EP3721094B1 - Ventilvorrichtung - Google Patents

Ventilvorrichtung Download PDF

Info

Publication number
EP3721094B1
EP3721094B1 EP19705145.1A EP19705145A EP3721094B1 EP 3721094 B1 EP3721094 B1 EP 3721094B1 EP 19705145 A EP19705145 A EP 19705145A EP 3721094 B1 EP3721094 B1 EP 3721094B1
Authority
EP
European Patent Office
Prior art keywords
pressure
valve
control
port
drs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19705145.1A
Other languages
English (en)
French (fr)
Other versions
EP3721094A1 (de
Inventor
Peter Bruck
Frank Schulz
Christian Stauch
Jan Lübbert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydac Fluidtechnik GmbH
Original Assignee
Hydac Fluidtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Fluidtechnik GmbH filed Critical Hydac Fluidtechnik GmbH
Publication of EP3721094A1 publication Critical patent/EP3721094A1/de
Application granted granted Critical
Publication of EP3721094B1 publication Critical patent/EP3721094B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/044Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed by means in the return line, i.e. "meter out"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/02Systems essentially incorporating special features for controlling the speed or actuating force of an output member
    • F15B11/04Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed
    • F15B11/05Systems essentially incorporating special features for controlling the speed or actuating force of an output member for controlling the speed specially adapted to maintain constant speed, e.g. pressure-compensated, load-responsive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/0416Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor with means or adapted for load sensing
    • F15B13/0417Load sensing elements; Internal fluid connections therefor; Anti-saturation or pressure-compensation valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/3055In combination with a pressure compensating valve the pressure compensating valve is arranged between directional control valve and return line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3057Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having two valves, one for each port of a double-acting output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/3056Assemblies of multiple valves
    • F15B2211/30565Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve
    • F15B2211/3058Assemblies of multiple valves having multiple valves for a single output member, e.g. for creating higher valve function by use of multiple valves like two 2/2-valves replacing a 5/3-valve having additional valves for interconnecting the fluid chambers of a double-acting actuator, e.g. for regeneration mode or for floating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/35Directional control combined with flow control
    • F15B2211/353Flow control by regulating means in return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/365Directional control combined with flow control and pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40553Flow control characterised by the type of flow control means or valve with pressure compensating valves
    • F15B2211/40569Flow control characterised by the type of flow control means or valve with pressure compensating valves the pressure compensating valve arranged downstream of the flow control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/46Control of flow in the return line, i.e. meter-out control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/465Flow control with pressure compensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/505Pressure control characterised by the type of pressure control means
    • F15B2211/50554Pressure control characterised by the type of pressure control means the pressure control means controlling a pressure downstream of the pressure control means, e.g. pressure reducing valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/515Pressure control characterised by the connections of the pressure control means in the circuit
    • F15B2211/5151Pressure control characterised by the connections of the pressure control means in the circuit being connected to a pressure source and a directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/50Pressure control
    • F15B2211/52Pressure control characterised by the type of actuation
    • F15B2211/526Pressure control characterised by the type of actuation electrically or electronically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure

Definitions

  • the pressure sensor records the current load situation on the drive part, that the pressure controller connects the secondary side of the system to a tank cap or return connection in its basic position, and that when the pressure controller is activated, the secondary pressure is based on the pressure of the proportional pilot control minus the am Valve piston of the pressure regulator is regulated attacking spring force, a control and regulation concept is realized in an advantageous manner, based on a basic system for hydraulically controllable drive parts or consumers, such as hydraulic working cylinders or hydraulic drive motors, a pressure, path, speed and position measurement for the movable components of the respective selected drive part can be achieved.
  • Such hydraulic systems are subject to increasing demands in terms of productivity, flexibility and energy efficiency.
  • multi-circuit systems are becoming increasingly popular, i.e. hydraulic structures with assigned pumps for the various consumers.
  • the distribution of the performance requirements involves an enormous, energetic Potential.
  • cost and space-sensitive applications however, such multi-circuit systems are difficult to use from an economic and constructive point of view.
  • the invention is based on the object of simplifying such known hydraulic structures and replacing them with a more efficient control or valve concept in order to reduce the respective energy consumption in order not only to save operating costs, but also to make a contribution to the to create increasingly strict legal exhaust gas regulations.
  • valve device with the features of patent claim 1 in its entirety. Due to the fact that, according to the characterizing part of patent claim 1, the pressure control device and the volume flow control device each have a proportional valve and a pressure control valve in addition to a pressure compensator in terms of their function, which are interconnected and controlled in such a way that when the inflow connection is supplied from the pressure supply connection in one direction of flow one pressure control valve works as a pressure regulator and on the side of the outflow connection, when a predefinable setpoint pressure is exceeded at the other pressure control valve, the flow direction reverses and the pressure fluid flows via the other proportional valve and the associated pressure compensator, both of which work as flow control valves, in the direction of the return connection away.
  • valve device can be implemented in a “separate design” with individual valve components that are structurally separate from one another.
  • a kind of decentralized valve control is created with so-called separate control edges, which offer the possibility of separate activation of valve elements on the inflow and outflow side of a hydraulic consumer, such as a hydraulic working cylinder, that can be connected to the valve device.
  • circuit topologies can be implemented that include, for example, floating or rapid traverse positions.
  • valve device With the valve device according to the invention, the requirements within the scope of movement tasks for the hydraulic consumer are met, on the one hand setting a specific speed and on the other hand being able to ensure that the inlet side of the consumer is sufficiently filled in the case of supporting, so-called generator loads.
  • the valve device uses a hydraulic-mechanical regulation for the volume flow and pressure variables.
  • volumetric flow control On the outlet side of the consumer, because motor and generator loads can be set to a defined speed with the same current controller. Accordingly, the pressure control is then on the inflow side, which means that filling deficits during lowering movements (generative load) are avoided assuming an adequate supply through hydraulic-mechanical adjustment of a sufficiently high filling pressure.
  • valve device according to the invention is used with a hydraulic consumer, such as a hydraulic working cylinder or a hydraulic motor that can be moved in opposite directions, when the direction of movement or actuation changes, the inlet side in question then becomes the outlet side and the outlet side becomes the inlet side for the respective consumer.
  • the valve device according to the invention ensures that with only one device, even with changing directions of actuation, the pressure control device always acts on the inflow side with the pressure supply and on the respective outflow side a volume flow control device acts to control the fluid flow.
  • the valve device according to the invention is able to use the energetic, functional and structural potential of separate control edges in valves and at the same time to master the resulting complexity at the component and control level.
  • the valve device according to the invention can be operated in an energetically favorable manner, which helps to reduce operating costs, and due to the improved control concept with the separate control edges, drive energy can be saved within the framework of the pressure supply, regularly provided by motor-driven hydraulic pumps, which helps to reduce exhaust gas values.
  • valve components in particular the respective pressure control valve and the respective associated pressure compensator, in terms of their functions in a single combination valve.
  • the combination valve has two control slides that can be moved independently in a valve housing, in the form of a pressure control slide and in the form of a pressure balance slide, which control the possible fluid-carrying connections between the pressure supply connection, the return flow connection and a working connection, which is used for the hydraulic Consumers in the one and the other opposite direction of flow respectively forms the inlet and outlet connection.
  • a decentralized valve control with separate control edges can be implemented with just one combination valve with two control slides that can be moved independently in the valve housing, which, in addition to improved control geometry, also offers structural advantages, in particular with regard to the reduction in the amount of tubing and piping compared to known solutions with isolated, spatially separated valves separate individual valves.
  • the valve device shown has an inlet connection ZA on an inlet side for supplying a hydraulic consumer that can be connected to the inlet connection ZA with pressurized fluid. Furthermore, an outlet connection AA is provided on an outlet side for the discharge of pressurized fluid from the consumer that can be connected. Furthermore, the valve device has a pressure supply connection P for supplying the valve device and the hydraulic consumer with pressure fluid at a predefinable pressure, and a return connection T or a tank connection is also provided for discharging displaced fluid from the hydraulic consumer and the valve device.
  • the hydraulic consumer is formed from a hydraulic working cylinder AZ with a piston rod unit KSE, the working cylinder AZ on its piston side is permanently in fluid communication with the inlet port ZA and the rod side is connected to the outlet port AA as shown in FIG 1 . If the piston side of the piston rod unit KSE is supplied with pressure fluid at a predefinable pressure via the inlet connection ZA, the piston rod unit KSE moves in the direction of the 1 viewed to the right and the fluid in the rod space is discharged from the working cylinder AZ via the outlet connection AA.
  • the outflow connection AA then becomes the inflow connection ZA and the fluid displaced on the piston side during the retracting movement of the piston rod unit KSE leaves the working cylinder AZ via an outflow connection AA, which originally formed the inflow connection ZA during the extending movement.
  • the piston rod unit KSE of the working cylinder AZ therefore performs a reciprocating movement and, to this extent, a movement in opposite axial directions.
  • a hydraulic motor unit (not shown) could also act as a hydraulic consumer, which could also rotate in opposite directions, depending on how full its chambers are.
  • a 3/2 proportional slide valve DRV with a pressure compensator DW is present both on the inflow side and on the outflow side of the valve device.
  • the input of the 3/2 proportional spool valve DRV is connected to a standard pressure supply source, such as a hydraulic pump, via the pressure supply port P.
  • the output of the proportional valve DRV is in the form of a useful connection and is denoted by A.
  • the proportional valve DRV can be actuated electromagnetically and the valve spool can be actuated on its opposite control side with the control pressure from the useful port A.
  • the volume flow in question, coming from the useful connection A, is reduced to one input of the pressure compensator DW, which, in the pressure compensator position shown, supplies the pressure at the service port A to the tank or return port T. In another control position of the respective pressure compensator DW, it assumes a position blocking the pertinent fluid path.
  • one control side of the respective pressure compensator DW is acted upon by an energy accumulator, in particular in the form of a compression spring, and the return pressure, originating from the useful port A, is also available as control pressure, provided that the respective proportional valve DRV has its further, in the 1 occupies the slide position shown, in which the fluid-carrying connection from the pressure supply port P to the user port A is prevented and otherwise there is a fluid connection returning from the user port A in the direction of one control side of the pressure compensator DW.
  • the pressure PM is present at a measuring connection M, which is tapped at the inlet connection ZA or at the outlet connection AA of the working cylinder AZ.
  • the right 3/2 proportional spool valve DRV acts as a directional control valve, with the control edge from useful port A to the right-hand pressure compensator DW being fully open.
  • the arrangement shown then acts as a flow control valve.
  • a possible structure of a so-called 2 A possible structure of a so-called 2 .
  • the essential components of the combination valve are only shown in principle and in a simplified manner, and the combination valve is also only shown with its upper half above its actuating axis, with the rotationally symmetrical overall valve housing of the combination valve not being shown for the sake of simplicity, but of course the includes valve mimics explained in more detail below and leaves passages correspondingly free to form the individual connections P, A, T, M.
  • the valve shown has two slides in the form of a pressure control slide DRS shown on the left and a pressure compensator slide DWS shown on the right.
  • the pertinent two slides DRS and DWS control the fluid-carrying connections between the pressure supply port P, the working port A and the return port T, which in this respect forms the tank port.
  • the return port T shown on the left or tank port of a pilot stage, formed from a pilot cone 18, which can be controlled by an actuating magnet of conventional design for the combination valve shown, is combined with the main tank port (return port T) shown on the right, but this is not absolutely necessary.
  • pilot control space X in which a control pressure px, which originates from the pressure supply port P, is present, with said control pressure px being proportional to the force of the energized actuating magnet or proportional magnet acts from left to right on the pressure control slide DRS.
  • a pilot channel 5 is provided, which has an orifice 3 or a flow control valve (not shown) as a pressure divider of the pilot.
  • the pilot pressure is px on a reporting surface 1, which, in the direction of the 2 seen, forms the left end face of the pressure control slide DRS and in the in 2
  • the pilot chamber X which is otherwise delimited by the valve housing, is essentially reduced to zero, except for a notch marked 2 for the hydraulic end position of the pressure control slide DRS in its in Figures 3a, 3b shown right end or stop position.
  • a compensating space E can be seen, according to the representation after the 2 is also essentially collapsed to the volume of zero.
  • the compensating chamber E is delimited by the valve housing and by a compensating surface 4 as part of an annular collar, which is radially widened compared to the other diameter of the pressure control slide DRS.
  • the annular surface 4 ′ of the annular collar opposite the compensation surface 4 in the present case provided with the same diameter as the compensation surface 4 , is directly exposed to the supply pressure px at the pressure supply connection P .
  • the compensating chamber E is permanently fluid-carrying connected to the useful port A via the compensating channel 6 shown in dashed lines in the pressure control slide DRS.
  • the compensating channel 6 opens out at a further or right annular surface 9 of the pressure control slide DRS, with the annular surface 9 having the same diameter as the annular surface 4, which in this respect serves as a compensating surface for the surface 9, which is of particular importance for the function.
  • the right annular surface 9 is also part of an annular collar with a further stop surface 9' with the same Diameter that also delimits the pressure supply port P in the position shown.
  • the diameters of the surfaces 4' and 9' can differ from one another, only the diameters of the surfaces 4 and 9 must be the same.
  • an actual pressure reporting space Y is available, which, in the direction of the 2 seen, is limited on the left side by a reporting surface 11 for the actual pressure p A in pressure control mode and otherwise by a cylindrical recess in the pressure balance slide DWS, which overlaps or encompasses a right free end area of the cylindrical pressure control slide DRS with its left annular surface 12. While the reporting area 11 forms the right free front end of the pressure control slide DRS, opposite there is a circular area 16 with the same diameter on the inside of the pressure balance slide DWS. A possible control pressure p A , which originates from the useful port A, is thus pressure-effective on the reporting surface 11 as well as on the circular surface 16 of the pressure compensator slide DWS.
  • the reporting or control pressure P A is reported to the surfaces 11 and 16 in the pressure compensator mode. Due to the possible movement of the two slides DRS and DWS, the free volume of the actual pressure signaling chamber Y changes.
  • a signaling channel 7, shown in dashed lines is used, which is connected to an im Diameter compared to the annular surfaces 9, 9 'reduced central collar or annular collar opens out, which is insofar permanently fluid-carrying with the user port A in connection.
  • the pertinent reporting channel 7 for the actual or control pressure p A at the useful port A opens into the actual pressure reporting space Y.
  • a damping diaphragm 8 can be connected to the reporting channel 7 in an optional manner, ie if required.
  • the pressure compensator slide DWS is supported via a widened end flange surface on an energy storage device in the form of a compression spring 14 for the pressure compensator, with the pertinent compression spring 14 being made relatively hard. Furthermore, there is a stop 15 for the free movement of the pressure compensator slide DWS to the left in the valve housing, which is not specified in more detail.
  • the spring 14 is also supported with its end opposite the flange surface of the pressure compensator slide DWS on wall parts of a pertinent valve housing.
  • another energy store is guided in the form of a compression spring 10, which co-determines the response behavior of the pressure controller in a relatively soft manner.
  • the pertinent compression spring 10 is supported with its one free end on the circular surface 16 of the pressure compensator slide DWS and with its other free end on the face of a bore in the pressure control slide DRS.
  • a reporting space M is present in the valve housing, which, in the direction of the 2 seen, is limited on the left side by a reporting surface 17, which forms the right free front end of the pressure compensator slide DWS in the area of its flange widening.
  • the core idea of this valve concept according to the invention lies in the separation of the tasks of pressure control and pressure compensator function, which are distributed between the two slides DRS and DWS, which are provided with independent energy storage devices in the form of compression springs 10 and 14, with compression spring 10 not only acting on the pressure compensator slide DWS acts on its circular surface 16, but also via a contact possibility in the area of the further annular surface 9' on the pressure control slide DRS.
  • the left slide or pressure control slide DRS implements the pressure control function, starting from the pressure supply port P to the pressure port A.
  • the soft spring 10 keeps it in the rest position at the left stop.
  • the pressure control slide DRS has three channels, with the pilot channel 5 supplying the pilot stage with fluid (oil) from the pressure supply port P.
  • the pilot channel 5 supplying the pilot stage with fluid (oil) from the pressure supply port P.
  • an orifice plate 3 is used in channel 5 or a miniature flow control valve (not shown) integrated in the pressure control slide valve DRS.
  • the advantage of the latter solution is the lower and constant pilot current. This means that the control pressure in the pilot chamber X is independent of the supply pressure at port P. However, this is offset by higher production costs.
  • the reporting channel 7, reports the actual pressure p A at the working port A in the inner space Y between the two slides DRS and DWS.
  • a damping screen 8 can be used here.
  • Notch 2 is used to create a hydraulic end position for the pressure control slide DRS.
  • the right slide or pressure compensator slide DWS works in this respect as a pressure compensator, which compares the pressure at the useful port A with the pressure at the measuring port 20 or with the pressure in the signaling chamber M. The resulting control pressure difference is defined by the design of the hard spring 14 as the additional energy store.
  • the Figures 3a, 3b and 3c represent different rest states of the combination valve, the no-load rest state as shown in FIG Figure 3a shows the same valve state as shown in FIG 2 is reproduced, and the Figure 3b represents a loaded rest condition for the valve, whereas the 3c shows the valve in the loaded state of rest and pre-energized.
  • the stressed resting state as shown after Figure 3b is characterized by a load pressure at the measuring connection 20 or in the reporting space, which acts on the reporting surface 17 on the right-hand side of the printing carriage slide DWS.
  • the pressure present at the reporting area 17 moves the pressure compensator slide DWS as shown in FIG Figure 3b into the left end position, which is defined, for example, with the aid of the annular stop 15.
  • the seat-tight holding of the load requires a seat-tight construction of a sealing point between the signaling space M to the return port T (not shown).
  • the fluid-carrying connection between the useful port A and the return port T is closed except for the relief notch 13, which is geometrically small.
  • the pressure control slide DRS displaces fluid or oil volume from the actual pressure signaling chamber Y with its end face 11, whereby this fluid volume can flow out via the signaling channel 7 into the working connection A, but from there it cannot flow out of the system due to the closed connection valve PV can escape.
  • the fluid (oil) is therefore forced to flow into the intermediate space Z and via the relief notch 13 of the pressure compensator in the form of the pressure compensator slide DWS into the tank or return connection T, until the pressure control slide DRS closes the fluid-carrying connection between the useful port A and the intermediate space Z.
  • Fluid flows from the pressure supply port P to the working port A.
  • the pressure at the working port A corresponds to the target pressure set in the pilot control chamber X with the help of the pilot control stage minus the pressure difference, which corresponds to the spring force that the preloaded pressure control spring 10 exerts on the pressure control piston or pressure control slide DRS exercises
  • the pilot stage mentioned is realized by components that are given the reference symbols 3, 5, 18 and 19.
  • the actual pressure p A at the useful port A is reported via the pertinent signaling channel 7 in the pressure control slide DRS on its right-hand face 11 in the inner space in the form of the actual-pressure signaling space Y and with the help of the face 1 of the same size on the left-hand side of the pressure control slide DRS with the pilot pressure px in the pre-control room X.
  • the geometry of the pressure control slide DRS is designed in such a way that the space Y and thus the surface 11 is always connected to the useful port A via the signaling channel 7 .
  • the pressure compensator is in one of its two end positions or possibly in between.
  • the triangular notch 2 opens a connection from the pilot control chamber X into the relief chamber E and from there via the equalization channel 6 and the intermediate space Z into the return port T. It must be ensured in the design that the connection from the relief or equalization chamber E to the return port T remains intact is retained when the pressure compensator is at the left stop, which is shown in the Figure 5b is shown. In this case, the relief notch 13 remains as a residual opening from the intermediate space Z to the tank or return port T.
  • the fluid (oil) flowing out via the notch 2 lowers the pilot control pressure px to such an extent that an equilibrium, determined by the useful port pressure p A , is reached between the useful port pressure p A and the pilot pressure p x adjusts.
  • the pressure control slide DRS then remains in the effective range of notch 2. The stability of this state depends to a large extent on the selected notch geometry. In addition, it must be ensured that the flow resistance through the compensating channel 6 and the relief notch 13 is significantly lower than the resistance over the notch 2. Its resistance must not exceed that of the fully open pilot valve cone seat 19.
  • the pressure compensator operation is shown. If the pilot pressure px in the pilot chamber X is less than the working pressure am Useful connection A or in space Y, the resulting force acting on surfaces 1 and 11 of pressure control slide DRS moves pressure control slide DRS to the left end position as shown in the illustration 6 .
  • the cross-section from useful connection A to intermediate space Z thus opens up completely.
  • the working pressure p A then acts directly on the left annular surface 12 and indirectly via the signaling channel 7 on the left circular surface 16 of the pressure compensator slide DWS as a signaling pressure.
  • the pressure compensator slide DWS compares the working pressure p A with the measurement pressure p M , which acts on the right-hand circular area 17 of the pressure compensator.
  • the area 17 corresponds to the sum of the areas 12 and 16.
  • the pressure compensator slide DWS assumes a position in which the volume flow from the useful port A to the tank or return port T at the throttle point between the intermediate space Z and the return port T is throttled in such a way that the measured pressure p M minus the control pressure difference ⁇ p M defined by the spring 14 sets in at the useful port A.
  • an electro-hydraulic control for hydraulic drives is created overall, which can work in two directions both in motor and in generator mode.
  • a pilot operated proportional spool valve is used, which combines the function of a pressure reducer for the inlet pressure control and a pressure compensator for the outlet flow control in one combination valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Servomotors (AREA)

Description

  • Die Erfindung betrifft eine Ventilvorrichtung mit einem
    • Zulaufanschluss einer Zulaufseite für die Versorgung eines am Zulaufanschluss anschließbaren hydraulischen Verbrauchers mit Druckfluid,
    • Ablaufanschluss einer Ablaufseite für das Abführen von Druckfluid aus dem anschließbaren Verbraucher, wobei je nach Ansteuerrichtung dieses Verbrauchers die Zulaufseite sich in die Ablaufseite und die Ablaufseite in die Zulaufseite ändert,
    • einem Druckversorgungsanschluss, und
    • einem Rücklaufanschluss,
    wobei auf die jeweilige
    • Zulaufseite eine Druckregelungseinrichtung und
    • Ablaufseite eine Volumenstromregelungseinrichtung
    einwirkt.
  • Durch EP 1 642 035 B1 ist ein gattungsgemäßes hydraulisches System bekannt mit den Merkmalen des Oberbegriffes des Patentanspruches 1, mit einem hydraulisch ansteuerbaren Antriebsteil als hydraulischem Verbraucher mit zwei gegenläufigen Antriebsrichtungen, wobei für mindestens eine Antriebsrichtung mindestens ein Druckregler, insbesondere in Ventilform, vorgesehen ist, sowie eine Drossel zwischen dem Druckregler und dem Antriebsteil, wobei zur Erkennung des Lastzustandes des Antriebsteils eine Sensorik vorgesehen ist, in Form eines Druckwertaufnehmers, der für jede Antriebsrichtung des Antriebsteils in dem zugeordneten, fluidführenden Strang zwischen der Drossel und dem Antriebsteil geschaltet ist. Dadurch, dass bei der bekannten Lösung der Druckwertaufnehmer die momentane Lastsituation am Antriebsteil erfasst, dass der Druckregler in seiner Grundstellung die Sekundärseite des Systems mit einem Tankverschluss respektive Rücklaufanschluss verbindet, und dass bei Ansteuerung des Druckreglers der Sekundärdruck auf den Druck der proportionalen Vorsteuerung abzüglich der am Ventilkolben des Druckreglers angreifenden Federkraft geregelt ist, ist in vorteilhafter Weise ein Steuerungs- und Regelungskonzept realisiert, mit dem basierend auf einem Grundsystem sich für hydraulisch ansteuerbare Antriebsteile oder Verbraucher, wie hydraulische Arbeitszylinder oder Hydro-Antriebsmotoren, eine Druck-, Wege-, Geschwindigkeits- und Positionsmessung für die bewegbaren Komponenten des jeweiligen gewählten Antriebsteils erreichen lässt. Über den jeweiligen Druckregler, insbesondere in Ventilform, lassen sich dynamische und genaue Ansteuerungsvorgänge je nach hydraulischem Anwendungsfall mit der bekannten Systemlösung realisieren. Mit dem bekannten hydraulischen System unter Verwendung von Druckreglern und entsprechenden Drosseln kann auf die bisher bekannte übliche Wegeventiltechnik zum Ansteuern der Bewegung eines hydraulischen Verbrauchers verzichtet werden, so dass die Verlustleistung und die Störanfälligkeit reduziert sind bei gleichzeitiger Verkürzung der Reaktionszeit für das hydraulische System. Eine vergleichbare Ventilvorrichtung ist auch durch WO 2006/117062 A1 bekannt.
  • An solche hydraulischen Systeme, sei es in Form stationärer Anlagen, sei es in Form mobiler Arbeitsmaschinen, werden immer höhere Anforderungen bezüglich Produktivität, Flexibilität und Energieeffizienz gestellt. Bei großen Maschinen, wie sie beispielsweise im "Miningbereich" zur Anwendung kommen, setzen sich verstärkt Mehrkreissysteme durch, also Hydraulikstrukturen mit zugeordneten Pumpen für die verschiedenen Verbraucher. Die Aufteilung der Leistungsanforderungen birgt ein enormes, energetisches Potential. Bei kosten- und bauraumsensitiven Anwendungen sind solche Mehrkreissysteme aus ökonomischer und konstruktiver Sicht jedoch schwierig einzusetzen.
  • Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, solche bekannten Hydraulikstrukturen zu vereinfachen und durch ein effizienteres Steuerungs- respektive Ventilkonzept zu ersetzen, um die jeweiligen Energieaufnahmen abzusenken, um dergestalt nicht nur Betriebskosten zu sparen, sondern auch einen entlastenden Beitrag zu den zusehends sich verschärfenden gesetzlichen Abgasregularien zu schaffen.
  • Eine dahingehende Aufgabe löst eine Ventilvorrichtung mit den Merkmalen des Patentanspruchs 1 in seiner Gesamtheit. Dadurch, dass gemäß dem kennzeichnenden Teil des Patentanspruchs 1 die Druckregelungseinrichtung und die Volumenstromregelungseinrichtung jeweils ein Proportionalventil und ein Druckregelventil nebst einer Druckwaage von ihrer Funktion her aufweisen, die derart miteinander verschaltet und angesteuert sind, dass bei einer Versorgung des Zulaufanschlusses vonseiten des Druckversorgungsanschlusses in einer Durchströmungsrichtung das eine Druckregelventil als Druckregler arbeitet und das aufseiten des Ablaufanschlusses bei Überschreiten eines vorgebbaren Solldrucks am anderen Druckregelventil sich die Durchströmungsrichtung umkehrt und das Druckfluid strömt über das andere Proportionalventil und die zugeordnete Druckwaage, die beide von ihrer Funktion her als Stromregelventil arbeiten, in Richtung des Rücklaufanschlusses ab. Dergestalt lässt sich in einer "aufgelösten Bauweise" mit einzelnen, voneinander baulich getrennten Ventilkomponenten die erfindungsgemäße Ventilvorrichtung realisieren. Es ist eine Art dezentrale Ventilsteuerung geschaffen mit sog. getrennten Steuerkanten, die die Möglichkeit einer separaten Ansteuerung von Ventilelementen auf der Zu- und Ablauf-seite eines an die Ventilvorrichtung anschließbaren hydraulischen Verbrauchers, wie einem hydraulischen Arbeitszylinder, bieten. Neben einer individuellen Betätigung von Zu- und Ablauf sind Schaltungstopologien umsetzbar, die beispielsweise Schwimm- oder Eilgangsstellungen beinhalten.
  • Mit der erfindungsgemäßen Ventilvorrichtung sind die Forderungen im Rahmen von Bewegungsaufgaben für den hydraulischen Verbraucher erfüllt, einerseits eine bestimmte Geschwindigkeit einstellen und andererseits sicherstellen zu können, dass die Zulaufseite des Verbrauchers im Falle unterstützender, sog. generatorischer Lasten ausreichend befüllt wird. Hierzu setzt die erfindungsgemäße Ventilvorrichtung eine hydraulisch-mechanische Regelung für die Größen Volumenstrom und Druck ein.
  • Dabei ist es vorteilhaft, die Volumenstromregelung jeweils auf die Ablaufseite des Verbrauchers zu legen, weil so motorische und generatorische Lasten mit dem gleichen Stromregler auf eine definierte Geschwindigkeit eingestellt werden können. Demgemäß liegt die Druckregelung dann auf der Zulaufseite, womit Befüllungsdefizite bei Senkbewegungen (generatorische Last) unter Annahme einer ausreichenden Versorgung durch hydraulisch-mechanisches Einregeln eines ausreichend hohen Fülldrucks vermieden werden.
  • Dient die erfindungsgemäße Ventilvorrichtung für den Einsatz bei einem hydraulischen Verbraucher, wie einem hydraulischen Arbeitszylinder oder einem in gegenläufigen Richtungen verfahrbaren Hydromotor, wird bei einem Wechsel der Bewegungs- oder Betätigungsrichtung die angesprochene Zulaufseite dann zur Ablaufseite und die Ablaufseite zur Zulaufseite für den jeweiligen Verbraucher. Insoweit stellt die erfindungsgemäße Ventilvorrichtung sicher, dass mit nur einer Vorrichtung auch bei wechselnden Betätigungsrichtungen immer auf der Zulaufseite mit der Druckversorgung die Druckregelungseinrichtung und auf der jeweiligen Ablaufseite eine Volumenstromregelungseinrichtung auf den Fluidstrom steuernd einwirkt.
  • Die erfindungsgemäße Ventilvorrichtung ist in der Lage, die energetischen, funktionalen und strukturellen Potentiale von getrennten Steuerkanten bei Ventilen zu nutzen und gleichzeitig die sich hieraus ergebende Komplexität auf Komponenten- und Steuerungsebene zu beherrschen. Die erfindungsgemäße Ventilvorrichtung lässt sich energetisch günstig betreiben, was Betriebskosten senken hilft und aufgrund des verbesserten Steuerungskonzepts mit den getrennten Steuerkanten lassen sich im Rahmen der Druckversorgung, regelmäßig bereitgestellt von motorisch antreibbaren Hydropumpen, Antriebsenergien einsparen, was Abgaswerte reduzieren hilft.
  • Besonders vorteilhaft ist es jedoch, die vorstehend genannten Ventilkomponenten, insbesondere das jeweilige Druckregelventil und die jeweils zugehörige Druckwaage, in einem einzigen Kombinationsventil von ihren Funktionen her zusammenzufassen.
  • In bevorzugter Weise ist dabei vorgesehen, dass das Kombinationsventil über zwei in einem Ventilgehäuse unabhängig verfahrbare Steuerschieber verfügt, in Form eines Druckregelschiebers und in Form eines Druckwaagenschiebers, die die möglichen fluidführenden Verbindungen zwischen dem Druckversorgungsanschluss, dem Rücklaufanschluss und einem Arbeitsanschluss steuern, der für den hydraulischen Verbraucher in der einen und der anderen entgegengesetzten Strömungsrichtung jeweils den Zulauf- bzw. den Ablaufanschluss bildet. Dergestalt lässt sich mit nur einem Kombinationsventil mit zwei im Ventilgehäuse unabhängig verfahrbaren Steuerschiebern eine dezentrale Ventilsteuerung realisieren mit getrennten Steuerkanten, was neben einer verbesserten Steuergeometrie auch strukturelle Vorteile bietet, insbesondere was die Reduzierung des Verschlauchungs- und Verrohrungsaufwandes anbelangt gegenüber bekannten Lösungen mit vereinzelten, räumlich voneinander getrennten Einzelventilen.
  • Weitere vorteilhafte Ausgestaltungen der erfindungsgemäßen Ventilvorrichtung sind Gegenstand der weiteren Unteransprüche.
  • Im Folgenden wird die erfindungsgemäße Ventilvorrichtung anhand von Ausführungsbeispielen nach der Zeichnung näher erläutert. Dabei zeigen in prinzipieller und nicht maßstäblicher Darstellung die
  • Fig. 1
    in der Art eines hydraulischen Schaltplans eine erste Ausfüh-rungsform der erfindungsgemäßen Ventilvorrichtung in "auf-gelöster" Bauweise mit einer Vielzahl von einzelnen Ventil-komponenten;
    Fig. 2 bis 6
    eine zweite Ausführungsform der erfindungsgemäßen Ventil-vorrichtung, mit der die Funktion der einzelnen Ventilkom-ponenten nach der Fig. 1 in einem Kombinationsventil zusammengefasst sind.
  • Die in Fig. 1 gezeigte Ventilvorrichtung weist einen Zulaufanschluss ZA einer Zulaufseite für die Versorgung eines am Zulaufanschluss ZA anschließbaren hydraulischen Verbrauchers mit Druckfluid auf. Ferner ist ein Ablaufanschluss AA einer Ablaufseite für das Abführen von Druckfluid aus dem anschließbaren Verbraucher vorgesehen. Des Weiteren weist die Ventilvorrichtung einen Druckversorgungsanschluss P für die Versorgung der Ventilvorrichtung und des hydraulischen Verbrauchers mit Druckfluid vorgebbaren Drucks auf und des Weiteren ist ein Rücklaufanschluss T respektive ein Tankanschluss vorgesehen für die Abfuhr von verdrängtem Fluid aus dem hydraulischen Verbraucher sowie der Ventilvorrichtung. Der hydraulische Verbraucher ist aus einem hydraulischen Arbeitszylinder AZ gebildet mit einer Kolbenstangeneinheit KSE, wobei der Arbeitszylinder AZ auf seiner Kolbenseite permanent fluidführend mit dem Zulaufanschluss ZA in Verbindung ist und die Stangenseite mit dem Ablaufanschluss AA gemäß der Darstellung nach der Fig. 1. Wird die Kolbenseite der Kolbenstangeneinheit KSE über den Zulaufanschluss ZA mit Druckfluid vorgebbaren Drucks versorgt, fährt die Kolbenstangeneinheit KSE, in Blickrichtung auf die Fig. 1 gesehen, nach rechts aus und das im Stangenraum befindliche Fluid wird über den Ablaufanschluss AA aus dem Arbeitszylinder AZ abgeführt. Im umgekehrten Falle, also beim Einfahren der Kolbenstangeneinheit KSE, in Blickrichtung auf die Fig. 1 gesehen nach links, wird dann der Ablaufanschluss AA zum Zulaufanschluss ZA und das bei der Einfahrbewegung der Kolbenstangeneinheit KSE kolbenseitig verdrängte Fluid verlässt über einen Ablaufanschluss AA, der ursprünglich bei der Ausfahrbewegung den Zulaufanschluss ZA gebildet hat, den Arbeitszylinder AZ. Die Kolbenstangeneinheit KSE des Arbeitszylinders AZ führt also je nach Versorgungszustand mit Druckfluid eine hin- und hergehende Bewegung und insoweit eine Bewegung in gegenläufigen axialen Richtungen aus. Anstelle des Arbeitszylinders AZ könnte als hydraulischer Verbraucher auch eine Hydro-Motoreinheit (nicht dargestellt) treten, der ebenfalls, je nach Befüllungszustand seiner Kammern, in gegenläufigen Richtungen drehen kann.
  • Wie die Fig. 1 ergibt, sind sowohl auf der Zulaufseite als auch auf der Ablaufseite der Ventilvorrichtung jeweils ein 3/2-Proportionalschieberventil DRV mit einer Druckwaage DW vorhanden. Gemäß der Darstellung nach der Fig. 1 ist der Eingang des 3/2-Proportionalschieberventils DRV über den Druckversorgungsanschluss P an eine übliche Druckversorgungsquelle, wie eine Hydropumpe, angeschlossen. Der Ausgang des Proportionalventils DRV ist in der Art eines Nutzanschlusses ausgebildet und mit A bezeichnet. Das Proportionalventil DRV ist, wie dargestellt, elektromagnetisch ansteuerbar und der Ventilschieber ist auf seiner gegenüberliegenden Steuerseite mit dem Steuerdruck aus dem Nutzanschluss A ansteuerbar. Der dahingehende Volumenstrom, vom Nutzanschluss A stammend, wird auf einen Eingang der Druckwaage DW geführt, die in der gezeigten Druckwaagenposition den Druck am Nutzanschluss A zum Tank oder Rücklaufanschluss T führt. In einer anderen Regelposition der jeweiligen Druckwaage DW nimmt diese eine den dahingehenden Fluidweg sperrende Stellung ein. Des Weiteren ist eine Steuerseite der jeweiligen Druckwaage DW mit einem Energiespeicher, insbesondere in Form einer Druckfeder, beaufschlagt und weiter steht als Steuerdruck der Rücklaufdruck, vom Nutzanschluss A stammend, an, sofern das jeweilige Proportionalventil DRV seine weitere, in der Fig. 1 gezeigte Schieberstellung einnimmt, bei der die fluidführende Verbindung vom Druckversorgungsanschluss P zum Nutzanschluss A unterbunden ist und ansonsten eine Fluidverbindung rücklaufend vom Nutzanschluss A in Richtung der einen Steuerseite der Druckwaage DW besteht. Auf der gegenüberliegenden Steuerseite der jeweiligen Druckwaage DW liegt der Druck PM an einem Messanschluss M an, der am Zulaufanschluss ZA respektive am Ablaufanschluss AA des Arbeitszylinders AZ abgegriffen wird.
  • Des Weiteren ist gemäß dem hydraulischen Schaltplan nach der Fig. 1 in üblicher Weise sowohl der jeweilige Zulaufanschluss ZA als auch der jeweilige Ablaufanschluss AA über ein einstellbares Druckbegrenzungsventil DBV in üblicher Weise gegen zu hohen Betriebsdruck in Richtung des Rücklaufanschlusses T abgesichert. Für die elektromagnetische Ansteuerung des jeweiligen Druckregelventils DRV dient eine nicht näher bezeichnete und dargestellte Steuereinrichtung, die den von Druckwertaufnehmern DWA ermittelten Messdruck am Zulaufanschluss ZA respektive am Ablaufanschluss AA sinnfällig verarbeitet und Steuersignale an die Druckregelventile DRV und an die elektromagnetisch betätigbaren Proportionalventile PV zwecks deren Ansteuerung weiterleitet.
  • Strömt nun Fluid gemäß der Darstellung nach der Fig. 1 von unten nach oben, also vom Druckversorgungsanschluss P zum Verbraucher A, wirkt das auf der Zulaufseite angeordnete 3/2-Proportionalschieberventil als Druckregler. Übersteigt nun der Druck am Arbeitsanschluss A des Druckreglers auf der Ablaufseite den mit Hilfe von dessen Proportionalmagneten DRV eingestellten Solldruck, kehrt sich die Durchströmungsrichtung um und das Druckfluid (Öl) fließt in den Arbeitsanschluss A hinein und von dort aus durch die in Fig. 1 rechts dargestellte Druckwaage DW in den Rücklaufanschluss T. Die rechte Druckwaage DW vergleicht dabei den Druck am Arbeitsanschluss A mit dem am Messanschluss M anstehenden Druck PM. In diesem Rücklauf-Zustand wirkt dann das rechte 3/2-Proportionalschieberventil DRV als Wegeventil, wobei die Steuerkante von Nutzanschluss A zur rechten Druckwaage DW voll geöffnet ist. In Kombination mit dem gezeigten rechten Proportionalventil PV zwischen den Anschlüssen A und M wirkt dann die aufgezeigte Anordnung als Stromregelventil.
  • Die in Fig. 1 gezeigte Ventilvorrichtung in sog. aufgelöster Bauweise bietet also eine hydraulisch-mechanische Regelung der Größen Volumenstrom und Druck an. Dabei wurde, wie dargelegt, die Volumenstromregelung auf die Ablaufseite des hydraulischen Verbrauchers gelegt, weil derart motorische und generatorische Lasten mit dem gleichen Stromregler auf eine definierte Geschwindigkeit eingestellt werden können. Konsequenterweise liegt dann insoweit die Druckregelung auf der Zulaufseite, womit Befüllungsdefizite bei Senkbewegungen (generatorische Last) unter Annahme einer ausreichenden Versorgung durch hydraulisch-mechanisches Einregeln eines ausreichend hohen Fülldrucks vermieden werden. Kehren sich nun die Verhältnisse um, fährt also gemäß der Darstellung nach der Fig. 1 die Kolbenstangeneinheit KSE des Arbeitszylinders AZ nach links ein, wird der bisherige Zulaufanschluss ZA zum Ablaufanschluss AA und der bisherige Ablaufanschluss AA zum Zulaufanschluss ZA. Das in Fig. 1 rechts dargestellte Druckregelventil DRV bildet dann den Druckregler aus und die links dargestellte Kombination von Proportionalventil PV mit der Druckwaage DW den Stromregler.
  • Einen möglichen Aufbau eines sog. Kombinationsventils, das die Funktion jeweils eines Druckregelventils DRV nebst der zugehörigen Druckwaage DW in einer Ventilkonstruktion zusammenfasst, zeigt eine prinzipielle Ausgestaltung nach der Fig. 2. Für eine verbesserte und vereinfachte Darstellung sind die wesentlichen Komponenten des Kombinationsventils nur prinzipiell und vereinfacht dargestellt und ferner ist das Kombinationsventil nur mit seiner oberen Hälfte oberhalb seiner Betätigungsachse dargestellt, wobei das rotationssymmetrische Gesamt-Ventilgehäuse des Kombinationsventils der Einfachheit halber nicht dargestellt ist, selbstredend aber die im Folgenden noch näher erläuterte Ventilmimik umfasst und Durchlässe unter Bildung der einzelnen Anschlüsse P, A, T, M entsprechend freilässt.
  • Das in Fig. 2 gezeigte Ventil verfügt über zwei Schieber in Form eines links dargestellten Druckregelschiebers DRS und eines rechts dargestellten Druckwaagenschiebers DWS. Die dahingehenden beiden Schieber DRS und DWS steuern dabei die fluidführenden Verbindungen zwischen dem Druckversorgungsanschluss P, dem Arbeitsanschluss A und dem Rücklaufanschluss T an, der insoweit den Tankanschluss bildet. Der weiter in der Fig. 2 links dargestellte Rücklaufanschluss T oder Tankanschluss einer Vorsteuerstufe, gebildet aus einem Vorsteuerkegel 18, der von einem nicht näher dargestellten Betätigungsmagneten üblicher Bauart für das gezeigte Kombinationsventil ansteuerbar ist, ist mit dem rechts dargestellten Haupttankanschluss (Rücklaufanschluss T) zusammengelegt, was jedoch nicht zwingend erforderlich ist.
  • Weiterhin existieren verschiedene Räume in Form eines Vorsteuerraums X, in dem ein Steuerdruck px, der von dem Druckversorgungsanschluss P stammt, ansteht, wobei der genannte Steuerdruck px proportional zur Kraft des bestromten Betätigungsmagneten respektive Proportionalmagneten von links nach rechts auf den Druckregelschieber DRS einwirkt. Für die Verbindung zwischen Druckversorgungsanschluss P und Vorsteuerraum X ist ein Vorsteuerkanal 5 vorgesehen, der eine Blende 3 oder ein nicht näher dargestelltes Stromregelventil als Druckteiler der Vorsteuerung aufweist. Insoweit liegt der Vorsteuerdruck px an einer Meldefläche 1 an, die, in Blickrichtung auf die Fig. 2 gesehen, die linke Stirnfläche des Druckregelschiebers DRS bildet und in der in Fig. 2 dargestellten Verschiebestellung des Druckregelschiebers DRS ist der Vorsteuerraum X, der ansonsten von dem Ventilgehäuse begrenzt ist, im Wesentlichen auf Null zurückgefahren, bis auf eine mit 2 bezeichnete Kerbe für die hydraulische Endlage des Druckregelschiebers DRS in seiner in Fig. 3a, 3b gezeigten rechten End- oder Anschlagposition.
  • Des Weiteren ist in der Fig. 2 ein Ausgleichsraum E ersichtlich, der gemäß der Darstellung nach der Fig. 2 gleichfalls im Wesentlichen auf das Volumen Null zusammengefahren ist. Dabei wird der Ausgleichsraum E von dem Ventilgehäuse begrenzt sowie von einer Ausgleichsfläche 4 als Teil eines Ringbundes, der gegenüber dem sonstigen Durchmesser des Druckregelschiebers DRS radial verbreitert ist. Die der Ausgleichsfläche 4 gegenüberliegende Ringfläche 4' des Ringbundes, mit im vorliegenden Fall demselben Durchmesser versehen wie die Ausgleichsfläche 4, ist unmittelbar dem Versorgungsdruck px am Druckversorgungsanschluss P ausgesetzt. Des Weiteren ist der Ausgleichsraum E über den strichliniert dargestellten Ausgleichskanal 6 im Druckregelschieber DRS permanent fluidführend mit dem Nutzanschluss A verbunden. Demgemäß mündet der Ausgleichskanal 6 an einer weiteren oder rechten Ringfläche 9 des Druckregelschiebers DRS aus, wobei die Ringfläche 9 denselben Durchmesser aufweist wie die Ringfläche 4, die insoweit als Ausgleichsfläche für die Fläche 9 dient, was für die Funktion von besonderer Bedeutung ist. Auch die rechte Ringfläche 9 ist Teil eines Ringbundes mit einer weiteren Anschlagfläche 9' mit demselben Durchmesser, die in der gezeigten Stellung den Druckversorgungsanschluss P mit begrenzt. Die Durchmesser der Flächen 4' und 9' können voneinander verschieden sein, nur die Durchmesser der Flächen 4 und 9 müssen gleich sein.
  • Des Weiteren ist ein Zwischenraum Z in der Verbindung zwischen Nutzanschluss A und Rücklaufanschluss T vorhanden, in dem ein sich aus dieser Verbindung ergebender Steuerdruck pz herrscht. In dem insoweit parallel zum Druckregelschieber DRS verlaufenden Zwischenraum Z münden der Nutzanschluss A und der Haupt-Rücklaufanschluss T radial ein.
  • Ferner ist ein Istdruck-Melderaum Y vorhanden, der, in Blickrichtung auf die Fig. 2 gesehen, auf der linken Seite von einer Meldefläche 11 für den Istdruck pA im Druckregelbetrieb begrenzt ist und ansonsten von einer zylindrischen Ausnehmung im Druckwaagenschieber DWS, der mit seiner linken Ringfläche 12 einen rechten freien Endbereich des zylindrischen Druckregelschiebers DRS übergreift respektive umfasst. Während die Meldefläche 11 das rechte freie stirnseitige Ende des Druckregelschiebers DRS bildet, ist gegenüberliegend eine Kreisfläche 16 mit demselben Durchmesser auf der Innenseite des Druckwaagenschiebers DWS vorhanden. Ein etwaiger Steuerdruck pA, der vom Nutzanschluss A stammt, liegt somit druckwirksam an der Meldefläche 11 an als auch an der Kreisfläche 16 des Druckwaagenschiebers DWS. Insoweit wird der Melde- oder Steuerdruck PA im Druckwaagenbetrieb an die Flächen 11 und 16 weitergemeldet. Aufgrund der möglichen Verfahrbewegung der beiden Schieber DRS und DWS ändert sich das freie Volumen des Istdruck-Melderaums Y. Um den Steuerdruck pA vonseiten des Nutzanschlusses in den Istdruck-Melderaum Y weiterleiten zu können, dient ein strichliniert wiedergegebener Meldekanal 7, der in einen im Durchmesser gegenüber den Ringflächen 9, 9' reduzierten Mittenbund respektive Ringbund ausmündet, der insoweit permanent fluidführend mit dem Nutzanschluss A in Verbindung steht. An seinem anderen Ende mündet der dahingehende Meldekanal 7 für den Ist- oder Steuerdruck pA am Nutzanschluss A in den Istdruck-Melderaum Y aus. Ferner kann in den Meldekanal 7 in optionaler Weise, also im Bedarfsfall, eine Dämpfungsblende 8 geschaltet sein.
  • Der Druckwaagenschieber DWS stützt sich über eine verbreiterte endseitige Flanschfläche an einem Energiespeicher in Form einer Druckfeder 14 für die Druckwaage ab, wobei die dahingehende Druckfeder 14 relativ hart ausgeführt ist. Des Weiteren ist ein Anschlag 15 für die freie Verfahrbewegung des Druckwaagenschiebers DWS nach links im nicht näher spezifizierten Ventilgehäuse vorhanden. Insoweit stützt sich auch die Feder 14 mit ihrem der Flanschfläche des Druckwaagenschiebers DWS gegenüberliegenden Ende an Wandteilen eines dahingehenden Ventilgehäuses ab. Ferner ist gemäß der Darstellung nach der Fig. 2 im Inneren des Druckregelschiebers DRS ein weiterer Energiespeicher in Form einer Druckfeder 10 geführt, die relativ weich das Ansprechverhalten des Druckreglers mitbestimmt. Die dahingehende Druckfeder 10 stützt sich mit ihrem einen freien Ende an der Kreisfläche 16 des Druckwaagenschiebers DWS ab und mit ihrem anderen freien Ende an der Stirnfläche einer Bohrung im Druckregelschieber DRS.
  • Des Weiteren ist ein Melderaum M im Ventilgehäuse vorhanden, das, in Blickrichtung auf die Fig. 2 gesehen, auf der linken Seite von einer Meldefläche 17 begrenzt ist, die das rechte freie stirnseitige Ende des Druckwaagenschiebers DWS im Bereich seiner Flanschverbreiterung bildet. In den dahingehenden Melderaum M mündet ein Messanschluss 20, der im Druckwaagenbetrieb den Messdruck pM führt. Ergänzend sei angemerkt, dass neben der Kerbe 2 für die hydraulische Endlage des Druckregelschiebers DRS für den Druckwaagenschieber DWS eine Entlastungskerbe 13 im Bereich des Haupt-Rücklaufanschlusses T am linken freien stirnseitigen Ende des Druckwaagenschiebers DWS eingebracht ist, wobei ansonsten das dahingehend freie stirnseitige Ende von der Ringfläche 12 begrenzt ist, die im Druckwaagenbetrieb den Druck pA am Nutzanschluss A an den Druckwaagenschieber DWS weiterleitet. Des Weiteren ist im Bereich des mit dem Betätigungsmagneten ansteuerbaren Vorsteuerkegel 18 ein Kegelsitz 19 für den dahingehenden Vorsteuerkegel im nicht näher spezifizierten Ventilgehäuse vorhanden. Der Kerngedanke dieses erfindungsgemäßen Ventilkonzepts liegt in der Separierung der Aufgaben Druckregelung und Druckwaagenfunktion, die auf die beiden Schieber DRS und DWS verteilt sind, welche mit voneinander unabhängigen Energiespeichern versehen sind in Form der Druckfedern 10 und 14, wobei die Druckfeder 10 nicht nur auf den Druckwaagenschieber DWS auf dessen Kreisfläche 16 einwirkt, sondern auch über eine Anlagemöglichkeit im Bereich der weiteren Ringfläche 9' auf den Druckregelschieber DRS.
  • Der linke Schieber oder Druckregelschieber DRS realisiert die Druckregelfunktion, ausgehend vom Druckversorgungsanschluss P zum Druckanschluss A. Die weiche Feder 10 hält ihn in der Ruhelage am linken Anschlag. Wie bereits dargelegt, verfügt der Druckregelschieber DRS über drei Kanäle, wobei der Vorsteuerkanal 5 die Vorsteuerstufe mit Fluid (Öl) aus dem Druckversorgungsanschluss P versorgt. Für die Druckteilerfunktion der Vorsteuerstufe kommt im Kanal 5 wahlweise eine Blende 3 zum Einsatz oder ein in den Druckregelschieber DRS integriertes Miniatur-Stromregelventil (nicht dargestellt). Vorteilhaft an der letztgenannten Lösung ist der geringere und konstante Vorsteuerstrom. Damit ist der Regeldruck im Vorsteuerraum X vom Versorgungsdruck am Anschluss P unabhängig. Dem steht jedoch ein höherer Fertigungsaufwand gegenüber. Der Meldekanal 7 hingegen meldet den Istdruck pA am Arbeitsanschluss A in den inneren Zwischenraum Y zwischen den beiden Schiebern DRS und DWS. Optional kann hier eine Dämpfungsblende 8 eingesetzt sein. Der weiter vorhandene Kanal 6 als Ausgleichskanal bewirkt einen Druckausgleich zwischen dem Zwischenraum Z, der zwischen den Anschlüssen A und T angeordnet ist, und dem Ausgleichsraum E. Mit Hilfe der Kerbe 2 ist eine hydraulische Endlage für den Druckregelschieber DRS realisiert. Der rechte Schieber oder Druckwaagenschieber DWS arbeitet insoweit als Druckwaage, welche den Druck am Nutzanschluss A mit dem Druck am Messanschluss 20 respektive mit dem Druck im Melderaum M vergleicht. Die dabei entstehende Regeldruckdifferenz wird über die Auslegung der harten Feder 14 als dem weiteren Energiespeicher definiert.
  • Im Folgenden wird die Funktionsweise des erfindungsgemäßen Kombinationsventils nach der Fig. 2 näher erläutert, wobei in den nachfolgenden Figuren Bezugszeichen nur insofern gegenüber der Fig. 2 noch angegeben sind, als sie zur Erläuterung der erfindungsgemäßen Lösung im Wesentlichen benötigt werden.
  • Die Fig. 3a, 3b und 3c stellen verschiedene Ruhezustände des Kombinationsventils dar, wobei der unbelastete Ruhezustand gemäß der Darstellung nach der Fig. 3a denselben Ventilzustand zeigt, wie er in der Fig. 2 wiedergegeben ist, und die Fig. 3b gibt einen belasteten Ruhezustand für das Ventil wieder, wohingegen die Fig. 3c das Ventil im belasteten Ruhezustand und vorbestromt zeigt.
  • Insoweit betreffen also die Fig. 3a, 3b und 3c die möglichen Ruhezustände des erfindungsgemäßen Kombinationsventils, d.h. die Zustände, in denen kein Fluid (Öl) über die Strömungspfade P-A oder A-T fließt. Im unbelasteten Ruhezustand (Fig. 2 und 3a) sind alle aufgezeigten Anschlüsse drucklos. Die beiden Schieber DRS und DWS befinden sich in den durch die Federn 10 und 14 und die Gehäuseanschläge definierten Endlagen. Dabei ist die fluidführende Verbindung zwischen dem Druckversorgungsanschluss P und dem Nutzanschluss A verschlossen, die Verbindung vom Nutzanschluss A zum Rücklaufanschluss T voll offen.
  • Der belastete Ruhezustand gemäß der Darstellung nach Fig. 3b ist durch einen Lastdruck am Messanschluss 20 respektive im Melderaum gekennzeichnet, der auf die Meldefläche 17 an der rechten Seite des Druckwagenschiebers DWS auf diesen einwirkt. Der an der Meldefläche 17 anstehende Druck verschiebt den Druckwaagenschieber DWS gemäß der Darstellung nach der Fig. 3b in die linke Endlage, welche beispielsweise mit Hilfe des ringförmigen Anschlages 15 definiert wird. Das sitzdichte Halten der Last erfordert eine sitzdichte Konstruktion einer Dichtstelle zwischen dem Melderaum M zu dem Rücklaufanschluss T (nicht dargestellt). Die fluidführende Verbindung zwischen dem Nutzanschluss A zum Rücklaufanschluss T ist bis auf die geometrisch klein ausfallende Entlastungskerbe 13 geschlossen.
  • Zur Überbrückung des langen Tothubes des Druckregelschiebers DRS aus der linken Endlage heraus bis zur Öffnung zwischen Druckversorgungsanschluss P und Nutzanschluss A, ist eine Vorbestromung des nicht näher dargestellten Betätigungsmagneten, der den Vorsteuerkegel 18 ansteuert, sinnvoll. Dabei stellt sich im Vorsteuerraum X ein Vorsteuerdruck px ein, welcher auf die Meldefläche 1 einwirkt und den Druckregelschieber DRS so weit nach rechts verschiebt, bis dieser die fluidführende Verbindung vom Nutzanschluss A in den Zwischenraum Z schließt. Dabei wird angenommen, dass kein Fluid (Öl) aus dem Nutzanschluss A herausfließen kann, weil das am Nutzanschluss A angeschlossene Proportional- oder Rückschlagventil PV (Fig. 1) geschlossen ist. Während der angesprochenen Bewegung, in Blickrichtung auf die Fig. 3c gesehen nach rechts, verdrängt der Druckregelschieber DRS mit seiner Stirnfläche 11 Fluid- oder Ölvolumen aus dem Istdruck-Melderaum Y, wobei dieses Fluidvolumen über den Meldekanal 7 in den Arbeitsanschluss A abfließen kann, von dort aber aufgrund des geschlossenen Anschlussventils PV nicht weiter aus dem System entweichen kann. Daher ist das Fluid (Öl) gezwungen, in den Zwischenraum Z zu fließen und über die Entlastungskerbe 13 der Druckwaage in Form des Druckwaagenschiebers DWS in den Tank- oder Rücklaufanschluss T, und zwar so lange, bis der Druckregelschieber DRS die fluidführende Verbindung zwischen dem Nutzanschluss A und dem Zwischenraum Z schließt. Dabei kommt es zum Druckgleichgewicht zwischen den beiden kreisförmigen Stirnflächen 1 und 11, die von ihrem freien Durchmesser her gleich groß ausgebildet sind und die in Bild 3c dargestellte Ruhelage ist erreicht, wobei der Ausgleichsraum E und der Zwischenraum Z über den Ausgleichskanal 6 im Druckregelschieber DRS stets druckausgeglichen sind.
  • Die Fig. 4a und 4b zeigen nunmehr den eigentlichen Druckregelbetrieb. Dabei strömt Fluid (Öl) vom Druckversorgungsanschluss P zum Nutzanschluss A. Der Druck am Nutzanschluss A entspricht dabei dem im Vorsteuerraum X mit Hilfe der Vorsteuerstufe eingestellten Solldruck abzüglich der Druckdifferenz, die der Federkraft entspricht, die die vorgespannte Druckregelfeder 10 auf den Druckregelkolben oder Druckregelschieber DRS ausübt. Die angesprochene Vorsteuerstufe ist dabei durch Bauteile realisiert, die mit den Bezugszeichen 3, 5, 18 und 19 wiedergegeben sind. Der Istdruck pA am Nutzanschluss A wird über den dahingehenden Meldekanal 7 im Druckregelschieber DRS auf dessen rechte Stirnfläche 11 im inneren Zwischenraum in Form des Istdruck-Melderaums Y gemeldet und mit Hilfe der gleich großen Stirnfläche 1 auf der linken Seite des Druckregelschiebers DRS mit dem Vorsteuerdruck px im Vorsteuerraum X verglichen. Die Geometrie des Druckregelschiebers DRS ist dabei so gestaltet, dass der Raum Y und damit die Fläche 11 stets über den Meldekanal 7 mit dem Nutzanschluss A verbunden ist. Je nach dem anstehenden Druck am Messanschluss 20 respektive im Melderaum M befindet sich die Druckwaage in einer ihrer beiden Endlagen oder möglicherweise dazwischen. Dies beeinflusst nur die auf den Druckregelschieber DRS wirkende Federkraft und verändert insoweit den Regeldruck am Nutzanschluss A nur minimal. Die nachfolgenden Fig. 5a, 5b geben den Druckregelbetrieb bei Sättigung wieder. Kann der über die Bestromung des Vorsteuermagneten am Vorsteuerkegel 18 vorgegebene Solldruck nicht erreicht werden, weil ein sehr großer Volumenstrom aus dem Nutzanschluss A herausfließt, stellt sich ohne Gegenmaßnahmen, auch bei voller Öffnung des Strömungspfades vom Druckversorgungsanschluss P zum Nutzanschluss A, kein Kräftegleichgewicht zwischen den Stirnflächen 1 und 11 am Druckregelschieber DRS ein. Infolgedessen bewegt sich dieser so weit nach rechts, dass er den angesprochenen fluidführenden Pfad P nach A wieder verschließt, womit der Nutzanschlussdruck pA weiter abfällt und der Schieber den Regelbereich verlässt. Dies wird mit Hilfe der Dreieckskerbe 2 am Druckregelschieber DRS verhindert. Die Dreieckskerbe 2 öffnet eine Verbindung vom Vorsteuerraum X in den Entlastungsraum E hinein und von dort aus über den Ausgleichskanal 6 und den Zwischenraum Z in den Rücklaufanschluss T. Dabei ist konstruktiv sicherzustellen, dass die Verbindung von Entlastungs- oder Ausgleichsraum E zum Rücklaufanschluss T auch dann erhalten bleibt, wenn sich die Druckwaage am linken Anschlag befindet, was in der Fig. 5b dargestellt ist. In diesem Fall verbleibt die Entlastungskerbe 13 als Restöffnung aus dem Zwischenraum Z zum Tank- oder Rücklaufanschluss T. Das über die Kerbe 2 abfließende Fluid (Öl) senkt den Vorsteuerdruck px so weit, dass sich ein vom Nutzanschlussdruck pA bestimmtes Gleichgewicht zwischen dem Nutzanschlussdruck pA und dem Vorsteuerdruck px einstellt. Der Druckregelschieber DRS verharrt dann im Wirkungsbereich der Kerbe 2. Die Stabilität dieses Zustandes hängt wesentlich von der gewählten Kerbengeometrie ab. Es ist zusätzlich zu gewährleisten, dass die Strömungswiderstände über den Ausgleichskanal 6 und die Entlastungskerbe 13 deutlich kleiner sind als der Widerstand über der Kerbe 2. Deren Widerstand darf den des voll offenen Vorsteuer-Kegelsitzes 19 nicht übersteigen.
  • In der nachfolgenden Fig. 6 ist der Druckwaagenbetrieb dargestellt. Ist der Vorsteuerdruck px im Vorsteuerraum X kleiner als der Arbeitsdruck am Nutzanschluss A bzw. im Raum Y, so verschiebt die an den Flächen 1 und 11 des Druckregelschiebers DRS wirkende resultierende Kraft den Druckregelschieber DRS in die linke Endlage gemäß der Darstellung nach Fig. 6. Damit öffnet sich der Querschnitt von Nutzanschluss A zum Zwischenraum Z vollständig. Der Arbeitsdruck pA wirkt dann direkt auf die linke Ringfläche 12 und über den Meldekanal 7 indirekt auf die linke Kreisfläche 16 des Druckwaagenschiebers DWS als Meldedruck ein. Der Druckwaagenschieber DWS vergleicht dann den Arbeitsdruck pA mit dem Messdruck pM, welcher auf die rechte Kreisfläche 17 der Druckwaage wirkt. Die Fläche 17 entspricht dabei der Summe der Flächen 12 und 16. Der Druckwaagenschieber DWS nimmt eine Position ein, in der der Volumenstrom vom Nutzanschluss A zum Tank- oder Rücklaufanschluss T an der Drosselstelle zwischen dem Zwischenraum Z und dem Rücklaufanschluss T derart gedrosselt wird, dass sich am Nutzanschluss A der Messdruck pM abzüglich der mit der Feder 14 definierten Regeldruckdifferenz ΔpM einstellt.
  • Mit der erfindungsgemäßen Lösung ist insgesamt eine elektro-hydraulische Steuerung für hydraulische Antriebe geschaffen, die sowohl im motorischen als auch im generatorischen Betrieb in zwei Richtungen arbeiten kann. Dabei wird ein vorgesteuertes Proportionalschieberventil eingesetzt, das die Funktion eines Druckminderers für die Zulaufdrucksteuerung und eine Druckwaage für die Ablaufstromregelung in einem Kombinationsventil miteinander vereint.

Claims (9)

  1. Ventilvorrichtung mit einem
    - Zulaufanschluss (ZA) einer Zulaufseite für die Versorgung eines am Zulaufanschluss (ZA) anschließbaren hydraulischen Verbrauchers mit Druckfluid,
    - Ablaufanschluss (AA) einer Ablaufseite für das Abführen von Druckfluid aus dem anschließbaren Verbraucher, wobei je nach Ansteuerrichtung dieses Verbrauchers die Zulaufseite sich in die Ablaufseite und die Ablaufseite in die Zulaufseite ändert,
    - einem Druckversorgungsanschluss (P), und
    - einem Rücklaufanschluss (T),
    wobei auf die jeweilige
    - Zulaufseite eine Druckregelungseinrichtung und
    - Ablaufseite eine Volumenstromregelungseinrichtung einwirkt, dadurch gekennzeichnet, dass die Druckregelungseinrichtung und die Volumenstromregelungseinrichtung jeweils ein Proportionalventil (PV) und ein Druckregelventil (DRV) nebst einer Druckwaage (DW) von ihrer Funktion her aufweisen, die derart miteinander verschaltet und angesteuert sind, dass bei einer Versorgung des Zulaufanschlusses (ZA) vonseiten des Druckversorgungsanschlusses (P) in einer Durchströmungsrichtung das eine Druckregelventil (DRV) als Druckregler arbeitet und das aufseiten des Ablaufanschlusses (AA) bei Überschreiten eines vorgebbaren Solldrucks am anderen Druckregelventil (DRV) sich die Durchströmungsrichtung umkehrt und das Druckfluid strömt über das andere Proportionalventil (PV) und die zugeordnete Druckwaage (DW), die beide von ihrer Funktion her als Stromregelventil arbeiten, in Richtung des Rücklaufanschlusses (T) ab.
  2. Ventilvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das jeweilige Druckregelventil (DRV) ein Proportionalschieberventil, vorzugsweise ein 3/2-Wege-Proportionalschieberventil, ist, das mittels mindestens eines Proportionalmagneten (18) ansteuerbar die Einstellung einer Solldruckvorgabe am Druckregelventil (DRV) ermöglicht.
  3. Ventilvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das jeweilige Druckregelventil (DRV) und die jeweils zugehörige Druckwaage (DW) in einem Kombinationsventil von ihren Funktionen her zusammengefasst sind.
  4. Ventilvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das Kombinationsventil über zwei in einem Ventilgehäuse unabhängig verfahrbare Steuerschieber verfügt, in Form eines Druckregelschiebers (DRS) und in Form eines Druckwaagenschiebers (DWS), die die möglichen fluidführenden Verbindungen zwischen dem Druckversorgungsanschluss (P), dem Rücklaufanschluss (T) und einem Arbeitsanschluss (A) steuern, der in Verbindung mit einem Proportionalventil (PV) in der einen und der anderen entgegengesetzten Strömungsrichtung den Zulauf- bzw. den Ablaufanschluss (ZA; AA) bildet.
  5. Ventilvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das Kombinationsventil innerhalb des Ventilgehäuses folgende Räume aufweist: einen
    - Vorsteuerraum (X), in dem ein Steuerdruck (px), der von dem Druckversorgungsanschluss (P) stammt, entsprechend der Wirkung des bestromten Proportionalmagneten auf den Druckregelschieber (DRS) einwirkt,
    - Ausgleichsraum (E),
    - Zwischenraum (Z) in der möglichen fluidführenden Verbindung zwischen dem Nutzanschluss (A) und dem Rücklaufanschluss (T), in dem ein sich aus dieser Verbindung ergebender Steuerdruck (pz) wirkt,
    - Istdruck-Melderaum (Y), in dem ein Steuerdruck (pA) wirkt, der vom jeweiligen Druck am Nutzanschluss (A) stammt, und
    - Melderaum (M), in dem ein Steuerdruck (pM) entgegen der Wirkung eines Energiespeichers (14) auf den Druckwaagenschieber (DWS) einwirkt.
  6. Ventilvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass im Druckregelschieber (DRS) ein Vorsteuerkanal (5) für eine Blende (3) oder ein Stromregelventil für eine Vorsteuerung eingebracht ist, die den Druckversorgungsschluss (P) mit einer Meldefläche (1) fluidführend verbindet, die Vorsteuerraum (X) zumindest teilweise begrenzt.
  7. Ventilvorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass im Druckregelschieber (DRS) ein Ausgleichskanal (6) eingebracht ist, der den Nutzanschluss (A) mit dem Ausgleichsraum (E) fluidführend verbindet.
  8. Ventilvorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass im Druckregelschieber (DRS) ein Meldekanal (7) eingebracht ist, mit einer optional darin anordenbaren Dämpfungsblende (8), der den Istdruck (pA) am Nutzanschluss (A) in den Istdruck-Melderaum (Y) weiterleitet, der von dem Druckwaagenschieber (DWS) begrenzt ist, sowie einer Steuerseite (11) des Druckregelschiebers (DRS), die in dem Istdruck-Melderaum (Y) geführt ist.
  9. Ventilvorrichtung nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass der Druckwaagenschieber (DWS) sich an einem weiteren Energiespeicher (10) abstützt, der den Istdruck-Melderaum (Y) durchgreifend am Druckregelschieber (DRS) angreift.
EP19705145.1A 2018-02-20 2019-02-07 Ventilvorrichtung Active EP3721094B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018001303.1A DE102018001303A1 (de) 2018-02-20 2018-02-20 Ventilvorrichtung
PCT/EP2019/052965 WO2019162097A1 (de) 2018-02-20 2019-02-07 Ventilvorrichtung

Publications (2)

Publication Number Publication Date
EP3721094A1 EP3721094A1 (de) 2020-10-14
EP3721094B1 true EP3721094B1 (de) 2022-06-01

Family

ID=65411864

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19705145.1A Active EP3721094B1 (de) 2018-02-20 2019-02-07 Ventilvorrichtung

Country Status (4)

Country Link
US (1) US20200378409A1 (de)
EP (1) EP3721094B1 (de)
DE (1) DE102018001303A1 (de)
WO (1) WO2019162097A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112648244B (zh) * 2021-02-19 2022-06-14 太原理工大学 泵阀协同多执行器电液系统及其控制方法
IT202100019439A1 (it) * 2021-07-22 2023-01-22 Roberto Tomassini Attuatore idraulico controllato per l'impiego su veicoli, rimorchi, semi-rimorchi, carichi sospesi e macchinari industriali.
DE102022002037A1 (de) * 2022-06-09 2023-12-14 Hydac Mobilhydraulik Gmbh Hydraulisches System

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646445A1 (de) * 1996-11-11 1998-05-14 Rexroth Mannesmann Gmbh Ventilanordnung
ATE326636T1 (de) * 2001-04-17 2006-06-15 Bucher Hydraulics Gmbh Wegeventil mit innenliegender druckwaage
DE20208577U1 (de) * 2002-06-03 2003-12-11 Hawe Hydraulik Gmbh & Co. Kg Elektrohydraulische Hubsteuervorrichtung für Flurförerfahrzeuge
DE10330869A1 (de) 2003-07-09 2005-02-17 Hydac System Gmbh Hydraulisches System
DE102004048642A1 (de) * 2004-10-04 2006-04-06 Bosch Rexroth Aktiengesellschaft Hydraulische Steueranordnung
DE102005021887A1 (de) * 2005-05-04 2006-11-16 Kässbohrer Geländefahrzeug AG Verfahren sowie Vorrichtung zur Fahrstabilitätserhöhung von Kraftfahrzeugen
US7302797B2 (en) * 2005-05-31 2007-12-04 Caterpillar Inc. Hydraulic system having a post-pressure compensator
DE102008064138A1 (de) * 2008-12-19 2010-07-01 Robert Bosch Gmbh Hydraulische Steueranordnung
DE102009033645A1 (de) * 2009-07-17 2011-01-20 Robert Bosch Gmbh Hydraulische Steueranordnung

Also Published As

Publication number Publication date
WO2019162097A1 (de) 2019-08-29
US20200378409A1 (en) 2020-12-03
DE102018001303A1 (de) 2019-08-22
EP3721094A1 (de) 2020-10-14

Similar Documents

Publication Publication Date Title
EP3721094B1 (de) Ventilvorrichtung
DE102005058846A1 (de) Ventilbaukastensystem mit elektromagnetisch betätigtem Ventil
DE102009017506A1 (de) Drucknachkompensiertes Hydrauliksteuerungsventil mit lastabhängiger Druckbegrenzung
DE3347000A1 (de) Elektrohydraulische einrichtung zur steuerung eines doppeltwirkenden hydromotors
DE102012220863A1 (de) Steueranordnung
DE102004063044A1 (de) Hydraulische Steuerung
DE19855187A1 (de) Verfahren und Steueranordnung zur Ansteuerung eines hydraulischen Verbrauchers
DE102007020558A1 (de) Ventilanordnung
EP2636908A2 (de) Steueranordnung
EP1875084B1 (de) Wegeventil und damit ausgeführte ls-steueranordnung
EP2891805B1 (de) Steueranordnung und Steuerventil für eine derartige Steueranordnung
EP1934487B1 (de) Hydraulische steuervorrichtung
EP1623123B1 (de) Hydraulische steueranordnung
DE4120489A1 (de) Niveauregeleinrichtung fuer fahrzeuge
DE19923345A1 (de) Elektrohydraulische Steuereinrichtung
DE3880586T2 (de) Hydraulisches steuersystem.
EP3309644B1 (de) Ventilvorrichtung sowie druckregelsystem mit einer solchen ventilvorrichtung
DE4435339C2 (de) Anordnung zur Ansteuerung eines hydraulisch betätigbaren Hauptventils
DE102015209657A1 (de) Hydraulische Ventilanordnung, hydraulischer Ventilblock mit einer derartigen Ventilanordnung, und hydraulischer Antrieb damit
DE102013206975A1 (de) Hydraulische Steuervorrichtung mit einseitiger Schieberansteuerung
DE102008064138A1 (de) Hydraulische Steueranordnung
DE3739824A1 (de) Vorgesteuertes 3-wege-druckregelventil
DE4026849C2 (de) Ventilanordnung zum Erzeugen eines Steuerdrucks in einer hydraulischen Anlage
DE102014216034A1 (de) Ventilanordnung mit verstellbarer Lastrückmeldung
DE102017001318B4 (de) Druckregelventil für eine Verstellpumpe

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220222

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1495537

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220615

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004503

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220902

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004503

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

26N No opposition filed

Effective date: 20230302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230207

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231221

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240229

Year of fee payment: 6

Ref country code: GB

Payment date: 20240119

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240126

Year of fee payment: 6