sous-marins peuvent aussi être équilibrés avec une flottabilité négative lors de leur mise à l'eau. Cela permet d'être dans une configuration où le véhicule sous-marin va venir naturellement se poser sur le fond marin et ainsi être invisible depuis la surface. Lors de sa mission, le véhicule sous-marin va être amené à remonter à la surface ponctuellement ou vers la surface. Or, afin de remonter à la surface le véhicule sous-marin qui présente une flottabilité négative, doit vaincre des forces d'autant plus importantes que sa flottabilité négative est faible, c'est-à-dire présente une valeur absolue élevée. Il peut ainsi se retrouver dans l'incapacité de remonter ou à devoir consommer, pour remonter, une énergie d'autant plus importante que sa flottabilité négative est faible ce qui a pour effet de limiter son autonomie et la durée de sa mission.Underwater vehicles can also be balanced with negative buoyancy when launched. This makes it possible to be in a configuration where the underwater vehicle will naturally come to rest on the seabed and thus be invisible from the surface. During its mission, the underwater vehicle will be brought to the surface punctually or towards the surface. However, in order to rise to the surface the underwater vehicle which has negative buoyancy, must overcome forces which are all the greater as its negative buoyancy is low, that is to say has a high absolute value. It may thus find itself unable to ascend or having to consume, in order to ascend, an energy which is all the more important as its negative buoyancy is low, which has the effect of limiting its autonomy and the duration of its mission.

Il apparait donc que pour réaliser sa mission de manière optimale, le véhicule sous-marin doit pouvoir régler sa flottabilité en fonction des étapes de la mission : flottabilité positive à la mise à l'eau, neutre pendant les phases de plongée et négative pour être discret.It therefore appears that to carry out its mission in an optimal manner, the underwater vehicle must be able to adjust its buoyancy according to the stages of the mission: positive buoyancy when launching, neutral during the diving phases and negative to be discreet.

Une solution pour régler la flottabilité des véhicules sous-marins est de réaliser une pesée statique avant sa mise à l'eau de manière à équilibrer sensiblement le poids et la poussée d'Archimède. Des défauts de cette solution sont que ce réglage est fixé pour la durée de la mission (la flottabilité ne peux pas être contrôlée) et que ce réglage n'est pas robuste aux variations locales de densité de l'eau (le véhicule initialement pesé pour être légèrement flottant en eau de mer peut devenir coulant en arrivant en eau douce) ni aux variations de masse du véhicule sous-marin, par exemple lorsqu'un coquillage ou une algue vient se fixer sur sa coque, ni aux variations de volume du corps du véhicule, par exemple, par compression de la coque sous l'effet de la pression.One solution for adjusting the buoyancy of underwater vehicles is to carry out a static weighing before launching it so as to substantially balance the weight and the buoyancy of Archimedes. Flaws of this solution are that this setting is fixed for the duration of the mission (buoyancy cannot be controlled) and that this setting is not robust to local variations in water density (the vehicle initially weighed to be slightly buoyant in sea water can become sinking when arriving in fresh water) nor to variations in the mass of the underwater vehicle, for example when a shell or seaweed comes to be fixed on its hull, nor to the variations in volume of the body of the vehicle, for example, by compression of the hull under the effect of the pressure.

Une autre solution consiste à équiper le véhicule sous-marin de moyens pour faire varier sa masse volumique du véhicule sous-marin. Un procédé de réglage de la flottabilité d'un véhicule sous-marin lors de sa mise consiste classiquement à commander manuellement les moyens pour faire varier la masse volumique. Le véhicule présente initialement une flottabilité positive qui n'est pas connue de manière précise, un opérateur commande les moyens pour faire varier la masse volumique pour faire augmenter lentement la masse volumique du véhicule sous-marin de sorte que sa flottabilité diminue continûment jusqu'à ce que le véhicule atteigne une flottabilité cible positive plus faible. Cette solution est longue, délicate et difficile à automatiser. Par exemple, une faible variation de la masse du véhicule sous-marin peut faire varier la flottabilité du véhicule sous-marin de façon significative, l'ajustement de la flottabilité du véhicule sous-marin doit donc être réalisé avec une grande précision et très lentement pour éviter que le véhicule sous-marin ne coule ce qui peut empêcher l'opérateur de récupérer le véhicule. Les documents US 4 266 500 A , US2007/125289 A1 , JP H10 86894 A et US 2016/107735 A1 constituent l'art antérieur.Another solution consists in equipping the underwater vehicle with means for varying its density of the underwater vehicle. A method for adjusting the buoyancy of an underwater vehicle when it is put in place conventionally consists in manually controlling the means for varying the density. The vehicle initially has a positive buoyancy which is not precisely known, an operator controls the means for varying the density to slowly increase the density of the underwater vehicle so that its buoyancy decreases continuously until that the vehicle reaches a lower positive target buoyancy. This solution is long, delicate and difficult to automate. For example, a small change in the mass of the underwater vehicle can cause the buoyancy of the underwater vehicle to vary significantly, so the adjustment of the buoyancy of the underwater vehicle must be carried out with great precision and very slowly. to prevent the underwater vehicle from sinking which may prevent the operator from recovering the vehicle. The documents US 4,266,500A , US2007/125289 A1 , JP H10 86894 A And US 2016/107735 A1 constitute the prior art.

Un but de l'invention est de limiter au moins un des inconvénients ci-dessus.An object of the invention is to limit at least one of the above drawbacks.

A cet effet, l'invention a pour objet un procédé de réglage de la flottabilité d'un véhicule sous-marin de façon qu'il présente sensiblement une flottabilité cible prédéterminée lorsqu'il est plongé dans un volume de liquide délimité, selon un axe vertical, par une première surface et une deuxième surface, le procédé comprenant :

  • à partir d'une flottabilité initiale du véhicule maintenant le véhicule au niveau de la première surface, une première étape de modification de la masse volumique du véhicule de façon qu'il se rapproche de la deuxième surface, la première étape étant mise en oeuvre jusqu'à une deuxième étape de détection du franchissement, par le véhicule, d'un seuil de distance non nul prédéterminé par rapport la première surface, selon l'axe vertical,
  • puis une troisième étape de modification de la masse volumique du véhicule jusqu'à ce que le véhicule présente sensiblement la flottabilité cible.
To this end, the subject of the invention is a method for adjusting the buoyancy of an underwater vehicle so that it has substantially a predetermined target buoyancy when it is immersed in a volume of liquid delimited, along an axis vertical, by a first surface and a second surface, the method comprising:
  • from an initial buoyancy of the vehicle maintaining the vehicle at the level of the first surface, a first step of modifying the density of the vehicle so that it approaches the second surface, the first step being implemented until 'in a second step of detecting the crossing, by the vehicle, of a predetermined non-zero distance threshold with respect to the first surface, along the vertical axis,
  • then a third step of modifying the density of the vehicle until the vehicle has substantially the target buoyancy.

Avantageusement, la variation de masse volumique du véhicule lors de la troisième étape est prédéterminée.Advantageously, the variation in density of the vehicle during the third step is predetermined.

Avantageusement, la première étape est mise en oeuvre de sorte que le véhicule présente une flottabilité prédéterminée lors de la détection du franchissement du seuil.Advantageously, the first step is implemented so that the vehicle has a predetermined buoyancy when detecting the crossing of the threshold.

Avantageusement, la flottabilité cible est de même signe que la flottabilité initiale et de valeur absolue inférieure à la valeur absolue de la flottabilité initiale.Advantageously, the target buoyancy has the same sign as the initial buoyancy and has an absolute value less than the absolute value of the initial buoyancy.

Avantageusement, durant la mise en oeuvre du procédé, le véhicule se déplace, selon l'axe vertical, uniquement sous l'effet d'une variation de sa flottabilité.Advantageously, during the implementation of the method, the vehicle moves, along the vertical axis, solely under the effect of a variation in its buoyancy.

Avantageusement, la première surface est la surface du liquide, c'est-à-dire sa surface supérieure, et la flottabilité initiale est positive, la première étape de modification de la masse volumique étant une étape d'augmentation de la masse volumique du véhicule, le seuil de distance étant un seuil d'immersion.Advantageously, the first surface is the surface of the liquid, that is to say its upper surface, and the initial buoyancy is positive, the first step of modifying the density being a step of increasing the density of the vehicle , the distance threshold being an immersion threshold.

Avantageusement, la première surface est un fond du volume de liquide, la flottabilité initiale est négative, la première étape de modification de la masse volumique étant une étape de réduction de la masse volumique, le seuil de distance étant un seuil d'altitude par rapport à la première surface.Advantageously, the first surface is a bottom of the volume of liquid, the initial buoyancy is negative, the first step of modifying the density being a step of reducing the density, the distance threshold being an altitude threshold with respect to on the first surface.

Avantageusement, lors de la première étape et lors de la troisième étape, on fait varier la masse du véhicule, à volume constant du véhicule sous-marin, et/ou on fait varier le volume du véhicule marin à masse constante du véhicule sous-marin.Advantageously, during the first step and during the third step, the mass of the vehicle is varied, at constant volume of the underwater vehicle, and/or the volume of the marine vehicle is varied at constant mass of the underwater vehicle .

Avantageusement, le véhicule comprend un premier réservoir à masse volumique variable, dont la variation de masse volumique fait varier la masse volumique du véhicule, disposé à proximité d'une première extrémité longitudinale du véhicule, et un deuxième réservoir à masse volumique variable, dont la variation de masse volumique fait varier la masse volumique du véhicule et qui disposé à proximité d'une deuxième extrémité longitudinale du véhicule, dans lequel, lors de la première étape, on fait varier la masse volumique d'un unique réservoir prédéterminé, pris parmi le premier réservoir et le deuxième réservoir.Advantageously, the vehicle comprises a first tank with variable density, whose variation in density varies the density of the vehicle, arranged close to a first longitudinal end of the vehicle, and a second tank with variable density, whose density variation varies the density of the vehicle and which is disposed close to a second longitudinal end of the vehicle, in which, during the first step, the density of a single predetermined tank is varied, taken from among the first tank and the second tank.

Avantageusement, l'invention se rapporte également à un procédé d'équilibrage comprenant le procédé de réglage de la flottabilité suivi d'une étape de réglage de l'assiette longitudinale du véhicule.Advantageously, the invention also relates to a balancing method comprising the method of adjusting the buoyancy followed by a step of adjusting the longitudinal attitude of the vehicle.

L'invention se rapporte également à un dispositif de réglage de la flottabilité permettant de régler la flottabilité du véhicule sous-marin et comprenant des moyens pour faire varier la masse volumique du véhicule sous-marin et au moins un capteur permettant de détecter le franchissement, par le véhicule, d'un seuil de distance non nul prédéterminé par rapport à une première surface délimitant, selon une direction verticale, le volume d'un liquide dans lequel est plongé le véhicule, le dispositif de réglage de la flottabilité étant configuré pour mettre en oeuvre un procédé comprenant les étapes suivantes lorsqu'une condition de réglage de la flottabilité est vérifiée :

  • à partir d'une flottabilité initiale maintenant le véhicule au niveau de la première surface ; une première étape de modification de la masse volumique du véhicule par les moyens pour faire varier la flottabilité, de façon que le véhicule se rapproche d'une deuxième surface délimitant également le volume de liquide selon la direction verticale, la première étape étant mise en oeuvre jusqu'à une deuxième étape de détection, par le capteur, du franchissement du seuil de distance par le véhicule,
  • puis une troisième étape de modification de la masse volumique du véhicule, par les moyens pour faire varier la flottabilité, jusqu'à ce que le véhicule présente sensiblement la flottabilité cible.
The invention also relates to a device for adjusting the buoyancy making it possible to adjust the buoyancy of the underwater vehicle and comprising means for varying the density of the underwater vehicle and at least one sensor making it possible to detect the crossing, by the vehicle, of a predetermined non-zero distance threshold with respect to a first surface delimiting, in a vertical direction, the volume of a liquid in which the vehicle is immersed, the buoyancy adjustment device being configured to put implements a method comprising the following steps when a buoyancy adjustment condition is verified:
  • from an initial buoyancy maintaining the vehicle at the level of the first surface; a first step of modifying the density of the vehicle by the means for varying the buoyancy, so that the vehicle approaches a second surface also delimiting the volume of liquid in the vertical direction, the first step being implemented up to a second step of detection, by the sensor, of the crossing of the distance threshold by the vehicle,
  • then a third step of modifying the density of the vehicle, by the means for varying the buoyancy, until the vehicle substantially exhibits the target buoyancy.

Avantageusement, la première étape est mise en oeuvre de sorte que le véhicule présente une flottabilité prédéterminée lors de la détection du franchissement du seuil.Advantageously, the first step is implemented so that the vehicle has a predetermined buoyancy when detecting the crossing of the threshold.

Avantageusement, la variation de la masse volumique lors de la troisième étape est prédéterminée.Advantageously, the variation of the density during the third step is predetermined.

Avantageusement, la flottabilité cible est de même signe que la flottabilité initiale et de valeur absolue inférieure à la valeur absolue de la flottabilité initiale.Advantageously, the target buoyancy has the same sign as the initial buoyancy and has an absolute value less than the absolute value of the initial buoyancy.

L'invention se rapporte également à un véhicule comprenant le dispositif de variation de réglage de la flottabilité selon l'invention.The invention also relates to a vehicle comprising the buoyancy adjustment variation device according to the invention.

L'invention sera mieux comprise à l'étude de quelques modes de réalisation décrits à titre d'exemples nullement limitatifs, et illustrés par des dessins annexés sur lesquels :

  • les figures 1a, 1b et 1c représentent différentes situations d'un engin sous-marin lors de la mise en oeuvre du procédé selon l'invention,
  • la figure 2 représente schématiquement un exemple de moyens d'ajustement de la flottabilité d'engin marin selon l'invention.
The invention will be better understood on studying a few embodiments described by way of non-limiting examples, and illustrated by the appended drawings in which:
  • THE figure 1a , 1b And 1 C represent different situations of an underwater vehicle during the implementation of the method according to the invention,
  • there figure 2 schematically represents an example of means for adjusting the buoyancy of a marine vehicle according to the invention.

D'une figure à l'autre les mêmes éléments sont désignés par les mêmes références numériques.From one figure to another the same elements are designated by the same reference numerals.

Dans la présente demande de brevet, les directions verticales et horizontales sont définies dans un référentiel terrestre. Les positions supérieures et inférieures étant déterminées selon un axe vertical z du référentiel terrestre.In the present patent application, the vertical and horizontal directions are defined in a terrestrial frame of reference. The upper and lower positions being determined along a vertical axis z of the terrestrial reference.

L'invention se rapporte à un procédé de réglage de la flottabilité du véhicule sous-marin 1 de façon qu'il présente une flottabilité finale sensiblement égale à une flottabilité cible.The invention relates to a method for adjusting the buoyancy of the underwater vehicle 1 so that it has a final buoyancy substantially equal to a target buoyancy.

Le véhicule sous-marin 1 présente initialement une flottabilité, dite initiale, telle qu'elle maintient le véhicule sous-marin 1 au niveau d'une surface S, dite initiale, délimitant le volume de liquide dans lequel le véhicule sous-marin est plongé, par exemple de l'eau E , par exemple de l'eau de mer ou de l'eau douce, selon une direction verticale (définie dans un référentiel terrestre). Le véhicule 1 est maintenu au niveau de la surface S initiale uniquement par sa flottabilité.The underwater vehicle 1 initially has a buoyancy, called initial, such that it maintains the underwater vehicle 1 at the level of a surface S, called initial, delimiting the volume of liquid in which the underwater vehicle is immersed , for example water E , for example sea water or fresh water, in a vertical direction (defined in a terrestrial frame of reference). The vehicle 1 is maintained at the level of the initial surface S solely by its buoyancy.

Cette surface initiale est, par exemple, la surface supérieure du volume du liquide, par exemple la surface de l'eau S. La flottabilité initiale du véhicule sous-marin 1 est alors positive et le véhicule sous-marin flotte initialement à la surface de l'eau.This initial surface is, for example, the upper surface of the volume of the liquid, for example the surface of the water S. The initial buoyancy of the underwater vehicle 1 is then positive and the underwater vehicle initially floats on the surface of the water.

Le volume de liquide dans lequel est plongé le véhicule sous-marin est délimité, selon la direction verticale z, par deux surfaces distantes l'unes de l'autre selon la direction verticale, dont la surface supérieure et une surface inférieure. Dans le cas d'un véhicule plongé dans l'eau de mer, ce volume est délimité par la surface de l'eau S (surface supérieure) et par le fond marin Fd (surface inférieure).The volume of liquid in which the underwater vehicle is immersed is delimited, in the vertical direction z, by two surfaces spaced from each other in the vertical direction, including the upper surface and a lower surface. In the case of a vehicle immersed in sea water, this volume is delimited by the surface of the water S (upper surface) and by the seabed Fd (lower surface).

La surface initiale peut en variante être la surface inférieure du volume du liquide, c'est-à-dire le fond du volume du liquide, par exemple le fond marin. La flottabilité initiale du véhicule est alors négative et le véhicule est initialement posé sur la surface inférieure du volume du liquide, c'est-à-dire sur le sol ou le fond marin.The initial surface may alternatively be the lower surface of the volume of the liquid, that is to say the bottom of the volume of the liquid, for example the seabed. The initial buoyancy of the vehicle is then negative and the vehicle is initially placed on the lower surface of the volume of the liquid, that is to say on the ground or the seabed.

Sur la figure 1a, on a représenté un véhicule sous-marin 1 présentant initialement une flottabilité positive. Le véhicule sous-marin 1, dans sa situation initiale représentée sur la figure 1a, flotte à la surface de l'eau S. En variante, le véhicule sous-marin 1 présente initialement une flottabilité négative de sorte à être maintenu contre le fond marin Fd.On the picture 1a , there is shown an underwater vehicle 1 initially having a positive buoyancy. The underwater vehicle 1, in its initial situation represented on the picture 1a , floats on the surface of the water S. Alternatively, the underwater vehicle 1 initially has a negative buoyancy so as to be maintained against the seabed Fd.

Typiquement, la flottabilité initiale positive du véhicule est de l'ordre de 5% de son poids. Le but du procédé est de donner au véhicule sous-marin une flottabilité finale la plus proche de 0 tout en restant positive. On cherche typiquement à atteindre une flottabilité de consigne comprise entre 0.05 % et 0.01% du poids du véhicule. Pour un véhicule de 1000 kg, cela revient à devoir équilibrer le véhicule avec une précision de 100 g près. Lorsque le véhicule sous-marin présente une flottabilité positive très faible, sa remontée à la surface, en cas de panne de son propulseur, est assurée et sa consommation en énergie pour plonger vers le fond marin est minimale. Le fait que la flottabilité de consigne soit positive donne une marge de flottabilité qui permet de garantir le fait que la flottabilité finale du véhicule sous-marin à la fin de la mise en oeuvre du procédé soit positive.Typically, the initial positive buoyancy of the vehicle is of the order of 5% of its weight. The purpose of the process is to give the underwater vehicle a final buoyancy closest to 0 while remaining positive. It is typically sought to achieve a setpoint buoyancy of between 0.05% and 0.01% of the weight of the vehicle. For a 1000 kg vehicle, this amounts to having to balance the vehicle with an accuracy of 100 g. When the underwater vehicle has very low positive buoyancy, its ascent to the surface, in the event of failure of its thruster, is ensured and its energy consumption for diving towards the seabed is minimal. The fact that the setpoint buoyancy is positive gives a buoyancy margin which makes it possible to guarantee that the final buoyancy of the underwater vehicle at the end of the implementation of the method is positive.

Le procédé comprend les étapes représentées sur les figures 1a à 1c.The method includes the steps shown in the figures 1a to 1c .

Ce procédé comprend une première étape 100 de modification de la masse volumique du véhicule 1 de façon qu'il s'éloigne de la surface initiale S en se rapprochant de l'autre surface délimitant le volume de liquide. Ainsi, le véhicule se déplace selon la direction verticale. La variation de la masse volumique du véhicule fait varier la flottabilité du véhicule. Dans l'exemple des figures 1a à 1c, cette étape 100 est une étape d'augmentation de la masse volumique du véhicule sous-marin 1 de façon que le véhicule sous-marin 1 coule, c'est-à-dire s'éloigne de la surface de l'eau S ou se rapproche du fond marin Fd. Dans le cas où le véhicule sous-marin présente une flottabilité initiale négative, cette étape est une étape de diminution de la masse volumique du véhicule sous-marin 1 de façon que le véhicule sous-marin 1 remonte vers la surface de l'eau S, c'est-à-dire s'éloigne du fond marin Fd.This method comprises a first step 100 of modifying the density of the vehicle 1 so that it moves away from the initial surface S while approaching the other surface delimiting the volume of liquid. Thus, the vehicle moves in the vertical direction. The variation in the density of the vehicle varies the buoyancy of the vehicle. In the example of figures 1a to 1c , this step 100 is a step of increasing the density of the underwater vehicle 1 so that the underwater vehicle 1 sinks, that is to say moves away from the surface of the water S or approaches the seabed Fd. In the case where the underwater vehicle has a negative initial buoyancy, this step is a step of decreasing the density of the underwater vehicle 1 so that the underwater vehicle 1 rises towards the surface of the water S , i.e. away from the seabed Fd.

La première étape 100 de modification de la masse volumique est mise en oeuvre jusqu'à une deuxième étape 200.The first step 100 of modifying the density is implemented up to a second step 200.

Lors de première étape 100, l'assiette du véhicule peut varier sous l'effet de la variation de la masse volumique, ce qui n'impacte pas le procédé de réglage de la flottabilité selon l'invention.During the first step 100, the attitude of the vehicle can vary under the effect of the variation in the density, which does not impact the buoyancy adjustment method according to the invention.

Cette deuxième étape 200 est une étape de détection du franchissement, par le véhicule sous-marin 1, d'un seuil de distance SD non nul prédéterminé par rapport la surface S initiale, selon un axe vertical z. Dans le cas où la surface initiale S est la surface de l'eau, le seuil de distance SD est un seuil d'immersion ou seuil de distance par rapport à la surface de l'eau. Dans les cas où la surface initiale S est le fond marin, le seuil de distance SD est un seuil d'altitude, c'est-à-dire de distance par rapport au fond marin selon l'axe z.This second step 200 is a step of detecting the crossing, by the underwater vehicle 1, of a predetermined non-zero distance threshold SD with respect to the initial surface S, along a vertical axis z. In the case where the initial surface S is the water surface, the distance threshold SD is an immersion threshold or distance threshold relative to the water surface. In the cases where the initial surface S is the seabed, the distance threshold SD is an altitude threshold, that is to say of distance relative to the seabed along the axis z.

La première étape 100 est arrêtée dès la détection 200 du passage du seuil SD par le véhicule 1.The first step 100 is stopped as soon as the detection 200 of the crossing of the threshold SD by the vehicle 1.

Le procédé comprend ensuite une troisième étape 300 de modification de la masse volumique du véhicule sous-marin 1 jusqu'à ce que la flottabilité du véhicule sous-marin 1 soit sensiblement égale à la flottabilité cible.The method then comprises a third step 300 of modifying the density of the underwater vehicle 1 until the buoyancy of the underwater vehicle 1 is substantially equal to the target buoyancy.

La masse volumique du véhicule 1 varie avantageusement dans un seul sens lors de la troisième étape 300. Autrement dit, la flottabilité du véhicule varie uniquement dans un sens lors de l'étape 300.The density of the vehicle 1 advantageously varies in a single direction during the third step 300. In other words, the buoyancy of the vehicle varies only in one direction during the step 300.

Lorsque le véhicule sous-marin 1 franchit le seuil de distance SD, il présente une flottabilité connue ou déterminable. Lorsque le véhicule franchit le seuil de distance SD prédéterminé, il a toujours la même flottabilité, quelque soit sa flottabilité initiale, si des conditions de variation de la flottabilité, lors de la première étape 100, sont les mêmes pour une même assiette longitudinale initiale. Cette flottabilité sert de référence. Une fois que l'on dispose de cette référence, il est possible de déterminer une variation de masse volumique qui permettra d'atteindre la flottabilité cible lors de l'étape 300 quelque soit la flottabilité initiale. Il suffit alors d'évaluer une seule fois cette variation de masse volumique.When the underwater vehicle 1 crosses the distance threshold SD, it has a known or determinable buoyancy. When the vehicle crosses the predetermined distance threshold SD, it always has the same buoyancy, regardless of its initial buoyancy, if the buoyancy variation conditions, during the first step 100, are the same for the same initial longitudinal attitude. This buoyancy serves as a reference. Once this reference is available, it is possible to determine a density variation which will make it possible to reach the target buoyancy during step 300 whatever the initial buoyancy. It is then sufficient to evaluate this density variation only once.

Par exemple, pour un véhicule d'environ 1000 kg que l'on alourdi grâce à une pompe ayant un débit choisit, et un seuil de déclenchement d'immersion à 1m, franchira le seuil avec toujours la même flottabilité. Un exemple de flottabilité au franchissement du seuil de - 20N correspond à environ -20/(1000*10) = 0.2% du poids du véhicule pour une constante de newton arrondie à 10 N m2 kg-2. Si la flottabilité cible est de 0.05% du poids du véhicule, alors il faut, une fois le seuil franchit, alléger le véhicule de (0.05+0.2)/100 * 1000 = 2.5 kg.For example, for a vehicle of approximately 1000 kg which is weighed down using a pump having a chosen flow rate, and an immersion trigger threshold at 1m, will cross the threshold with always the same buoyancy. An example of buoyancy when crossing the threshold of - 20N corresponds to approximately -20/(1000*10) = 0.2% of the weight of the vehicle for a newton constant rounded to 10 N m 2 kg -2 . If the target buoyancy is 0.05% of the weight of the vehicle, then once the threshold is crossed, the vehicle must be lightened by (0.05+0.2)/100 * 1000 = 2.5 kg.

Le procédé selon l'invention nécessite une précision d'ajustement relative de la flottabilité du véhicule, plus facile à obtenir qu'une précision absolue de flottabilité du véhicule. Il est indépendant de la flottabilité initiale du véhicule et est donc reproductible.The method according to the invention requires a relative precision of adjustment of the buoyancy of the vehicle, which is easier to obtain than an absolute precision of the buoyancy of the vehicle. It is independent of the initial buoyancy of the vehicle and is therefore reproducible.

Ce procédé peut être mis en oeuvre à n'importe quel moment, c'est-à-dire, à la mise à l'eau du véhicule ou bien au cours d'une mission ou lors d'une reconfiguration du véhicule sous-marin (ajout ou retrait de capteurs, par exemple).This method can be implemented at any time, that is to say, when launching the vehicle or during a mission or during a reconfiguration of the underwater vehicle (adding or removing sensors, for example).

Ce procédé peut être facilement automatisé car ses étapes sont peu nombreuses et séquentielles, il s'adapte donc bien à des véhicules sans équipage UUV et ne nécessite pas l'intervention d'un opérateur extérieur.This method can be easily automated because its steps are few and sequential, it therefore adapts well to UUV unmanned vehicles and does not require the intervention of an outside operator.

Le procédé selon l'invention est indépendant de la masse et/ou de volume du véhicule sous-marin 1. Il permet d'atteindre la flottabilité cible même si un de ces deux paramètres varie, par exemple en cas d'ajout ou de retrait volontaire ou non de composants ou particules notamment en cas de perte d'une pâle d'un propulseur à hélice après sa mise à l'eau initiale.The method according to the invention is independent of the mass and/or volume of the underwater vehicle 1. It makes it possible to achieve the target buoyancy even if one of these two parameters varies, for example in the event of addition or removal voluntary or not of components or particles, in particular in the event of loss of a blade of a propeller thruster after its initial launch.

La procédé selon l'invention est bien plus rapide qu'une série de pesées réalisées par un opérateur dans une eau ayant une certaine densité, permettant de calculer la quantité de lest à ajouter ou retirer sur le véhicule.The method according to the invention is much faster than a series of weighings carried out by an operator in water having a certain density, making it possible to calculate the quantity of ballast to be added or removed from the vehicle.

Cette solution nécessite uniquement un capteur d'immersion ou de pression afin de détecter le franchissement du seuil. Ce type de capteur est simple et bon marché.This solution only requires an immersion or pressure sensor in order to detect the crossing of the threshold. This type of sensor is simple and inexpensive.

En résumé, la solution proposée est peu onéreuse, simple à mettre en oeuvre et permet d'équilibrer le véhicule sous-marin de manière fiable, répétable et facilement automatisable (algorithme simple nécessitant simplement un capteur d'immersion).In summary, the proposed solution is inexpensive, simple to implement and makes it possible to balance the underwater vehicle in a reliable, repeatable and easily automatable manner (simple algorithm simply requiring an immersion sensor).

Dans l'exemple des figures 1a à 1c, la flottabilité initiale est positive, la flottabilité cible est positive et inférieure à la flottabilité initiale et la flottabilité du véhicule lorsqu'il franchit le seuil SD est négative. Autrement dit, on rend le véhicule légèrement coulant pendant un court laps de temps, il s'éloigne alors de la surface de l'eau S, avant de le rendre à nouveau flottant. La flottabilité du véhicule sous-marin augmente lors de la troisième étape 300 jusqu'à une flottabilité positive, il remonte alors jusqu'à la surface S de l'eau où il flotte pendant la troisième étape 300. En variante, la flottabilité finale est négative ou nulle.In the example of figures 1a to 1c , the initial buoyancy is positive, the target buoyancy is positive and lower than the initial buoyancy and the buoyancy of the vehicle when it crosses the threshold SD is negative. In other words, the vehicle is made slightly sinking for a short time, it then moves away from the surface of the water S, before making it float again. The buoyancy of the underwater vehicle increases during the third stage 300 until positive buoyancy, it then rises to the surface S of the water where it floats during the third stage 300. Alternatively, the final buoyancy is negative or zero.

Dans cette réalisation, la flottabilité varie dans un sens lors de l'étape 100 et en sens inverse lors de l'étape 300 mais en variante, la variation de la masse volumique lors de ces étapes pourrait être telle que la flottabilité varie dans le même sens lors de ces deux étapes.In this embodiment, the buoyancy varies in one direction during step 100 and in the opposite direction during step 300 but alternatively, the variation of the density during these steps could be such that the buoyancy varies in the same meaning during these two stages.

En variante, la flottabilité initiale est négative, la flottabilité au franchissement du seuil est positive et la flottabilité cible est positive. En variante, la flottabilité finale est négative ou nulle.As a variant, the initial buoyancy is negative, the buoyancy on crossing the threshold is positive and the target buoyancy is positive. Alternatively, the final buoyancy is negative or zero.

Avantageusement, la flottabilité cible présente une valeur absolue inférieure à la valeur absolue de la flottabilité initiale.Advantageously, the target buoyancy has an absolute value lower than the absolute value of the initial buoyancy.

Par exemple, la flottabilité cible est négative et de valeur absolue inférieure à la valeur absolue de la flottabilité initiale négative et la flottabilité au franchissement du seuil est positive. Cela permet de limiter l'énergie nécessaire au véhicule pour remonter, ultérieurement, en surface sous l'effet de sa propulsion. Ce procédé est plus rapide qu'une variation continue du véhicule et évite une remontée inopinée du véhicule à la surface. Ce procédé est également plus fiable qu'une pesée statique.For example, the target buoyancy is negative and of absolute value less than the absolute value of the negative initial buoyancy and the buoyancy when crossing the threshold is positive. This makes it possible to limit the energy necessary for the vehicle to subsequently rise to the surface under the effect of its propulsion. This process is faster than a continuous variation of the vehicle and avoids an unexpected rise of the vehicle to the surface. This process is also more reliable than static weighing.

Lors des étapes 100 et 300, on fait varier la masse volumique du véhicule sous-marin 1 en faisant varier sa masse à volume constant du véhicule sous-marin et/ou en modifiant son volume à masse constante du véhicule sous-marin.During steps 100 and 300, the density of the underwater vehicle 1 is varied by varying its mass at constant volume of the underwater vehicle and/or by modifying its volume at constant mass of the underwater vehicle.

La variation de masse volumique du véhicule lors de l'étape 300, c'est-à-dire la variation de masse ou de volume du véhicule lors de l'étape 300 dépend de la flottabilité du véhicule lorsque le franchissement du seuil est détecté 20.The variation in density of the vehicle during step 300, that is to say the variation in mass or volume of the vehicle during step 300 depends on the buoyancy of the vehicle when crossing the threshold is detected 20 .

La variation de la masse volumique lors de l'étape 300 dépend du seuil de distance SD et de la flottabilité cible Fc.The variation of the density during step 300 depends on the distance threshold SD and on the target buoyancy Fc.

Avantageusement, le procédé est mis en oeuvre de façon que le véhicule 1 présente une flottabilité prédéterminée lors de la détection du franchissement du seuil, c'est-à-dire à l'arrêt de la première étape 100.Advantageously, the method is implemented in such a way that the vehicle 1 has a predetermined buoyancy when the crossing of the threshold is detected, that is to say when the first step 100 stops.

Cela permet d'améliorer la précision du réglage de la flottabilité finale du véhicule sous-marin 1 et de simplifier le procédé. Il suffit de déterminer une seule fois la variation de masse ou de volume alors nécessaire pour atteindre la flottabilité cible lors de l'étape 300. Autrement dit, la variation de masse ou de volume nécessaire pour atteindre la flottabilité cible lors de l'étape 300 est prédéterminée.This makes it possible to improve the precision of the adjustment of the final buoyancy of the underwater vehicle 1 and to simplify the process. It suffices to determine only once the variation of mass or volume then necessary to reach the target buoyancy during step 300. In other words, the variation of mass or volume required to reach the target buoyancy during step 300 is predetermined.

La variation de la masse volumique ou de la masse ou du volume lors de l'étape 300 est prédéterminée. Elle dépend de la flottabilité du véhicule lors de la détection du franchissement du seuil.The change in density or mass or volume in step 300 is predetermined. It depends on the buoyancy of the vehicle when the crossing of the threshold is detected.

Cette variation lors de l'étape 300 dépend donc des conditions initiales et des conditions de réalisation de l'étape 100. Elle est la même pour les mêmes conditions initiales et les conditions de réalisation de l'étape 100.This variation during step 300 therefore depends on the initial conditions and the conditions for carrying out step 100. It is the same for the same initial conditions and the conditions for carrying out step 100.

La variation de masse volumique nécessaire pour atteindre la flottabilité cible lors de l'étape 300 peut être obtenue préalablement de façon itérative ou par tâtonnement. On met, par exemple, en oeuvre plusieurs fois le procédé selon l'invention avec des conditions initiales prédéterminées et des conditions de variation de la masse volumique prédéterminées lors de l'étape 100 et, une fois que le franchissement du seuil est détecté et l'étape 100 arrêtée, on fait varier le volume (ou la masse) du véhicule. Lors des différentes mises en oeuvre du procédé, on fait varier le volume de différentes valeurs et on compare, à chaque fois, la flottabilité finale à la flottabilité cible. Cette étape de comparaison peut être réalisée en mesurant une grandeur représentative de la flottabilité finale et en comparant cette valeur à la valeur que devrait présenter cette grandeur pour la flottabilité cible. Il s'agit par exemple d'une distance, prise selon la direction verticale, du véhicule par rapport à une surface prédéterminée du liquide. Alternativement, on peut déterminer la variation de volume nécessaire, lors de l'étape 300, pour atteindre la flottabilité cible en faisant varier le volume du véhicule petit à petit jusqu'à atteindre la flottabilité cible.The variation in density necessary to reach the target buoyancy during step 300 can be obtained beforehand iteratively or by trial and error. For example, the method according to the invention is implemented several times with predetermined initial conditions and predetermined density variation conditions during step 100 and, once the crossing of the threshold is detected and the step 100 stopped, the volume (or mass) of the vehicle is varied. During the different implementations of the method, the volume is varied by different values and the final buoyancy is compared each time with the target buoyancy. This comparison step can be carried out by measuring a magnitude representative of the final buoyancy and by comparing this value with the value that this magnitude should have for the target buoyancy. This is for example a distance, taken in the vertical direction, of the vehicle relative to a predetermined surface of the liquid. Alternatively, it is possible to determine the variation in volume necessary, during step 300, to reach the target buoyancy by varying the volume of the vehicle little by little until the target buoyancy is reached.

La flottabilité du véhicule au moment de la détection du passage du seuil de distance SD ou à l'arrêt de la première étape dépend de conditions réglables de variations de la masse volumique du véhicule lors de l'étape 100 qui ont une influence sur la flottabilité du véhicule sous-marin 1 lors de la détection du franchissement du seuil. Par exemple, si le véhicule 1 dispose de plusieurs réservoirs dont on peut faire varier la masse volumique indépendamment pour faire varier celle du véhicule, le choix du réservoir a une influence sur la flottabilité du véhicule lors du franchissement du seuil tout comme la vitesse de variation de la masse ou du volume du véhicule (c'est-à-dire la vitesse de variation de masse ou de volume de chaque réservoir). Ces paramètres sont prédéterminés afin que le véhicule 1 présente une flottabilité prédéterminée lors de la détection du franchissement du seuil, c'est-à-dire à l'arrêt de la première étape 100.The buoyancy of the vehicle at the time of detection of the crossing of the distance threshold SD or at the stoppage of the first step depends on adjustable conditions of variations in the density of the vehicle during step 100 which have an influence on the buoyancy of the underwater vehicle 1 when the crossing of the threshold is detected. For example, if vehicle 1 has several tanks whose density can be varied independently to vary that of the vehicle, the choice of tank has an influence on the buoyancy of the vehicle when crossing the threshold, just like the speed of variation. the mass or volume of the vehicle (i.e. the rate of change in mass or volume of each tank). These parameters are predetermined so that the vehicle 1 has a predetermined buoyancy when detecting the crossing of the threshold, that is to say when the first step 100 is stopped.

En alternative, des variations de masse ou de volume à appliquer au véhicule lors de l'étape 300 pour atteindre la flottabilité cible Fc ou différentes flottabilité cibles peuvent être déterminées préalablement à la mise en oeuvre du procédé pour différentes valeurs de ces paramètres et de la flottabilité cible et répertoriées dans une table comme expliqué précédemment. Le procédé comprend avantageusement, préalablement à l'étape 300, une étape de détermination de la variation de masse ou de volume à appliquer au véhicule lors de l'étape 300 pour atteindre la flottabilité cible Fc à partir de la valeur d'au moins un paramètre, par exemple par consultation d'une table.Alternatively, variations in mass or volume to be applied to the vehicle during step 300 to reach the target buoyancy Fc or different target buoyancy can be determined prior to the implementation of the method for different values of these parameters and of the target buoyancy and listed in a table as explained above. The method advantageously comprises, prior to step 300, a step of determining the variation in mass or volume to be applied to the vehicle during step 300 to reach the target buoyancy Fc from the value of at least one parameter, for example by consulting a table.

Les paramètres peuvent aussi comprendre une densité du volume du liquide. La variation de masse ou de volume peut être déterminée pour plusieurs masses volumiques. Le procédé peut alors comprendre une étape de détermination d'une masse volumique du liquide dans lequel est plongé le véhicule par exemple à partir d'une mesure de salinité de l'eau obtenue à partir d'un capteur de salinité 35. En variante, la masse volumique est prédéterminée.The parameters may also include a volume density of the liquid. The change in mass or volume can be determined for several densities. The method can then comprise a step of determining a density of the liquid in which the vehicle is immersed, for example from a measurement of the salinity of the water obtained from a salinity sensor 35. Alternatively, the density is predetermined.

Avantageusement, au moins une condition initiale de mise en oeuvre de l'étape 100 ayant une influence sur la flottabilité du véhicule sous-marin au moment de la détection du seuil est prédéterminée, comme par exemple, l'assiette longitudinale initiale du véhicule sous-marin initiale prédéterminée, par exemple nulle ou d'une valeur différente.Advantageously, at least one initial condition for implementing step 100 having an influence on the buoyancy of the underwater vehicle at the time of detection of the threshold is predetermined, such as for example the initial longitudinal trim of the underwater vehicle. predetermined initial sailor, for example zero or of a different value.

Le procédé peut alors comprendre, préalablement à l'étape 100, une étape de réglage de l'assiette du véhicule afin que le véhicule présente une assiette longitudinale prédéterminée, si l'assiette du véhicule est différente de l'assiette longitudinale prédéterminée.The method can then comprise, prior to step 100, a step of adjusting the attitude of the vehicle so that the vehicle has a predetermined longitudinal attitude, if the attitude of the vehicle is different from the predetermined longitudinal attitude.

En variante, la variation de masse ou de volume est déterminée indépendamment de cette condition initiale.As a variant, the variation in mass or volume is determined independently of this initial condition.

Avantageusement, lors de la mise en oeuvre du procédé, la vitesse du véhicule sous-marin selon l'axe vertical est uniquement induite par une variation de sa flottabilité par état de mer calme.Advantageously, during the implementation of the method, the speed of the underwater vehicle along the vertical axis is only induced by a variation of its buoyancy in calm sea conditions.

Avantageusement, le véhicule 1 présente une vitesse sensiblement nulle, par rapport au liquide dans lequel il est plongé, dans un plan horizontal.Advantageously, the vehicle 1 has a substantially zero speed, relative to the liquid in which it is immersed, in a horizontal plane.

Cela permet d'éviter les perturbations générées par la portance hydrodynamique sur la flottabilité du véhicule au franchissement du seuil et donc sur la flottabilité finale du véhicule.This makes it possible to avoid the disturbances generated by the hydrodynamic lift on the buoyancy of the vehicle when crossing the threshold and therefore on the final buoyancy of the vehicle.

Avantageusement, la vitesse initiale du véhicule par rapport au liquide dan lequel il est plongé est nulle.Advantageously, the initial speed of the vehicle relative to the liquid in which it is immersed is zero.

Comme visible sur les figures, le véhicule sous-marin 1 peut comprendre un propulseur 22 destiné à propulser le véhicule marin 1. Avantageusement, le propulseur 22 est arrêté pendant toute la durée de la mise en oeuvre du procédé de réglage de la flottabilité. En variante, le véhicule est dépourvu de propulseur.As can be seen in the figures, the underwater vehicle 1 may comprise a thruster 22 intended to propel the marine vehicle 1. Advantageously, the thruster 22 is stopped for the entire duration of the implementation of the buoyancy adjustment method. Alternatively, the vehicle has no propellant.

Sur la figure 2, on a représenté des moyens de réglage de la flottabilité 10 du véhicule 1 selon l'invention étant aptes à mettre en oeuvre le procédé selon l'invention. Ces moyens sont avantageusement configurés pour mettre en oeuvre les étapes du procédé lorsqu'une condition de réglage de la flottabilité est vérifiée.On the picture 2 , there are shown means for adjusting the buoyancy 10 of the vehicle 1 according to the invention being able to implement the method according to the invention. These means are advantageously configured to implement the steps of the method when a buoyancy adjustment condition is verified.

Le véhicule 1 comprend des moyens de détection DET du franchissement du seuil de distance SD permettant de vérifier si le véhicule dépasse le seuil de distance. Ces moyens comprennent au moins un capteur 2, aussi représenté sur les figures 1a à 1c, apte à mesurer une grandeur représentative de la distance séparant le véhicule de la surface initiale selon l'axe z. Ce capteur est par exemple un capteur d'immersion ou de pression. Les moyens de détection DET comprennent également un comparateur COMP permettant de vérifier si une distance du véhicule 1, par rapport à la surface S, déterminée à partir de cette mesure est égale au seuil de distance SD. Le capteur 2 est fixe par rapport au corps 3 du véhicule 1.The vehicle 1 comprises means DET for detecting the crossing of the distance threshold SD making it possible to check whether the vehicle exceeds the distance threshold. These means comprise at least one sensor 2, also represented on the figures 1a to 1c , capable of measuring a quantity representative of the distance separating the vehicle from the initial surface along the z axis. This sensor is for example an immersion or pressure sensor. The detection means DET also comprise a comparator COMP making it possible to check whether a distance of the vehicle 1, with respect to the surface S, determined on the basis of this measurement is equal to the distance threshold SD. The sensor 2 is fixed relative to the body 3 of the vehicle 1.

Le véhicule sous-marin 1 comprend un dispositif de réglage REG de la flottabilité du véhicule sous-marin 1 permettant de régler la flottabilité du véhicule sous-marin 1.The underwater vehicle 1 comprises a device REG for adjusting the buoyancy of the underwater vehicle 1 making it possible to adjust the buoyancy of the underwater vehicle 1.

Le dispositif de réglage REG comprend des moyens VAR pour faire varier la masse volumique du véhicule 1 et un organe de commande 26 permettant de commander ces moyens de façon à mettre en oeuvre le procédé selon l'invention. Avantageusement, l'organe de commande est configuré pour commander les moyens VAR pour mettre en oeuvre le procédé selon l'invention.The adjustment device REG comprises means VAR for varying the density of the vehicle 1 and a control member 26 making it possible to control these means so as to implement the method according to the invention. Advantageously, the control member is configured to control the VAR means to implement the method according to the invention.

Les moyens VAR pour faire varier la masse volumique comprennent au moins un réservoir 20 ou 21 de masse volumique variable, c'est-à-dire de masse variable et de volume fixe (comme sur l'exemple des figures 1a à 1c) et/ou au moins un réservoir de volume variable et de masse fixe, et des moyens permettant de faire varier cette masse ou ce volume commandables par l'organe de commande 26.The VAR means for varying the density comprise at least one reservoir 20 or 21 of variable density, that is to say of variable mass and fixed volume (as in the example of the figures 1a to 1c ) and/or at least one reservoir of variable volume and fixed mass, and means making it possible to vary this mass or this volume controllable by the control member 26.

Les réservoirs 20, 21 sont aptes à communiquer avec le milieu dans lequel est plongé le véhicule sous-marin de sorte que du liquide dans lequel est plongé le véhicule sous-marin 1 puisse circuler entre ces réservoirs et le milieu marin de sorte à remplir ou vider les réservoirs de ce liquide. Ce milieu est par exemple le milieu marin mais peut être tout autre liquide. Dans la suite du texte, on fera référence au milieu marin mais l'invention est bien entendu applicable à tout autre liquide.The tanks 20, 21 are able to communicate with the environment in which the underwater vehicle is immersed so that the liquid in which the underwater vehicle 1 is immersed can circulate between these tanks and the marine environment so as to fill or empty the tanks of this liquid. This medium is for example the marine environment but can be any other liquid. In the rest of the text, reference will be made to the marine environment but the invention is of course applicable to any other liquid.

Les réservoirs 20, 21 sont aptes à communiquer avec le milieu marin par des circuit hydrauliques respectifs 24, 25 pouvant être ouverts ou fermés par des vannes AV et AR respectives 22, 23, la circulation de l'eau du milieu marin vers les réservoirs 20, 21 (ou inversement) étant provoquée par une pompe 29 actionnée par un actionneur 30, par exemple, un moteur. L'actionneur 30 et les vannes AV et AR sont commandés par l'organe de commande 26 pour faire varier les masses des réservoirs 20 et 21 en faisant varier le volume d'eau contenu dans ces réservoirs 20 et 21 (par rejet de l'eau contenue dans les réservoir dans le milieu marin ou inversement) pendant les étapes 100 et 300. L'organe de commande 26 peut également permettre de commander l'actionneur et les vannes pour faire varier les conditions de variation de la masse volumique (débit de la pompe, répartition des variations de masse entre les réservoirs.) En variante, ces conditions sont fixes.The tanks 20, 21 are able to communicate with the marine environment by respective hydraulic circuits 24, 25 which can be opened or closed by respective AV and AR valves 22, 23, the circulation of water from the marine environment to the tanks 20 , 21 (or vice versa) being caused by a pump 29 actuated by an actuator 30, for example, a motor. The actuator 30 and the AV and AR valves are controlled by the control member 26 to vary the masses of the reservoirs 20 and 21 by varying the volume of water contained in these reservoirs 20 and 21 (by rejection of the water contained in the tanks in the marine environment or vice versa) during steps 100 and 300. The control member 26 can also make it possible to control the actuator and the valves to vary the conditions of variation of the density (flow rate of the pump, distribution of the variations in mass between the reservoirs.) Alternatively, these conditions are fixed.

Dans cet exemple, la masse des réservoirs variant et le volume restant fixe, la poussée d'Archimède agissant sur le véhicule sous-marin est fixe pendant la mise en oeuvre du procédé (si l'on considère que la portion du véhicule située hors de l'eau est négligeable lorsque le véhicule sous-marin flotte) alors que son poids varie.In this example, the mass of the tanks varying and the volume remaining fixed, the Archimedes thrust acting on the underwater vehicle is fixed during the implementation of the method (if it is considered that the portion of the vehicle situated outside water is negligible when the underwater vehicle floats) while its weight varies.

Après détection du franchissement du seuil de distance SD, la variation de poids (en Newton) nécessaire pour que la flottabilité du véhicule sous-marin atteigne la flottabilité de consigne Fc est constante et dépend du seuil d'immersion SD et de la flottabilité consigne Fc. Pour une flottabilité consigne de 10 N et une flottabilité du véhicule sous-marin 1 de -15 N à la détection du franchissement du seuil, la variation de poids que doit subir le véhicule sous-marin pour atteindre la flottabilité de consigne est de 25 Newton.After detection of the crossing of the distance threshold SD, the variation in weight (in Newtons) necessary for the buoyancy of the underwater vehicle to reach the setpoint buoyancy Fc is constant and depends on the immersion threshold SD and the setpoint buoyancy Fc . For a setpoint buoyancy of 10 N and a buoyancy of the underwater vehicle 1 of -15 N on detection of the crossing of the threshold, the variation in weight that the underwater vehicle to reach the set buoyancy is 25 Newton.

On doit alors faire varier la masse des réservoirs de Dm = DP/g = 25/9,81 = 2, 548 kg, g étant l'accélération de la pesanteur (9,81 ms-2). Cela représente une variation de volume d'eau DV = Dm/d où d est la densité volumique du liquide dans lequel est plongé le véhicule sous-marin. Dans le cas de l'eau de mer, d= 1, 025 kg/L. Alors DV = 2,548/1,025 = 2,486 L.The mass of the tanks must then be varied by Dm = DP/g = 25/9.81 = 2.548 kg, g being the acceleration due to gravity (9.81 ms -2 ). This represents a variation in water volume DV=Dm/d where d is the volumetric density of the liquid in which the underwater vehicle is immersed. In the case of seawater, d= 1.025 kg/L. So DV = 2.548/1.025 = 2.486 L.

Cela signifie que 2,486 L d'eau de mer doivent être retirés des réservoirs pour alléger le véhicule de sorte à obtenir la flottabilité de consigne.This means that 2.486 L of seawater must be removed from the tanks to lighten the vehicle so as to obtain the set buoyancy.

Sur la réalisation non limitative des figures, les réservoirs 20 et 21 sont espacés selon un axe x du véhicule sous-marin 1 qui est, sur l'exemple non limitatif des figures, un axe longitudinal selon lequel le véhicule sous-marin s'étend longitudinalement. Les deux réservoirs 20, 21 sont alors placés chacun à proximité d'une des extrémités du véhicule sous-marin 1. Le réservoir 21 est placé à proximité de l'extrémité avant AV et le réservoir 20 de l'extrémité arrière AR du véhicule sous-marin. En variante, les moyens pour faire varier la flottabilité comprennent un seul réservoir ou plus de deux réservoirs. Le véhicule est destiné à se déplacer principalement selon l'axe longitudinal dans le sens de l'extrémité arrière AR vers l'extrémité avant AV.On the non-limiting embodiment of the figures, the tanks 20 and 21 are spaced along an axis x of the underwater vehicle 1 which is, in the non-limiting example of the figures, a longitudinal axis along which the underwater vehicle extends longitudinally. The two tanks 20, 21 are then each placed close to one of the ends of the underwater vehicle 1. The tank 21 is placed close to the front front end and the tank 20 to the rear rear end of the vehicle under -marine. As a variant, the means for varying the buoyancy comprise a single reservoir or more than two reservoirs. The vehicle is intended to move mainly along the longitudinal axis in the direction of the rear rear end towards the front front end.

En variante ou en plus, les moyens VAR pour faire varier la masse volumique comprennent au moins un réservoir, dit externe de volume variable agencé de façon qu'une variation du volume du réservoir entraine une modification du volume du véhicule sous-marin 1. Ce réservoir communique par exemple avec un réservoir interne disposé à l'intérieur du corps du véhicule sous-marin via une vanne de sorte à permettre de faire passer un fluide d'un des réservoirs à l'autre ou bloquer le passage de ce fluide entre les deux réservoirs, une pompe provoquant la circulation du fluide via la vanne. Un actionneur, par exemple un moteur est prévu pour actionner la pompe. La vanne et la pompe sont commandées par un organe de commande recevant des mesures issues d'un capteur d'immersion permettant de mesurer une immersion du véhicule sous-marin et commandant la vanne pour faire varier le volume du réservoir externe de façon que le véhicule sous-marin présente une immersion de consigne reçue par l'organe de commande. Cette solution entraîne moins de problème de corrosion et de fiabilité que la solution précédente au dépend du véhicule sous-marin. Deux réservoirs peuvent être prévus, un à chaque extrémité longitudinale du véhicule sous-marin.As a variant or in addition, the VAR means for varying the density comprise at least one tank, called an external tank of variable volume arranged so that a variation in the volume of the tank causes a modification of the volume of the underwater vehicle 1. This tank communicates for example with an internal tank disposed inside the body of the underwater vehicle via a valve so as to allow a fluid to pass from one of the tanks to the other or to block the passage of this fluid between the two tanks, a pump causing the circulation of the fluid via the valve. An actuator, for example a motor is provided to actuate the pump. The valve and the pump are controlled by a control member receiving measurements from an immersion sensor making it possible to measure immersion of the underwater vehicle and controlling the valve to vary the volume of the external tank so that the vehicle submarine has a set immersion received by the control unit. This solution causes less corrosion and reliability problems than the previous solution at the expense of the vehicle submarine. Two tanks may be provided, one at each longitudinal end of the underwater vehicle.

Dans ce cas, le poids du véhicule sous-marin est constant mais la poussée d'Archimède varie lors de la mise en oeuvre du procédé. Pour une flottabilité consigne de 10 N et une flottabilité du véhicule sous-marin de -15 N au déclenchement de l'étape 200, la variation de poussée d'Archimède DA que doit subir le véhicule sous-marin pour atteindre la flottabilité de consigne est de 25 Newton. Il faut donc augmenter le volume du véhicule sous-marin de DV = DA/(g*d) = 25/(9,81*1,025) = 2, 486 L.In this case, the weight of the underwater vehicle is constant but the buoyancy force varies during the implementation of the method. For a setpoint buoyancy of 10 N and a buoyancy of the underwater vehicle of −15 N at the start of step 200, the variation in Archimedes thrust DA that the underwater vehicle must undergo to reach the setpoint buoyancy is of 25 Newtons. It is therefore necessary to increase the volume of the underwater vehicle by DV = DA/(g*d) = 25/(9.81*1.025) = 2.486 L.

L'organe de commande 26 déclenche la mise en oeuvre du procédé lorsque la condition de réglage de la flottabilité est vérifiée. La condition de réglage de la flottabilité peut être vérifiée lorsque l'organe de commande reçoit une consigne C de réglage de la flottabilité. En variante, le procédé comprend une étape de vérification consistant à vérifier si la condition de réglage de la flottabilité est vérifiée, cette étape étant mise en oeuvre par l'organe de commande. Cette étape peut être réalisée à partir d'une mesure de la masse volumique du liquide. La consigne de réglage de la flottabilité est par exemple vérifiée lorsque la masse volumique de l'eau passe en dessous ou au-delà d'un certain seuil ou par exemple lorsqu'une variation du volume ou de la masse du véhicule sous-marin dépasse un certain seuil (par exemple lorsque des coquillages ont investi la coque du véhicule sous-marin ou lors de l'installation d'un nouvel équipement).The control member 26 triggers the implementation of the method when the buoyancy adjustment condition is verified. The buoyancy adjustment condition can be verified when the control member receives a buoyancy adjustment setpoint C. As a variant, the method comprises a verification step consisting in verifying whether the buoyancy adjustment condition is verified, this step being implemented by the control member. This step can be performed from a measurement of the density of the liquid. The buoyancy adjustment setpoint is for example checked when the density of the water goes below or beyond a certain threshold or for example when a variation in the volume or the mass of the underwater vehicle exceeds a certain threshold (for example when shells have invested the hull of the underwater vehicle or during the installation of new equipment).

Avantageusement, lors de l'étape 100, on modifie la masse volumique d'un seul réservoir prédéterminé, parmi les deux réservoirs 20 et 21. Cela permet d'obtenir une plongée plus rapide du véhicule sous-marin 1 et donc, le franchissement du seuil d'immersion a lieu après ajout d'une quantité moindre d'eau que lors d'un remplissage des deux réservoirs simultanément. Le procédé est donc plus rapide (la quantité d'eau à retirer des réservoirs pendant l'étape 200 est aussi moins importante) et nécessite moins d'énergie.Advantageously, during step 100, the density of a single predetermined tank is modified, among the two tanks 20 and 21. This makes it possible to obtain a faster dive of the underwater vehicle 1 and therefore, the crossing of the immersion threshold takes place after adding a smaller quantity of water than when filling the two tanks simultaneously. The method is therefore faster (the quantity of water to be withdrawn from the reservoirs during step 200 is also less important) and requires less energy.

Dans la réalisation dans laquelle le volume du véhicule sous-marin 1 est modifié pendant l'étape 100, on peut modifier le volume d'un seul des deux réservoirs à volume variable situé à une des extrémités du véhicule sous-marin de sorte à faire varier le volume du véhicule sous-marin uniquement à proximité de cette extrémité.In the embodiment in which the volume of the underwater vehicle 1 is modified during step 100, it is possible to modify the volume of only one of the two variable-volume tanks located at one of the ends of the underwater vehicle so as to vary the volume of the underwater vehicle only near this end.

Avantageusement, le réservoir dont on fait varier la masse volumique lors de l'étape 100 est le réservoir 20 situé à proximité d'une extrémité (ici AR) opposée à une autre extrémité AV longitudinale du véhicule à proximité de laquelle sont disposés un capteur ou un émetteur d'ondes radioélectriques du véhicule destiné à être utilisé lorsque ce capteur ou ce détecteur est émergé pour que le véhicule communique avec un capteur/détecteur extérieur au véhicule. Cela permet de maintenir plus longtemps une communication du véhicule avec l'extérieur lorsqu'il va venir plonger.Advantageously, the tank whose density is varied during step 100 is the tank 20 located close to an end (here AR) opposite to another longitudinal end AV of the vehicle close to which a sensor or a vehicle radio wave transmitter for use when said sensor or detector is emerged for the vehicle to communicate with a sensor/detector external to the vehicle. This makes it possible to maintain communication between the vehicle and the outside for longer when it comes to dive.

En variante, lors de l'étape 100, on modifie la masse volumique des réservoirs selon un ordre prédéterminé des réservoirs. Par exemple, on remplit d'abord le réservoir 21 puis le réservoir 20 lorsque le réservoir 21 est rempli.As a variant, during step 100, the density of the reservoirs is modified according to a predetermined order of the reservoirs. For example, the tank 21 is first filled, then the tank 20 when the tank 21 is filled.

L'invention porte également sur un procédé d'équilibrage comprenant le procédé de réglage de la flottabilité décrit précédemment et une étape de réglage de l'assiette longitudinale de façon que le véhicule présente, à l'issu du procédé, une assiette longitudinale de consigne.The invention also relates to a balancing method comprising the method for adjusting the buoyancy described above and a step of adjusting the longitudinal trim so that the vehicle has, at the end of the method, a set longitudinal trim .

A cet effet, le véhicule sous-marin 1 comprend avantageusement des moyens pour régler l'assiette longitudinale du corps 11 du véhicule sous-marin 10.To this end, the underwater vehicle 1 advantageously comprises means for adjusting the longitudinal trim of the body 11 of the underwater vehicle 10.

Ces moyens pour régler l'assiette longitudinale du corps 11 comprennent des moyens pour faire varier l'assiette longitudinale du corps du véhicule sous-marin comprenant, sur l'exemple non limitatif de la figure 2, les deux réservoirs 20, 21 espacés selon l'axe longitudinal x et placés respectivement à proximité de l'extrémité arrière AR et de l'extrémité avant AV du corps 11. Les moyens pour faire varier l'assiette longitudinale du corps 10 comprennent un circuit hydraulique 36 par lequel les réservoirs 21 communiquent l'un avec l'autre de sorte que le passage d'un fluide de l'un à l'autre est possible via une vanne 37 pouvant fermer le circuit hydraulique 36 ou l'ouvrir pour permettre ou non cette communication fluidique. Une deuxième pompe 38 permet de faire circuler le liquide entre les deux réservoirs via la vanne 37 et un deuxième actionneur associé 39 permettant d'actionner la pompe 38.These means for adjusting the longitudinal trim of the body 11 comprise means for varying the longitudinal trim of the body of the underwater vehicle comprising, on the non-limiting example of the picture 2 , the two tanks 20, 21 spaced along the longitudinal axis x and placed respectively close to the rear rear end and the front front end of the body 11. The means for varying the longitudinal attitude of the body 10 comprise a hydraulic circuit 36 by which the reservoirs 21 communicate with each other so that the passage of a fluid from one to the other is possible via a valve 37 which can close the hydraulic circuit 36 or open it to allow or not this fluidic communication. A second pump 38 makes it possible to circulate the liquid between the two tanks via the valve 37 and a second associated actuator 39 making it possible to actuate the pump 38.

En variante, une même pompe peut être utilisée pour la variation de l'assiette longitudinale et de la flottabilité. Un distributeur ou une ou plusieurs vannes supplémentaires sont alors prévus pour connecter la pompe à un des deux circuits hydrauliques. Le distributeur ou chaque vanne est commandé au moyen de l'organe de commande.As a variant, the same pump can be used for the variation of the longitudinal trim and the buoyancy. A distributor or one or more additional valves are then provided to connect the pump to one of the two hydraulic circuits. The distributor or each valve is controlled by means of the control member.

Les moyens de réglage de l'assiette longitudinale comprennent également un organe de commande permettant de commander les moyens permettant de faire varier l'assiette longitudinale en fonction d'une assiette longitudinale de consigne et de mesures d'un capteur d'assiette 40, permettant de mesurer l'assiette longitudinale du véhicule sous-marin, comprenant par exemple des capteurs d'immersion disposés aux deux extrémités longitudinales respectives du véhicule sous-marin ou un capteur de gravité mesurant la verticalité du véhicule sous-marin ou une centrale inertielle. Cet organe de commande est l'organe de commande 26 des moyens de réglage de la flottabilité sur la figure 2 mais peut être un autre organe de commande.The means for adjusting the longitudinal trim also comprise a control member making it possible to control the means making it possible to vary the longitudinal trim as a function of a set longitudinal trim and measurements of a trim sensor 40, allowing to measure the longitudinal attitude of the underwater vehicle, comprising for example immersion sensors arranged at the two respective longitudinal ends of the underwater vehicle or a gravity sensor measuring the verticality of the underwater vehicle or an inertial unit. This control member is the control member 26 of the buoyancy adjustment means on the picture 2 but may be another control device.

Le réglage de la flottabilité et de l'assiette longitudinale par les même réservoirs comme représenté sur la figure permet de mutualiser ces moyens ce qui limite le volume dédié à ces réglages ainsi que le nombre d'éléments dédiés à ces réglages.Adjusting the buoyancy and the longitudinal trim by the same tanks as shown in the figure makes it possible to pool these means, which limits the volume dedicated to these settings as well as the number of elements dedicated to these settings.

Les moyens de réglage de l'assiette longitudinale sont avantageusement configurés pour que l'étape de réglage de l'assiette longitudinale du véhicule sous-marin, consiste à transférer de l'eau (ou autre liquide) depuis un réservoir disposé à proximité d'une extrémité du véhicule sous-marin, par exemple le réservoir 21, vers l'autre réservoir disposé à proximité de l'autre extrémité longitudinale du véhicule sous-marin, par exemple le réservoir 20. Ainsi la flottabilité n'est pas modifiée, seule l'assiette varie.The means for adjusting the longitudinal trim are advantageously configured so that the step of adjusting the longitudinal trim of the underwater vehicle consists in transferring water (or other liquid) from a tank placed close to one end of the underwater vehicle, for example the tank 21, towards the other tank arranged close to the other longitudinal end of the underwater vehicle, for example the tank 20. Thus the buoyancy is not modified, only the plate varies.

D'autres types de moyens internes commandables peuvent être utilisés pour faire varier l'assiette du véhicule sous-marin comme des masses mobiles en translations selon l'axe x, dont un exemple est décrit dans le document GB 2 335 888 , mais ce système nécessite un actionneur supplémentaire et dédié.Other types of controllable internal means can be used to vary the attitude of the underwater vehicle such as mobile masses in translations along the x axis, an example of which is described in the document UK 2,335,888 , but this system requires an additional and dedicated actuator.

En variante, les réservoirs 20, 21 sont remplacés par des réservoirs à volume variable tels que décrits précédemment. En variante, le véhicule comprend les deux types de réservoirs.As a variant, the reservoirs 20, 21 are replaced by variable volume reservoirs as described previously. Alternatively, the vehicle includes both types of tanks.

Chaque organe de commande et le comparateur peuvent chacun comprendre un ou plusieurs circuits électroniques dédiés ou un circuit à usage général. Chaque circuit électronique peut comprendre une machine de calcul reprogrammable (un processeur ou un micro contrôleur par exemple) et/ ou un calculateur exécutant un programme comprenant une séquence d'instructions et/ou une machine de calcul dédiée (par exemple un ensemble de portes logiques comme un FPGA un DSP ou un ASIC, ou tout autre module matériel).Each controller and the comparator may each include one or more dedicated electronic circuits or a general purpose circuit. Each electronic circuit can comprise a machine of reprogrammable calculation (a processor or a microcontroller for example) and/or a computer executing a program comprising a sequence of instructions and/or a dedicated calculation machine (for example a set of logic gates such as an FPGA, a DSP or an ASIC , or any other hardware module).

Claims (9)

  1. A method for controlling the buoyancy of an underwater vehicle (1) so that it substantially has a predetermined target buoyancy Fc when it is immersed in a volume of liquid which is delimited by a first surface and a second surface, along a vertical axis (z), the method comprising:
    - from an initial buoyancy of the vehicle, which maintains the vehicle at the level of the first surface (S), a first step (100) of modifying the density of the vehicle (1) so that it approaches the second surface, the first step being implemented until a second step (200) of detecting that the vehicle (1) has exceeded a predetermined distance threshold (SD) which is not equal to zero and which is relative to the first surface (S), along the vertical axis, the first step being implemented in such a manner that the vehicle has a predetermined buoyancy when it is detected that the threshold has been exceeded,
    - then a third step (300) of modifying the density of the vehicle (1) until the vehicle substantially has the target buoyancy, the variation of the density during the third step being predetermined,
    the target buoyancy having the same sign as the initial buoyancy and an absolute value which is less than the absolute value of the initial buoyancy.
  2. The method according to the preceding claim, wherein, during the implementation of the method, the vehicle moves along the vertical axis only under the action of a variation of the buoyancy thereof.
  3. The method according to any one of the preceding claims, wherein the first surface is the surface of the liquid and the initial buoyancy is positive, the first step of modification of the density being a step of increasing the density of the vehicle, the distance threshold being an immersion threshold.
  4. The method according to any one of claims 1 to 2, wherein the first surface is a base of the volume of liquid, the initial buoyancy is negative, the first step of modification of the density being a step of reducing the density, the distance threshold being an altitude threshold relative to the first surface.
  5. The method according to any one of the preceding claims, wherein, during the first step (100) and during the third step (300), the mass of the vehicle is varied, with a constant volume of the underwater vehicle, and/or the volume of the marine vehicle is varied with a constant mass of the underwater vehicle.
  6. The method according to any one of the preceding claims, wherein the vehicle (1) comprises a first tank which has variable density, the density variation of which varies the density of the vehicle (1) and which is arranged close to a first longitudinal end of the vehicle (1), and a second tank which has a variable density, the density variation of which varies the density of the vehicle (1) and which is arranged close to a second longitudinal end of the vehicle (1), wherein, during the first step (100), the density of a single predetermined tank taken from first tank and the second tank is varied.
  7. A balancing method comprising the method for controlling the buoyancy according to any one of the preceding claims, followed by a step of controlling the longitudinal pitch of the vehicle (1).
  8. A device for controlling the buoyancy of a submarine comprising means for variation of the buoyancy, which enable the density of the underwater vehicle to be varied, and at least one sensor, which enables detection that the vehicle has exceeded a predetermined distance threshold which is not equal to zero and which is relative to a first surface which delimits, in a vertical direction, the volume of a liquid in which the vehicle is immersed, the device for controlling the buoyancy being configured to implement a method comprising the following steps when a condition for controlling the buoyancy is verified:
    - from an initial buoyancy which maintains the vehicle at the level of the first surface; a first step of modification of the density of the vehicle by the means for variation of the buoyancy so that the vehicle approaches a second surface which delimits the volume of liquid in the vertical direction, the first step being implemented until a second step (200) of detection, by the sensor, that the distance threshold has been exceeded by the vehicle, the first step being implemented so that the vehicle has a predetermined buoyancy when it is detected that the threshold has been exceeded,
    - then a third step (300) of modification of the density of the vehicle (1) by the means for variation of the buoyancy until the vehicle has substantially the target buoyancy, the variation of the density during the third step being predetermined,
    - the target buoyancy having the same sign as the initial buoyancy and an absolute value which is less than the absolute value of the initial buoyancy.
  9. An underwater vehicle comprising the device for controlling the buoyancy according to claim 8.
EP18808366.1A 2017-12-19 2018-11-29 Method for controlling the buoyancy of a submarine vehicle Active EP3728020B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1701321A FR3075163B1 (en) 2017-12-19 2017-12-19 METHOD FOR ADJUSTING THE BUOYANCY OF AN UNDERWATER VEHICLE
PCT/EP2018/083006 WO2019120926A1 (en) 2017-12-19 2018-11-29 Method for controlling the buoyancy of a submarine vehicle

Publications (3)

Publication Number Publication Date
EP3728020A1 EP3728020A1 (en) 2020-10-28
EP3728020C0 EP3728020C0 (en) 2023-07-05
EP3728020B1 true EP3728020B1 (en) 2023-07-05

Family

ID=61873352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18808366.1A Active EP3728020B1 (en) 2017-12-19 2018-11-29 Method for controlling the buoyancy of a submarine vehicle

Country Status (7)

Country Link
US (1) US11167828B2 (en)
EP (1) EP3728020B1 (en)
AU (1) AU2018389953A1 (en)
CA (1) CA3085422A1 (en)
FR (1) FR3075163B1 (en)
SG (1) SG11202003033QA (en)
WO (1) WO2019120926A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11358706B2 (en) * 2019-03-29 2022-06-14 The Boeing Company Automated weight balancing for automated guided vehicle
WO2023164723A1 (en) * 2022-02-28 2023-08-31 Impossible Mining Inc. Method and apparatus for a dynamic buoyancy system for deep-sea mining
CN115447737B (en) * 2022-10-17 2023-05-26 中国船舶科学研究中心 Deep sea submarine for realizing joint motion control

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3157145A (en) * 1960-12-07 1964-11-17 Oceanic Systems Corp Underwater glider
US3952349A (en) * 1974-11-18 1976-04-27 Grumman Aerospace Corporation Variable buoyancy device
US4266500A (en) * 1979-09-24 1981-05-12 Bunker Ramo Corporation Hover control system for a submersible buoy
JP3382791B2 (en) * 1996-09-17 2003-03-04 三菱重工業株式会社 Underwater vehicle lifting and lowering operation method and device
GB9806340D0 (en) 1998-03-26 1998-05-20 Weatherburn Robert Versatile autonomous underwater vehicle
US7290496B2 (en) * 2005-10-12 2007-11-06 Asfar Khaled R Unmanned autonomous submarine
US8127704B2 (en) * 2008-03-26 2012-03-06 Irobot Corporation Submersible vehicles and methods for transiting the same in a body of liquid
US8418642B2 (en) * 2008-05-09 2013-04-16 Irobot Corporation Unmanned submersible vehicles and methods for operating the same in a body of liquid
US20130239870A1 (en) * 2010-03-01 2013-09-19 Irobot Corporation Underwater Vehicle Bouyancy System
US20120318188A1 (en) * 2010-03-01 2012-12-20 Edison Thurman Hudson Autonomous Underwater Vehicle
WO2012013962A1 (en) * 2010-07-29 2012-02-02 Bae Systems Plc Buoyancy control in an unmannned underwater vehicle
US9511834B2 (en) * 2013-05-27 2016-12-06 Kunio NASUNO Submersible and method of controlling the same

Also Published As

Publication number Publication date
FR3075163B1 (en) 2021-12-31
US11167828B2 (en) 2021-11-09
WO2019120926A1 (en) 2019-06-27
FR3075163A1 (en) 2019-06-21
EP3728020C0 (en) 2023-07-05
CA3085422A1 (en) 2019-06-27
EP3728020A1 (en) 2020-10-28
SG11202003033QA (en) 2020-05-28
US20200361583A1 (en) 2020-11-19
AU2018389953A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
EP3728020B1 (en) Method for controlling the buoyancy of a submarine vehicle
EP3169581B1 (en) Motor boat with retractable foils
EP2964515B1 (en) System and method for recovering an autonomous underwater vehicle
EP3784558B1 (en) System for deploying and recovering an autonomous underwater device, method of use
FR2978726A1 (en) METHOD AND SYSTEM OF BUOY BUOY THAT CAN BE CONTROLLED
FR2886741A1 (en) APPARATUS AND METHOD FOR DETERMINING THE ORIENTATION OF A MARINE FLUTE GUIDING DEVICE
FR2795527A1 (en) Underwater seismic prospecting device for deep water comprises variable floatability tubes
EP2855252B1 (en) System for launching and retrieving submarine vehicles, in particular towed submarine vehicles
WO2012076515A1 (en) System for launching and recovering underwater vehicles, notably towed underwater vehicles
EP4124203A2 (en) System and method for deploying and recovering an autonomous underwater craft by a recovery vehicle towed by a ship, underwater exploration assembly
EP3168126B1 (en) Inverted t-shaped wing suitable for being installed on a boat
EP3209546B1 (en) System for launching and recovering marine and submarine devices assisted by tiltable protective components
CA2960706C (en) Marine or submarine craft and associated mooring method
FR2709469A1 (en) Propulsion package for unmanned underwater vehicle.
Huo et al. Free-running tests on a self-propelled submersible multi-state vehicle model
EP3535182A1 (en) Propulsion system and device for a passenger
EP3333539A1 (en) Electronic control device for controlling a drone, related drone, controlling method and computer program
EP3732095B1 (en) Submarine device
EP3728019B1 (en) Vehicle capable of being submerged comprising a mast
EP3201073A1 (en) Submerged object suspended from a towing cable optimised to neutralise disrupting hydrodynamic forces
EP0412016A1 (en) Aerial observation device for a submarine
WO2010119195A1 (en) Floating periscope in particular for an underwater vehicle
EP3384092B1 (en) Method for installing and removing a carrier base
EP3393902A1 (en) Marine vehicle thruster control method
FR2703652A1 (en) Concept of structure and of propulsion making it possible for a nautical craft to alternate surface displacement and submerged displacement

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200519

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20230327

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1584619

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018052926

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

U01 Request for unitary effect filed

Effective date: 20230711

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230720

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20230705

U20 Renewal fee paid [unitary effect]

Year of fee payment: 6

Effective date: 20231020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231105

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231006

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20231108

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705