EP3717348A1 - Bateau comportant des motorisations qui presentent des helices positionnees chacune dans un conduit procurant un fonctionnement optimise en marche avant et une grande maniabilite - Google Patents

Bateau comportant des motorisations qui presentent des helices positionnees chacune dans un conduit procurant un fonctionnement optimise en marche avant et une grande maniabilite

Info

Publication number
EP3717348A1
EP3717348A1 EP18808360.4A EP18808360A EP3717348A1 EP 3717348 A1 EP3717348 A1 EP 3717348A1 EP 18808360 A EP18808360 A EP 18808360A EP 3717348 A1 EP3717348 A1 EP 3717348A1
Authority
EP
European Patent Office
Prior art keywords
boat
section
boat according
hull
transom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18808360.4A
Other languages
German (de)
English (en)
Inventor
Pascal Eric DUCLOS
Stéphane Julien CHAURIAL
Simon RIGAUD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pinball Boat
Original Assignee
Pinball Boat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pinball Boat filed Critical Pinball Boat
Publication of EP3717348A1 publication Critical patent/EP3717348A1/fr
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/46Steering or dynamic anchoring by jets or by rudders carrying jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/042Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull the underpart of which being partly provided with channels or the like, e.g. catamaran shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H2011/008Arrangements of two or more jet units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H11/00Marine propulsion by water jets
    • B63H11/02Marine propulsion by water jets the propulsive medium being ambient water
    • B63H11/04Marine propulsion by water jets the propulsive medium being ambient water by means of pumps
    • B63H11/08Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type
    • B63H2011/081Marine propulsion by water jets the propulsive medium being ambient water by means of pumps of rotary type with axial flow, i.e. the axis of rotation being parallel to the flow direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units
    • B63H2021/202Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type
    • B63H2021/205Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units of hybrid electric type the second power unit being of the internal combustion engine type, or the like, e.g. a Diesel engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H25/00Steering; Slowing-down otherwise than by use of propulsive elements; Dynamic anchoring, i.e. positioning vessels by means of main or auxiliary propulsive elements
    • B63H25/02Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring
    • B63H2025/026Initiating means for steering, for slowing down, otherwise than by use of propulsive elements, or for dynamic anchoring using multi-axis control levers, or the like, e.g. joysticks, wherein at least one degree of freedom is employed for steering, slowing down, or dynamic anchoring

Definitions

  • the present application relates to a boat comprising engines that have propellers each positioned in a conduit providing optimized operation in forward and great maneuverability.
  • Document FR-3.020.337 proposes a hybrid-propelled boat which comprises a combustion engine and two electric engines arranged on either side of the combustion engine.
  • Each electric motor comprises a propeller, positioned in a longitudinal duct, which extends from a water inlet to a water outlet provided at the rear of the boat.
  • each water inlet is positioned so as to be under the surface of the water when the boat is sailing at a speed below a given threshold and to be above the surface of the water. water when the boat is sowing and sails at a speed above the given threshold.
  • This embodiment is not fully satisfactory because it does not offer great maneuverability, especially to perform certain maneuvers port.
  • US-5.090.929 proposes a boat equipped with two electric engines, which are symmetrical with respect to the median line of the hull and which each have a propeller positioned in a conduit.
  • Each duct comprises a first cylindrical and rectilinear section, which opens at the transom of the boat and in which is positioned the propeller, and a second rectilinear section which opens at a first end, at the wall of the boat and, at a second end, in the first section at the front of the propeller.
  • the second section opens at the wall via vertically oriented shutters, which direct the incoming water flow towards the propeller.
  • the boat comprises two engines at the front to propel the boat in reverse and two engines at the rear to propel the boat forward.
  • the electric motors are controlled by a single controller.
  • this arrangement contributes to improving the maneuverability, the presence of four engines tends to complicate the design of the boat and therefore increase its price.
  • the presence of engines at the front tends strongly to disrupt the flow of water along the hull when the boat is operating forward and therefore to reduce the efficiency of the propulsion system of the boat in the forward direction .
  • the present invention aims to overcome the disadvantages of the prior art.
  • the invention relates to a boat comprising at least one hull, a transom, at least two walls and a propulsion system which comprises at least one heat engine, positioned at or symmetrically relative to at the vertical median plane of the boat, and at least two electric engines arranged symmetrically with respect to the vertical median plane and which each comprise a propeller disposed in a duct which has:
  • a front section which opens via at least one lateral orifice on a wall.
  • the conduit has the following characteristics:
  • the conduit comprises at least one convergent in the direction of a flow from the lateral orifice to the rear orifice,
  • the front section has a continuous curved profile
  • the front section is oriented so that the water flow out of the lateral orifice is directed in a forward direction and forms an angle between 20 and 60 ° relative to the wall.
  • the duct comprises at least one convergent in the direction of a flow going from the lateral orifice towards the rear orifice makes it possible to optimize the yield for a forward displacement.
  • the front section has a continuous curved profile makes it possible to reduce the pressure losses and to optimize the efficiency irrespective of the direction of travel.
  • the conduit has at least one of the following characteristics
  • the rear section comprises a convergent so that the rear orifice has a passage section smaller than the passage section of the central section
  • the front section comprises a convergent so that the lateral orifice has a passage section greater than the passage section of the central section
  • the rear section comprises an extension protruding from the transom
  • the helix has a diameter greater than or equal to 150 mm, preferably of the order of 300 mm,
  • At least one deflector configured to limit the suction of the water flow into the duct when the boat is operating forward at high speed.
  • FIG. 1 is a perspective view, at a first angle of view, of a boat illustrating an embodiment of the invention
  • FIG. 2 is a perspective view, at a second angle of view, of the boat visible in FIG. 1,
  • FIG. 3 is a side view of the boat visible in FIG. 1,
  • FIG. 4 is a view from below of the boat visible in FIG. 1,
  • FIG. 5 is a rear view of the boat visible in FIG. 1,
  • FIG. 6 is a perspective view of the rear of a boat illustrating a first embodiment
  • FIG. 7 is a section, along line VI-VI of FIG. 5, of a boat duct with a flow of water flow towards the rear of the boat,
  • FIG. 8 is a section, along the line VI-VI of FIG. 5, of a boat duct with a flow of water flow towards the front of the boat
  • FIG. 9 is a front view of a lateral orifice which illustrates an embodiment of the invention
  • FIG. 10 is a front view of a lateral orifice which illustrates another embodiment of the invention.
  • Fig. 11 is a diagram showing the variation of the duct section from the side entrance to the transom for the embodiments shown in Fig. 10;
  • Fig. 12 is a sectional view of a boat duct illustrating a second embodiment,
  • FIG. 13 is a perspective view of orifices of the duct visible in FIG. 12 which open onto an outer wall of the boat,
  • FIG. 14 is a perspective view of an orifice of the duct visible in FIG. 12 which opens onto an inner wall of the boat,
  • FIG. 15 is a diagram which illustrates the controls used to control the different engines of a boat in hybrid operating mode
  • FIG. 16 is a diagram which illustrates the controls used to control the various actuators in the electrical operating mode
  • FIGS. 17A and 17B are diagrams which illustrate the setpoints transmitted to right and left engines as a function of the variation of the direction setpoint, for first and second constant values of the acceleration setpoint, in electric operating mode,
  • FIG. 18 is a diagram which illustrates the setpoints transmitted to the right and left engines as a function of the variation of the acceleration setpoint, for a constant value of the direction setpoint, in the electrical operating mode
  • FIG. 19 is a diagram which illustrates the instructions transmitted to the right and left engines according to the variation of the direction setpoint, in hybrid operating mode
  • FIGS. 20A and 20B are top views of a boat illustrating various examples of maneuvers
  • FIG. 21 is a view of a hull of a boat from the bow of the boat illustrating an embodiment of the invention
  • FIG. 22 is a view from below of the hull visible in FIG. 21,
  • FIG. 23 is a longitudinal section between the hulls of the bottom of the hull visible in FIG. 21,
  • FIG. 24 is a side view of the bow of the hull visible in FIG. 21,
  • FIG. 25 is a cross-section at the lateral orifices of the visible hull 21 which illustrates the deflection of the water in the thermal operating mode
  • FIG. 26 is a side view of the hull of the boat visible in FIG. 21, and FIGS. 27A to 27H are sections of the hull respectively along transverse planes A to H of FIG. 26.
  • a catamaran type boat comprises two hulls 12.1 and 12.2, respectively called first and second hulls thereafter, connected by a flat 14.
  • Each hull 12.1 and 12.2 comprises a transom 16.1 and 16.2, an outer wall 18.1 and 18.2 and an inner wall 20.1 and 20.2 which meet at a nose 22.1 and 22.2.
  • the platform 14 comprises a bottom 24 which extends between the two hulls, a transom 26 disposed approximately in the same plane as the rear tables 16.1 and 16.2 of the hulls and the flanks 28.1 and 28.2 which respectively surmount the outer walls. 18.1 and 18.2.
  • the elements of the hull of the boat 10 are symmetrical relative to a median vertical plane PMV visible in Figure 5.
  • a longitudinal direction is parallel to the median plane PMV and horizontal.
  • a transverse plane is perpendicular to the longitudinal direction.
  • the boat 10 comprises at least one shell symmetrical with respect to the vertical median plane, at least one transom and two outer walls approximately parallel to the longitudinal direction at the rear of the boat.
  • the boat 10 comprises at least two shells 12.1, 12.2 tapered to obtain a depression of the hulls 12.1, 12.2 more important, as will be explained later.
  • the boat 10 includes a water line that corresponds to the intersection of the surface of the water and hulls 12.1 and 12.2 when the boat is stationary or navigates at a reduced speed, for example at a speed below 8 knots for a boat 9 m long.
  • high speed is understood to mean a speed greater than the minimum speed of hydroplaning of the boat and at reduced speed a speed lower than the maximum hull speed of the boat.
  • the boat 10 comprises a propulsion system which comprises first and second engines 30.1 and 30.2 electrical, arranged symmetrically with respect to the vertical median plane PMV, and a heat engine 32 positioned at the vertical median plane PMV or symmetrically by report to the latter.
  • a propulsion system which comprises first and second engines 30.1 and 30.2 electrical, arranged symmetrically with respect to the vertical median plane PMV, and a heat engine 32 positioned at the vertical median plane PMV or symmetrically by report to the latter.
  • the boat 10 includes batteries for storing electrical energy.
  • the heat engine 32 is of the outboard type and fixed on the transom 26 of the platform 14.
  • the heat engine 32 is of the inboard type. In this case, it is positioned partly inside a central shell 34 positioned under the platform 14, projecting from the bottom 24, equidistant from the first and second shells 12.1 and 12.2.
  • This heat engine 32 comprises an output shaft configured to rotate a helix.
  • the output shaft is connected to the helix by a first hinge, which comprises a vertical axis for orienting the helix to the right or to the left, and a second hinge which comprises an axis. horizontal allowing to immerse the propeller or to take it out completely or partially from the water.
  • the heat engine 32 is of the "Z drive" type.
  • the output shaft of the heat engine 32 is fixed and the boat comprises a rudder.
  • the heat engine 32 is not more detailed because it is known to those skilled in the art.
  • each first and second motor 30.1, 30.2 comprises an electric motor 38 operating in both directions, an output shaft 40 rotated by the electric motor 38 and a propeller 42 fixed on the shaft Release
  • the boat 10 Associated with the first and second engines 30.1 and 30.2, the boat 10 comprises two conduits 44 symmetrical with respect to the vertical median plane PMV, a first conduit 44 disposed in the first hull 12.1 and a second conduit 44 in the second hull 12.2 when the boat is a catamaran.
  • each duct 44 has:
  • a central section 46 cylindrical (or non-cylindrical), at which the propeller 42 is positioned,
  • a rear section 48 rectilinear, in the extension of the central section 46, which opens via at least one rear orifice 50 on the transom 16.1 or 16.2 of the first or second hull 12.1, 12.2, and
  • a front section 52 bent which opens via at least one lateral orifice 54 on the outer wall 18.1 or 18.2.
  • each duct 44 has a length, starting from the transom 16.1, 16.2 of the boat, such that the lateral orifice 54 is shifted rearward with respect to the center of gravity of the boat.
  • each duct 44 has a length, distance separating the lateral orifice 54 of the transom 16.1, 16.2, less than 1/4 of the length of the boat (distance between the bow and the stern of the boat).
  • the length of the ducts 44 must be as small as possible in order to reduce the pressure drops and to increase the rotational torque when operating in reverse.
  • the lateral orifice 54 is positioned at a small distance from the transom 16.1, 16.2 of the order of 1.3 m, less than 2 m.
  • the front section 52 is oriented so that the flow of water leaving the lateral orifice 54 is directed in a direction F forming an angle of between 20 and 60 ° with respect to the outer wall 18.1 or 18.2 and oriented towards the before.
  • the direction F is substantially perpendicular to the line passing approximately through the center of the lateral orifice 54 and the center of gravity of the boat G, as illustrated in FIG. 4.
  • the fact that the lateral orifices are as far apart as possible by relative to the center of gravity of the boat G and that the direction F is substantially perpendicular to the line passing approximately through the center of the lateral orifice 54 and the center of gravity of the boat G makes it possible to increase the torque. This feature provides great maneuverability to the boat that can turn on the spot.
  • the central section 46 has a diameter greater than or equal to 150 mm.
  • the diameter of the central section 46 is proportional to the size of the boat.
  • the propeller has a diameter slightly smaller than that of the central section. The larger the diameter of the propeller, the greater the propulsive efficiency. However, the diameter must not be too large so that the side and rear ports are immersed during operation of the two electric actuators 30.1 and 30.2.
  • the propeller has a diameter greater than or equal to 150 mm, preferably of the order of 300 mm. This configuration makes it possible to generate a flow of water propelled by the large propeller.
  • Each electric motor is preferably configured to operate optimally at a reduced rotational speed of the propeller, of the order of 1500 rpm with ducts of the order of 300 mm in diameter and a watercraft. about 9 m. This solution makes it possible to optimize the overall efficiency of the 30.1 and 30.2 electric drives that must operate at low pressure and at a high flow rate.
  • the first and second engines 30.1 and 30.2 are configured to generate forward propulsion, when the propeller 42 rotates in a first direction of rotation and the water is ejected via the rear orifice 50, or a rearward propulsion when the propeller 42 rotates in a second direction of rotation (opposite to the first direction) and the water is ejected via the lateral main orifice 54.
  • the duct 44 comprises at least one convergent in the direction of flow from the lateral orifice 54 to the rear orifice 50. This convergence makes it possible to optimize efficiency in the forward operating mode of the boat.
  • the rear section 48 includes a convergent 56 so that the rear port 50 has a passage section S50 smaller than the passage section S46 of the central section 46.
  • the convergent 56 adjoins the rear orifice 50. This position makes it possible to obtain at the output an acceleration of the water flow and therefore a reduction of the pressure to a value close to the pressure of the water outside the duct 44.
  • the front section 52 comprises a convergent 56 ', in the flow direction from the lateral orifice 54 towards the rear orifice 50, so that the lateral orifice 54 has a section S54 greater than the passage section S46 of the central section 46.
  • the duct 44 comprises two convergents in the direction of flow going from the lateral orifice 54 towards the rear orifice 50, a first convergent 56 between the central section 46 and the orifice 50 and a second convergent 56 'between the lateral orifice 54 and the central section 46.
  • This double convergence makes it possible to obtain an acceleration of the flow of water downstream and upstream of the propeller 42.
  • the lateral orifice 54 has a section S54 approximately whose surface is between 1.5 and 6 times the surface of the section S50 of the outlet orifice 50, ideally between 2 and 4 times the surface of the section S50 of the outlet port 50.
  • FIG. 11 shows, as an indication, the variation of the section of the duct 44 as a function of the distance between the given section and the lateral orifice 54, starting from the lateral orifice 54 to the transom .
  • the curve L corresponds to the embodiment having the lateral orifice 54 visible in FIG.
  • the duct 44 does not comprise any divergent portion.
  • the front section 52 has a continuous curved profile in the two directions of flow (from the lateral orifice 54 towards the rear orifice 50 or from the rear orifice 50 towards the lateral orifice 54 ). As illustrated in FIGS. 7 and 8, this continuous curved profile makes it possible to reduce the pressure drops and to obtain an orientation of the flow at the outlet of the lateral orifice that is optimal for maneuverability.
  • the lateral orifice 54 has an approximately rectangular shape with a low height, less than 20 cm, and a long length, greater than 40 cm, as illustrated in FIGS. 9, 10 and 13. This configuration makes it possible to obtain an important section. while keeping the lateral orifice 54 away from the waterline when the engines 30.1, 30.2 operate.
  • the rear section 48 comprises an extension 78 projecting from the transom 16.1,, 16.2.
  • this extension 78 has a length, measured at the axis of the conduit 44 from the transom, greater than or equal to 10 cm. This solution makes it possible to avoid the separation of the water around the outlet orifice 50 at the transom.
  • each transom 16.1, 16.2 has a removable part 80 which comprises the first convergent 56 and the extension 78 (in the case of a variant comprising an extension 78), to allow to access the propeller 42 and be able to disassemble it.
  • the front section 52 comprises a main lateral orifice 54 and at least one secondary lateral orifice.
  • the duct 44 comprises at least one auxiliary section which opens, at a first end, in the central section 46 and / or the front section 52 at the front of the propeller 42 and, at a second end, via an orifice secondary side on an inner wall 18.1, 18.2 and / or outer wall 20.1, 20.2, offset rearward with respect to the main lateral orifice 54.
  • the front duct 52 has a greater radius of curvature than that of the auxiliary section.
  • the duct 44 comprises at least one external auxiliary section 60 which opens, at a first end, into the central section 46 and / or the front section 52 at the front of the chamber. propeller 42 and, at a second end, via an external secondary lateral orifice 62 on the outer wall 18.1 or 18.2, offset rearwardly with respect to the main lateral orifice 54.
  • the conduit 44 comprises at least one inner auxiliary section 64 which opens, at a first end 65, into the central section 46 and / or the front section 52 at the front of the propeller 42 and, at a second end, via an inner secondary lateral orifice 66 on the inner wall 20.1 and 20.2, offset rearwardly with respect to the outer lateral secondary orifice 62.
  • the conduit comprises at least one external auxiliary section 60 and / or at least one inner auxiliary section 64.
  • the main lateral orifice In the presence of secondary lateral orifices, the main lateral orifice has a section smaller than the passage section of the main section 46. Thus, a convergent 58 is obtained when the flow of water flows from the rear orifice 50 towards the lateral openings.
  • the sum of the sections of the lateral orifices 54, 62, 66 is greater than the section S46 of the central section 46 which is itself greater than the section S50 of the rear orifice 50.
  • at least one convergent is obtained when the flow of water flows from the lateral orifices towards the rear orifice 50.
  • the water Due to the continuity of the curvature of the front section 52 and / or the fact that the front section 52 has a greater radius of curvature than that of the auxiliary section (s) outside (s) 60 and inside (s) 64, the water hardly flows in the outer auxiliary section (s) 60 and the auxiliary section (s) interior (s) 64.
  • the lateral orifices 54, 62, 66 are designed to reduce disturbances at high speeds.
  • the hull 130 comprises two shells 12.1 and 12.2 symmetrical with respect to the vertical median plane. These two hulls have a cross section (perpendicular to the vertical median plane) tapered to obtain a depression of the hulls 12.1 and 12.2 ensuring immersion pipes 44 when the boat is moving at a low speed, for example in electric operating mode.
  • the master torque is positioned in a 1/3 rear of the length of the boat.
  • the minimum distance between the two hulls 12.1, 12.2 at the level of the waterline is greater than or equal to half the width of the boat.
  • each hull 12.1, 12.2 comprises an almost vertical bow 132 in order to maximize the flotation length.
  • the hull 130 comprises a nearly horizontal slat 134 (in a cross section of the boat) with a dimension of about 50 mm. This chime 134 is positioned at mid-bow 132 and then shifts to be positioned at the bottom 136 of each shell.
  • the chime 134 serves as a deflector to fold the waves.
  • the chime 134 serves as a deflector and prevents water from rising along the outer wall 18.1, 18.2 when the boat is moving at high speed, especially in thermal operation mode.
  • the bow 132 has a redan 138 projecting from a bottom surface of about 50 mm, to fold the waves that go beyond the chime 134.
  • the bottom 136 of each hull describes an evolutionary V, the angle between the bottom 136 of the hull and the horizontal continuously varying all along the boat.
  • the bottom 136 of each hull forms, at the front of the boat, a first angle al with the horizontal greater than 60 °, preferably of the order of 75 °, which allows to have fine water inlets to reduce the resistance of penetration into the water.
  • each shell forms, at the transom, a second angle a2 with the horizontal less than 20 °, preferably of the order of 13 °. This solution maximizes lift.
  • FIG 26 there is shown a hull 130 with several cross sections A to H which are shown in Figures 27A to 27H.
  • the gap between the keel lines Q.12 of the hulls 12.1, 12.2 increases progressively from front to rear.
  • the keel line Q.34 of the central hull 34 is always located above the line passing through the keel lines Q.12 of the hulls 12.1, 12.2 in transverse planes.
  • the section of passage of water below the waterline at 3.5 t tends to increase from the front to a cross section just ahead of the side ports 54 and then decreases to the rear.
  • each lateral orifice 54 may comprise at least one deflector 68 configured to limit the suction of the water flow 70 in the duct 44 when the boat is running. forward at speed high and not to hinder the suction of water in the conduit 44 when the boat is operating at reduced speed.
  • the deflector 68 comprises a shape protruding from the outer wall 18.1 and 18.2 at the front of the main lateral orifice 54, as illustrated by FIGS. 12 and 13, and / or a form in hollow relative to the outer wall 18.1 and 18.2 behind the main lateral orifice 54, as illustrated in Figures 9 and 13.
  • each secondary external and / or internal lateral orifice 62, 66 may comprise a deflector 72, projecting or recessed, configured to limit the suction of the flow of water 70 into the conduit 44 when the boat is operating at high speed with the engine, and not to hinder the suction of water in the conduit 44 when the boat is operating at reduced speed.
  • the boat 10 comprises at least one master controller 100 whose inputs are connected to:
  • a first steering control 102 configured to generate a direction setpoint determined for example according to the angular position of a bar in the form of a steering wheel
  • a second acceleration command 104 configured to generate an acceleration setpoint determined, for example, as a function of the angular position of a throttle lever
  • a positioning sensor 108 of a jack controlling the orientation of the base of the heat engine 32 supporting the propeller.
  • the boat 10 could comprise a third control 106 direction and / or acceleration configured to generate a set direction and / or acceleration determined for example in function of the position of a joystick type joystick.
  • the second control 104 may comprise a simple joystick, as illustrated in FIG. 16, or a double joystick, one for each electric motor, as illustrated in FIG.
  • the outputs of the master controller 100 are connected to one of the electric actuators 30.1, to a slave controller 110 connected to the other electric motor 30.2, to an actuator 112 configured to control the heat engine 32 and to a proportional distributor 114 (In the case of a hydraulic cylinder) configured to control the position of the base of the heat engine 32 supporting the propeller.
  • a proportional distributor 114 In the case of a hydraulic cylinder
  • the master controller 100 can receive signals at these different inputs and can transmit signals via these different outputs.
  • FIG. 19 illustrates the setpoints transmitted to the electric motorizations 30.1 and 30.2, at reduced speed, as a function of the value of a direction setpoint varying from a minimum value to a maximum value, the curve 116 corresponding to the values of the setpoint transmitted to the electric motor 30.1 and the curve 118 corresponding to the values of the setpoint transmitted to the electric motor 30.2.
  • this when the value of the setpoint is less than 0, this corresponds to a direction of rotation of the electric motor which generates a propulsion of the flow of water towards the front.
  • the control of the electric motors makes it possible to reinforce the handling of the boat.
  • the master controller 100 can receive signals from the first direction command 102 and / or the second acceleration command 104 and transmit signals towards the first electric motor. 30.1 and the slave controller 110 connected to the second motor 30.2.
  • FIGS. 17A and 17B illustrate the setpoints transmitted to the electric actuators 30.1 and 30.2 as a function of the value of a direction setpoint varying from a minimum value to a maximum value, for a value of constant acceleration setpoint, the latter having a first value in FIG. 17A and a second value in FIG. 17B.
  • the curves 120 and 120 ' correspond to the setpoint values transmitted to the first motor 30.1 and the curves 122 and 122' to those transmitted to the second motor 30.2.
  • the instructions transmitted to the electric powertrains 30.1 and 30.2 are represented as a function of the value of an acceleration setpoint varying from a minimum value to a maximum value, for a constant direction reference value.
  • the curve 124 corresponds to the value of the setpoint transmitted to the first motor 30.1 and the curve 126 to that transmitted to the second motor 30.2.
  • the invention makes it possible, starting from the two electric powertrains 30.1 and 30.2 only, by modulating the speed of rotation and the direction of rotation of the propellers 42 of the first and second engines 30.1 and 30.2 independently of one of the other, to move the boat forwards, backwards, to the right, to the left or to turn on the spot.
  • the boat 10 can turn to the left.
  • the boat 10 can, depending on the speeds, turn left in advancing, hovering or receding.
  • the boat can be steered in two ways:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Exhaust Silencers (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

L'invention a pour objet un bateau qui comprend au moins un moteur thermique (32) positionné au niveau ou de manière symétrique par rapport à un plan médian vertical du bateau et deux motorisations disposées de manière symétrique par rapport au plan médian vertical qui comprennent chacune une hélice (42) disposée dans un conduit (44) qui présente : un tronçon central (46) au niveau duquel est positionnée l'hélice (42), un tronçon arrière (48) qui débouche via au moins un orifice arrière (50) sur le tableau arrière (16.1, 16.2) de la coque (12.1, 12.2), un tronçon avant (52) qui a un profil courbe continu, qui débouche via au moins un orifice latéral (54) sur la muraille extérieure (18.1, 18.2), l'orifice latéral (54) ayant une section supérieure à la section de l'orifice arrière (50) pour que le conduit (44) comprenne au moins un convergent, le tronçon avant (52) est orienté de sorte que le flux d'eau sortant de l'orifice latéral (54) soit dirigé selon une direction orientée vers l'avant et forme un angle compris entre 20 et 60° par rapport à la muraille (18.1, 18.2).

Description

BATEAU COMPORTANT DES MOTORISATIONS QUI PRESENTENT DES HELICES POSITIONNEES CHACUNE DANS UN CONDUIT PROCURANT UN FONCTIONNEMENT OPTIMISE EN MARCHE AVANT ET UNE GRANDE MANIABILITE
La présente demande se rapporte à un bateau comportant des motorisations qui présentent des hélices positionnées chacune dans un conduit procurant un fonctionnement optimisé en marche avant et une grande maniabilité.
Le document FR-3.020.337 propose un bateau à propulsion hybride qui comprend une motorisation à combustion et deux motorisations électriques disposées de part et d'autre de la motorisation à combustion. Chaque motorisation électrique comprend une hélice, positionnée dans un conduit longitudinal, qui s'étend depuis une entrée d'eau jusqu'à une sortie d'eau prévue à l'arrière du bateau. Selon une particularité indiquée dans ce document, chaque entrée d'eau est positionnée de manière à être sous la surface de l'eau lorsque le bateau navigue à une vitesse inférieure à un seuil donné et à être au-dessus de la surface de l'eau lorsque le bateau déjauge et navigue à une vitesse supérieure au seuil donné.
Ce mode de réalisation n'est pas pleinement satisfaisant car il n'offre pas une grande manœuvrabilité, notamment pour réaliser certaines manœuvres au port.
Le document US-5.090.929 propose un bateau équipé de deux motorisations électriques, qui sont symétriques par rapport à la ligne médiane de la carène et qui présentent chacune une hélice positionnée dans un conduit. Chaque conduit comprend un premier tronçon cylindrique et rectiligne, qui débouche au niveau du tableau arrière du bateau et dans lequel est positionnée l'hélice, ainsi qu'un deuxième tronçon rectiligne qui débouche, à une première extrémité, au niveau de la muraille du bateau et, à une deuxième extrémité, dans le premier tronçon à l'avant de l'hélice. Le deuxième tronçon débouche au niveau de la muraille via des persiennes, orientées verticalement, qui orientent le flux d'eau entrant en direction de l'hélice.
Selon un mode de réalisation, le bateau comprend deux motorisations à l'avant pour propulser le bateau en marche arrière et deux motorisations à l'arrière pour propulser le bateau en marche avant.
Selon ce document, les motorisations électriques sont contrôlées par une unique manette. Même si cet agencement contribue à améliorer la manœuvrabilité, la présence de quatre motorisations tend à complexifier la conception du bateau et donc à augmenter son prix. Selon une autre problématique, la présence des motorisations à l'avant tend fortement à perturber les écoulements de l'eau le long de la coque lorsque le bateau fonctionne en marche avant et donc à réduire le rendement du système de propulsion du bateau en marche avant.
La présente invention vise à remédier aux inconvénients de l'art antérieur.
A cet effet, l'invention a pour objet un bateau comprenant au moins une coque, un tableau arrière, au moins deux murailles ainsi qu'un système de propulsion qui comporte au moins un moteur thermique, positionné au niveau ou de manière symétrique par rapport au plan médian vertical du bateau, ainsi qu'au moins deux motorisations électriques disposées de manière symétrique par rapport au plan médian vertical et qui comprennent chacune une hélice disposée dans un conduit qui présente :
un tronçon central au niveau duquel est positionnée l'hélice,
un tronçon arrière dans le prolongement du tronçon central, qui débouche via au moins un orifice arrière sur le tableau arrière de la coque,
un tronçon avant qui débouche via au moins un orifice latéral sur une muraille.
Selon l'invention, le conduit possède les caractéristiques suivantes :
le conduit comprend au moins un convergent dans le sens d'un écoulement allant de l'orifice latéral vers l'orifice arrière,
le tronçon avant a un profil courbe continu, et
le tronçon avant est orienté de sorte que le flux d'eau sortant de l'orifice latéral soit dirigé selon une direction orientée vers l'avant et forme un angle compris entre 20 et 60° par rapport à la muraille.
Le fait que le conduit comprenne au moins un convergent dans le sens d'un écoulement allant de l'orifice latéral vers l'orifice arrière permet d'optimiser le rendement pour un déplacement vers l'avant. Le fait que le flux sortant de l'orifice latéral forme un angle compris entre 20 et 60° par rapport à la muraille permet, lorsqu'un seul moteur électrique propulse un flux d'eau vers l'avant, de créer une force résultante qui fait tourner efficacement le bateau sur lui-même et, lorsque les moteurs électriques propulsent simultanément des flux d'eau vers l'avant, de faire reculer le bateau efficacement. Enfin, le fait que le tronçon avant présente un profil courbe continu permet de réduire les pertes de charge et d'optimiser le rendement quel que soit le sens de déplacement.
Selon d'autres caractéristiques de l'invention, le conduit possède au moins l'une des caractéristiques suivantes
le tronçon arrière comprend un convergent de sorte que l'orifice arrière ait une section de passage inférieure à la section de passage du tronçon central,
le tronçon avant comprend un convergent de sorte que l'orifice latéral ait une section de passage supérieure à la section de passage du tronçon central,
le tronçon arrière comprend un prolongement en saillie par rapport au tableau arrière,
l'hélice a un diamètre supérieur ou égal à 150 mm, de préférence de l'ordre de 300 mm,
au moins un déflecteur configuré pour limiter l'aspiration du flux d'eau dans le conduit lorsque le bateau fonctionne en marche avant à vitesse élevée.
D'autres caractéristiques et avantages ressortiront de la description de l'invention qui va suivre, description donnée à titre d'exemple uniquement, en regard des dessins annexés parmi lesquels :
La figure 1 est une vue en perspective, selon un premier angle de vue, d'un bateau qui illustre un mode de réalisation de l'invention,
La figure 2 est une vue en perspective, selon un deuxième angle de vue, du bateau visible sur la figure 1,
La figure 3 est une vue latérale du bateau visible sur la figure 1,
La figure 4 est une vue de dessous du bateau visible sur la figure 1,
La figure 5 est une vue arrière du bateau visible sur la figure 1,
La figure 6 est vue en perspective de l'arrière d'un bateau qui illustre un premier mode de réalisation,
La figure 7 est une coupe, selon la ligne VI-VI de la figure 5, d'un conduit de bateau avec un écoulement du flux d'eau vers l'arrière du bateau,
La figure 8 est une coupe, selon la ligne VI-VI de la figure 5, d'un conduit de bateau avec un écoulement du flux d'eau vers l'avant du bateau, La figure 9 est une vue de face d'un orifice latéral qui illustre un mode de réalisation de l'invention,
La figure 10 est une vue de face d'un orifice latéral qui illustre un autre mode de réalisation de l'invention,
La figure 11 est un schéma qui montre la variation de la section du conduit de l'entrée latérale jusqu'au tableau arrière pour les modes de réalisation visibles sur la figure 10, La figure 12 est une coupe d'un conduit de bateau qui illustre un deuxième mode de réalisation,
La figure 13 est une vue en perspective d'orifices du conduit visible sur la figure 12 qui débouchent sur une muraille extérieure du bateau,
La figure 14 est une vue en perspective d'un orifice du conduit visible sur la figure 12 qui débouche sur une muraille intérieure du bateau,
La figure 15 est un schéma qui illustre les commandes utilisées pour contrôler les différentes motorisations d'un bateau en mode de fonctionnement hybride,
La figure 16 est un schéma qui illustre les commandes utilisées pour contrôler les différentes motorisations en mode de fonctionnement électrique,
Les figures 17A et 17B sont des schémas qui illustrent les consignes transmises aux motorisations droite et gauche en fonction de la variation de la consigne de direction, pour des première et deuxième valeurs constantes de la consigne d'accélération, en mode de fonctionnement électrique,
La figure 18 est un schéma qui illustre les consignes transmises aux motorisations droite et gauche en fonction de la variation de la consigne d'accélération, pour une valeur constante de la consigne de direction, en mode de fonctionnement électrique, La figure 19 est un schéma qui illustre les consignes transmises aux motorisations droite et gauche en fonction de la variation de la consigne de direction, en mode de fonctionnement hybride,
Les figures 20A et 20B sont des vues de dessus d'un bateau qui illustrent différents exemples de manœuvres,
La figure 21 est une vue d'une carène d'un bateau depuis l'avant du bateau qui illustre un mode de réalisation de l'invention,
La figure 22 est une vue de dessous de la carène visible sur la figure 21, La figure 23 est une coupe longitudinale entre les coques du fond de la carène visible sur la figure 21,
La figure 24 est une vue latérale de la proue de la carène visible sur la figure 21,
La figure 25 est une coupe transversale au niveau des orifices latéraux de la carène visible 21 qui illustre la déflection de l'eau en mode de fonctionnement thermique,
La figure 26 est une vue latérale de la carène du bateau visible sur la figure 21, et Les figures 27A à 27H sont des coupes de la carène respectivement selon des plans transversaux A à H de la figure 26.
Selon un mode de réalisation donné à titre d'exemple, non-limitatif et visible sur les figures 1 à 5, un bateau de type catamaran comprend deux coques 12.1 et 12.2, appelées respectivement première et deuxième coques par la suite, reliées par une plate-forme 14. Chaque coque 12.1 et 12.2 comprend un tableau arrière 16.1 et 16.2, une muraille extérieure 18.1 et 18.2 et une muraille intérieure 20.1 et 20.2 qui se rejoignent au niveau d'une pointe avant 22.1 et 22.2.
La plate-forme 14 comprend un fond 24 qui s'étend entre les deux coques, un tableau arrière 26 disposé approximativement dans le même plan que les tableaux arrières 16.1 et 16.2 des coques ainsi que des flancs 28.1 et 28.2 qui surmontent respectivement les murailles extérieures 18.1 et 18.2.
Les éléments de la carène du bateau 10 sont symétriques par rapport à un plan médian vertical PMV visible sur la figure 5. Pour la suite de la description, une direction longitudinale est parallèle au plan médian PMV et horizontale. Un plan transversal est perpendiculaire à la direction longitudinale.
L'invention n'est pas limitée aux catamarans. Quel que soit le mode de réalisation, le bateau 10 comprend au moins une coque symétrique par rapport au plan médian vertical, au moins un tableau arrière et deux murailles extérieures approximativement parallèles à la direction longitudinale à l'arrière du bateau.
De préférence, le bateau 10 comprend au moins deux coques 12.1, 12.2 effilées pour obtenir un enfoncement des coques 12.1, 12.2 plus important, comme cela sera expliqué ultérieurement. Le bateau 10 comprend une ligne de flottaison qui correspond à l'intersection de la surface de l'eau et des coques 12.1 et 12.2 lorsque le bateau est à l'arrêt ou navigue à une vitesse réduite, par exemple à une vitesse inférieure à 8 nœuds pour un bateau de 9 m de long.
Pour la suite de la description, pour un bateau de type planant, on entend par vitesse élevée une vitesse supérieure à la vitesse minimale d'hydroplanage du bateau et par vitesse réduite une vitesse inférieure à la vitesse maximale de carène du bateau.
Le bateau 10 comprend un système de propulsion qui comporte des première et deuxième motorisations 30.1 et 30.2 électrique, disposées de manière symétrique par rapport au plan médian vertical PMV, et un moteur thermique 32 positionné au niveau du plan médian vertical PMV ou de manière symétrique par rapport à ce dernier.
En complément des motorisations électriques, le bateau 10 comprend des batteries pour stocker l'énergie électrique.
Selon une première configuration, le moteur thermique 32 est de type hors-bord et fixé sur le tableau arrière 26 de la plate-forme 14.
Selon une autre configuration visible sur les figures 1 à 5, le moteur thermique 32 est de type in-board. Dans ce cas, il est positionné en partie à l'intérieur d'une coque centrale 34 positionnée sous la plate-forme 14, en saillie par rapport au fond 24, à équidistance des première et deuxième coques 12.1 et 12.2.
Ce moteur thermique 32 comprend un arbre de sortie configuré pour entraîner en rotation une hélice. Selon un mode de réalisation, l'arbre de sortie est relié à l'hélice par une première articulation, qui comporte un axe vertical permettant d'orienter l'hélice vers la droite ou vers la gauche, et une deuxième articulation qui comporte un axe horizontal permettant d'immerger l'hélice ou de la sortir totalement ou partiellement de l'eau. Selon un mode de réalisation, le moteur thermique 32 est de type « Z drive ».
En variante, l'arbre de sortie du moteur thermique 32 est fixe et le bateau comprend un gouvernail.
Le moteur thermique 32 n'est pas plus détaillé car il est connu de l'homme du métier.
Comme illustré sur les figures 7 et 12, chaque première et deuxième motorisation 30.1, 30.2 comprend un moteur électrique 38 fonctionnant dans les deux sens, un arbre de sortie 40 entraîné en rotation par le moteur électrique 38 et une hélice 42 fixée sur l'arbre de sortie
40. Associés aux première et deuxième motorisations 30.1 et 30.2, le bateau 10 comprend deux conduits 44 symétriques par rapport au plan médian vertical PMV, un premier conduit 44 disposé dans la première coque 12.1 et un deuxième conduit 44 dans la deuxième coque 12.2 lorsque le bateau est un catamaran.
Comme illustré sur les figures 6 à 10 et 12 à 14, chaque conduit 44 présente :
un tronçon central 46, cylindrique (ou non cylindrique), au niveau duquel est positionnée l'hélice 42,
un tronçon arrière 48, rectiligne, dans le prolongement du tronçon central 46, qui débouche via au moins un orifice arrière 50 sur le tableau arrière 16.1 ou 16.2 de la première ou deuxième coque 12.1, 12.2, et
un tronçon avant 52 coudé qui débouche via au moins un orifice latéral 54 sur la muraille extérieure 18.1 ou 18.2.
Selon une caractéristique, chaque conduit 44 a une longueur, en partant du tableau arrière 16.1, 16.2 du bateau, telle que l'orifice latéral 54 est décalé vers l'arrière par rapport au centre de gravité du bateau. Selon un mode de réalisation, chaque conduit 44 a une longueur, distance séparant l'orifice latéral 54 du tableau arrière 16.1, 16.2, inférieure à 1/4 de la longueur du bateau (distance séparant la proue et la poupe du bateau). La longueur des conduits 44 doit être la plus petite possible pour réduire les pertes de charge et pour augmenter le couple de rotation en fonctionnement en marche arrière. A titre indicatif, pour un bateau d'environ 9 m, l'orifice latéral 54 est positionné à une faible distance du tableau arrière 16.1, 16.2 de l'ordre de 1,3 m, inférieure à 2 m.
Le tronçon avant 52 est orienté de sorte que le flux d'eau sortant de l'orifice latéral 54 soit dirigé selon une direction F formant un angle compris entre 20 et 60° par rapport à la muraille extérieure 18.1 ou 18.2 et orientée vers l'avant. Ainsi, la direction F est sensiblement perpendiculaire à la droite passant approximativement par le centre de l'orifice latéral 54 et le centre de gravité du bateau G, comme illustré sur la figure 4. Le fait que les orifices latéraux soient le plus écartés possible par rapport au centre de gravité du bateau G et que la direction F soit sensiblement perpendiculaire à la droite passant approximativement par le centre de l'orifice latéral 54 et le centre de gravité du bateau G permet d'augmenter le couple de rotation. Cette caractéristique permet d'offrir une grande maniabilité au bateau qui peut tourner sur place. Selon une caractéristique de l'invention, le tronçon central 46 a un diamètre supérieur ou égal à 150 mm. Le diamètre du tronçon central 46 est proportionnel à la dimension du bateau. L'hélice a un diamètre très légèrement inférieur à celui du tronçon central. Plus le diamètre de l'hélice est important plus le rendement propulsif est important. Cependant, le diamètre ne doit pas être trop important afin que les orifices latéral et arrière soient immergés lors du fonctionnement des deux motorisations électriques 30.1 et 30.2. Pour un bateau de 9 m, l'hélice a un diamètre supérieur ou égal à 150 mm, de préférence de l'ordre de 300 mm. Cette configuration permet de générer un débit d'eau propulsé par l'hélice important.
Chaque motorisation électrique est de préférence configurée pour fonctionner de manière optimale à un régime de vitesse de rotation de l'hélice réduite, de l'ordre de 1500 tr/min avec des conduits de l'ordre de 300 mm de diamètre et un bateau d'environ 9 m. Cette solution permet d'optimiser le rendement global des motorisations électriques 30.1 et 30.2 qui doivent fonctionner à faible pression et à gros débit.
Selon une autre caractéristique, les première et deuxième motorisations 30.1 et 30.2 sont configurées pour générer une propulsion vers l'avant, lorsque l'hélice 42 tourne dans un premier sens de rotation et que l'eau est éjectée via l'orifice arrière 50, ou une propulsion vers l'arrière lorsque l'hélice 42 tourne dans un deuxième sens de rotation (opposé au premier sens) et que l'eau est éjectée via l'orifice principal latéral 54.
Pour améliorer le rendement du système de propulsion en mode de fonctionnement vers l'avant, le conduit 44 comprend au moins un convergent dans le sens d'écoulement allant de l'orifice latéral 54 vers l'orifice arrière 50. Cette convergence permet d'optimiser le rendement en mode de fonctionnement vers l'avant du bateau.
Selon une configuration, le tronçon arrière 48 comprend un convergent 56 de sorte que l'orifice arrière 50 ait une section de passage S50 inférieure à la section de passage S46 du tronçon central 46. Selon un mode de réalisation, le convergent 56 jouxte l'orifice arrière 50. Cette position permet d'obtenir en sortie une accélération du flux d'eau et donc une diminution de la pression jusqu'à une valeur proche de la pression de l'eau à l'extérieur du conduit 44. Selon une autre configuration, le tronçon avant 52 comprend un convergent 56', dans le sens d'écoulement allant de l'orifice latéral 54 vers l'orifice arrière 50, de sorte que l'orifice latéral 54 ait une section S54 supérieure à la section de passage S46 du tronçon central 46.
Selon une configuration visible sur les figures 7 et 8, le conduit 44 comprend deux convergents dans le sens d'écoulement allant de l'orifice latéral 54 vers l'orifice arrière 50, un premier convergent 56 entre le tronçon central 46 et l'orifice arrière 50 et un deuxième convergent 56' entre l'orifice latéral 54 et le tronçon central 46. Cette double convergence permet d'obtenir une accélération du flux d'eau en aval et en amont de l'hélice 42.
Selon une configuration, l'orifice latéral 54 a une section S54 approximativement dont la surface est comprise entre 1,5 et 6 fois la surface de la section S50 de l'orifice de sortie 50, idéalement entre 2 et 4 fois la surface de la section S50 de l'orifice de sortie 50.
Sur la figure 11, on a représenté, à titre indicatif, la variation de la section du conduit 44 en fonction de la distance entre la section donnée et l'orifice latéral 54, en partant de l'orifice latéral 54 jusqu'au tableau arrière. La courbe L correspond au mode de réalisation présentant l'orifice latéral 54 visible sur la figure 10.
Selon la courbe L, le conduit 44 ne comprend aucune portion divergente.
Selon une caractéristique de l'invention, le tronçon avant 52 a un profil courbe continu dans les deux sens d'écoulement (de l'orifice latéral 54 vers l'orifice arrière 50 ou de l'orifice arrière 50 vers l'orifice latéral 54). Comme illustré sur les figures 7 et 8, ce profil courbe continu permet de réduire les pertes de charge et d'obtenir une orientation du flux en sortie de l'orifice latéral optimale pour la manœuvrabilité.
L'orifice latéral 54 a une forme approximativement rectangulaire avec une faible hauteur, inférieure à 20 cm, et une grande longueur, supérieure à 40 cm, comme illustré sur les figures 9, 10 et 13. Cette configuration permet d'obtenir une section importante tout en conservant l'orifice latéral 54 éloigné de la ligne de flottaison lorsque les motorisations 30.1, 30.2 fonctionnent.
Selon une autre caractéristique visible sur les figures 6 à 8, le tronçon arrière 48 comprend un prolongement 78 en saillie par rapport au tableau arrière 16.1, ,16.2. Selon un mode de réalisation, ce prolongement 78 a une longueur, mesurée au niveau de l'axe du conduit 44 en partant du tableau arrière, supérieure ou égale à 10 cm. Cette solution permet d'éviter le décollement de l'eau autour de l'orifice de sortie 50 au niveau du tableau arrière. Selon un mode de réalisation visible sur les figures 7 et 8, chaque tableau arrière 16.1, 16.2 présente une partie démontable 80 qui comprend le premier convergent 56 et le prolongement 78 (dans le cas d'une variante comprenant un prolongement 78), pour permettre d'accéder à l'hélice 42 et pouvoir la démonter.
Selon un deuxième mode de réalisation, le tronçon avant 52 comprend un orifice latéral principal 54 et au moins un orifice latéral secondaire. Ainsi, le conduit 44 comprend au moins un tronçon auxiliaire qui débouche, à une première extrémité, dans le tronçon central 46 et/ou le tronçon avant 52 à l'avant de l'hélice 42 et, à une seconde extrémité, via un orifice latéral secondaire sur une muraille intérieure 18.1, 18.2 et/ou extérieure 20.1, 20.2, décalé vers l'arrière par rapport à l'orifice latéral principal 54.
Le conduit avant 52 a un rayon de courbure plus important que celui du tronçon auxiliaire. Selon un mode de réalisation visibles sur les figures 12 à 14, le conduit 44 comprend au moins un tronçon auxiliaire extérieur 60 qui débouche, à une première extrémité, dans le tronçon central 46 et/ou le tronçon avant 52 à l'avant de l'hélice 42 et, à une seconde extrémité, via un orifice latéral secondaire extérieur 62 sur la muraille extérieure 18.1 ou 18.2, décalé vers l'arrière par rapport à l'orifice latéral principal 54.
Selon un mode de réalisation, le conduit 44 comprend au moins un tronçon auxiliaire intérieur 64 qui débouche, à une première extrémité 65, dans le tronçon central 46 et/ou le tronçon avant 52 à l'avant de l'hélice 42 et, à une seconde extrémité, via un orifice latéral secondaire intérieur 66 sur la muraille intérieure 20.1 et 20.2, décalé vers l'arrière par rapport à l'orifice secondaire latéral extérieur 62.
Selon un mode de réalisation, le conduit comprend au moins un tronçon auxiliaire extérieur 60 et/ou au moins un tronçon auxiliaire intérieur 64.
En présence d'orifices latéraux secondaires, l'orifice latéral principal a une section inférieure à la section de passage du tronçon principal 46. Ainsi, on obtient un convergent 58 lorsque le flux d'eau s'écoule de l'orifice arrière 50 vers les orifices latéraux.
La somme des sections des orifices latéraux 54, 62, 66 est supérieure à la section S46 du tronçon central 46 qui est elle-même supérieure à la section S50 de l'orifice arrière 50. Ainsi, on obtient au moins un convergent lorsque le flux d'eau s'écoule des orifices latéraux vers l'orifice arrière 50. Lorsque le système de propulsion fonctionne en marche avant, à une vitesse réduite, l'eau pénètre via l'orifice latéral principal 54, les orifices latéraux secondaires extérieur(s) et intérieur(s) 62 et 66, est propulsée par l'hélice 42 vers l'arrière et sort via l'orifice arrière 50. Lorsque le système de propulsion fonctionne en marche arrière, l'eau pénètre via l'orifice arrière 50, est propulsée par l'hélice 42 vers l'avant et sort quasiment uniquement via l'orifice latéral principal 54. En raison de la continuité de la courbure du tronçon avant 52 et/ou du fait que le tronçon avant 52 ait un rayon de courbure plus important que celui du ou des tronçon(s) auxiliaire(s) extérieur(s) 60 et intérieur(s) 64, l'eau ne s'écoule quasiment pas dans le ou les tronçon(s) auxiliaire(s) extérieur(s) 60 et le ou les tronçon(s) auxiliaire(s) intérieur(s) 64.
Selon une autre caractéristique, les orifices latéraux 54, 62, 66 sont conçus de manière à réduire les perturbations à vitesses importantes.
Selon un mode de réalisation visible sur les figures 21 à 26, 27A à 27H, la carène 130 comprend deux coques 12.1 et 12.2 symétriques par rapport au plan médian vertical. Ces deux coques ont une section transversale (perpendiculaire au plan médian vertical) effilée pour obtenir un enfoncement des coques 12.1 et 12.2 garantissant une immersion des conduits 44 lorsque le bateau avance à une faible vitesse, par exemple en mode de fonctionnement électrique.
Par effilé, on entend que pour chaque coque 12.1, 12.2, le rapport entre un coefficient bloc et un coefficient prismatique R = As/(Bwl.T) est supérieur à 0,7, As étant l'aire de la plus grande section transversale immergée de la coque appelée maître couple, Bwl étant la largeur au niveau de la ligne de flottaison du maître couple et T étant la hauteur du maître couple.
Selon une autre particularité, le maître couple est positionné dans un 1/3 arrière de la longueur du bateau.
Selon un autre point, au niveau des maîtres couples, la distance minimale entre les deux coques 12.1, 12.2 au niveau de la ligne de flottaison est supérieure ou égale à la moitié de la largeur du bateau.
Comme illustré sur la figure 24, chaque coque 12.1, 12.2 comprend une étrave 132 quasi verticale afin de maximiser la longueur de flottaison. Pour chaque coque 12.1, 12.2, la carène 130 comprend un bouchain 134 quasi horizontal (dans une section transversale du bateau) d'une dimension d'environ 50 mm. Ce bouchain 134 est positionné à mi-étrave 132 puis se décale pour être positionné au niveau du fond 136 de chaque coque.
A l'avant, le bouchain 134 sert de déflecteur pour rabattre les vagues. A l'arrière, comme illustré sur la figure 25, le bouchain 134 sert de déflecteur et empêche l'eau de remonter le long de la muraille extérieure 18.1, 18.2 lorsque le bateau avance à vitesse élevée, notamment en mode de fonctionnement thermique.
L'étrave 132 présente un redan 138 en saillie par rapport à une surface inférieure d'environ 50 mm, afin de rabattre les vagues qui dépassent le bouchain 134.
Comme illustré sur la figure 23, le fond 136 de chaque coque décrit un V évolutif, l'angle entre le fond 136 de la coque et l'horizontale variant continûment tout le long du bateau. Selon une particularité, le fond 136 de chaque coque forme, au niveau de l'avant du bateau, un premier angle al avec l'horizontale supérieur à 60°, de préférence de l'ordre de 75°, ce qui permet d'avoir des entrées d'eau fines pour diminuer la résistance de pénétration dans l'eau.
Le fond 136 de chaque coque forme, au niveau du tableau arrière, un deuxième angle a2 avec l'horizontale inférieur à 20°, de préférence de l'ordre de 13°. Cette solution permet de maximiser la portance.
Sur la figure 26, on a représenté une carène 130 avec plusieurs coupes transversales A à H qui sont représentées sur les figures 27A à 27H.
L'écart entre les lignes de quille Q.12 des coques 12.1, 12.2 augmente progressivement de l'avant vers l'arrière. La ligne de quille Q.34 de la coque centrale 34 est toujours située au- dessus de la ligne passant par les lignes de quille Q.12 des coques 12.1, 12.2 dans des plans transversaux. La section de passage de l'eau sous la ligne de flottaison à 3,5 t tend à augmenter de l'avant jusqu'à une section transversale située juste à l'avant des orifices latéraux 54 puis diminue jusqu'à l'arrière.
Selon un mode de réalisation de l'invention visible sur les figures 9 et 13, chaque orifice latéral 54 peut comprendre au moins un déflecteur 68 configuré pour limiter l'aspiration du flux d'eau 70 dans le conduit 44 lorsque le bateau fonctionne en marche avant à vitesse élevée et pour ne pas gêner l'aspiration de l'eau dans le conduit 44 lorsque le bateau fonctionne à vitesse réduite.
Selon un mode de réalisation, le déflecteur 68 comprend une forme en saillie par rapport à la muraille extérieure 18.1 et 18.2 à l'avant de l'orifice latéral principal 54, comme illustré par les figures 12 et 13, et/ou une forme en creux par rapport à la muraille extérieure 18.1 et 18.2 à l'arrière de l'orifice latéral principal 54, comme illustré sur les figures 9 et 13.
Selon un mode de réalisation visible sur les figures 12 à 14, chaque orifice latéral secondaire extérieur et/ou intérieur 62, 66 peut comprendre un déflecteur 72, en saillie ou en creux, configuré pour limiter l'aspiration du flux d'eau 70 dans le conduit 44 lorsque le bateau fonctionne en marche avant à vitesse élevée avec le moteur thermique, et pour ne pas gêner l'aspiration de l'eau dans le conduit 44 lorsque le bateau fonctionne à vitesse réduite.
Selon un mode de réalisation illustré sur la figure 15, le bateau 10 comprend au moins un contrôleur maître 100 dont les entrées sont reliées à :
une première commande de direction 102 configurée pour générer une consigne de direction déterminée par exemple en fonction de la position angulaire d'une barre sous la forme d'un volant,
une deuxième commande 104 d'accélération configurée pour générer une consigne d'accélération déterminée par exemple en fonction de la position angulaire d'une manette de gaz,
un capteur de positionnement 108 d'un vérin (hydraulique ou électrique) contrôlant l'orientation de l'embase du moteur thermique 32 supportant l'hélice.
Selon un autre mode de réalisation, en plus des éléments mentionnés ci-dessus, le bateau 10 pourrait comprendre une troisième commande 106 de direction et/ou d'accélération configurée pour générer une consigne de direction et/ou d'accélération déterminée par exemple en fonction de la position d'une manette de type « joystick ».
La deuxième commande 104 peut comprendre une simple manette, comme illustré sur la figure 16, ou une double manette, une pour chaque moteur électrique, comme illustré sur la figure 15.
Les sorties du contrôleur maître 100 sont reliées à une des motorisations électriques 30.1, à un contrôleur esclave 110 relié à l'autre motorisation électrique 30.2, à un actionneur 112 configuré pour contrôler le moteur thermique 32 et à un distributeur proportionnel 114 (dans le cas d'un vérin hydraulique) configuré pour contrôler la position de l'embase du moteur thermique 32 supportant l'hélice.
En mode de fonctionnement hybride, le contrôleur maître 100 peut recevoir des signaux au niveau de ces différentes entrées et peut transmettre des signaux via ces différentes sorties.
A titre d'exemple, on a illustré sur la figure 19 les consignes transmises aux motorisations électriques 30.1 et 30.2, à vitesse réduite, en fonction de la valeur d'une consigne de direction variant d'une valeur minimale à une valeur maximale, la courbe 116 correspondant aux valeurs de la consigne transmises à la motorisation électrique 30.1 et la courbe 118 correspondant aux valeurs de la consigne transmises à la motorisation électrique 30.2. Selon cette figure 19, lorsque la valeur de la consigne est inférieure à 0, cela correspond à un sens de rotation de la motorisation électrique qui génère une propulsion du flux d'eau vers l'avant. A petite vitesse, le pilotage des moteurs électriques permet de renforcer la maniabilité du bateau.
En mode de fonctionnement électrique, comme illustré sur la figure 16, le contrôleur maître 100 peut recevoir des signaux de la première commande de direction 102 et/ou de la deuxième commande 104 d'accélération et émettre des signaux en direction de la première motorisation électrique 30.1 et du contrôleur esclave 110 relié à la deuxième motorisation 30.2.
A titre d'exemple, on a illustré sur les figures 17A et 17B les consignes transmises aux motorisations électriques 30.1 et 30.2 en fonction de la valeur d'une consigne de direction variant d'une valeur minimale à une valeur maximale, pour une valeur de consigne d'accélération constante, cette dernière ayant une première valeur sur la figure 17A et une deuxième valeur sur la figure 17B. Les courbes 120 et 120' correspondent aux valeurs de la consigne transmises à la première motorisation 30.1 et les courbes 122 et 122' à celles transmises à la deuxième motorisation 30.2.
Sur la figure 18, on a représenté les consignes transmises aux motorisations électriques 30.1 et 30.2 en fonction de la valeur d'une consigne d'accélération variant d'une valeur minimale à une valeur maximale, pour une valeur de consigne de direction constante. La courbe 124 correspond à la valeur de la consigne transmise à la première motorisation 30.1 et la courbe 126 à celle transmise à la deuxième motorisation 30.2. En mode de fonctionnement électrique, l'invention permet à partir des deux motorisations électriques 30.1 et 30.2 seulement, en modulant la vitesse de rotation et le sens de rotation des hélices 42 des première et deuxième motorisations 30.1 et 30.2 indépendamment l'une de l'autre, de déplacer le bateau vers l'avant, vers l'arrière, vers la droite, vers la gauche ou de tourner sur place.
Comme illustré sur la figure 20A, lorsque le moteur thermique 32 est orienté vers la gauche et que seule la motorisation électrique 30.1 de gauche propulse l'eau vers l'avant, le bateau 10 peut tourner vers la gauche.
Comme illustré sur la figure 20B, lorsque la motorisation électrique 30.1 de gauche propulse l'eau vers l'avant et la motorisation électrique 30.2 de droite propulse l'eau vers l'arrière, le bateau 10 peut en fonction des régimes tourner à gauche en avançant, en faisant du surplace ou en reculant.
En mode électrique, le pilotage du bateau peut s'effectuer de deux manières :
soit en dirigeant le bateau avec un volant et en contrôlant son régime avec une manette, comme décrit ci-dessus,
soit en dirigeant le bateau et en contrôlant son régime avec deux manettes, une pour chaque moteur électrique.

Claims

REVENDICATIONS
1. Bateau comprenant au moins une coque (12.1, 12.2), un tableau arrière (16.1, 16.2), au moins deux murailles (18.1, 18.2) ainsi qu'un système de propulsion qui comporte au moins un moteur thermique (32), positionné au niveau ou de manière symétrique par rapport à un plan médian vertical du bateau, et au moins deux motorisations électriques (30.1, 30.2) disposées de manière symétrique par rapport au plan médian vertical qui comprennent chacune une hélice (42) disposée dans un conduit (44) qui présente :
un tronçon central (46) au niveau duquel est positionnée l'hélice (42),
un tronçon arrière (48) dans le prolongement du tronçon central (46), qui débouche via au moins un orifice arrière (50) sur le tableau arrière (16.1, 16.2) de la coque (12.1, 12.2),
un tronçon avant (52) qui débouche, via au moins un orifice latéral (54), sur la muraille (18.1, 18.2),
caractérisé en ce que l'orifice latéral (54) a une section supérieure à la section de l'orifice arrière (50) pour que le conduit (44) comprenne au moins un convergent, en ce que le tronçon avant (52) a un profil courbe continu et en ce que le tronçon avant (52) est orienté de sorte que le flux d'eau sortant de l'orifice latéral (54) soit dirigé selon une direction orientée vers l'avant et forme un angle compris entre 20 et 60° par rapport à la muraille (18.1, 18.2).
2. Bateau selon la revendication 1, caractérisé en ce que l'hélice (42) a un diamètre supérieur ou égal à 150 mm, de préférence de l'ordre de 300 mm.
3. Bateau selon l'une des revendications précédentes, caractérisé en ce que l'orifice latéral (54) a une section (S54) approximativement rectangulaire qui a une surface comprise entre 2 et 4 fois la surface de la section (S50) de l'orifice de sortie (50).
4. Bateau selon l'une des revendications précédentes, caractérisé en ce que chaque conduit (44) a une longueur inférieure à 1/4 de la longueur du bateau.
5. Bateau selon l'une des revendications précédentes, caractérisé en ce que le tronçon arrière (48) comprend un convergent et en ce que le tronçon avant (52) comprend un convergent.
6. Bateau selon l'une des revendications précédentes, caractérisé en ce que le conduit (44) ne comprend aucune divergence.
7. Bateau selon l'une des revendications précédentes, caractérisé en ce que le tronçon arrière (48) comprend un prolongement (78), en saillie par rapport au tableau arrière (16.1, 16.2), qui a une longueur, mesurée au niveau de l'axe du conduit (44) en partant du tableau arrière, supérieure à 10 cm.
8. Bateau selon la revendication précédente, caractérisé en ce que chaque tableau arrière (16.1, 16.2) présente une partie démontable (80) qui comprend un premier convergent (56).
9. Bateau selon l'une des revendications précédentes, caractérisé en ce que la coque comprend au moins un déflecteur (72) configuré pour limiter l'aspiration du flux d'eau (70) dans chaque conduit (44) lorsque le bateau fonctionne en marche avant à vitesse élevée.
10. Bateau selon l'une des revendications précédentes, ledit bateau comprenant au moins deux coques (12.1, 12.2), symétriques par rapport à un plan médian vertical, reliées par une plate-forme (14) qui présente un fond (24), chacune des coques (12.1, 12.2) comportant un tableau arrière (16.1, 16.2), une muraille extérieure (18.1, 18.2) et une muraille intérieure (20.1, 20.2), caractérisé en ce que chaque coque (12.1, 12.2) a une section transversale effilée pour obtenir un enfoncement des coques (12.1, 12.2) et garantir une immersion des conduits (44) lorsque le bateau avance à faible vitesse.
11. Bateau selon la revendication précédente, caractérisé en ce qu'il comprend une coque centrale (34), positionnée sous la plate-forme (14), en saillie par rapport au fond (24), à équidistance des première et deuxième coques (12.1, 12.2), la ligne de quille (Q.34) de la coque centrale (34) étant toujours située au-dessus de la ligne passant par les lignes de quille (Q.12) des première et deuxième coques (12.1, 12.2) dans des plans transversaux.
12. Bateau selon la revendication 10 ou 11, caractérisé en ce que chaque coque comporte un rapport entre un coefficient bloc et un coefficient prismatique R = As/(Bwl.T) supérieur à 0,7, As étant le maître couple, Bwl étant la largeur au niveau de la ligne de flottaison du maître couple et T étant la hauteur du maître couple.
13. Bateau selon l'une des revendications 10 à 12, caractérisé en ce qu'au niveau des maîtres couples, la distance minimale entre les deux coques (12.1, 12.2) au niveau de la ligne de flottaison est supérieure ou égale à la moitié de la largeur du bateau.
14. Bateau selon l'une des revendications 10 à 13, caractérisé en ce que, pour chaque coque, le maître couple est positionnée dans un 1/3 arrière de la longueur du bateau.
15. Bateau selon l'une des revendications 10 à 14, caractérisé en ce que le fond (136) de chaque coque (12.1, 12.2) forme au niveau de l'avant du bateau un premier angle (al) avec l'horizontale supérieur à 60°, de préférence de l'ordre de 75°.
16. Bateau selon la revendication précédente, caractérisé en ce que le fond (136) de chaque coque (12.1, 12.2) forme, au niveau du tableau arrière, un deuxième angle (a2) avec l'horizontale inférieur à 20°, de préférence de l'ordre de 13°
17. Bateau selon l'une des revendications 10 à 16, caractérisé en ce que pour chaque coque, l'orifice latéral (54) a une forme approximativement rectangulaire avec une faible hauteur, inférieure à 20 cm ,et une grande longueur, supérieure à 40 cm.
18. Bateau selon l'une des revendications 10 à 17, caractérisé en ce que chaque coque
(12.1, 12.2) comprend une étrave (132) quasi verticale.
19. Bateau selon l'une des revendications 10 à 18, caractérisé en ce que chaque coque (12.1, 12.2) comprend un bouchain (134) quasi horizontal d'une dimension d'environ 50 mm, positionné à mi-étrave (132) puis qui se décale au niveau du fond (136) de chaque coque.
EP18808360.4A 2017-11-29 2018-11-28 Bateau comportant des motorisations qui presentent des helices positionnees chacune dans un conduit procurant un fonctionnement optimise en marche avant et une grande maniabilite Pending EP3717348A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1761344A FR3074140B1 (fr) 2017-11-29 2017-11-29 Bateau comportant des motorisations qui presentent des helices positionnees chacune dans un conduit procurant un fonctionnement optimise en marche avant
PCT/EP2018/082905 WO2019106053A1 (fr) 2017-11-29 2018-11-28 Bateau comportant des motorisations qui presentent des helices positionnees chacune dans un conduit procurant un fonctionnement optimise en marche avant et une grande maniabilite

Publications (1)

Publication Number Publication Date
EP3717348A1 true EP3717348A1 (fr) 2020-10-07

Family

ID=61027966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18808360.4A Pending EP3717348A1 (fr) 2017-11-29 2018-11-28 Bateau comportant des motorisations qui presentent des helices positionnees chacune dans un conduit procurant un fonctionnement optimise en marche avant et une grande maniabilite

Country Status (4)

Country Link
US (1) US11173993B2 (fr)
EP (1) EP3717348A1 (fr)
FR (1) FR3074140B1 (fr)
WO (1) WO2019106053A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022066855A1 (fr) * 2020-09-23 2022-03-31 Mastercraft Boat Company, Llc Bateaux, procédés et dispositifs utilisés pour générer un sillage souhaité
WO2023138711A1 (fr) * 2022-01-21 2023-07-27 Say Gmbh Système de propulsion pour véhicule nautique
US12065230B1 (en) * 2022-02-15 2024-08-20 Brunswick Corporation Marine propulsion control system and method with rear and lateral marine drives

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1345517A (en) * 1971-04-19 1974-01-30 Norris Auto Products Ltd Boat propulsion unit
FR2623161B1 (fr) * 1987-11-16 1990-04-06 Moteur Moderne Le Navire pourvu d'au moins un propulseur a reaction
US5090929A (en) * 1991-04-12 1992-02-25 Rieben Leo R Paired motor system for small boat propulsion and steerage
US6142841A (en) * 1998-05-14 2000-11-07 Brunswick Corporation Waterjet docking control system for a marine vessel
US6773316B1 (en) * 2002-01-31 2004-08-10 Brunswick Corporation Non-ventilating aft thruster tunnel design
GB2457019A (en) 2008-01-29 2009-08-05 Advanced Power Technology Ltd Propulsion system for a vessel suspended in a fluid.
US9038561B2 (en) 2011-02-03 2015-05-26 Navatek, Ltd. Planing hull for rough seas
FR3020337B1 (fr) 2014-04-24 2016-05-20 Fgi Bateau comprenant au moins deux motorisations combinees

Also Published As

Publication number Publication date
FR3074140B1 (fr) 2019-10-18
WO2019106053A1 (fr) 2019-06-06
FR3074140A1 (fr) 2019-05-31
US20200290712A1 (en) 2020-09-17
US11173993B2 (en) 2021-11-16

Similar Documents

Publication Publication Date Title
EP3717348A1 (fr) Bateau comportant des motorisations qui presentent des helices positionnees chacune dans un conduit procurant un fonctionnement optimise en marche avant et une grande maniabilite
US11014643B2 (en) Steering mechanism for a boat having a planing hull
RU2744812C1 (ru) Способ управления плавучим средством и плавучее средство
FI115128B (fi) Vesikulkuneuvon propulsiojärjestelmä ja menetelmä vesikulkuneuvon propulsiojärjestelmän käyttämiseksi
US9457880B2 (en) Propulsor arrangement for a marine vessel and a marine vessel constructed with this type of propulsor arrangement
JP2012183948A (ja) 船舶
JP2011189847A (ja) 船舶
JP2014073815A5 (fr)
WO2015162385A1 (fr) Bateau comprenant au moins deux motorisations combinees
FR3074136A1 (fr) Bateau de type catamaran comportant une carene optimisee
WO2012131178A1 (fr) Navire pour embarquement-débarquement de charges, du type catamaran à propulsion hybride
FR3055609A1 (fr) Bateau a propulsion hybride comprenant des motorisations electriques comportant chacune au moins une helice positionnee dans un conduit avec un orifice lateral
FR3053021B1 (fr) Buse pour systeme de propulsion de type hydrojet de navires
US9527564B2 (en) Small vessel propulsion system
WO1982003055A1 (fr) Navire et procede de deplacement d'un navire dans l'eau
US20230286633A1 (en) Jet propulsion system with in-nozzle deflector gate
FR3074472A1 (fr) Bateau multicoque anti-cabrage pour une navigation a hautes vitesses
WO2022201008A1 (fr) Embarcation propulsée par jet réversible et unité de jet réversible ou unité pour une telle embarcation
FR3036683A1 (fr) Procede et dispositif de controle de la direction d'un bateau equipe de deux motorisations de type hydrojet
WO2016006987A2 (fr) Scooter nautique propulse par un moteur pneumatique
EP4289716A1 (fr) Ensemble de flottaison et de propulsion et bateau comportant un tel ensemble
WO1982000811A1 (fr) Navire a moteur a deux coques
JP2000009399A (ja) 水中航走体
US20090215332A1 (en) Propulsion unit for multihull such as a catamaran
NL1038877C2 (nl) Boegschroefgenerator.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200506

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220915

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20240715