EP3721501B1 - Mikrowellen-bauelement und zugehöriges herstellungsverfahren - Google Patents

Mikrowellen-bauelement und zugehöriges herstellungsverfahren Download PDF

Info

Publication number
EP3721501B1
EP3721501B1 EP18811277.5A EP18811277A EP3721501B1 EP 3721501 B1 EP3721501 B1 EP 3721501B1 EP 18811277 A EP18811277 A EP 18811277A EP 3721501 B1 EP3721501 B1 EP 3721501B1
Authority
EP
European Patent Office
Prior art keywords
layer
dielectric
cavity
dielectric strip
propagation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18811277.5A
Other languages
English (en)
French (fr)
Other versions
EP3721501A1 (de
Inventor
Anthony Ghiotto
Frédéric PARMENT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Original Assignee
Centre National dEtudes Spatiales CNES
Centre National de la Recherche Scientifique CNRS
Universite de Bordeaux
Institut Polytechnique de Bordeaux
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National dEtudes Spatiales CNES, Centre National de la Recherche Scientifique CNRS, Universite de Bordeaux, Institut Polytechnique de Bordeaux filed Critical Centre National dEtudes Spatiales CNES
Publication of EP3721501A1 publication Critical patent/EP3721501A1/de
Application granted granted Critical
Publication of EP3721501B1 publication Critical patent/EP3721501B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/122Dielectric loaded (not air)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/121Hollow waveguides integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure
    • H01P1/2088Integrated in a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • H01P11/001Manufacturing waveguides or transmission lines of the waveguide type
    • H01P11/002Manufacturing hollow waveguides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/12Hollow waveguides
    • H01P3/123Hollow waveguides with a complex or stepped cross-section, e.g. ridged or grooved waveguides

Definitions

  • microwave components are described in the documents US 2002/093403 And US 2004/041663 , in the article entitled Broadband phase shifter using air holes in Substrate Integrated Waveguide by Boudreau et al, dated June 5, 2011 (XP032006818 ), in the article entitled Double Dielectric Slab-Loaded Air-Filled SIW Phase Shifters for High-Performance Millimeter-Wave Integration by Parment et al, dated September 1, 2016 (XP011621511 ), in the article entitled Approximation Technique for Dielectric Loaded Waveguides by Hord et al, dated April 1, 1968 (XP055493538 ) and in the article entitled Substrate integrated slab waveguide (SISW) for wideband microwave applications by Desries et al, dated June 8, 2003 (XP032412823 ).
  • SISW Substrate integrated slab waveguide
  • An object of the invention is therefore to manufacture and provide, at low costs, a microwave component adapted to operate in the wavelength range. millimeter, the component having good bandwidth and being low loss.
  • the subject of the invention is a microwave component according to claim 1.
  • the component according to the invention can be according to any one of claims 2 to 8.
  • the invention also relates to a method of manufacturing a microwave component according to claim 9.
  • the first component 10A is for example a filter, in particular a band-pass, low-pass, high-pass or band-stop microwave filter.
  • the first microwave component 10A is for example a transmission line, a multiplexer, a coupler, a divider, a combiner, an antenna, an oscillator, an amplifier, a load, a circulator, a resonator, a shifter phase or even an insulator.
  • the first component 10A here is of the “guide integrated into the substrate” type.
  • the waveguide 12 comprises an upper layer 14, a lower layer 16, and a central layer 18 interposed between the upper layer 14 and the lower layer 16, said layers 14, 16, 18 defining a propagation zone 19 of the electromagnetic wave, the propagation zone 19 extending along the propagation axis XX.
  • dielectric element it is meant that said element has a relative dielectric permittivity greater than or equal to 1.
  • each of said upper surfaces 20A, 20B, 20C and each of said lower surfaces 21A, 21B, 21C are electrically conductive.
  • electrically conductive element it is meant that said element has an electrical conductivity greater than 1*10 6 Sm -1 , preferably equivalent to that of a metal of the copper, silver, aluminum or gold type.
  • the lower layer 16 and the upper layer 14 are arranged at a distance from each other, on either side of the central layer 18, in contact with the central layer 18.
  • the lower surface 21A of the upper layer 14 is in contact with the upper surface 20C of the central layer 18.
  • the lower surface 21C of the central layer 18 is in contact with the upper surface 20B of the lower layer. 16.
  • a transverse direction is therefore a direction orthogonal to the propagation axis X-X and parallel to the lower surface 21A of the upper layer 14.
  • Each of the upper 14, lower 16 and central 18 layers thus comprises an electrically conductive upper sub-layer 22A, 22B, 22C, an electrically conductive lower sub-layer 24A, 24B, 24C and a dielectric central sub-layer 26A, 26B, 26C , presenting a first dielectric constant, interposed between the upper sub-layer 22A, 22B, 22C and the lower sub-layer 24A, 24B, 24C.
  • the upper sub-layers 22A, 22B, 22C and the lower sub-layers 24A, 24B, 24C are for example made of copper.
  • the central sublayers 26A, 26B, 26C are for example made of epoxy resin or Teflon.
  • the propagation zone 19 corresponds to a zone in which the electromagnetic wave is confined during its propagation in the waveguide 12.
  • the propagation zone 19 is delimited by the electrically conductive lower sublayer 24A of the upper layer 14, the electrically conductive upper sublayer 22B of the lower layer 16 and two central lateral boundaries 30 each provided in the central layer 18 and spaced from one another.
  • the propagation zone 19 comprises a cavity 32 delimited by the upper layer 14, by the lower layer 16, and, laterally, by the central layer 18.
  • the central lateral boundaries 30 of the propagation zone 19 are capable of preventing the passage of an electromagnetic wave having a wavelength greater than or equal to the predetermined minimum wavelength.
  • Each central lateral boundary 30 electrically connects the lower sub-layer 24A of the upper layer 14 and the upper sub-layer 22B of the upper layer 14 between them.
  • the central lateral borders 30 extend in particular over the entire thickness of the central layer 18.
  • Each via 34 electrically connects the lower sublayer 24A of the upper layer 14 and the upper sublayer 22B of the upper layer 14 between them.
  • the spacing between two successive vias 34 of a central lateral boundary 30 is less than the predetermined minimum wavelength, in particular less than one tenth of the predetermined minimum wavelength, preferably less than one twentieth of the length d predetermined minimum wave.
  • the cavity 32 is filled with a fluid 38 having a second dielectric constant, for example lower than the first dielectric constant.
  • the fluid 38 is for example air.
  • the cavity 32 defines a sealed closed volume, it is filled with air, nitrogen or is empty of fluid.
  • the lateral edges 36 of the central layer 18 extend parallel to the axis of propagation XX.
  • the lateral edges 36 of the central layer 18 extend in particular orthogonally and to the transverse axis Y-Y.
  • the side edges 36 of the central layer 18 run along the central side boundaries 30.
  • “along” we mean that the side edges 36 are in contact with said central lateral borders 30 or arranged at a distance, for example constant, from said central lateral borders 30, this distance preferably being less than 100 ⁇ m.
  • the dielectric bar 28 is placed in the cavity 32, away from the lateral edges 36 of the cavity 32.
  • the dielectric bar 28 is arranged in the propagation zone 19 such that, in projection on the upper surface 20B of the lower layer 16, said dielectric bar 28 is away from the lateral edges 36 of the cavity 32.
  • the dielectric bar 28 here has an elongated shape and extends in a longitudinal direction parallel to the axis of propagation. In addition, the dielectric bar 28 extends here orthogonal to the transverse axis Y-Y.
  • the dielectric bar 28 has a width comprised in particular between 1% and 90% of the width of the cavity 32.
  • width of an element we mean the edge-to-edge distance of the element, taken along the transverse axis Y-Y.
  • the dielectric bar 28 is here centered on a median plane of the two side edges 36.
  • the dielectric bar 28 has in this example a thickness less than the height of the cavity 32.
  • thickness of an element or “height of an element”, we mean the edge-to-edge distance of the element, taken according to the Z-Z direction orthogonal to the propagation axis X-X and to the transverse axis Y-Y.
  • the dielectric bar 28 is fixed to the upper surface 20B of the lower layer 16 via a lower contact sub-layer 40. More precisely, it is fixed to the lower contact sub-layer 40, the sub-layer 40. lower contact layer 40 being fixed to the upper surface 20B of the lower layer 16.
  • the lower contact sublayer 40 is electrically conductive.
  • the dielectric bar 28 is further fixed to the lower surface 21A of the upper layer 14 via an upper contact sub-layer 42. More precisely, it is fixed to the upper contact sub-layer 42, the undercoat upper contact layer 42 being fixed to the lower surface 21A of the upper layer 14.
  • the upper contact sublayer 42 is electrically conductive.
  • the first method includes providing the upper layer 14 and the lower layer 16.
  • the central layer 18 being provided here presenting a plurality of recesses 44, said plurality of recesses 44 being intended to form the cavity 32 of the first component 10A.
  • the upper layer 14, the lower layer 16 and the middle layer 18 are provided spaced apart from each other.
  • the step of providing the central layer 18 comprises the provision of an initial layer 46, the initial layer 46 being intended to form the central layer 18.
  • the initial layer 46 thus comprises at least one initial dielectric sub-layer 48, having the first dielectric constant, which is in particular intended to form the central sub-layer 26C of the central layer 18.
  • the initial layer 46 also comprises an initial upper electrically conductive sub-layer 50 intended to form the upper sub-layer 22C of the central layer 18, and an initial lower electrically conductive sub-layer 52 intended to form the sub-layer lower 24C of the central layer 18.
  • the step of providing the central layer 18 then comprises cutting, in the initial layer 46, the plurality of recesses 44 intended to form the cavity 32.
  • the cutting is carried out throughout the thickness of the initial layer 46.
  • the first method comprises a step of implementing the central lateral borders 30.
  • the implementation of the central lateral boundaries 30 includes the production of said row of vias 34.
  • the step of providing the central layer 18 further comprises the production of the dielectric bar 28.
  • the production of the dielectric bar 28 is implemented here during the cutting of said plurality of recesses 44. Said plurality of recesses 44 is then intended to delimit the cavity 32, the dielectric bar 28 and attachment means 54 of the dielectric bar 28.
  • the dielectric bar 28 is more precisely formed by part of the initial dielectric sub-layer 48 of the initial layer 46.
  • the dielectric bar 28 is thus arranged in the initial layer 46.
  • the attachment means 54 comprise a plurality of dielectric attachments 56 connecting the dielectric bar 28 to at least one of the lateral edges 36 of the cavity 32.
  • the dielectric bar 28, the dielectric fasteners 56 and the lateral edges 36 of the cavity 32 are made from material.
  • each dielectric fastener 56 has the shape of a rectilinear bar, and here extends perpendicularly from one of the side edges 36.
  • At least one dielectric clip 56 extends from each of the side edges 36.
  • the dielectric clips 56 are spaced apart from each other.
  • the production of the dielectric bar 28 includes for example the removal of the initial upper and lower electrically conductive sub-layers 50, 52 in line with the dielectric fasteners 56, in particular above and below the dielectric fasteners 56.
  • the initial layer 46 forms the central layer 18.
  • the dielectric bar 28 is placed between a plane defined by the upper surface 20C of the central layer 18 and a plane defined by a lower surface 21C of the central layer 18.
  • the dielectric bar 28 is thus intended to be placed in the cavity 32, between the lateral edges 36.
  • the dielectric bar 28 is similarly fixed to the lower layer 16.
  • the dielectric bar 28 is held in position relative to the central layer 18 and the lower layer 16 by the dielectric fasteners 56.
  • the positioning of the dielectric bar 28 is therefore very precise and chosen during the cutting step.
  • the assembly then comprises the removal of the attachment means 54, once the central layer 18 fixed to the lower layer 16, in particular once the dielectric bar 28 fixed to the lower layer 16.
  • This removal is implemented by cutting the attachment means 54, and in particular by cutting the dielectric attachments 56.
  • the previous step of removing the initial upper and lower electrically conductive sublayers 50, 52 makes it possible to facilitate this step of cutting the dielectric fasteners 56.
  • This cutting is for example carried out manually with a scalpel, with a digital milling machine, or with a laser.
  • each dielectric clip 56 is advantageously cut flush with the dielectric bar 28.
  • the assembly includes the fixing of the upper layer 14 to the central layer 18.
  • This fixing is for example carried out by gluing.
  • the cavity 32 is then formed by said plurality of recesses 44 being delimited by the upper layer 14, by the lower layer 16, and laterally, by said opposite side edges 36 of the central layer 18.
  • the first component 10A is formed.
  • layers 14, 16, 18 define the propagation zone 19 of an electromagnetic wave.
  • This propagation zone 19 includes the cavity 32.
  • the dielectric bar 28 is placed in the cavity 32 away from the side edges 36 of the cavity 32.
  • the dielectric bar 28, placed in the central layer 18, is placed in the propagation zone 19, and, in projection on the upper surface 20B of the lower layer 16, at the distance from the side edges 36 of the cavity 32.
  • the first method comprises a step of supplying the first microwave component 10A with an electromagnetic wave propagating in the propagation zone 19.
  • the electromagnetic wave presents at least one mode of propagation presenting a maximum electric field.
  • the dielectric bar 28 is positioned in the cavity 32 at a predetermined position such that, during this step of supplying the first component 10A, the predetermined position corresponds to the level of said maximum electric field.
  • the dimensions of the dielectric fasteners 56 are predetermined so that, after assembly, the dielectric bar 28 is located in the cavity 32 at the predetermined position.
  • the dielectric bar 28 thus has an effect on said mode of propagation.
  • the dielectric bar 28 charges the waveguide 12 so as to widen the single-mode bandwidth.
  • the structure comprising three layers 14, 16, 18 makes it possible to make the first component 10A compact and flexible.
  • the waveguide 12 comprises a first electrically insulating layer between the lower sub-layer 24A of the upper layer 14 and the upper sub-layer 22C of the central layer 18, and/or a second electrically insulating layer between the lower sub-layer 24C of the central layer 18 and the upper sub-layer 22B of the lower layer 16.
  • the dielectric bar 28 is not centered on a median plane of the two lateral edges 36 but is offset laterally from said median plane. Such a lateral shift makes it possible to provide control over the desired propagation modes of the electromagnetic wave propagating in the waveguide 12.
  • the width of the dielectric bar 28 varies along the axis of propagation.
  • the waveguide 12 comprises electrically conductive wires passing through the cavity 32 from one side to the other, and electrically connecting the lower sub-layer 24A of the upper layer 14 to the upper layer 22B of the lower layer 16. These wires make it possible to carry out an impedance adaptation to another circuit.
  • the waveguide 12 comprises electrically conductive wires passing through the cavity 32, being electrically connected to the lower sub-layer 24A of the upper layer 14, and having a free end spaced apart. of the upper layer 22B of the lower layer 16. These wires make it possible to produce capacitive pads making it possible to adjust the filtering properties of the component.
  • a variant of the first method of manufacturing the first component 10A is illustrated on the Figure 5 .
  • This variant differs from the first method described in that the median plane of the two lateral edges 36 is a plane of symmetry of the dielectric fasteners 56.
  • each dielectric clip 56 does not extend perpendicularly from one of the side edges 36.
  • At least two dielectric clips 56 extend from the same lateral edge 36, joining at the level of the dielectric bar 28. As illustrated in the Figure 5 , these two dielectric attachments 56 form a pattern which repeats along the axis of propagation.
  • the production of the dielectric bar 28 does not include the removal of the initial upper and lower electrically conductive sub-layers 50, 52 in line with the dielectric attachments 56. These sub-layers 50, 52 are removed when removing the attachment means 54.
  • the dielectric fasteners 56 extend from only one of the lateral edges 36.
  • This second component 10B differs from the first component 10A in that the dielectric bar 28 and the lower surface 21A of the upper layer 14 delimit a free space between them.
  • the dielectric bar 28 is thus not fixed to the lower surface 21A of the upper layer 14 via the upper contact sub-layer 42.
  • the waveguide 12 is then devoid of said upper contact sub-layer 42.
  • a second manufacturing process relating to the manufacturing of the second component 10B differs from the first process in that the production of the dielectric bar 28 includes the removal of the initial upper electrically conductive sublayer 50 above the dielectric bar 28.
  • a third microwave component 10C will now be described, with reference to the Figure 7 .
  • This third component 10C differs from the first component 10A in that the waveguide 12 further comprises a functional attachment component 58.
  • the functional attachment component 58 is formed by a plurality of dielectric attachments 56 integral with the dielectric bar 28, each dielectric attachment 56 extending from one of the lateral edges 36.
  • Said dielectric fasteners 56 have characteristics identical to the dielectric fasteners described in the first method.
  • the dielectric bar 28 is therefore away from the lateral edges 36 in at least one region of the dielectric bar 28.
  • the dielectric clips 56 are configured to perform a filter function for an electromagnetic wave propagating in the propagation zone 19.
  • the distribution, the spacing between two adjacent dielectric clips 56, and their dimensions are predetermined to achieve said function.
  • attachment means 54 forms the functional attachment component 58, the dielectric attachments 56 not removed being configured to perform the filter function for an electromagnetic wave propagating in the propagation zone 19.
  • the distribution, the spacing between two adjacent dielectric clips 56, and their dimensions are predetermined to achieve said function.
  • the width of the dielectric bar 28 varies along the axis of propagation.
  • the width of the dielectric bar 28 is constant between two adjacent dielectric clips 56, and the width of the dielectric bar 28 between a pair of adjacent dielectric clips 56 is different for at least two pairs of adjacent dielectric fasteners 56.
  • This fourth component 10D differs from the first component 10A in that the dielectric bar 28 is made of a dielectric material different from the material in which the central sub-layer 26C of the central layer 18 is made.
  • the dielectric bar 28 is fixed to the upper surface 20B of the lower layer 16, for example by gluing.
  • the dielectric bar 28 is in contact with the lower surface 21A of the upper layer 14. In other words, it has a thickness equal to the height of the cavity 32.
  • the dielectric bar 28 is fixed to the lower surface 21A of the upper layer 14, for example by gluing.
  • the dielectric bar 28 and the lower surface 21A of the upper layer 14 delimit a free space between them.
  • the dielectric bar 28 has no contact with the lower surface 21A of the upper layer 14.
  • the thickness of the dielectric bar 28 is therefore less than the thickness of the central layer 18.
  • the waveguide 12 comprises a functional attachment component 58 similar to the functional attachment component 58 of the third component 10C.
  • the fourth method differs from the first method in that the dielectric bar 28 and the attachment means 54 are not cut out in the central layer 18, and in that the step of producing the dielectric bar 28 comprises the supply of the dielectric bar 28 and attachment means 54 of the dielectric bar 28, the dielectric bar 28 and the attachment means 54 being provided away from the central layer 18.
  • the central layer 18 is provided by presenting a recess 44 intended to alone form the cavity 32.
  • the attachment means 54 thus comprise the plurality of dielectric attachments 56 integral with the dielectric bar 28, the dielectric attachments 56 being integral with the dielectric bar 28, for example made integrally with the dielectric bar 28.
  • the dielectric bar 28 and the dielectric clips 56 are preferably made of a dielectric material different from the material in which the central sub-layer 26C of the central layer 18 is made. Alternatively, they are made of the same material as that of the central sublayer 26C of central layer 18.
  • the dielectric bar 28 is fixed to the lower layer 16.
  • the dielectric bar 28 is held in position relative to the lower layer 16, by the dielectric fasteners 56 for the entire duration necessary for its attachment to the lower layer 16.
  • the central layer 18 is fixed to the lower layer 16, the dielectric bar 28 then being placed in the recess 44.
  • a fifth component 10E according to the invention is illustrated on the figures 9 and 10 .
  • This fifth component 10E differs from the first component 10A in that the cavity 32 is delimited along the axis of propagation between a front end 60 and a rear end 62 of the central layer 18, the dielectric bar 28 extending from the front end 60 to the rear end 62.
  • the cavity 32 has, in projection on the upper surface 20B of the lower layer 16, a closed exterior contour.
  • the fifth component 10E further comprises two additional transmission lines 64, arranged longitudinally on either side of the cavity 32, the propagation zone 19, and the central lateral borders 30, extending into each of these two transmission lines. transmission annexes 64.
  • Each annex transmission line 64 comprises an electrically conductive upper annex layer 66, identical to the upper layer 14 and integral with the upper layer 14, an electrically conductive lower annex layer, identical to the lower layer 16 and integral with the upper layer 14. lower layer 16, and an additional central dielectric layer 68, identical to the central layer 18 and integral with the central layer 18.
  • the spacing, taken along the transverse axis Y-Y, between the central lateral boundaries 30 is greater in the cavity 32 than their spacing in the annexed transmission lines 64.
  • the dielectric bar 28 is integral with the central sub-layer 26C of the central layer 18.
  • the dielectric bar 28 is here integral with the central sub-layer 26C of the central layer 18.
  • the dielectric bar 28 is thus in particular made integral with the central annex layer 68 of each of the annex transmission lines 64.
  • the dielectric bar 28 has a length equal to the length of the cavity 32.
  • length of an element is meant the edge-to-edge distance of the element, taken along the axis of propagation.
  • the embodiment of the fifth component 10E illustrated in the Figure 10 differs from the first component 10A in that, in at least one slice of the cavity 32, taken along the transverse axis YY, the dielectric bar 28 delimits respectively with the lower surface 21A of the upper layer 14 and the upper surface 20B of the lower layer 16 free space.
  • the upper annex layers 66 and the lower annex layers project into the cavity 32 respectively above and below the dielectric bar 28.
  • said projections in the cavity 32 of the upper annex layers 66 and the lower annex layers have a pointed shape.
  • the fifth method differs from the first method in that when cutting said plurality of recesses 44, said plurality of recesses 44 is intended to delimit the cavity 32, along the axis of propagation, between a front end 60 and a rear end 62 of the central layer 18.
  • said plurality of recesses 44 is intended to delimit the cavity 32 such that it presents, in projection on the upper surface 20B of the lower layer 16, a closed exterior contour.
  • said plurality of recesses 44 delimits the dielectric bar 28 without delimiting dielectric fasteners 56 connecting the dielectric bar 28 to the rest of the central layer 18.
  • the implementation of the central lateral boundaries 30 is implemented such that, after assembly, the propagation zone 19 extends longitudinally on either side of the cavity 32.
  • the upper layer 14, the lower layer 16 and the central layer 18 then defines, on either side of the cavity 32, the two additional transmission lines 64.
  • the wave In use, during the step of supplying the fifth microwave component 10E with an electromagnetic wave, the wave propagates in the propagation zone 19 in one of the annex transmission lines 64.
  • the projections of the upper and lower annex layers 66 ensure a good electromagnetic transition for the wave propagating in the propagation zone 19 between the annex transmission lines 64 and the cavity 32.
  • This sixth component 10F differs from previous embodiments in that the central lateral boundaries 30 do not include rows of vias 34.
  • Said continuous side wall 70 is in particular formed by an electrically conductive coating, for example metallic. Said coating is here applied to the lateral edges 36 of the cavity 32.
  • continuous side wall we mean that the metal coating is applied over the entire height and length of the side edges 36.
  • the central lateral borders 30 are in particular devoid of vias.
  • the sixth method differs from the first method in that the step of implementing the central lateral boundaries 30 is implemented after the step of cutting said plurality of recesses 44.
  • a seventh 10G component according to the invention will now be described with regard to the figures 12 .
  • This seventh component 10G differs from the first component 10A in that the dielectric bar 28 is a first dielectric bar 28, and in that the waveguide 12 further comprises a second dielectric bar 72.
  • the second dielectric bar 72 is placed in the cavity 32, away from said first dielectric bar 28, and away from the lateral edges 36 of the cavity 32.
  • the second dielectric bar 72 is arranged in the propagation zone 19 such that, in projection on the upper surface 20B of the lower layer 16, said second dielectric bar 72 is away from the lateral edges 36 of the cavity 32 .
  • the second dielectric bar 72 is placed between the lateral edges 36 of the cavity 32.
  • the first dielectric bar 28 and the second dielectric bar 72 extend respectively in a longitudinal direction parallel to the propagation axis XX. In addition, they extend here orthogonal to the transverse axis Y-Y.
  • the first dielectric bar 28 and the second dielectric bar 72 are offset laterally from the median plane of the two lateral edges 36.
  • the second dielectric bar 72 is at least partly arranged between the first dielectric bar 28 and one of the side edges 36.
  • the second dielectric bar 72 is substantially similar to the first dielectric bar 28.
  • the second dielectric bar 72 has a width comprised in particular between 1% and 90% of the width of the cavity 32.
  • the width of the second dielectric bar 72 is for example constant along the propagation axis XX. Alternatively, the width of the second dielectric bar 72 varies along the axis of propagation.
  • the second dielectric bar 72 has in this example a thickness less than the height of the cavity 32.
  • the second dielectric bar 72 is fixed to the upper surface 20B of the lower layer 16 via a second lower contact sub-layer 74. More precisely, it is fixed to the second lower contact sub-layer 74, the second lower contact sub-layer 74 being fixed to the upper surface 20B of the lower layer 16.
  • the second lower contact sub-layer 74 is electrically conductive.
  • the second dielectric bar 72 is further fixed to the lower surface 21A of the upper layer 14 via a second upper contact sub-layer 76. More precisely, it is fixed to the second upper contact sub-layer 76, the second upper contact sub-layer 76 being fixed to the lower surface 21A of the upper layer 14.
  • the second upper contact sub-layer 76 is electrically conductive.
  • the production of the first dielectric bar 28 and the second dielectric bar 72 being implemented here during the cutting of said plurality of recesses 44.
  • said plurality of recesses 44 is intended to delimit the first dielectric bar 28, the second dielectric bar 72 and means 54 for attaching the first dielectric bar 28 and the second dielectric bar 72.
  • the first dielectric bar 28 and the second dielectric bar 72 are more precisely formed by part of the initial dielectric sub-layer 48 of the initial layer 46.
  • the attachment means 54 comprise a plurality of first dielectric attachments connecting the first dielectric bar 28 to one of the lateral edges 36 of the cavity 32. They further comprise a plurality of second dielectric attachments connecting the second dielectric bar 72 to the other of the side edges 36 of the cavity 32.
  • the attachment means 54 comprise a plurality of intermediate dielectric attachments connecting the first dielectric bar 28 to the second dielectric bar 72.
  • the first dielectric clips, the second dielectric clips and the intermediate dielectric clips have characteristics substantially identical to the dielectric clips 56 described in the first method.
  • the seventh method comprises a step of supplying the seventh 10G microwave component with an electromagnetic wave propagating in the propagation zone 19.
  • the electromagnetic wave here has at least a first and a second propagation mode, the second propagation mode having two electric field maxima.
  • the first dielectric bar 28 and the second dielectric bar 72 are respectively positioned in the cavity 32 at a first predetermined position and at a second predetermined position such that, during this step of supplying the seventh component 10G, the first predetermined position and the second predetermined position correspond respectively to the levels of said electric field maxima.
  • the dimensions of the first fasteners and the second fasteners are predetermined so that, after assembly, the first dielectric bar 28 and the second dielectric bar 72 are respectively located in the cavity 32 at the level of said maximum electric fields.
  • the first dielectric bar 28 and the second dielectric bar 72 thus have an effect on the second mode of propagation. In particular, they reduce the single-mode band of the seventh 10G component to obtain a controlled dual-mode structure.
  • This eighth component 10H differs from the fourth component 10D in that the dielectric bar 28 is a first dielectric bar 28, and in that the waveguide 12 comprises at least one other dielectric bar 72.
  • the waveguide 12 comprises at least three other dielectric bars 72.
  • Each other dielectric bar 72 is placed in the cavity 32, away from said first dielectric bar 28, away from each other dielectric bar 72 and away from the lateral edges 36 of the cavity 32.
  • each other dielectric bar 72 is arranged in the propagation zone 19 such that, in projection on the upper surface 20B of the lower layer 16, said other dielectric bar 72 is away from the lateral edges 36 of the cavity 32 .
  • Each other dielectric bar 72 is placed between the lateral edges 36 of the cavity 32.
  • the first dielectric bar 28 and each other dielectric bar 72 extend respectively in a longitudinal direction parallel to the propagation axis XX. In addition, they extend here orthogonal to the transverse axis Y-Y.
  • the first dielectric bar 28 and each other dielectric bar 72 are offset laterally from the median plane of the two lateral edges 36.
  • the first dielectric bar 28 and each other dielectric bar 72 respectively define a circular outer contour.
  • the term “bar” is therefore to be taken here in a broad sense.
  • each other dielectric bar 72 is substantially similar to the first dielectric bar 28. In particular, they have here a substantially identical diameter.
  • the first dielectric bar 28 and each other dielectric bar 72 then respectively have a dielectric permittivity greater than 6.
  • the eighth method differs from the fourth method in that it comprises a step of producing each other dielectric bar 72.
  • the step of producing each other dielectric bar 72 comprises the provision of said other dielectric bar 72 and means for attaching said another dielectric bar 72, said other dielectric bar 72 and the attachment means being provided away from the central layer 18.
  • each other dielectric bar 72 is fixed to the lower layer 16, in particular before the central layer 18 is fixed to the lower layer 16.
  • At least one of the first dielectric bar 28 and each other dielectric bar 72 defines an external contour having a rectangular, square, or oval shape.
  • At least one of the first dielectric bar 28 and each other dielectric bar 72 defines a ring shape, having an outer contour of circular shape , rectangular, square, or oval, and an interior contour of circular, rectangular, square, or oval shape.
  • At least two bars among the first dielectric bar 28 and the other dielectric bars 72 are made of different materials.
  • the eighth manufacturing process described makes it possible to simultaneously mount several bars 28, 72 made of different materials.
  • the waveguide 12 further comprises a functional attachment component formed by a plurality of dielectric attachments integral with at least one of the bars 28, 72, each dielectric attachment extending to from one of the side edges 36. In the manufacturing process associated with this variant, at least part of the attachment means is not removed during the assembly step.
  • a ninth component 101 according to the invention will now be described with regard to the Figure 14 .
  • This ninth component 10l differs from the first component 10A in that the dielectric bar 28 is not arranged in the cavity 32.
  • the dielectric bar 28 is placed in the propagation zone 19 and is delimited in the upper layer 14. The dielectric bar 28 is thus formed in the upper layer 14.
  • the dielectric bar 28 is formed in the central sub-layer 26A of the upper layer 14 and is delimited by a part of the electrically conductive upper sub-layer 22A of the upper layer 14 and laterally between two upper lateral boundaries 78.
  • the dielectric bar 28 opens into the cavity 32.
  • the dielectric bar 28 has a surface 80 delimiting the cavity 32.
  • the dielectric bar 28 is arranged between a plane defined by an upper surface 20C of the central layer 18 and a plane defined by an upper surface 20A of the upper layer 14.
  • the upper layer 14 is devoid of lower sub-layer 24A, in at least part of the upper layer 14 between the two upper lateral borders 78.
  • the upper layer 14 is entirely devoid of lower sub-layer 24A, between the two upper lateral borders 78.
  • the dielectric bar 28 is here arranged in the propagation zone 19, such that, in projection on the upper surface 20B of the lower layer 16, the dielectric bar 28 is away from the lateral edges 36 of the cavity 32.
  • the propagation zone 19 is delimited by the electrically conductive upper sublayer 22B of the lower layer 16 and the two central lateral boundaries 30 each provided in the central layer and spaced from one another.
  • the propagation zone 19 is delimited by the part of the upper sub-layer 22A of the upper layer 14 extending above the dielectric bar 28, by a part of the sub-layer lower electrically conductive 24A of the upper layer 14, and by the upper lateral borders 78, the upper lateral borders 78 joining said parts.
  • the upper lateral boundaries 78 are capable of preventing the passage of an electromagnetic wave having a wavelength greater than or equal to the predetermined minimum wavelength.
  • the upper lateral borders 78 are each arranged in the upper layer 14.
  • the upper lateral boundaries 78 extend parallel to the propagation axis X-X and are here parallel to each other.
  • the upper side borders 78 are spaced apart from each other.
  • the dielectric bar 28 is thus here centered on the median plane of the side edges 36.
  • a cross section of the propagation zone 19 has substantially an inverted T shape.
  • Each upper lateral boundary 78 electrically connects the lower sub-layer 24A of the upper layer 14 and the upper sub-layer 22A of the upper layer 14 between them.
  • the upper lateral borders 78 and the central lateral borders 30 electrically connect the upper sub-layer 22B of the lower layer 16 to the upper sub-layer 22A of the upper layer 14, respectively on either side of the cavity 32.
  • each upper lateral boundary 78 comprises a row of electrically conductive vias 34, arranged through the upper layer 14. More precisely, each via 34 extends in the direction ZZ, crossing the upper layer 14.
  • Each via 34 electrically connects the lower sublayer 24A of the upper layer 14 and the upper sublayer 22A of the upper layer 14 between them.
  • the spacing between two successive vias 34 of an upper lateral boundary 78 is less than the predetermined minimum wavelength, in particular less than one tenth of the predetermined minimum wavelength, preferably less than one twentieth of the length d predetermined minimum wave.
  • the ninth method differs from the first method in that the dielectric bar 28 is not cut out in the central layer 18 and is not placed in the cavity 32.
  • the central layer 18 is provided by presenting a recess 44 intended to alone form the cavity 32.
  • the provision of the upper layer 14 comprises the provision of an upper initial layer, the upper initial layer being intended to form the upper layer 14.
  • the upper initial layer thus comprises at least one initial dielectric sub-layer, intended to form the central sub-layer 26A of the layer upper sub-layer 14, an upper electrically conductive sub-layer, intended to form the upper sub-layer 22A of the upper layer 14, and a lower electrically conductive sub-layer, intended to form the lower sub-layer 24A of the upper layer 14.
  • the step of providing the upper layer 14 comprises the production of the dielectric bar 28.
  • the production of the dielectric bar 28 comprises the implementation of the upper lateral boundaries 78 and the removal of at least one part, advantageously of the entirety of the electrically conductive lower sub-layer of the upper initial layer extending between the two upper lateral boundaries 78.
  • the part of the central dielectric sublayer of the upper initial layer delimited between the upper lateral boundaries 78 forms said dielectric bar 28.
  • the upper initial layer forms the upper layer 14.
  • the core layer 18 is attached to the bottom layer 16 and the top layer 14 is attached to the core layer 18 to form the ninth component 10l.
  • the propagation zone 19 comprises the dielectric bar 28 delimited in the upper layer 14, the dielectric bar 28 having a surface delimiting the cavity 32.
  • the dielectric bar 28 is delimited in the lower layer 16.
  • the step of supplying the lower layer 16 comprises the production of the dielectric bar 28.
  • the dielectric bar 28 is not centered on the median plane of the side edges 36.
  • the dielectric bar 28 is laterally offset relative to the median plane of the side edges 36.
  • the upper lateral borders 78 are then devoid of symmetry with respect to the median plane of the lateral edges 36.
  • a tenth component 10J according to the invention will now be described with regard to the Figure 15 .
  • This tenth component 10J differs from the ninth component 10l in that said dielectric bar 28 is a first dielectric bar 28.
  • the waveguide 12 further comprises a second dielectric bar 72 disposed in the propagation zone 19 and delimited in the lower layer 16, away from the first dielectric bar 28.
  • the second dielectric bar 72 is thus formed in the lower layer 16 in particular away from the first dielectric bar 28.
  • the second dielectric bar 72 is formed in the central sub-layer 26B of the lower layer 16 and is delimited by a part of the electrically conductive lower sub-layer 24B of the lower layer 16 and laterally between two lower lateral boundaries 82.
  • the second dielectric bar 72 opens into the cavity 32.
  • the second dielectric bar 72 has a surface 84 delimiting the cavity 32.
  • the second dielectric bar 72 is arranged between a plane defined by a lower surface 21C of the central layer 18 and a plane defined by a lower surface 21B of the lower layer 16.
  • the lower layer 16 is devoid of upper sub-layer 22B, in at least part of the lower layer 16 between the two lower lateral borders 82.
  • the lower layer 16 is entirely devoid of upper sub-layer 22B, between the two lower lateral borders 82.
  • the second dielectric bar 72 disposed in the propagation zone 19, such that, in projection on the upper surface 20B of the lower layer 16, said second dielectric bar 72 is away from the lateral edges 36 of the cavity 32.
  • the propagation zone 19 is delimited by part of the electrically conductive lower sublayer 24A of the upper layer 14, part of the electrically conductive upper sublayer 22A of the upper layer 14 and the boundaries upper laterals 78 joining said parts.
  • the propagation zone 19 is also delimited laterally by the two central lateral borders 30 each provided in the central layer 18 and spaced from one another.
  • the propagation zone 19 is delimited by the part of the electrically conductive lower sublayer 24B of the lower layer 16 extending below the second dielectric bar 72, by a part of the electrically conductive upper sublayer 22B of the lower layer 16, and by the lower lateral borders 82, the lower lateral borders 82 joining said parts.
  • the lower lateral boundaries 82 of the propagation zone 19 are capable of preventing the passage of an electromagnetic wave having a wavelength greater than or equal to the predetermined minimum wavelength.
  • the lower lateral borders 82 are each arranged in the lower layer 16.
  • the lower lateral boundaries 82 extend parallel to the propagation axis X-X and are here parallel to each other.
  • the lower side borders 82 are spaced apart from each other.
  • the second dielectric bar 72 is thus here centered on the median plane of the side edges 36.
  • a cross section of the propagation zone 19 has substantially a cross shape.
  • the lower lateral borders 82 extend for example here respectively in the extension of the upper lateral borders 78.
  • the lower side borders 82 are arranged apart from and between the side edges 36.
  • Each lower lateral boundary 82 electrically connects the upper sub-layer 22B of the lower layer 16 and the lower sub-layer 24B of the lower layer 16 between them.
  • the lower side boundaries 82, the upper side boundaries 78 and the central side boundaries 30 electrically connect the lower sub-layer 24B of the lower layer 16 to the upper sub-layer 22A of the upper layer 14 respectively on either side of the cavity 32.
  • each lower lateral boundary 82 comprises a row of electrically conductive vias 34, arranged through the lower layer 16. More precisely, each via 34 extends in the direction ZZ, crossing the lower layer 16.
  • Each via 34 electrically connects the upper sublayer 22B of the lower layer 16 and the lower sublayer 24B of the lower layer 16 between them.
  • the spacing between two successive vias 34 of a lower lateral boundary 82 is less than the predetermined minimum wavelength, in particular less than one tenth of the predetermined minimum wavelength, preferably less than one twentieth of the length d predetermined minimum wave.
  • the tenth method differs from the ninth method in that the step of producing the dielectric bar 28 described corresponds to the production of the first dielectric bar 28.
  • the step of providing the lower layer 16 comprises the production of the second dielectric bar 72.
  • the provision of the lower layer 16 comprises the provision of a lower initial layer, the lower initial layer being intended to form the lower layer 16.
  • the lower initial layer thus comprises at least one initial dielectric sub-layer, intended to form the central sub-layer 26B of the lower layer 16, an upper electrically conductive sub-layer, intended to form the upper sub-layer 22B of the layer lower sub-layer 16, and an electrically conductive lower sub-layer, intended to form the lower sub-layer 24B of the lower layer 16.
  • the production of the second dielectric bar 72 comprises the implementation of the lower lateral boundaries 82 and the removal of at least a part, advantageously the entirety, of the electrically conductive upper sub-layer of the lower initial layer extending between the two lower lateral borders 82.
  • the part of the central dielectric sub-layer of the lower initial layer delimited between the lower lateral boundaries 82 forms said second dielectric bar 72.
  • the lower initial layer forms the lower layer 16.
  • the core layer 18 is attached to the bottom layer 16 and the top layer 14 is attached to the core layer 18 to form the tenth component 10J.
  • the propagation zone 19 comprises a second dielectric bar 72 delimited in the lower layer 16, the second dielectric bar 72 being spaced from the first dielectric bar 28.
  • the second dielectric bar 72 is not centered on the median plane of the side edges 36.
  • the second dielectric bar 72 is laterally offset relative to the median plane of the side edges 36.
  • the lower lateral borders 82 are then devoid of symmetry with respect to the median plane of the lateral edges 36.
  • the eleventh component 10K differs from the ninth component 10l in that said dielectric bar 28 is a first dielectric bar 28.
  • the waveguide 12 further comprises a second dielectric bar 72 disposed in the propagation zone 19 and delimited in the upper layer 14, away from the first dielectric bar 28.
  • the second dielectric bar 72 is thus formed in the upper layer 14, in particular away from the first dielectric bar 28.
  • the first dielectric bar 28 and the second dielectric bar 72 are each formed in the central sub-layer 26A of the upper layer 14 and are respectively delimited by a part of the electrically conductive upper sub-layer 22A of the upper layer 14 and, laterally between an inner upper lateral border 86 and an outer upper lateral border 88.
  • the first dielectric bar 28 and the second dielectric bar 72 each open at least partially onto the cavity 32.
  • the first dielectric bar 28 and the second dielectric bar 72 each have a surface 90A, 90B delimiting the cavity 32.
  • the upper layer 14 is devoid of lower sublayer 24A, in at least a part of the upper layer 14.
  • an interior upper lateral border and an adjacent outer upper lateral border it is understood that no inner upper lateral border 86 is interposed between said borders.
  • the propagation zone 19 is delimited by the electrically conductive upper sublayer 22B of the lower layer 16 and the two central lateral boundaries 30 each provided in the central layer 18 and spaced apart from one another. other.
  • the propagation zone 19 is delimited by the part of the upper sublayer 22A of the upper layer 14 extending above the first dielectric bar 28 and the second dielectric bar 72, by a part of the electrically conductive lower sub-layer 24A of the upper layer 14, and by the upper inner lateral borders 86 and by the upper outer lateral borders 88, the upper inner 86 and outer lateral borders 88 joining said parts.
  • the upper inner 86 and outer 88 lateral boundaries are capable of preventing the passage of an electromagnetic wave having a wavelength greater than or equal to the predetermined minimum wavelength.
  • the upper inner 86 and outer 88 side borders are each arranged in the upper layer 14.
  • the upper inner 86 and outer 88 lateral boundaries extend parallel to the propagation axis X-X and are here parallel to each other.
  • the upper inner 86 and outer 88 side borders are spaced from each other.
  • the upper inner 86 and outer 88 side boundaries respectively electrically connect the lower sub-layer 24A of the upper layer 14 and the upper sub-layer 22A of the upper layer 14 to each other.
  • the upper outer lateral borders 88 and the central lateral borders 30 electrically connect the upper sub-layer 22B of the lower layer 16 to the upper sub-layer 22A of the upper layer 14, respectively on either side of the cavity 32.
  • the upper outer lateral borders 88 are respectively arranged in the extension of the central lateral borders 30. Alternatively, they are laterally offset relative to the central lateral borders 30.
  • the upper outer lateral borders 88 are here symmetrical to each other with respect to the median plane of the lateral edges 36.
  • the inner upper side borders 86 are arranged between the outer upper side borders 88.
  • the upper interior lateral borders 86 are here symmetrical to each other with respect to the median plane of the lateral edges 36.
  • the first dielectric bar 28 and the second dielectric bar 72 are each laterally offset relative to the median plane of the lateral edges 36.
  • the upper inner side borders 86 are arranged apart from and between the side edges 36.
  • the lower sublayer 24A of the upper layer 14 electrically connects the inner upper side boundaries 86 together.
  • the lower sub-layer 24A of the upper layer 14 is continuous.
  • continuous we mean that the lower sub-layer 24A of the upper layer 14 does not have a through opening.
  • each of the upper inner 86 and outer 88 lateral boundaries comprises a row of electrically conductive vias 34, arranged through the upper layer 14. More precisely, each via extends in the direction ZZ, crossing the upper layer 14.
  • Each via electrically connects the lower sublayer 24A of the upper layer 14 and the upper sublayer 22A of the upper layer 14 between them.
  • the spacing between two successive vias 34 of an interior upper lateral boundary 86 or exterior 88 is less than the predetermined minimum wavelength, in particular less than one tenth of the predetermined minimum wavelength, preferably less than one twentieth of the predetermined minimum wavelength.
  • the eleventh method differs from the ninth method in that the step of providing the upper layer 14 includes the production of the first dielectric bar 28 and the production of the second dielectric bar 72.
  • the production step comprises implementing the upper inner 86 and outer 88 lateral boundaries in the upper layer 14, and removing at least a portion of the electrically conductive lower sublayer of the upper initial layer extending between the upper inner 86 and outer 88 side borders adjacent to each other.
  • a twelfth component 10L according to the invention will now be described with regard to the Figure 17 .
  • the twelfth component 10L differs from the eleventh component 10K in that the waveguide 12 further comprises another dielectric bar 28, said other dielectric bar 28 being disposed in the cavity 32, away from the lateral edges 36 of the cavity 32.
  • Said other dielectric bar 28 is similar to the dielectric bar of the first component 10A.
  • the twelfth component 10L makes it possible to broaden the single-mode band and also obtain interesting propagation characteristics for the radio frequency application domain.
  • the twelfth method differs from the eleventh method in that it also includes a step of producing the other dielectric bar 28.
  • This step of producing the other dielectric bar 28 is substantially similar to the step of producing the dielectric bar of the first method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Waveguides (AREA)

Claims (15)

  1. - Mikrowellen-Bauelement (10) mit einem Wellenleiter (12), der mindestens eine obere Schicht (14) mit mindestens einer elektrisch leitenden Oberfläche, eine untere Schicht (16) mit mindestens einer elektrisch leitenden Oberfläche und eine zwischen der oberen Schicht (14) und der unteren Schicht (16) angeordnete Mittelschicht (18) umfasst, wobei die Schichten eine Ausbreitungszone (19) einer elektromagnetischen Welle definieren,
    wobei sich die Ausbreitungszone (19) entlang einer Ausbreitungsachse (X-X) erstreckt, wobei sich jede von der oberen (14), unteren (16) und mittleren (18) Schicht parallel zu einer Ebene (XY) erstreckt, die von der Ausbreitungsachse (X-X) und von einer Querachse (Y-Y) orthogonal zur Ausbreitungsachse (X-X) definiert wird,
    wobei die Ausbreitungszone (19) einen Hohlraum (32) umfasst, wobei der Hohlraum (32) von der oberen Schicht (14), von der unteren Schicht (16) und seitlich von zwei gegenüberliegenden Seitenkanten (36) der Mittelschicht (18) begrenzt ist, wobei sich die Seitenkanten (36) der Mittelschicht (18) parallel zur Ausbreitungsachse erstrecken, wobei der Hohlraum (32) mit einem Fluid gefüllt ist, das eine Dielektrizitätskonstante aufweist, oder ein abgedichtetes geschlossenes Volumen definiert und fluidleer ist,
    wobei der Wellenleiter (12) mindestens einen dielektrischen Stab (28) umfasst, der in der Ausbreitungszone (19) angeordnet ist, der sich gemäß einer Längsrichtung parallel zur Ausbreitungsachse (X-X) erstreckt,
    und wobei:
    * der dielektrische Stab (28) in einer von der oberen Schicht (14) und der unteren Schicht (16) begrenzt ist, oder;
    * der dielektrische Stab (28) in dem Hohlraum (32) beabstandet von den Seitenkanten (36) des Hohlraums (32) angeordnet ist, wobei der dielektrische Stab (28) eine Dicke aufweist, die geringer als die Höhe des Hohlraums (32) ist, wobei die Dicke des dielektrischen Stabs (28) und die Höhe des Hohlraums (32) in einer Richtung (Z-Z) orthogonal zu der Ausbreitungsachse (X-X) und der Querachse (Y-Y) ermittelt werden.
  2. - Bauelement nach Anspruch 1, wobei der dielektrische Stab (28) auf einer Mittelebene der beiden Seitenkanten (36) zentriert ist oder seitlich von der Mittelebene der beiden Seitenkanten (36) versetzt ist.
  3. - Bauelement nach einem der Ansprüche 1 oder 2, wobei der dielektrische Stab (28) in dem Hohlraum (32) von den Seitenkanten (36) des Hohlraums (32) beabstandet angeordnet ist, wobei der Wellenleiter (12) eine funktionelle Befestigungskomponente (58) umfasst, wobei die funktionelle Befestigungskomponente (58) von einer Vielzahl dielektrischer Klammern (56) gebildet ist, die mit dem dielektrischen Stab (28) einstückig sind, wobei jede dielektrische Befestigung (56) eine geradlinige Stabform aufweist und sich von einer der Seitenkanten (36) aus erstreckt, wobei die dielektrischen Befestigungen (56) derart ausgelegt sind, dass sie eine Filterfunktion für eine elektromagnetische Welle ausführen, die sich in der Ausbreitungszone (19) ausbreitet.
  4. - Bauelement nach einem der Ansprüche 1 bis 3, wobei der dielektrische Stab (28) in dem Hohlraum (32) von den Seitenkanten (36) des Hohlraums (32) beabstandet angeordnet ist, wobei die Mittelschicht (18) mindestens eine dielektrische Unterschicht (26C) umfasst, wobei der Hohlraum (32) gemäß der Ausbreitungsachse zwischen einem vorderen Ende (60) und einem hinteren Ende (62) der Mittelschicht (18) begrenzt ist, wobei sich der dielektrische Stab (28) von dem vorderen Ende (60) zu dem hinteren Ende (62) erstreckt und mit der dielektrischen Unterschicht (26C) der Mittelschicht (18) einstückig ist.
  5. - Bauelement nach einem der Ansprüche 1 bis 4, wobei der dielektrische Stab (28) in dem Hohlraum (32) von den Seitenkanten (36) des Hohlraums (32) beabstandet angeordnet ist, wobei der dielektrische Stab (28) ein erster dielektrischer Stab (28) ist, wobei der Wellenleiter (12) ferner einen zweiten dielektrischen Stab (72) umfasst, wobei der zweite dielektrische Stab (72) in dem Hohlraum (32) von dem ersten dielektrischen Stab (28) beabstandet und von den Seitenkanten (36) des Hohlraums (32) beabstandet angeordnet ist.
  6. - Bauelement nach einem der Ansprüche 1 oder 2, wobei der dielektrische Stab (28) in einer von der oberen Schicht (14) und der unteren Schicht (16) begrenzt ist, wobei der dielektrische Stab (28) eine Oberfläche (80, 84, 90A, 90B) aufweist, die den Hohlraum (32) begrenzt.
  7. - Bauelement nach Anspruch 6, wobei der dielektrische Stab (28) ein erster dielektrischer Stab (28) ist, wobei der Wellenleiter (12) ferner einen zweiten dielektrischen Stab (72) umfasst, der in der Ausbreitungszone (19) angeordnet ist, wobei der zweite dielektrische Stab (72) in einer von der oberen Schicht (14) und der unteren Schicht (16) von dem ersten dielektrischen Stab (28) beabstandet begrenzt ist und eine Oberfläche (80, 84, 90A, 90B) aufweist, die den Hohlraum (32) begrenzt.
  8. - Bauelement nach einem der Ansprüche 6 oder 7, wobei der Wellenleiter (12) ferner einen weiteren dielektrischen Stab (28) umfasst, wobei der weitere dielektrische Stab (28) in dem Hohlraum (32) von den Seitenkanten (36) des Hohlraums (32) beabstandet angeordnet ist.
  9. Verfahren zur Herstellung eines Mikrowellen-Bauelements, das die folgenden Schritte umfasst:
    - Bereitstellen einer oberen Schicht (14) und einer unteren Schicht (16), die jeweils mindestens eine elektrisch leitende Oberfläche aufweisen;
    - Bereitstellen einer Mittelschicht mit einer oder einer Vielzahl von Vertiefungen, wobei die Vertiefung (44) oder die Vielzahl von Vertiefungen (44) dazu bestimmt ist/sind, einen Hohlraum (32) zu bilden, der seitlich von gegenüberliegenden Seitenkanten (36) begrenzt ist, die durch die Mittelschicht (18) gebildet sind; dann
    - Zusammenbauen der Schichten derart, dass die Mittelschicht (18) zwischen der oberen Schicht (14) und der unteren Schicht (16) angeordnet ist, wobei die Schichten eine Ausbreitungszone (19) einer elektromagnetischen Welle definieren, wobei sich die Ausbreitungszone (19) entlang einer Ausbreitungsachse (X-X) erstreckt, wobei sich jede von der oberen (14), unteren (16) und mittleren (18) Schicht parallel zu einer Ebene (XY) erstreckt, die von der Ausbreitungsachse (X-X) und von einer Querachse (Y-Y) orthogonal zur Ausbreitungsachse (X-X) definiert wird, wobei die Ausbreitungszone (19) einen Hohlraum (32) umfasst, wobei der Hohlraum (32) durch die Vertiefung (44) oder die Vielzahl von Vertiefungen (44) gebildet wird, indem er von der oberen Schicht (14), von der unteren Schicht (16) und seitlich von den Seitenkanten (36) der Mittelschicht (18) begrenzt ist, wobei sich die Seitenkanten (36) der Mittelschicht (18) parallel zur Ausbreitungsachse erstrecken, wobei der Hohlraum (32) mit einem Fluid gefüllt ist, das eine Dielektrizitätskonstante aufweist oder ein abgedichtetes geschlossenes Volumen definiert und fluidleer ist;
    wobei der Schritt des Bereitstellens mindestens einer der Schichten (14, 16, 18) das Herstellen eines dielektrischen Stabs (28) umfasst, wobei der dielektrische Stab (28) in der Schicht (14, 16, 18) angeordnet ist oder angeordnet werden soll:
    * so dass nach dem Schritt des Zusammenbauens der dielektrische Stab (28) in der Ausbreitungszone (19) angeordnet ist, sich in einer Längsrichtung parallel zur Ausbreitungsachse (X-X) erstreckt und in einer von der oberen Schicht (14) und der unteren Schicht (16) begrenzt ist, oder;
    * so dass nach dem Schritt des Zusammenbauens der dielektrische Stab (28) in der Ausbreitungszone (19) und in dem Hohlraum (32) von den Seitenkanten (36) des Hohlraums (32) beabstandet angeordnet ist, wobei sich der dielektrische Stab (28) gemäß einer Längsrichtung parallel zur Ausbreitungsachse (X-X) erstreckt und eine Dicke aufweist, die geringer als die Höhe des Hohlraums (32) ist, wobei die Dicke des dielektrischen Stabs (28) und die Höhe des Hohlraums (32) in einer Richtung (Z-Z) orthogonal zur Ausbreitungsachse (X-X) und zur Querachse (Y-Y) ermittelt werden.
  10. - Verfahren nach Anspruch 9, wobei der Schritt des Bereitstellens der Mittelschicht (18) das Herstellen des dielektrischen Stabs (28) umfasst, wobei der dielektrische Stab (28) in der Mittelschicht (18) angeordnet ist oder angeordnet werden soll, so dass nach dem Schritt des Zusammenbauens der dielektrische Stab (28) in der Ausbreitungszone (19) und in dem Hohlraum (32) von den Seitenkanten (36) des Hohlraums (32) beabstandet angeordnet ist,
    wobei der dielektrische Stab (28) dazu bestimmt ist, zwischen einer Ebene, die von einer oberen Oberfläche (20C) der Mittelschicht (18) definiert ist, und einer Ebene, die von einer unteren Oberfläche (21C) der Mittelschicht (18) definiert ist, angeordnet zu sein.
  11. - Verfahren nach Anspruch 10, wobei der Schritt des Bereitstellens der Mittelschicht (18) umfasst:
    - das Bereitstellen einer Anfangsschicht (46), wobei die Anfangsschicht (46) dazu bestimmt ist, die Mittelschicht (18) zu bilden, umfassend mindestens eine dielektrische Anfangs-Unterschicht (48) und ohne Vertiefung,
    - Ausschneiden der Vielzahl von Vertiefungen (44), die den Hohlraum (32) bilden sollen, aus der Anfangsschicht (46),
    wobei der Schritt des Herstellens des dielektrischen Stabs (28) beim Ausschneiden der Vielzahl von Vertiefungen (44) durchgeführt wird, wobei die Vielzahl ausgeschnittener Vertiefungen (44) den dielektrischen Stab (28) begrenzen, wobei der dielektrische Stab (28) eine Länge, ermittelt gemäß der Ausbreitungsachse, aufweist, die gleich der Länge des Hohlraums (32), ermittelt gemäß der Ausbreitungsachse, ist.
  12. - Verfahren nach Anspruch 10, wobei der Schritt des Bereitstellens der Mittelschicht (18) umfasst:
    - das Bereitstellen einer Anfangsschicht (46), wobei die Anfangsschicht (46) dazu bestimmt ist, die Mittelschicht (18) zu bilden, umfassend mindestens eine dielektrische Anfangs-Unterschicht (48) und ohne Vertiefung,
    - Ausschneiden der Vielzahl von Vertiefungen (44), die den Hohlraum (32) bilden sollen, aus der Anfangsschicht (46),
    wobei der Schritt des Herstellens des dielektrischen Stabs (28) beim Ausschneiden der Vielzahl von Vertiefungen (44) durchgeführt wird, wobei die Vielzahl ausgeschnittener Vertiefungen (44) bestimmt ist, den Hohlraum (32) begrenzen und den dielektrischen Stab (28) und die Befestigungsmittel (54) des dielektrischen Stabs (28) begrenzen,
    wobei die Befestigungsmittel (54) eine Vielzahl dielektrischer Klammern (56) umfassen, die den dielektrischen Stab (28) mit mindestens einer der Seitenkanten (36) verbinden.
  13. - Verfahren nach Anspruch 10, wobei der Schritt des Herstellens des dielektrischen Stabs (28) das Bereitstellen eines dielektrischen Stabs (28) und von Befestigungsmitteln (54) des dielektrischen Stabs (28) umfasst, wobei die Befestigungsmittel (54) eine Vielzahl dielektrischer Klammern (56) umfassen, die mit dem dielektrischen Stab (28) fest verbunden sind, wobei der dielektrische Stab (28) und die Befestigungsmittel (54) von der Mittelschicht (18) beabstandet bereitgestellt werden.
  14. - Verfahren nach einem der Ansprüche 12 oder 13, wobei der Schritt des Zusammenbauens der Schichten das Befestigen der Mittelschicht (18) an der unteren Schicht (16), dann das Entfernen der Befestigungsmittel (54) durch Abschneiden derselben umfasst, sobald die Mittelschicht (18) an der unteren Schicht (16) befestigt ist.
  15. - Verfahren nach Anspruch 9, wobei der Schritt des Bereitstellens von einer der oberen Schicht (14) und der unteren Schicht (16) das Herstellen des dielektrischen Stabs (28) umfasst, wobei der dielektrische Stab (28) in der Schicht (14, 16) angeordnet ist oder angeordnet werden soll, so dass nach dem Schritt des Zusammenbauens der dielektrische Stab (28) in der Ausbreitungszone (19) angeordnet ist und in der Schicht (14, 16) begrenzt ist.
EP18811277.5A 2017-12-05 2018-12-05 Mikrowellen-bauelement und zugehöriges herstellungsverfahren Active EP3721501B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761661A FR3074612B1 (fr) 2017-12-05 2017-12-05 Composant micro-ondes et procede de fabrication associe
PCT/EP2018/083625 WO2019110651A1 (fr) 2017-12-05 2018-12-05 Composant micro-ondes et procédé de fabrication associé

Publications (2)

Publication Number Publication Date
EP3721501A1 EP3721501A1 (de) 2020-10-14
EP3721501B1 true EP3721501B1 (de) 2023-11-01

Family

ID=61750280

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18811277.5A Active EP3721501B1 (de) 2017-12-05 2018-12-05 Mikrowellen-bauelement und zugehöriges herstellungsverfahren

Country Status (5)

Country Link
US (1) US11380972B2 (de)
EP (1) EP3721501B1 (de)
ES (1) ES2970492T3 (de)
FR (1) FR3074612B1 (de)
WO (1) WO2019110651A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776601B (zh) * 2021-07-22 2022-09-01 先豐通訊股份有限公司 具有波導管的線路板結構及其製作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299616A2 (de) * 1987-07-14 1989-01-18 THE GENERAL ELECTRIC COMPANY, p.l.c. Wellenleitervorrichtung
US4970522A (en) * 1988-08-31 1990-11-13 Marconi Electronic Devices Limited Waveguide apparatus
US5528208A (en) * 1993-05-12 1996-06-18 Nec Corporation Flexible waveguide tube having a dielectric body thereon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3220966B2 (ja) * 1994-08-30 2001-10-22 株式会社村田製作所 非放射性誘電体線路部品
US6927653B2 (en) * 2000-11-29 2005-08-09 Kyocera Corporation Dielectric waveguide type filter and branching filter
DE60208244T2 (de) * 2001-01-12 2006-06-29 Murata Manufacturing Co., Ltd., Nagaokakyo Übertragungsleitunganordnung, integrierte Schaltung und Sender-Empfängergerät

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0299616A2 (de) * 1987-07-14 1989-01-18 THE GENERAL ELECTRIC COMPANY, p.l.c. Wellenleitervorrichtung
US4970522A (en) * 1988-08-31 1990-11-13 Marconi Electronic Devices Limited Waveguide apparatus
US5528208A (en) * 1993-05-12 1996-06-18 Nec Corporation Flexible waveguide tube having a dielectric body thereon

Also Published As

Publication number Publication date
WO2019110651A1 (fr) 2019-06-13
US20210151846A1 (en) 2021-05-20
EP3721501A1 (de) 2020-10-14
FR3074612A1 (fr) 2019-06-07
US11380972B2 (en) 2022-07-05
ES2970492T3 (es) 2024-05-29
FR3074612B1 (fr) 2020-09-11

Similar Documents

Publication Publication Date Title
EP2510574B1 (de) Mikrowellenübergangsvorrichtung zwischen einer mikrostripleitung und einem rechteckigen wellenleiter
EP2869400B1 (de) Doppelpolarisierter kompakter Leistungsverteiler, Netz aus mehreren Verteilern, kompaktes Strahlungselement und Flachantenne, die einen solchen Verteiler umfasst
EP3171451A1 (de) Räumlicher leistungskombinator
FR2797352A1 (fr) Antenne a empilement de structures resonantes et dispositif de radiocommunication multifrequence incluant cette antenne
EP2710676B1 (de) Strahlerelement für eine aktive gruppenantenne aus elementarfliesen
EP3136499B1 (de) Aufteilungs-/kombinationssystem für hyperfrequenzwelle
EP3602689B1 (de) Elektromagnetische antenne
FR2989842A1 (fr) Ligne de propagation radiofrequence a ondes lentes
EP0095808B1 (de) Mikrowellen Richtungskoppler mit vier Übertragungsleitungen und in ähnlicher Weise ausgeführte passive Leistungsverteilerschaltung
WO2009030737A1 (fr) Coupleur-separateur d'emission-reception multibande a large bande de type omt pour antennes de telecommunications hyperfrequences
EP3721501B1 (de) Mikrowellen-bauelement und zugehöriges herstellungsverfahren
FR3090220A1 (fr) Antenne fil-plaque monopolaire
FR3057999A1 (fr) Guide d'onde multicouche comprenant au moins un dispositif de transition entre des couches de ce guide d'onde multicouche
WO2015049389A1 (fr) Antenne boucle volumique compacte large bande
EP0377155A1 (de) Doppelfrequenz strahlende Vorrichtung
EP2637254B1 (de) Flachantenne für Endgerät, das über eine doppelte Kreispolarisierung funktioniert, auf dem Luftweg transportiertes Endgerät und Satellitentelekommunikationssystem, das mindestens eine solche Antenne umfasst
WO2019229515A1 (fr) Module radiofréquence
EP2316149B1 (de) Kompaktstrahlungsstruktur mit geringem verlust
EP3047535B1 (de) Vorrichtung zur verbindung zwischen einer gedruckten übertragungsleitung und einem dielektrischen wellenleiter
WO2018220196A1 (fr) Composant micro-ondes présentant une chambre asymétrique de propagation
FR3073085B1 (fr) Ensemble guide d'onde et procede d'assemblage associe
FR2736212A1 (fr) Coupleur balun hyperfrequence integre, en particulier pour antenne dipole
FR3007237A1 (fr) Circuit imprime a structure multicouche a faibles pertes dielectriques et refroidi
EP1376758B1 (de) Kompakte Streifenleiterantenne mit einer Anpassungsanordnung
FR2965668A1 (fr) Filtre hyperfrequence a resonateur dielectrique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200605

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220225

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 3/123 20060101ALN20230417BHEP

Ipc: H01P 11/00 20060101ALN20230417BHEP

Ipc: H01P 1/208 20060101ALN20230417BHEP

Ipc: H01P 3/12 20060101AFI20230417BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230601

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018060490

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1628292

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240212

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240202

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240201

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231101

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 6

Ref country code: GB

Payment date: 20240131

Year of fee payment: 6

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2970492

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20240529