EP3704280B1 - Acier inoxydable martensitique, et son procédé de fabrication - Google Patents

Acier inoxydable martensitique, et son procédé de fabrication Download PDF

Info

Publication number
EP3704280B1
EP3704280B1 EP17809010.6A EP17809010A EP3704280B1 EP 3704280 B1 EP3704280 B1 EP 3704280B1 EP 17809010 A EP17809010 A EP 17809010A EP 3704280 B1 EP3704280 B1 EP 3704280B1
Authority
EP
European Patent Office
Prior art keywords
traces
steel
stainless steel
martensitic stainless
austenitization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17809010.6A
Other languages
German (de)
English (en)
Other versions
EP3704280A1 (fr
Inventor
Pierre-Olivier Santacreu
Coralie PARRENS
Jean-Benoît MOREAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aperam SA
Original Assignee
Aperam SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aperam SA filed Critical Aperam SA
Publication of EP3704280A1 publication Critical patent/EP3704280A1/fr
Application granted granted Critical
Publication of EP3704280B1 publication Critical patent/EP3704280B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Definitions

  • the present invention relates to a martensitic stainless steel and its method of manufacture.
  • This steel is more particularly, but not exclusively, intended to be used in the automobile industry, to form parts such as bodywork elements, intended to deform during an impact by absorbing a maximum quantity of energy.
  • martensitic stainless steels shaped by hot stamping from sheet metal. They have the advantage of having a very high mechanical resistance Rm, and thus of allowing a lightening of the bodywork, with equal performance compared to steels more conventionally used in the past.
  • the martensitic stainless steels known for this purpose have the disadvantage of having a limited bending capacity. They therefore do not have the ability to satisfactorily absorb the energy collected by the vehicle during an impact and the requirements imposed by the regulations on this subject, verified during impact tests ("crash -tests”), are difficult to satisfy.
  • This bending capacity of the steel is usually assessed by three-point bending tests carried out according to standard NF EN ISO 7438 and the VDA 238-100 procedure.
  • the punch is brought into contact with the sheet, itself supported by two rollers, with a pre-force of 30 N. Once contact is established, the displacement of the punch is indexed to zero. The test then consists in moving the punch so as to carry out the “three-point bending” of the sheet.
  • the test stops when a micro crack in the sheet leads to a drop in force on the punch of at least 30 N, or when the punch has moved by 14.2 mm, which corresponds to the stroke maximum allowed.
  • the sheet metal sample is therefore bent.
  • the ductility in service is then evaluated by measuring the bend angle at 10 %, in degrees. The higher the 10 % angle, the better the crimping or bendability of the sheet.
  • JP-A-2004-052060 describes a steel for turbine blades whose microstructure, very low in ferrite, consists essentially of somehow tempered martensite, and which contains carbides which increase its tensile strength but which would be unfavorable to its ability to bend.
  • EP-A-0 083 254 is very comparable to him from all these points of view.
  • CN 102260826 A describes a martensitic stainless steel for high temperature applications.
  • the object of the invention is to provide a martensitic stainless steel with a composition and microstructure which make it well suited to the use which has just been mentioned, in that it would have good V-bendability characterized by the aforementioned standard, and a high bending angle ⁇ , as well as sufficiently high mechanical strength properties Rm.
  • the subject of the invention is a martensitic stainless steel and a process for manufacturing said steel as described in the appended claims.
  • the invention is based on the coupling between a steel composition and a particular microstructure.
  • This coupling makes it possible in particular to prepare sheets capable of being easily shaped by hot stamping, and of presenting a very good compromise between a high tensile strength Rm and a high aptitude for bending in the final martensitic state, resulting in an equally high bending angle ⁇ , measured according to the NF EN ISO 7438 standard and the VDA 238-100 procedure.
  • These sheets are therefore particularly well suited to use as automobile body parts having a high capacity for absorbing energy during impacts to which the vehicle is subjected.
  • the minimum C content of 0.05% is justified by the need to obtain austenitization of the microstructure during the first stage of the manufacturing process, therefore before quenching. This will govern the mechanical properties of the sheet, in particular its ability to be shaped and its mechanical strength.
  • a content according to the invention of more than 0.30% is not desirable so as not to embrittle the martensite formed as it is quenched (which would reduce the ability to bend) and degrade the weldability, which would be a disadvantage for the privileged application of the invention to the automobile.
  • a maximum content of 0.20% is however preferred, to better ensure obtaining a completely satisfactory bend angle when other conditions required by the invention on the composition of the steel and/or the treatments thermals experienced are close to the set limits.
  • the minimum Mn content of 0.20% achieves the necessary austenitization. Above 2.0% oxidation problems are to be feared during heat treatments if these are not carried out in neutral or reducing atmospheres. The mandatory use of neutral atmospheres can lead to a high cost for the execution of heat treatments. In addition manganese in quantity greater than 2.0% is unfavorable to obtaining the desired martensitic structure because of the possible presence of residual austenite at the end of quenching.
  • Si content is between traces and 1.0%. Silicon can be used as a deoxidizer during production, just like Al, to which it can be added or substituted. Beyond 1.0%, it is considered that it excessively promotes the formation of ferrite and therefore makes austenitization more difficult, and that it weakens the sheet too much for the shaping of a complex part to be able be carried out satisfactorily.
  • the total content of Mn and Si must not exceed 1.5%. As Mn and Si are both segregating elements, too high a total presence of Mn and Si could adversely affect the homogeneity of the martensitic microstructure, in particular depending on the thickness of the part if this is relatively high.
  • the minimum content of Mn + Si is 0.2%, since Mn is necessarily present at a content of at least 0.2%, as seen above.
  • Mn and S contents are expressed in mass % (if Mn and S are each present in the state of simple impurities, in other words as traces resulting from production, it is assumed that for this relationship, their contents are considered as equal to 0): 0 ⁇ 10,000 x Mn x S ⁇ 40
  • P content is between traces and 0.04%, to ensure that the final product will not be excessively brittle. P is also detrimental to weldability and increases the brittleness of ferrite and martensite at grain boundaries.
  • Its Cr content is between 10.5 and 17.0%. The minimum content of 10.5% is justified to ensure the stainless steel. A content higher than 17% would make austenitization difficult and would unnecessarily increase the cost of the steel.
  • Ni content is between traces and 4.0%.
  • Ni within the prescribed limit of 4.0% maximum is advantageous for promoting austenitization. It is necessary, simultaneously, to respect the condition [Cr - 10.3 - 80 x (C + N) 2 ] ⁇ (Mn + Ni), in other words (Mn + Ni) - [Cr - 10.3 - 80*(C+N) 2 ] ⁇ 0, where the various contents are in mass %.
  • Its Mo content according to the invention is between traces and 2.0%, preferably 1.0%.
  • Mo is favorable to good corrosion resistance. Above 2.0%, austenitization would be hampered and the cost of steel unnecessarily increased. A maximum content of 1.0% is preferred, because Mo is an embrittling element in that it limits the diffusion of hydrogen, which can thus be removed from the metal with greater difficulty.
  • W content is defined according to the invention as a function of that of Mo by respecting the relationship traces ⁇ Mo + 2W ⁇ 2.0%, preferably traces ⁇ Mo + 2W ⁇ 1.0%.
  • the advantages and disadvantages of W are qualitatively comparable to those of Mo.
  • Cu content according to the invention is between traces and a maximum of 2.0%, with a preference for a content ⁇ 0.5% if the steel is intended to manufacture a part which will have to be welded.
  • the sum Cu + Co must not exceed 2.0%, and the sum Cu + Co + Ni must not exceed 4.0%.
  • Ti is a deoxidizer, like Al and Si, but its cost and its lesser efficiency than that of Al for deoxidation, with an equal quantity added, makes its use generally unattractive from this point of view.
  • Ti may, however, be of interest in that the formation of nitrides and carbonitrides of Ti may limit grain growth and favorably influence certain mechanical properties and weldability.
  • this formation can be a disadvantage in the case of the process according to the invention, because Ti tends to interfere with austenitization due to the formation of carbides, and TiN degrades resilience and bendability. A maximum content of 0.5% should therefore not be exceeded.
  • V content is between traces and 0.3%.
  • V and Zr are embrittling elements which are liable to form nitrides, and must not be present in excessive amounts, alone and in combination. On this last point, it is necessary to satisfy the following limit: traces ⁇ Ti + V + Zr ⁇ 0.5%
  • Al is usually used as a deoxidizer during production.
  • a quantity exceeding 0.2% must not remain in the steel after deoxidation, because there would be a risk of forming an excessive quantity of AIN degrading the mechanical properties, and also of having difficulty in obtain the predominantly martensitic microstructure because Al is very ferritizing.
  • the requirements on the O content are those which are conventional for martensitic stainless steels, depending on the ability to form them without cracks starting from the inclusions, and on the quality of the mechanical properties or bends sought on the final part, and that the excessive presence of oxidized inclusions is likely to alter.
  • Nb content is between traces and 0.3%, as is its Ta content. Since Ta is an element very close to Nb in terms of its metallurgical effects, in particular the formation of carbonites, the relationship 0.25 ⁇ (Nb + Ta )/(C + N) ⁇ 8 will be satisfied.
  • Nb and Ta are important elements for obtaining good resilience and good bending capacity, and at least one of them must be significantly present. But since they can interfere with austenitization, they should not be present in quantities exceeding what has just been prescribed. Also, these elements capture C and N, and their total content must be adjusted according to the C and N contents actually present in the steel. If there is too little Nb and/or Ta in the steel when the C and N contents are relatively high, there will not be enough dissolved Nb and Ta left for these elements to improve toughness sufficiently.
  • Co content is preferably between traces and 0.5%.
  • This element is, like Cu, likely to help austenitization. However, too much should not be added so as not to deteriorate the weldability if the steel is intended to be transformed into a part to be welded. Otherwise, a Co content according to the invention of a maximum of 2.0% is acceptable, provided, as has been said, not to exceed a total Cu + Co content of 2.0% and a total Cu + Co + Ni content of 4.0%, so as not to end up with too high a residual austenite content.
  • Sn content is between traces and 0.05%. This element is not desired because it is detrimental to the weldability and the ability of the steel to be hot transformed.
  • the 0.05% limit is a tolerance which, in practice, will most often correspond to an absence of voluntary addition.
  • H content is comprised according to the invention between traces and 5 ppm (0.0005%), preferably no more than 1 ppm (0.0001%) and, better still, no more than 0.1 ppm (0.00001%). ).
  • N is an impurity of which the same treatments which make it possible to reduce the H content contribute to limiting the presence, or even to reducing it appreciably. It is not always necessary to have a particularly low N content, but its content, considered together with those of elements with which it can combine to form nitrides or carbonitrides, must not be too high. This results in the relationship 0.25 ⁇ (Nb + Ta)/(C + N) ⁇ 8 seen above, compliance with which contributes to providing sufficient resilience.
  • Rare earths and Y improve the properties of resistance to oxidation (lower oxidation kinetics, therefore less oxide formed), which can be an advantage during hot forming.
  • the non-metallic inclusions they form generate serious problems during casting, or, further downstream, during pickling, due to the high reactivity of rare earths and Y.
  • the possible total addition of rare earths and Y at 0.06% The price of these elements means that it is, in any case, generally preferable to use more common elements, such as Al or Si, for ensure deoxidation.
  • the sheets prepared according to the invention can be coated sheets, the coating (generally with Zn, or Al, or alloys of which one and/or the other are among the main components ) which can take place before or after the forming of the sheet.
  • the coating techniques that can be used do not differ from those usually practiced on steels (immersion in a molten bath of Al, or Zn, or one of their alloys, electrodeposition, CVD/PVD).
  • This coating typically 1 to 200 ⁇ m thick and present on one or both sides of the sheet, may have been deposited by any technique conventionally used for this purpose. It is simply necessary that, if it was deposited before the austenitization, it does not evaporate during the stay of the sheet at the austenitization temperatures, which can sometimes happen even if this stay is short.
  • the steel having the composition according to the invention is produced, cast and hot transformed in a conventional manner, for example put in the form of hot and/or cold rolled sheets in a typical range of thickness ranging from 0.5 mm at 12mm.
  • the preferred thickness will be in the range 0.5 to 4 mm.
  • the transformed product thus obtained first undergoes austenitization, which brings it to a range of temperatures between the temperature Ac1 at which austenite appears during heating and 1100° C., ideally between Ac1 + 100°C and 1050°C, for a duration varying from 10 s to 1 hour to both guarantee complete austenitization and limit oxidation of the product as well as the energy cost of austenitization.
  • this austenitization temperature must concern the entire volume of the sheet, and that the treatment must be long enough so that, taking into account the thickness of the sheet and the kinetics of the transformation, the austenitization is complete throughout this volume. This is, of course, valid for a semi-finished product other than a sheet.
  • the furnace where the austenitization takes place can be a conventional furnace or an induction furnace which allows rapid and homogeneous heating, but the heating rates must be greater than 5°C/s to avoid coalescence of the carbide precipitates already present. , which would slow down their dissolution during austenitization.
  • the desire not to impose too long a total duration on the austenitization stage also motivates this minimum heating rate.
  • the atmosphere is, in the standard case, air, and the time and temperature conditions are optimized to limit oxidation while guaranteeing complete austenitization.
  • a non-oxidizing atmosphere therefore neutral or reducing (nitrogen, argon, CO, hydrogen and their mixtures), preferably to air, makes it possible to increase the treatment temperature without damage, which makes it possible to ensure complete austenitization in a minimum of time. If a hydrogenated atmosphere is used, it must be ensured that it would not lead to hydrogen being taken up by the metal, which would cause it to exceed the limits prescribed above.
  • austenitization takes place at a temperature between 925°C and 1000°C for a period of 10 s to 1 h (this period being that the sheet passes above Ac1), preferably between 2 min and 10 min for heating in a conventional oven and between 30 s and 1 min for an induction oven.
  • An induction furnace has the advantage, known per se, of providing rapid heating up to the nominal austenitizing temperature. In addition, it immediately concerns the entire volume of the sheet, and therefore allows a shorter treatment than a conventional oven to achieve the desired result. These temperatures and durations make it possible to ensure that the continuation of the treatments will lead to a sufficient formation of martensite, and this for a reasonable duration allowing good productivity of the process.
  • This austenitization is to change all of the metal from the initial ferrite + carbides microstructure to an austenitic microstructure containing a maximum of 0.5% carbides in volume fraction, and a maximum of 20% residual ferrite in volume fraction.
  • One purpose of this austenitization is, in particular, to lead to a dissolution of at least the majority of the carbides initially present, so as to release C atoms to form the martensitic structure during the following stages of the process.
  • the maximum residual ferrite content of 20%, which must remain on the final product, is justified by the resilience and the conventional elastic limit which it is desired to obtain.
  • the duration of austenitization is adjusted so that this microstructure is obtained throughout the treated steel, and can therefore vary according to the precise dimensions of the semi-finished product at this stage.
  • a person skilled in the art can easily carry out this adjustment by modeling and/or experiments carried out on the installation at his disposal, for a semi-finished product of given shapes and dimensions.
  • the Ac1 temperature depends on the chemical composition, and also on the heating rate. It is measured, as is known, by following the expansion of a sample when heating at a predefined heating rate between 10 and 100°C/s.
  • the semi-finished products are quenched, from the austenitization temperature, either in the open air, calm or pulsed, or by immersing them in a tank of water or oil. at ambient temperature, or in shaping tools in the case of the use of a hot forming process such as hot stamping.
  • the objective is to obtain, throughout the volume of the semi-finished product, a cooling rate of between 0.5 and 1000°C/s down to a temperature below the temperature Ms at the start of the martensitic transformation, which is typically around 300°C, followed by cooling between 0.5 and 20°C/s to room temperature.
  • Ms depends on the composition of the steel and can be determined, conventionally, by formulas and modeling or dilatometric tests.
  • composition of the aforementioned steel and a suitable microstructure of this steel obtained thanks to the austenitization-quenching treatment described, which is at least 75% martensitic, and contains at most 20% of ferrite whose grain size is according to the invention from 4 to 80 ⁇ m, preferably between 5 and 40 ⁇ m, and a volume fraction of carbides of at most 0.5%.
  • the residual austenite fraction which can be tolerated after quenching is therefore at most approximately 5%, corresponding substantially to the difference between 100% and the sum of the martensite, ferrite and carbide fractions.
  • an additional heat treatment can be carried out on the final part, therefore after cooling to ambient temperature, to improve its elongation at break and bring it to a value of more than 10% and without reducing the mechanical characteristics and the capacity. in folding.
  • This treatment consists of keeping the final part between 90°C and 250°C for 10 s to 1 hour.
  • This additional treatment can also be undergone during hardening by paint annealing (bake hardening), the temperatures and durations of which are in this range, typically 180° C. and 20 min. These treatments and the subsequent cooling are carried out in still air, therefore at a cooling rate of the order of a few °C/s.
  • Table 2 shows, for the steels of Table 1, how they satisfy or not the relationships required by the invention. Non-inventive values are underlined.
  • Table 3 shows the metallurgical structures obtained after the heat treatments carried out on the various steels in Table 1.
  • the underlined values are those which mean that the examples concerned are not considered to be in accordance with the invention, from the point of view of their microstructure. .
  • Table 4 shows the properties of the examples according to the invention, and those of the reference examples which do not satisfy all the relationships and do not achieve all the properties which the invention aims to obtain.
  • the underlined values are those which are not satisfactory with regard to the criteria cited above. Impact tests were not carried out on the steels which had an insufficient martensite content which placed them outside the invention anyway.
  • the reference steels 9 to 13 are non-stainless martensitic steels (therefore not belonging to the class of steels of the invention and other reference steels 14 and 15) of known type, commonly used in the field of the automobile. They were tested with a view to showing how the properties of the steels of the invention were compared to theirs.
  • the reference steels 9 to 12 have compositions in accordance with the invention on the elements other than Cr taken individually. But they do not contain enough Nb + Ta compared to the sum of C + N, not enough Mn + Si (except 9, and just barely) and too much Mn compared to S. Those who have undergone heat treatment in accordance with the invention, at 950° C. for 5 min, nevertheless end up with a suitable microstructure. Their bending angles in the martensitic state are correct, but at the same time their Rm is not high enough to provide them with an absorption capacity in impact tests which would correspond to expectations. As for those which have undergone the reference heat treatment, they end up with a ferritic microstructure: their bending angle is high (120°) but the Rm being low due to the absence of martensite, the absorption capacity in crash test is far below the target.
  • the reference steel 13 also has too high a C content. As expected, the bend angle is even less than those of other examples of non-stainless martensitic steels which have undergone the same heat treatment. During the impact test, its very high Rm does not compensate for this mediocre bendability.
  • the reference steels 14 and 15 are martensitic stainless steels.
  • the 14 has a measured C content which is only slightly lower than the minimum required by the invention, and which could be assimilated to this minimum. On the other hand, it does not respect the relationship linking Mn, Ni, Cr, C and N. At the end of the heat treatment carried out under conditions which would be in accordance with the invention, it is left with an excessively high ferrite content. Consequently, if its bend angle is correct, its Rm is by far not high enough to ensure sufficient absorption capacity in impact testing.
  • the reference steel 15 has a C content virtually lower than that required by the invention, which gives it, after the heat treatment, an almost entirely ferritic microstructure.
  • the virtual absence of Nb and Ta gives it a lower (Nb+Ta)/(C+N) ratio than required by the invention.
  • the relation linking Mn, Ni, Cr, C and N is not respected either, which contributes to the very ferritic character of the microstructure. Consequently, Rm and Rp0.2 are very poor, and despite a very high bending angle, the absorption capacity in the impact test is insufficient.
  • the steel 3 according to the invention has also undergone different heat treatments, one according to the invention at 950° C. for 5 min, the other in accordance with the reference treatment.
  • the treatment according to the invention made it possible to obtain on the steel 3 satisfactory properties from all points of view with regard to the objectives aimed for, with an almost entirely martensitic structure, to be linked to the lower presence of Si than in the steel 1, and a small ferritic grain size.
  • the reference heat treatment only led to mediocre Rp 0.2 and Rm properties, insufficient to ensure good shock absorption capacity despite high bendability.
  • Steel 8 according to the invention which is relatively rich in C, Nb and V, has also undergone the same two heat treatments as steel 3. With the treatment according to the invention, its structure is entirely martensitic. Its elongation at break and its bending angle are only correct, but its high Rm gives it sufficient shock absorption capacity. If the reference heat treatment is applied to it, its structure is entirely ferritic. The high bend angle is not accompanied by a sufficient Rm for the shock absorption capacity to be adequate.
  • Steel 6 according to the invention is distinguished from the other examples by a C content of 0.24%, therefore even higher than that of steel 8. Its structure is almost exclusively martensitic after application of the heat treatment according to the invention. Its bending angle is just sufficient due to the high C content which is not in the preferred range for the invention, but its very high Rm nevertheless gives it good shock absorption capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

  • La présente invention concerne un acier inoxydable martensitique et son procédé de fabrication.
  • Cet acier est plus particulièrement, mais pas exclusivement, destiné à être utilisé dans l'industrie automobile, pour constituer des pièces telles que des éléments de carrosserie, destinées à se déformer lors d'un choc en absorbant une quantité maximale d'énergie.
  • Pour constituer des éléments de carrosserie de véhicules, on peut utiliser des aciers inoxydables martensitiques mis en forme par emboutissage à chaud à partir d'une tôle. Ils présentent l'avantage d'avoir une résistance mécanique Rm très élevée, et de permettre ainsi un allègement de la carrosserie, à performances égales par rapport à des aciers plus classiquement employés par le passé. Cependant, les aciers inoxydables martensitiques connus à cet effet présentent l'inconvénient d'avoir une capacité de pliage limitée. Ils n'ont, de ce fait, pas la possibilité d'absorber de façon satisfaisante l'énergie encaissée par le véhicule lors d'un choc et les exigences imposées par les règlementations à ce sujet, vérifiées lors des essais de choc (« crash-tests »), sont difficiles à satisfaire.
  • Cette capacité de pliage de l'acier est habituellement appréciée par des essais de pliage trois points réalisés selon la norme NF EN ISO 7438 et la procédure VDA 238-100.
  • Au début de l'essai le poinçon est mis en contact avec la tôle, elle-même supportée par deux rouleaux, avec une pré-force de 30 N. Une fois le contact établi, le déplacement du poinçon est indexé à zéro. Le test consiste alors à déplacer le poinçon de manière à effectuer le « pliage trois points » de la tôle.
  • Le test s'arrête lorsqu'une micro fissuration de la tôle conduit à une chute de force sur le poinçon d'au moins 30 N, ou bien lorsque le poinçon s'est déplacé de 14,2 mm, ce qui correspond à la course maximale autorisée.
  • A la fin du test, l'échantillon de tôle se retrouve donc plié. La ductilité en service s'évalue alors par la mesure de l'angle de pliage a10%, en degrés. Plus l'angle a10% est élevé, meilleure est l'aptitude au sertissage ou au pliage de la tôle.
  • JP-A-2004-052060 décrit un acier pour pales de turbines dont la microstructure, très pauvre en ferrite, est essentiellement constituée de martensite franchement revenue, et qui contient des carbures augmentant sa résistance à la traction mais qui seraient défavorables à son aptitude au pliage. EP-A-0 083 254 lui est très comparable à tous ces points de vue.
  • Par ailleurs, CN 102260826 A décrit un acier inoxydable martensitique pour des applications à haute température.
  • Le but de l'invention est de proposer un acier inoxydable martensitique de composition et de microstructure qui le rendent bien adapté à l'usage que l'on vient de citer, en ce qu'il présenterait une bonne aptitude au pliage en V caractérisée par la norme précitée, et un angle de pliage élevé θ, ainsi que des propriétés de résistance mécanique Rm suffisamment élevées.
  • A cet effet l'invention a pour objet un acier inoxydable martensitique et un procédé de fabrication dudit acier tels que décrits dans les revendications annexées.
  • Comme on l'aura compris, l'invention repose sur le couplage entre une composition d'acier et une microstructure particulière. Ce couplage permet notamment de préparer des tôles susceptibles d'être facilement mises en forme par emboutissage à chaud, et de présenter un très bon compromis entre une résistance à la traction Rm élevée et une grande aptitude au pliage à l'état final martensitique, se traduisant par un angle de pliage θ également élevé, mesuré selon la norme NF EN ISO 7438 et la procédure VDA 238-100. Ces tôles sont donc particulièrement bien adaptées à une utilisation comme éléments de carrosseries d'automobiles ayant une forte capacité d'absorption de l'énergie lors des chocs subis par le véhicule.
  • La mesure du produit « Rm x θ/180 », Rm étant exprimée en MPa et θ en degrés, qui devrait être aussi élevé que possible, serait un bon indicateur de la capacité de l'acier à atteindre un tel compromis.
  • Il est en effet connu que l'énergie absorbée par une structure tubulaire en flexion ou en compression est proportionnelle à la résistance mécanique du matériau qui la compose, aux angles de pliage des différentes zones qui se déforment ainsi qu'à un facteur géométrique de la section : l'épaisseur, largeur hauteur. On pourra se référer aux articles de D.Kecman Int.J. Mech. Sci, Vol.25, N°9-10, pp 623-636, 1983 ou de T.Wierzbicki Computers & Structures, Vol.51, N°6, pp625-641, 1994 publiés par Elsevier.
  • L'invention sera mieux comprise au vu de la description qui suit.
  • La teneur en C minimale de 0,05% est justifiée par la nécessité d'obtenir une austénitisation de la microstructure lors de la première étape du procédé de fabrication, donc avant la trempe. Cela va gouverner les propriétés mécaniques de la tôle, notamment sa capacité à être mise en forme et sa résistance mécanique. Une teneur selon l'invention de plus de 0,30% n'est pas souhaitable pour ne pas fragiliser la martensite formée brute de trempe (ce qui diminuerait l'aptitude au pliage) et dégrader la soudabilité, ce qui serait un inconvénient pour l'application privilégiée de l'invention à l'automobile. Une teneur maximale de 0,20% est cependant préférée, pour mieux assurer l'obtention d'un angle de pliage tout à fait satisfaisant lorsque d'autres conditions exigées par l'invention sur la composition de l'acier et/ou les traitements thermiques subis sont proches des limites fixées.
  • La teneur en Mn minimale de 0,20% permet d'obtenir l'austénitisation nécessaire. Au-dessus de 2,0% des problèmes d'oxydation sont à craindre lors des traitements thermiques si ceux-ci ne sont pas effectués dans des atmosphères neutres ou réductrices. L'utilisation obligatoire d'atmosphères neutres peut entrainer un coût élevé pour l'exécution des traitements thermiques. Par ailleurs le manganèse en quantité supérieure à 2,0% est défavorable à l'obtention de la structure martensitique voulue à cause de la possible présence d'austénite résiduelle à l'issue de la trempe.
  • Sa teneur en Si est comprise entre des traces et 1,0%. Le silicium peut être utilisé comme désoxydant lors de l'élaboration, tout comme Al, auquel il peut s'ajouter ou se substituer. Au-delà de 1,0%, on considère qu'il favorise excessivement la formation de ferrite et rend donc plus difficile l'austénitisation, et qu'il fragilise trop la tôle pour que la mise en forme d'une pièce complexe puisse assurément s'effectuer de façon satisfaisante.
  • Par ailleurs, la teneur totale en Mn et Si ne doit pas excéder 1,5%. Comme Mn et Si sont tous deux des éléments ségrégeants, une trop forte présence totale de Mn et Si pourrait affecter défavorablement l'homogénéité de la microstructure martensitique, en particulier selon l'épaisseur de la pièce si celle-ci est relativement élevée. La teneur minimale en Mn + Si est de 0,2%, puisque Mn est obligatoirement présent à une teneur d'au moins 0,2%, comme vu plus haut.
  • Sa teneur en S est comprise entre des traces et 0,01%, afin de garantir une soudabilité et une résilience convenables au produit final. Au delà la tenue à la corrosion serait dégradée et l'angle de pliage diminué (à cause des précipités de MnS notamment), et pour ne pas avoir de précipitation excessive de MnS, il est important dans l'invention d'avoir la relation suivante où les teneurs en Mn et S sont exprimées en % massiques (si Mn et S sont présents chacun à l'état de simples impuretés, autrement dit de traces résultant de l'élaboration, on admet que pour cette relation, leurs teneurs sont considérées comme égales à 0) :
    0 ≤ 10 000 x Mn x S ≤ 40
  • Sa teneur en P est comprise entre des traces et 0,04%, afin de garantir que le produit final ne sera pas excessivement fragile. P est également néfaste pour la soudabilité et augmente la fragilité de la ferrite et de la martensite aux joints de grains.
  • Sa teneur en Cr est comprise entre 10,5 et 17,0%. La teneur minimale de 10,5% se justifie pour assurer l'inoxydabilité de la tôle. Une teneur supérieure à 17% rendrait difficile l'austénitisation et augmenterait inutilement le coût de l'acier.
  • Sa teneur en Ni est comprise entre des traces et 4,0%.
  • La présence de Ni dans la limite prescrite de 4,0% au maximum est avantageuse pour favoriser l'austénitisation. Il faut, simultanément, respecter la condition [Cr - 10.3 - 80 x (C + N)2] ≤ (Mn + Ni), autrement dit (Mn + Ni) - [Cr - 10.3 - 80*(C+N)2] ≥ 0, où les diverses teneurs sont en % massiques.
  • Un dépassement de la limite de 4,0% et/ou un non-respect de l'équation précédente liant Cr, C, N, Mn et Ni conduirait cependant à une présence excessive d'austénite résiduelle et à une présence insuffisante de martensite dans la microstructure après le refroidissement. Ni est aussi un élément couteux, et sa quantité est, autant que possible, à limiter à ce qui est strictement nécessaire à l'obtention des propriétés voulues.
  • Sa teneur en Mo selon l'invention est comprise entre des traces et 2,0% de préférence 1,0%.
  • La présence de Mo est favorable à une bonne tenue à la corrosion. Au-dessus de 2,0%, l'austénitisation serait gênée et le coût de l'acier inutilement augmenté. On préfère une teneur maximale de 1,0%, car Mo est un élément fragilisant en ce qu'il limite la diffusion de l'hydrogène, qui peut ainsi être plus difficilement évacué du métal.
  • Sa teneur en W est définie selon l'invention en fonction de celle du Mo par le respect de la relation traces ≤ Mo + 2W ≤ 2,0%, de préférence traces ≤ Mo + 2W ≤ 1,0%. Les avantages et inconvénients de W sont qualitativement comparables à ceux du Mo.
  • Sa teneur en Cu selon l'invention est comprise entre des traces et un maximum de 2,0%, avec une préférence pour une teneur ≤ 0.5% si l'acier est destiné à fabriquer une pièce qui devra être soudée.
  • Ces exigences sur Cu sont classiques pour ce type d'aciers. Dans la pratique, cela veut dire qu'un ajout de Cu n'est pas utile et que la présence de cet élément n'est due qu'aux matières premières utilisées. Une teneur supérieure à 0,5%, qui correspondrait généralement à un ajout volontaire de Cu, n'est, très souvent, pas désirée, car elle dégraderait la soudabilité. Cu peut cependant aider à l'austénitisation, et une teneur jusqu'à 2,0% peut être acceptée si la pièce finale n'est pas destinée à être soudée. Cette teneur de 2,0% ne doit cependant pas être dépassée, pour ne pas risquer de retrouver trop d'austénite résiduelle dans l'acier.
  • Pour cette même raison liée à la possible présence excessive d'austénite résiduelle, la somme Cu + Co ne doit pas dépasser 2,0%, et la somme Cu + Co + Ni ne doit pas dépasser 4,0%.
  • Sa teneur en Ti est comprise entre des traces et 0,5%.
  • Ti est un désoxydant, comme Al et Si, mais son coût et sa moindre efficacité que celle de l'Al pour la désoxydation, à quantité ajoutée égale, rend son emploi en général peu intéressant de ce point de vue. Ti peut, cependant, avoir un intérêt en ce que la formation de nitrures et carbonitrures de Ti peut limiter la croissance des grains et influer favorablement sur certaines propriétés mécaniques et la soudabilité. Toutefois, cette formation peut être un inconvénient dans le cas du procédé selon l'invention, car Ti tend à gêner l'austénitisation du fait de la formation de carbures, et les TiN dégradent la résilience et la capacité en pliage. Une teneur maximale de 0,5% est donc à ne pas dépasser.
  • Sa teneur en V est comprise entre des traces et 0,3%.
  • Sa teneur en Zr est comprise entre des traces et 0,5%.
  • Comme Ti, le V et Zr sont des éléments fragilisants qui sont susceptibles de former des nitrures, et ne doivent pas être présents en quantités trop importantes, seuls et en combinaison. Sur ce dernier point, il est nécessaire de satisfaire la limite suivante :
    traces ≤ Ti + V + Zr ≤ 0,5%
  • Sa teneur en Al est comprise entre des traces et 0,2%.
  • Al est usuellement utilisé comme désoxydant lors de l'élaboration. Il ne faut pas qu'après la désoxydation il en subsiste dans l'acier une quantité dépassant 0,2%, car il y aurait un risque de former une quantité excessive de AIN dégradant les propriétés mécaniques, et aussi d'avoir des difficultés à obtenir la microstructure majoritairement martensitique car Al est très ferritisant.
  • Sa teneur en O est comprise entre des traces et 400 ppm.
  • Les exigences sur la teneur en O sont celles qui sont classiques sur les aciers inoxydables martensitiques, en fonction de l'aptitude à leur mise en forme sans que des fissures ne s'amorcent à partir des inclusions, et de la qualité des propriétés mécaniques ou de pliage recherchées sur la pièce finale, et que la présence excessive d'inclusions oxydées est susceptible d'altérer.
  • Une teneur maximale en Ca de 20 ppm est tolérée. L'ajout de cet élément ne se justifie pas pour des raisons qui seraient liées aux propriétés finales de l'acier. Mais il peut être présent à la suite de l'élaboration de l'acier liquide, si on l'a utilisé, comme cela est classique, pour la désoxydation de l'acier liquide et le contrôle de la composition et de la morphologie des inclusions oxydées.
  • C'est essentiellement l'ajout de désoxydants Al, Si, Ti, Zr lors de l'élaboration, le possible ajout de Ca, le soin apporté ensuite à la décantation des inclusions oxydées au sein de l'acier liquide et la subsistance de ces désoxydants à l'état dissous dans l'acier solidifié, qui déterminent la teneur finale en O. Si chacun de ces éléments, pris isolément, peut être absent ou seulement très faiblement présent, il faut néanmoins que l'un au moins d'entre eux (le plus souvent Al et/ou Si) soit présent dans une quantité suffisante pour garantir que la teneur en O de la tôle finale ne sera pas trop élevée pour une mise en forme sans incidents de la pièce, et pour les applications futures de la pièce dont les propriétés mécaniques seront dégradées par une présence excessive d'inclusions d'oxydes. Ces mécanismes régissant la désoxydation des aciers et le contrôle de la composition et de la quantité de leurs inclusions oxydées sont bien connus de l'homme du métier, et s'appliquent dans le cadre de l'invention de façon parfaitement classique.
  • Sa teneur en Nb est comprise entre des traces et 0,3%, de même que sa teneur en Ta. Ta étant un élément très proche de Nb pour ce qui est de ses effets métallurgiques, en particulier la formation de carbonitures, on satisfera la relation 0,25 ≤ (Nb + Ta )/(C + N) ≤ 8.
  • Nb et Ta sont des éléments importants pour l'obtention d'une bonne résilience et d'une bonne capacité en pliage, et l'un d'entre eux au moins doit être significativement présent. Mais comme ils peuvent gêner l'austénitisation, ils ne doivent pas être présents dans des quantités dépassant ce que l'on vient de prescrire. Egalement, ces éléments captent C et N, et leur teneur totale doit être ajustée en fonction des teneurs en C et N effectivement présentes dans l'acier. S'il y a trop peu de Nb et/ou Ta dans l'acier lorsque les teneurs en C et N sont relativement élevées, il ne reste pas assez de Nb et Ta dissous pour que ces éléments puissent améliorer suffisamment la résilience.
  • On exige donc 0,25 ≤ (Nb + Ta)/(C + N) ≤ 8 pour obtenir une résilience à 20°C de l'ordre de 50 J/cm2 ou davantage.
  • Sa teneur en Co est comprise de préférence entre des traces et 0,5%. Cet élément est, comme Cu, susceptible d'aider à l'austénitisation. Mais il ne faut pas en mettre trop pour ne pas détériorer l'aptitude au soudage si l'acier est destiné à être transformé en pièce devant être soudée. Dans le cas contraire, une teneur en Co selon l'invention de 2,0% au maximum est acceptable, à condition, comme on l'a dit, de ne pas dépasser une teneur totale en Cu + Co de 2,0% et une teneur totale en Cu + Co + Ni de 4,0%, pour ne pas se retrouver avec une teneur trop élevée en austénite résiduelle.
  • Sa teneur en Sn est comprise entre des traces et 0,05%. Cet élément n'est pas désiré car il est néfaste pour la soudabilité et la capacité de l'acier à être transformé à chaud. La limite de 0,05% est une tolérance qui, dans la pratique, correspondra le plus souvent à une absence d'ajout volontaire.
  • Sa teneur en B est comprise entre des traces et 0,1%.
  • B n'est pas obligatoire, mais sa présence est avantageuse pour la trempabilité et pour la forgeabilité de l'austénite. Il facilite donc les mises en forme à chaud. Son addition au-dessus de 0,1% n'apporte cependant pas d'amélioration supplémentaire significative sur ce point, et augmente les risques d'une précipitation sous forme de nitrures de bore, qui seraient défavorables à la mise en forme.
  • Sa teneur en H est comprise selon l'invention entre des traces et 5 ppm (0,0005%), de préférence pas plus de 1 ppm (0,0001%) et, mieux, pas plus de 0.1 ppm (0,00001%).
  • Une teneur excessive en H tend à fragiliser la martensite et la ferrite. Il faudra donc choisir un mode d'élaboration de l'acier à l'état liquide qui puisse assurer cette faible présence de H. Typiquement, des traitements assurant un dégazage poussé de l'acier liquide (par injection massive d'argon dans l'acier liquide sous pression atmosphérique, procédé bien connu dit « AOD », ou par un passage sous vide) sont recommandés.
  • Sa teneur en N est comprise entre des traces et 0,2%.
  • N est une impureté dont les mêmes traitements qui permettent de réduire la teneur en H contribuent à limiter la présence, voire à la réduire sensiblement. Il n'est pas toujours nécessaire d'avoir une teneur en N particulièrement basse, mais il faut que sa teneur, considérée conjointement à celles d'éléments avec lesquels il peut se combiner pour former des nitrures ou carbonitrures, ne soit pas trop élevée. Cela se traduit par la relation 0,25 ≤ (Nb + Ta)/(C + N) ≤ 8 vue plus haut, dont le respect contribue à procurer une résilience suffisante.
  • Sa teneur totale en terres rares et en Y est comprise entre des traces et 0,06%.
  • Les terres rares et Y améliorent les propriétés de résistance à l"oxydation (cinétique d'oxydation plus faible, donc moins d'oxyde formé), ce qui peut être un avantage lors de la mise en forme à chaud. En revanche, si elles sont présentes en quantités importantes, les inclusions non-métalliques qu'ils forment génèrent de graves problèmes à la coulée, ou, plus en aval, lors du décapage, du fait de la grande réactivité des terres rares et de Y. On limite l'ajout éventuel total de terres rares et d'Y à 0,06%. Le prix de ces éléments fait qu'il est, de toute façon, généralement préférable d'avoir recours à des éléments plus courants, tels que Al ou Si, pour assurer la désoxydation.
  • Il doit être entendu que les tôles préparées selon l'invention peuvent être des tôles revêtues, le revêtement (généralement par du Zn, ou de l'Al, ou des alliages dont l'un et/ou l'autre sont parmi les composants principaux) pouvant avoir lieu avant ou après la mise en forme de la tôle. Les techniques de revêtement employables ne diffèrent pas de celles pratiquées habituellement sur les aciers (immersion dans un bain fondu d'AI, ou de Zn, ou de l'un de leurs alliages, électrodéposition, CVD/PVD). Ce revêtement, d'épaisseur typiquement de 1 à 200 µm et présent sur une ou deux faces de la tôle, peut avoir été déposé par toute technique classiquement utilisée à cet effet. Il faut simplement que, s'il a été déposé avant l'austénitisation, il ne s'évapore pas lors du séjour de la tôle aux températures d'austénitisation, ce qui peut parfois arriver même si ce séjour est court.
  • Le choix et l'optimisation des caractéristiques du revêtement et de son mode de dépôt, pour que ces conditions soient remplies, ne vont pas au-delà de ce que sait faire l'homme du métier, lorsqu'il est amené à mettre en forme de façon classique des tôles d'acier inoxydable déjà revêtues. Si le revêtement a lieu avant l'austénitisation, on pourra, cependant, privilégier les revêtements à base d'AI par rapport à ceux à base de Zn, comme l'Al a moins tendance que Zn à s'évaporer aux températures d'austénitisation.
  • L'acier présentant la composition selon l'invention est élaboré, coulé et transformé à chaud de façon conventionnelle, par exemple mis sous forme de tôles laminées à chaud et/ou à froid dans une gamme typique d'épaisseur allant de 0,5 mm à 12 mm. Cependant, dans l'application privilégiée de l'invention aux tôles pour automobiles, l'épaisseur préférée sera dans la gamme 0,5 à 4 mm.
  • Puis, selon l'invention, le produit transformé ainsi obtenu subit d'abord une austénitisation, qui le porte dans une gamme de températures comprise entre la température Ac1 d'apparition de l'austénite lors du chauffage et 1100°C, idéalement entre Ac1 + 100°C et 1050°C, pendant une durée variant de 10 s à 1 h pour à la fois garantir une austénitisation complète et limiter l'oxydation du produit ainsi que le coût en énergie de l'austénitisation. Il doit être entendu que cette température d'austénitisation doit concerner l'ensemble du volume de la tôle, et que le traitement doit être suffisamment long pour que, compte tenu de l'épaisseur de la tôle et de la cinétique de la transformation, l'austénitisation soit complète dans tout ce volume. Cela est, bien entendu, valable pour un demi-produit différent d'une tôle.
  • Le four où a lieu l'austénitisation peut être un four classique ou un four à induction qui permet un chauffage rapide et homogène, mais les vitesses de réchauffage doivent être supérieures à 5 °C/s pour éviter une coalescence des précipités de carbure déjà présents, ce qui ralentirait leur dissolution pendant l'austénitisation. La volonté de ne pas imposer une trop longue durée totale à l'étape d'austénitisation motive aussi cette vitesse de chauffage minimale. L'atmosphère est, dans le cas standard, de l'air, et les conditions de durée et de température sont optimisées pour limiter l'oxydation tout en garantissant l'austénitisation complète.
  • Il est, cependant, préférable d'éviter de réaliser cette austénitisation dans une atmosphère oxydante telle que l'air, pour éviter plus assurément une oxydation et/ou une décarburation superficielle importantes de la tôle dans l'atmosphère de chauffage. Une oxydation superficielle conduirait à la nécessité de décalaminer la tôle mécaniquement ou chimiquement avant sa mise en forme pour éviter une incrustation de calamine dans la surface de la tôle, et entraînerait une perte de matière et une dégradation de l'aspect final de la surface de la pièce formée. Une décarburation excessive en peau sur une profondeur de quelques dizaines de µm diminuerait la dureté et la résistance à la traction de la tôle. Les risques d'observer une oxydation et/ou une décarburation significative dépendent, de manière connue, non seulement de la température d'austénitisation, mais aussi de l'atmosphère de traitement du four. Une atmosphère non oxydante, donc neutre ou réductrice (azote, argon, CO, hydrogène et leurs mélanges), de préférence à l'air, permet d'augmenter sans dommage la température de traitement, ce qui permet d'assurer une austénitisation complète en un minimum de temps. Si on utilise une atmosphère hydrogénée, il faut s'assurer qu'elle ne conduirait pas à une reprise d'hydrogène par le métal qui lui ferait dépasser les limites prescrites plus haut.
  • Typiquement, l'austénitisation a lieu à une température comprise entre 925°C et 1000°C pendant une durée de 10 s à 1 h (cette durée étant celle que la tôle passe au-dessus de Ac1), de préférence entre 2 min et 10 min pour un chauffage dans un four classique et entre 30 s et 1 min pour un four à induction. Un four à induction présente l'avantage, connu en lui-même, de procurer un réchauffage rapide jusqu'à la température nominale d'austénitisation. De plus, il concerne d'emblée l'ensemble du volume de la tôle, et autorise donc un traitement plus court qu'un four classique pour parvenir au résultat recherché. Ces températures et durées permettent d'assurer que la suite des traitements conduira à une formation suffisante de martensite, et ce pour une durée raisonnable autorisant une bonne productivité du procédé.
  • Le but de cette austénitisation est de faire passer l'ensemble du métal de la microstructure ferrite + carbures initiale à une microstructure austénitique contenant au maximum 0,5% de carbures en fraction volumique, et au maximum 20% de ferrite résiduelle en fraction volumique. Un but de cette austénitisation est, notamment, de conduire à une dissolution d'au moins la majorité des carbures initialement présents, de façon à libérer des atomes de C pour former la structure martensitique lors des étapes suivantes du procédé. La teneur maximale en ferrite résiduelle de 20%, qui doit subsister jusque sur le produit final, est justifiée par la résilience et la limite élastique conventionnelle que l'on veut obtenir. La durée de l'austénitisation est ajustée de façon à ce que cette microstructure soit obtenue dans l'ensemble de l'acier traité, et peut donc varier selon les dimensions précises du demi-produit à ce stade. L'homme du métier peut aisément réaliser cet ajustement par des modélisations et/ou des expériences conduites sur l'installation dont il dispose, pour un demi-produit de formes et dimensions données.
  • La température Ac1 dépend de la composition chimique, et aussi de la vitesse de chauffe. Elle est mesurée, comme cela est connu, en suivant la dilatation d'un échantillon lors d'un chauffage effectué à une vitesse de chauffe prédéfinie située entre 10 et 100°C/s. Ac1 est la première température à laquelle la pente de la courbe « température = f(temps) » s'annule, et qui correspond donc à l'apparition de la phase austénitique. Il doit être entendu que dans l'invention, la température Ac1 est celle qui est obtenue expérimentalement sur le demi-produit ayant la composition requise, mais Ac1 est une grandeur ne dépendant pas de la dimension du demi-produit, mais seulement de sa composition, pour l'essentiel.
  • Puis après cette austénitisation, selon l'invention les demi-produits sont trempés, à partir de la température d'austénitisation, soit à l'air libre, calme ou pulsé, soit en les plongeant dans un bac d'eau ou d'huile à la température ambiante, soit dans les outils de mise en forme dans le cas de l'utilisation d'un procédé de formage à chaud tel que l'emboutissage à chaud. L'objectif est d'obtenir, dans tout le volume du demi-produit, une vitesse de refroidissement comprise entre 0,5 et 1000°C/s jusqu'à une température inférieure à la température Ms de début de la transformation martensitique, qui est typiquement d'environ 300°C, puis un refroidissement entre 0,5 et 20°C/s jusqu'à température ambiante. Ms dépend de la composition de l'acier et peut être déterminée, de façon classique, par des formules et des modélisations ou des essais dilatométriques. Voir, par exemple, le document "F.B. Pickering, Physical Metallurgical Development of Stainless Steels", Stainless Steels '84, pp2-28, The Institute of Metals, London, 1985. Un refroidissement jusqu'à la température ambiante est le cas le plus habituel, un contrôle particulier de la vitesse de refroidissement en-dessous de Ms n'étant pas nécessaire.
  • On obtient ainsi un produit final, par exemple sous forme d'une tôle, destiné à être utilisée dans une structure pour absorber au mieux l'énergie due au crash tout en résistant à la rupture par choc et qui présente typiquement les propriétés suivantes à la température ambiante :
    • Résistance à la traction Rm : au moins 900 MPa ;
    • Limite élastique conventionnelle Rp0,2 : au moins 700 MPa ;
    • Allongement à la rupture A : au moins 5%, mesuré suivant la norme ISO 6892 ;
    • Résilience préférée si possible : pour les états ou le taux de martensite est supérieur à 75% au moins 50 J/cm2 à 20°C ;
    • Capacité d'angle de pliage, mesurée sur un échantillon d'épaisseur 1,5 mm selon la norme VDA 238-100 : au moins 50°.
    • Capacité d'absorption en essai de choc mesurée par la relation (Rm x angle de pliage / 180°) supérieure à 450, où Rm est exprimé en MPa et l'angle de pliage en degrés, mesuré selon la norme VDA 238-100 sur un échantillon d'épaisseur 1,5mm.
  • Ces propriétés sont obtenues grâce à la combinaison de la composition de l'acier précité et d'une microstructure convenable de cet acier, obtenue grâce au traitement d'austénitisation-trempe décrit, qui est martensitique à au moins 75%, et contient au plus 20% de ferrite dont la taille des grains est selon l'invention de 4 à 80 µm, de préférence entre 5 et 40 µm, et une fraction volumique de carbures d'au plus 0,5%. La fraction d'austénite résiduelle qui peut être tolérée après la trempe est donc d'au plus 5% environ, correspondant sensiblement à la différence entre 100% et la somme des fractions de martensite, de ferrite et de carbures.
  • Egalement, un traitement thermique supplémentaire peut être effectué sur la pièce finale, donc après le refroidissement à l'ambiante, pour améliorer son allongement à la rupture et le porter à une valeur de plus de 10% et sans réduire les caractéristiques mécaniques et la capacité en pliage. Ce traitement consiste à faire séjourner la pièce finale entre 90°C et 250°C pendant 10 s à 1 h. Ce traitement supplémentaire peut être subi aussi lors d'un durcissement par recuit peinture (bake hardening), dont les températures et les durées sont dans cette gamme, typiquement 180°C et 20 min. Ces traitements et le refroidissement qui suit sont effectués sous air calme, donc à une vitesse de refroidissement de l'ordre de quelques °C/s.
  • Le tableau 1 qui suit montre des compositions d'aciers auxquels on a appliqué, après une élaboration et un laminage à chaud effectués dans des conditions semblables et classiques, puis un recuit en four sous atmosphère inerte d'hydrogène effectué à 800°C pendant 5 heures sur le produit laminé à chaud, puis un laminage à froid jusqu'à 1,5mm :
    • soit le traitement de référence suivant : recuit à 800°C pendant 15 min, sans trempe, suivi d'un décapage.
    • soit le traitement thermique suivant selon l'invention : montée à 950°C à une vitesse de chauffage de 20°C/s, austénitisation à 950°C pendant 5 min, trempe jusqu'à 300°C à un vitesse de refroidissement de 10°C/s à l'air puisé ; ce traitement pouvant ou non être précédé du traitement de référence et d'un décapage.
  • Les teneurs sont données en % pondéraux. Les éléments non mentionnés ne sont présents qu'à l'état de traces résultant de l'élaboration.
    Figure imgb0001
  • Le tableau 2 montre, pour les aciers du tableau 1, comment ils satisfont ou non les relations exigées par l'invention. Les valeurs hors invention sont soulignées.
    Figure imgb0002
  • Le tableau 3 montre les structures métallurgiques obtenues après les traitements thermiques effectués sur les différents aciers du tableau 1. Les valeurs soulignées sont celles qui font que les exemples concernés ne sont pas considérés comme conformes à l'invention, du point de vue de leur microstructure.
    Figure imgb0003
    Figure imgb0004
  • Le tableau 4 montre les propriétés des exemples selon invention, et celles des exemples de référence qui ne satisfont pas toutes les relations et n'atteignent pas toutes les propriétés que l'invention vise à obtenir. Les valeurs soulignées sont celles qui ne sont pas satisfaisantes au regard des critères cités plus haut. On n'a pas effectué d'essais de résilience sur les aciers qui présentaient une teneur en martensite insuffisante qui les plaçait de toute façon hors de l'invention.
    Figure imgb0005
    Figure imgb0006
  • On peut principalement déduire de ces résultats les remarques suivantes.
  • Les aciers de référence 9 à 13 sont des aciers martensitiques non inoxydables (donc n'appartenant pas à la classe des aciers de l'invention et des autres aciers de référence 14 et 15) de type connu, d'emploi courant dans le domaine de l'automobile. On les a testés dans la perspective de montrer comment les propriétés des aciers de l'invention se situaient par rapport aux leurs.
  • Les aciers de référence 9 à 12 ont des compositions conformes à l'invention sur les éléments autres que Cr pris isolément. Mais ils ne contiennent pas assez de Nb + Ta par rapport à la somme C + N, pas assez de Mn + Si (sauf le 9, et de justesse) et trop de Mn par rapport au S. Ceux qui ont subi un traitement thermique conforme à l'invention, à 950°C pendant 5 min, se retrouvent néanmoins avec une microstructure convenable. Leurs angles de pliage à l'état martensitique sont corrects, mais en même temps leur Rm n'est pas assez élevée pour leur procurer une capacité d'absorption en essai de choc qui correspondrait aux attentes. Quant à ceux qui ont subi le traitement thermique de référence, ils se retrouvent avec une microstructure ferritique : leur angle de pliage est élevé (120°) mais la Rm étant faible du fait de l'absence de martensite, la capacité d'absorption en essai de choc est très inférieure à l'objectif.
  • L'acier de référence 13 a, de plus, une teneur en C trop élevée. Comme on pouvait s'y attendre, l'angle de pliage est encore moindre que ceux des autres exemples d'aciers martensitiques non inoxydables qui ont subi le même traitement thermique. Lors de l'essai de choc, sa Rm très élevée ne compense pas cette médiocre aptitude au pliage.
  • Les aciers de référence 14 et 15 sont des inoxydables martensitiques.
  • Le 14 a une teneur en C mesurée qui n'est que de très peu inférieure au minimum requis par l'invention, et qui pourrait être assimilée à ce minimum. En revanche il ne respecte pas la relation liant Mn, Ni, Cr, C et N. A l'issue du traitement thermique effectué dans des conditions qui seraient conformes à l'invention, il se retrouve avec une teneur en ferrite trop élevée. En conséquence, si son angle de pliage est correct, sa Rm n'est, et de loin, pas assez élevée pour assurer une capacité d'absorption en essai de choc suffisante.
  • L'acier 15 de référence a une teneur en C franchement inférieure à ce qu'exige l'invention, qui lui procure après le traitement thermique une microstructure quasi-intégralement ferritique. La quasi-absence de Nb et de Ta lui procure un rapport (Nb + Ta)/(C + N) plus faible que ce que requiert l'invention. La relation liant Mn, Ni, Cr, C et N n'est pas respectée, non plus, ce qui contribue au caractère très ferritique de la microstructure. En conséquence, Rm et Rp0,2 sont très médiocres, et malgré un angle de pliage très élevé, la capacité d'absorption en essai de choc est insuffisante.
  • L'acier 1, dont la composition est conforme à l'invention, a subi trois traitements thermiques différents.
  • Le traitement à 950°C pendant 5 min suivi d'une trempe est conforme à l'invention. Le résultat est un acier qui est conforme aux exigences de l'invention sur tous les points. En particulier, son angle de pliage de 135° est très élevé, et comme sa Rm est correcte, sa capacité d'absorption en essai de choc est excellente.
  • Le traitement thermique de référence appliqué à cet acier 1 a également permis d'obtenir cet angle de pliage élevé. Mais Rm est très insuffisante (comme Rp0,2), et la capacité d'absorption en essai de choc est franchement insuffisante.
  • Le traitement thermique à 950°C pendant 2h suivi d'une trempe appliqué à cet acier n'est pas satisfaisant non plus. Sa durée élevée a conduit à une augmentation excessive de la taille des grains ferritiques (130 µm contre 30 µm pour le traitement selon l'invention et 35 µm pour le traitement de référence, effectué à une température plus faible mais pendant plus longtemps que le traitement selon l'invention). La conséquence en a été que l'acier présente un angle de pliage moindre qu'avec le traitement selon l'invention, et surtout une Rm et un allongement à la rupture A insuffisants. La capacité d'absorption en essai de choc est donc non conforme aux exigences de l'invention.
  • Ces résultats d'essais sur l'acier 1 montrent que c'est bien le couplage entre la composition de l'acier et le traitement thermique d'austénitisation et de trempe dans les conditions précises exigées qui est important pour obtenir les résultats recherchés en termes de capacité d'absorption des chocs. Et de propriétés mécaniques satisfaisantes.
  • L'acier 3 selon l'invention a lui aussi subi des traitements thermiques différents, l'un selon l'invention à 950°C pendant 5 min, l'autre conforme au traitement de référence. Le traitement selon l'invention a permis d'obtenir sur l'acier 3 des propriétés satisfaisantes à tous points de vue au regard des objectifs visés, avec une structure quasiment entièrement martensitique, à relier à la plus faible présence de Si que dans l'acier 1, et une faible taille de grains ferritiques. Mais comme pour l'acier 1, le traitement thermique de référence n'a conduit qu'à des propriétés Rp0,2 et Rm médiocres, insuffisantes pour assurer une bonne capacité d'absorption des chocs malgré une aptitude au pliage élevée.
  • L'acier 8 selon l'invention, qui est relativement riche en C, Nb et V, a lui aussi subi les mêmes deux traitements thermiques que l'acier 3. Avec le traitement selon l'invention, sa structure est intégralement martensitique. Son allongement à la rupture et son angle de pliage sont seulement corrects, mais sa Rm élevée lui procure une capacité d'absorption des chocs suffisante. Si on lui applique le traitement thermique de référence, sa structure est intégralement ferritique. L'angle de pliage élevé n'est pas accompagné par une Rm suffisante pour que la capacité d'absorption des chocs soit convenable.
  • L'acier 6 selon l'invention se distingue des autres exemples par une teneur en C de 0,24%, donc encore plus élevée que celle de l'acier 8. Sa structure est presque exclusivement martensitique après l'application du traitement thermique selon l'invention. Son angle de pliage est juste suffisant du fait de la teneur en C élevée qui n'est pas dans la gamme préférée pour l'invention, mais sa Rm très élevée lui procure néanmoins une bonne capacité d'absorption des chocs.

Claims (15)

  1. Acier inoxydable martensitique, caractérisé en ce que sa composition est, en pourcentages pondéraux :
    - 0,05% ≤ C ≤ 0,30% ;
    - 0,20% ≤ Mn ≤ 2,0% ;
    - traces % ≤ Si ≤ 1,0% ;
    - 0,20% ≤ Mn + Si ≤ 1,5% ;
    - traces ≤ S ≤ 0,01% ;
    - 0 ≤ 10 000 x Mn x S ≤ 40 ;
    - traces ≤ P ≤ 0,04% ;
    - 10,5% ≤ Cr ≤ 17,0%, avec [Cr - 10.3 - 80 x (C + N)2] ≤ (Mn + Ni) ;
    - traces ≤ Ni ≤ 4,0% ;
    - traces ≤ Mo ≤ 2,0% ;
    - traces ≤ Mo + 2W ≤ 2,0% ;
    - traces ≤ Cu ≤ 2,0% ;
    - traces ≤ Ti ≤ 0,5% ;
    - traces ≤ V ≤ 0,3% ;
    - traces ≤ Zr ≤ 0,5% ;
    - traces ≤ Al ≤ 0,2% ;
    - traces ≤ O ≤ 400 ppm ;
    - traces ≤ Ta ≤ 0,3% ;
    - traces ≤ Nb ≤ 0,3% ;
    - 0,25 ≤ (Nb + Ta)/(C + N) ≤ 8 ;
    - Nb ≥ [1,2 (C + N) - 0,1]% ;
    - 0,009% ≤ N ≤ 0,2% ;
    - traces ≤ Co ≤ 2,0% ;
    - traces ≤ Cu + Co ≤ 2,0% ;
    - traces ≤ Cu + Co + Ni ≤ 4,0% ;
    - traces ≤ B ≤ 0,1 % ;
    - traces ≤ H ≤ 0,0005% ;
    - traces ≤ terres rares + Y ≤ 0,06% ;
    - traces ≤ Ca ≤ 20ppm ;
    - traces ≤ Sn ≤ 0,05% ;
    - Ti + Zr + V ≤ 0,5% ;
    le reste étant du fer et des impuretés résultant de l'élaboration ;
    et en ce que sa microstructure comporte au moins 75% de martensite, au plus 20% de ferrite, au plus 0,5% de carbures et au plus 5% d'austénite résiduelle, correspondant à la différence entre 100% et la somme des fractions de martensite, de ferrite et de carbures, la taille des grains de ferrite étant comprise entre 4 et 80 µm.
  2. Acier inoxydable martensitique selon la revendication 1, caractérisé en ce que traces ≤ Cu ≤ 0,5%.
  3. Acier inoxydable martensitique selon la revendication 1 ou 2, caractérisé en ce que traces ≤ Co ≤ 0,5%.
  4. Acier inoxydable martensitique selon l'une des revendications 1 à 3, caractérisé en ce que 0,05% ≤ C ≤ 0,20%.
  5. Acier inoxydable martensitique selon l'une des revendications 1 à 4, caractérisé en ce que traces ≤ Mo ≤ 1,0%.
  6. Acier inoxydable martensitique selon l'une des revendications 1 à 5, caractérisé en ce que Mo + 2W ≤ 1,0%.
  7. Acier inoxydable martensitique selon l'une des revendications 1 à 6, caractérisé en ce que traces ≤ H ≤ 0,00001%.
  8. Acier inoxydable martensitique selon l'une des revendications 1 à 7, caractérisé en ce que la taille des grains de ferrite est comprise entre 5 et 40 µm.
  9. Procédé de préparation d'un produit en acier inoxydable martensitique selon l'une des revendications 1 à 8, caractérisé en ce que :
    - on élabore, coule et transforme à chaud et/ou à froid un acier inoxydable martensitique ayant une composition telle que citée dans l'une des revendications 1 à 7 ;
    - on réalise une austénitisation dudit acier transformé à chaud et/ou à froid, en le portant à une température comprise entre Ac1 et 1100°C pendant 10 s à 1h, avec une vitesse de réchauffage d'au moins 5°C/s, la durée de l'austénitisation étant ajustée pour l'obtention, dans l'ensemble de l'acier, d'une microstructure austénitique contenant au plus 0,5% de carbures en fraction volumique et au plus 20% de ferrite résiduelle en fraction volumique ;
    - et on réalise une trempe dudit acier austénitisé, à partir de sa température d'austénitisation jusqu'à une température inférieure à sa température Ms de début de la transformation martensitique, à une vitesse de refroidissement comprise entre 0,5 et 1000°C/s.
  10. Procédé selon la revendication 9, caractérisé en ce qu'on transforme ledit acier sous la forme d'une tôle laminée à chaud et/ou à froid.
  11. Procédé selon la revendication 10, caractérisé en ce que ladite tôle laminée à chaud et/ou à froid a une épaisseur de 0,5 à 12 mm, de préférence de 0,5 à 4 mm.
  12. Procédé selon l'une des revendications 9 à 11, caractérisé en ce que lors de l'austénitisation on porte l'acier transformé à chaud et/ou à froid à une température comprise entre Ac1 + 100°C et 1050°C pendant 10 s à 1h.
  13. Procédé selon l'une des revendications 9 à 12, caractérisé en ce qu'on effectue sur l'acier austénitisé puis trempé un traitement thermique supplémentaire à une température de 90 à 250°C pendant 10 s à 1 h.
  14. Procédé selon l'une des revendications 9 à 13, caractérisé en ce qu'on réalise ladite austénitisation dudit acier transformé à chaud et/ou à froid, en le portant à une température comprise entre Ac1 et 1100°C pendant 2 min à 10 min dans un four classique.
  15. Procédé selon l'une des revendications 9 à 13, caractérisé en ce qu'on réalise ladite austénitisation dudit acier transformé à chaud et/ou à froid, en le portant à une température comprise entre Ac1 et 1100°C pendant 30 s à 1 min dans un four à induction.
EP17809010.6A 2017-11-03 2017-11-03 Acier inoxydable martensitique, et son procédé de fabrication Active EP3704280B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2017/056865 WO2019086934A1 (fr) 2017-11-03 2017-11-03 Acier inoxydable martensitique, et son procédé de fabrication

Publications (2)

Publication Number Publication Date
EP3704280A1 EP3704280A1 (fr) 2020-09-09
EP3704280B1 true EP3704280B1 (fr) 2022-04-13

Family

ID=60574648

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17809010.6A Active EP3704280B1 (fr) 2017-11-03 2017-11-03 Acier inoxydable martensitique, et son procédé de fabrication

Country Status (7)

Country Link
US (1) US11702717B2 (fr)
EP (1) EP3704280B1 (fr)
JP (1) JP2021503545A (fr)
KR (1) KR20200077583A (fr)
CN (1) CN111902551A (fr)
BR (1) BR112020008649B1 (fr)
WO (1) WO2019086934A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113574195A (zh) * 2019-03-12 2021-10-29 国立大学法人大阪大学 固相接合用耐候性钢、固相接合用耐候性钢材、固相接合结构物和固相接合方法
BR112023024583A2 (pt) * 2021-08-06 2024-03-05 Halliburton Energy Services Inc Material de aço inoxidável e método para formar um material de aço inoxidável
JP7018537B1 (ja) * 2021-08-19 2022-02-10 日本冶金工業株式会社 溶接性に優れる析出硬化型マルテンサイト系ステンレス鋼とその製造方法
CN113897546A (zh) * 2021-09-17 2022-01-07 温州瑞银不锈钢制造有限公司 一种17-4ph不锈钢
CN114438402B (zh) * 2021-12-24 2023-03-28 西安陕鼓动力股份有限公司 用于低温高酸性工况的能量回收透平叶片材料及制备方法
KR20240019488A (ko) * 2022-08-04 2024-02-14 주식회사 포스코 고내식 고강도 스테인리스강 및 이의 제조방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260826A (zh) * 2010-05-28 2011-11-30 宝山钢铁股份有限公司 一种耐高温马氏体不锈钢及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110661A (ja) * 1981-12-25 1983-07-01 Hitachi Ltd 耐熱鋼
JPH07138704A (ja) 1993-11-12 1995-05-30 Nisshin Steel Co Ltd 高強度高延性複相組織ステンレス鋼およびその製造方法
JP3491030B2 (ja) 2000-10-18 2004-01-26 住友金属工業株式会社 ディスクブレ−キロ−タ−用ステンレス鋼
JP2004052060A (ja) * 2002-07-23 2004-02-19 Hitachi Ltd 蒸気タービン翼,蒸気タービン及び高強度マルテンサイト鋼
JP4094388B2 (ja) 2002-09-09 2008-06-04 エヌケーケーシームレス鋼管株式会社 高強度高靭性高クロム継目無鋼管の製造方法
JP4832834B2 (ja) 2005-09-05 2011-12-07 新日鐵住金ステンレス株式会社 焼き入れ性に優れた耐熱ディスクブレーキ用マルテンサイト系ステンレス鋼板
MX2018000331A (es) * 2015-07-10 2018-03-14 Jfe Steel Corp Tuberia de acero inoxidable sin costura de alta resistencia y metodo de fabricacion de tuberia de acero inoxidable sin costura de alta resistencia.
BR112018071587B1 (pt) * 2016-04-22 2022-03-29 Aperam Método para fabricação de uma peça de aço inoxidável martensítico

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102260826A (zh) * 2010-05-28 2011-11-30 宝山钢铁股份有限公司 一种耐高温马氏体不锈钢及其制造方法

Also Published As

Publication number Publication date
WO2019086934A1 (fr) 2019-05-09
US11702717B2 (en) 2023-07-18
BR112020008649A2 (pt) 2020-10-27
US20200270718A1 (en) 2020-08-27
EP3704280A1 (fr) 2020-09-09
KR20200077583A (ko) 2020-06-30
BR112020008649B1 (pt) 2023-01-10
CN111902551A (zh) 2020-11-06
JP2021503545A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
EP3704280B1 (fr) Acier inoxydable martensitique, et son procédé de fabrication
EP1929053B1 (fr) Procede de fabrication d une piece en acier de microstructure multi-phasee
EP1649069B1 (fr) Procede de fabrication de toles d'acier austenitique fer-carbone-manganese, a haute resistance, excellente tenacite et aptitude a la mise en forme a froid, et toles ainsi produites
CA2847809C (fr) Acier lamine durcissant par precipitation apres formage a chaud et/ou trempe sous outil a tres haute resistance et ductilite et son procede de fabrication
CA2680623C (fr) Acier pour formage a chaud ou trempe sous outil, a ductilite amelioree
CA3022115A1 (fr) Procede de fabrication d'une piece en acier inoxydable martensitique a partir d'une tole
EP1749895A1 (fr) Procédé de fabrication de tôles d'acier présentant une haute résistance et une excellente ductilité, et tôles ainsi produites
EP2855725A1 (fr) Acier lamine a chaud ou a froid a faible densite, son procede de mise en oeuvre et son utilisation
EP3631033A1 (fr) Procede de fabrication de pieces d'acier a haute resistance mecanique et ductilite amelioree, et pieces obtenues par ce procede
EP3289109A1 (fr) Acier inoxydable martensitique, procédé de fabrication d'un demi-produit en cet acier et outil de coupe réalisé à partir de ce demi-produit
EP0747495B1 (fr) Tôle d'acier laminée à chaud à haute résistance et haute emboutissabilité refermant du niobium, et ses procédés de fabrication
EP0747496B1 (fr) Tôle d'acier laminée à chaud à haute résistance et haute emboutissabilité renfermant du titane, et ses procédés de fabrication
EP2134882B1 (fr) Acier micro-allié à bonne tenue à l'hydrogène pour le formage à froid de pièces mécaniques à hautes caractéristiques
EP2257652B1 (fr) Procede de fabrication de tôles d'acier inoxydable austenitique a hautes caracteristiques mecaniques, et tôles ainsi obtenues
WO2016151390A1 (fr) Pieces a structure bainitique a hautes proprietes de resistance et procede de fabrication
EP3891316A1 (fr) Acier inoxydable, produits réalisés en cet acier et leurs procédés de fabrication
EP4347903A1 (fr) Pièce en acier mise en forme à chaud et procédé de fabrication
BE1011557A4 (fr) Acier a haute limite d'elasticite montrant une bonne ductilite et procede de fabrication de cet acier.
WO2000003041A1 (fr) Produit plat, tel que tole, d'un acier a haute limite d'elasticite montrant une bonne ductilite et procede de fabrication de ce produit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210503

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C21D 8/02 20060101ALN20211214BHEP

Ipc: C21D 6/00 20060101ALI20211214BHEP

Ipc: C21D 1/25 20060101ALI20211214BHEP

Ipc: C22C 38/54 20060101ALI20211214BHEP

Ipc: C22C 38/52 20060101ALI20211214BHEP

Ipc: C22C 38/50 20060101ALI20211214BHEP

Ipc: C22C 38/48 20060101ALI20211214BHEP

Ipc: C22C 38/46 20060101ALI20211214BHEP

Ipc: C22C 38/44 20060101ALI20211214BHEP

Ipc: C22C 38/42 20060101ALI20211214BHEP

Ipc: C22C 38/06 20060101ALI20211214BHEP

Ipc: C22C 38/04 20060101ALI20211214BHEP

Ipc: C22C 38/02 20060101ALI20211214BHEP

Ipc: C21D 9/46 20060101ALI20211214BHEP

Ipc: C22C 38/00 20060101AFI20211214BHEP

INTG Intention to grant announced

Effective date: 20220105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017055998

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1483471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220413

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1483471

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220713

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220813

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017055998

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230116

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231012

Year of fee payment: 7

Ref country code: DE

Payment date: 20231107

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220413