EP3700711B1 - Device and method for treating a component - Google Patents

Device and method for treating a component Download PDF

Info

Publication number
EP3700711B1
EP3700711B1 EP18795363.3A EP18795363A EP3700711B1 EP 3700711 B1 EP3700711 B1 EP 3700711B1 EP 18795363 A EP18795363 A EP 18795363A EP 3700711 B1 EP3700711 B1 EP 3700711B1
Authority
EP
European Patent Office
Prior art keywords
flow path
jet
fluid
closing body
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18795363.3A
Other languages
German (de)
French (fr)
Other versions
EP3700711A1 (en
Inventor
Ruben KAPP
Karsten Frank
Dominic Schehrer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3700711A1 publication Critical patent/EP3700711A1/en
Application granted granted Critical
Publication of EP3700711B1 publication Critical patent/EP3700711B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/02Blast guns, e.g. for generating high velocity abrasive fluid jets for cutting materials
    • B24C5/04Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/02Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape
    • B05B1/08Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators
    • B05B1/083Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to produce a jet, spray, or other discharge of particular shape or nature, e.g. in single drops, or having an outlet of particular shape of pulsating nature, e.g. delivering liquid in successive separate quantities ; Fluidic oscillators the pulsating mechanism comprising movable parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C5/00Devices or accessories for generating abrasive blasts
    • B24C5/005Vibratory devices, e.g. for generating abrasive blasts by ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/149Spray pistols or apparatus for discharging particulate material with separate inlets for a particulate material and a liquid to be sprayed

Definitions

  • the invention relates to a device according to the preamble of claim 1 for treating a component, and also to a method according to the preamble of claim 8 for treating a component.
  • a device and such a method are from the document DE 10 2013 201 197 A1 known.
  • the strength of components can be significantly increased by the targeted introduction of residual compressive stresses.
  • Components that come into consideration for this are, for example, components having weld seams and components subjected to internal pressure or also axle shafts or the like.
  • a method suitable for increasing the strength is liquid blasting for treating a component surface, with the depth effect being small and control over the treatment process being possible only to a limited extent.
  • a method and a device for treating a component are known, in which at least a part of the surface of the component is blasted with a blasting medium to generate internal compressive stresses, the blasting medium comprising a liquid and particles, the liquid and the particles being designed in such a way that during the irradiation essentially the internal stress state of the component is changed.
  • the DE 10 2013 201 797 A1 discloses in a device with a high-pressure pump for conveying a fluid through at least one nozzle to generate at least one fluid jet which is suitable for the erosive machining of a material, a device for generating emerging through the nozzle New page 1a of the description
  • Fluid pulses wherein the fluid pulses are each designed to remove a predetermined amount of particles from the material.
  • a closing body is arranged in the at least one flow path of the nozzle body, wherein the closing body can be moved back and forth alternately between a position releasing the flow path and a position blocking the flow path in order to form a pulsating jet that where the at least one feed channel merges into the flow path, is arranged downstream of the closing body in the direction of flow, so that jet pulses of the pulsating jet form a solidified fluid and particle jet on their way to the nozzle outlet opening by entraining solid particles from the at least one feed channel.
  • the solid particles can be mixtures formed from nanoparticles, for example, which can be applied to a surface at high speed in order to process it, which leads to correspondingly structured or extremely smooth surfaces of high quality and to special functional surfaces. Since the at least one flow path between the closing body and a nozzle outlet opening of the nozzle body has an approximately constant line cross section, a solidified pulsating jet with an approximately homogeneously compressed jet cross section forms at the nozzle outlet opening.
  • a plurality of feed channels are expediently provided in the nozzle body, which makes it possible to produce a high density of solid particles in the solidified pulsating jet.
  • the supply channels in the junction area each form an angle with the flow path which is less than or equal to 90°, preferably between about 30° and 60° or at an acute angle merging into the flow path, a relatively strong suction effect on the solid particles brought up in the feed channels, which leads to a high proportion and therefore high degree of mixing of these particles in the fluid component.
  • a preferred embodiment of the invention with which this suction effect can be optimally utilized, can consist in the supply channels each having a line cross section that gradually narrows towards the junction area in the direction of flow.
  • the feed channels are arranged to run symmetrically to the direction of the flow path.
  • a configuration of the invention that is relatively easy to implement consists in that the at least one flow path extends along a longitudinal central axis of the nozzle body.
  • the closing body can be controlled via a servo-hydraulic, a mechanical or a directly acting actuator which can be operated magnetically or piezoelectrically.
  • a pulsating fluid jet is generated in a nozzle body, at least one flow path being alternately opened and closed by means of a closing body, in order to pulse the fluid jet in each open state of the flow path to pass, whereupon solid particles brought in via at least one feed channel are successively caught and entrained by the fluid jet let through in pulses in such a way that a pulsating jet solidified from fluid and solid particles is generated, and that the solidified pulsating jet then passes through at least one nozzle outlet opening onto a surface of the Component is radiated to there at least locally To cause internal stresses, wherein the at least one flow path (12) between the closing body (13) and the nozzle outlet opening (18) of the nozzle body (11) has an approximately constant line cross section.
  • the method is advantageously suitable for plating components, in that, for example, particles of metallic material can be applied to a component surface, as a result of which functional surfaces can be created locally.
  • the plating can also be done selectively.
  • the method is also advantageously suitable for doping materials, for example by radiating or shooting particles of ferromagnetic material into surfaces of a non-ferromagnetic material, whereby a local information carrier can be generated, for example, which can be read out magnetically.
  • the method is also suitable for surface structuring.
  • the solid particles can be brought in together with a fluid component via the at least one feed channel.
  • One embodiment of the method according to the invention can consist in the solidified pulsating jet being generated with an adjustable pulse frequency which lies in a pulse frequency range from a single shot up to a pulse frequency of approximately 5 kHz.
  • the pulse frequency as a beam parameter can therefore advantageously be set as a function of the respective application and can also be varied during the treatment process—as a process parameter relevant to component treatment. Additional beam parameters such as pulse length and pulse spacing, which can be set due to the design, allow the control of the treatment or production process to be improved even more.
  • a pre-procedural cleaning step of components or workpieces to be irradiated is not absolutely necessary because of the fluid jet component, so that a cost reduction can therefore be achieved.
  • the high level of production control during the blasting of components makes it possible to reduce the reject rate and thus increase efficiency and productivity.
  • a component that is surface-treated according to such a method has increased structural strength due to internal compressive stresses that have been introduced and is therefore suitable for use under higher loads without further adaptation of the geometry and/or material, as is the case here This is the case, for example, for components in systems that carry high pressure or are under other types of loads.
  • FIG. 1 a view of a section of a nozzle body of the device according to the invention, mainly in longitudinal section.
  • FIG. 1 shows a highly schematic longitudinal section of a device designated as a whole by 10, which has a nozzle body 11 with a central flow path or through-channel 12, which runs coaxially to the longitudinal central axis 11' of the nozzle body 11, a closing body 13 accommodated in the through-channel 12, and a plurality of supply channels 14, 14', which open into the through-channel 12 in a region 12' downstream of the closing body 13, where a fluid 15 flowing in the central through-channel 12 and solid particles 16 brought in from the supply channels 14, 14' form a solidified jet 17 is generated, which emerges from an outlet opening 18 designed as a pinhole in the nozzle body 11 and irradiates a surface 19' of a component 19 to be treated which is arranged in the jet direction, the jet direction being aligned with the longitudinal central axis 11' of the nozzle body 11.
  • the closing body 13 is arranged in a larger-diameter region 20 of the central through-channel 12 so as to be displaceable along the longitudinal central axis 11' and is moved axially back and forth in time with a control (not shown) alternating between a position opening the through-channel 12 and a shutting-off position, a pulsating fluid jet is generated.
  • the fluid that is introduced into the through-channel 12 can be in the form of test oil or water
  • the particles 16, which are fed in as solid blasting media via the supply channels 14, 14' can be in the form of steel balls or nanoparticles, for example be able; other Exemplary embodiments of the solid blasting agent include round, angular or elongated particles.
  • the particles can be organic, inorganic, mineral (eg corundum, glass) but also metallic (eg chilled cast iron, steel, zinc).
  • the particle sizes used can be in the nano range, depending on the application also in the ⁇ m range, for example in a size distribution between 40 and 70 ⁇ m, or also in the millimeter range.
  • the fluid 15 which is supplied in compressed form to the central passage 12 of the nozzle body 11 by means of a high-pressure feed pump (not shown), flows in pulses through the area 20 past the closing body 13 via a tapering area 21 into an end section 12' of the through-channel 12 with a smaller diameter.
  • the fluid - due to the increased fluid speed of, for example, 500 m/s in the narrowed line cross-section as a function of the system pressure - carries away particles 16 with each jet pulse, which are located in the supply channels 14, 14', which open into the end section 12' of the through-channel 12, namely into the junction area 22.
  • the junction area 22 is arranged approximately intermediately between the conically tapering area 21 and the nozzle outlet opening 18 . This generates a pulsating solidified jet 17, which is formed from jet pulses that follow one another in time and are therefore spaced apart from one another in the jet direction.
  • the flow path or through-channel 12 for the fluid is shut off and a respective jet impulse is thus defined in the pulsating fluid jet.
  • the closing body 13 is in its position blocking the flow path or throughflow channel 12 , the closing body 13 with its cone-shaped head 13 ′ being in positive contact with the conically tapering area 21 of the throughflow channel 12 .
  • the supply channels 14, 14' each have two sections, of which a respective first section 14-1, 14'-1 is parallel to the longitudinal central axis 11' and thus parallel to the through-channel 12, in order then to merge into a second section 14-2, 14'-2 in the flow direction, which runs obliquely at an angle ⁇ to the longitudinal central axis 11' and opens into the flow path or through-channel 12.
  • both feed channels 14, 14' run symmetrically to the longitudinal central axis 11'.
  • the angle ⁇ is dimensioned such that it lies in an angular range of 30° ⁇ _60°.
  • the respective second section of the supply channels 14, 14' has a line cross section that narrows continuously towards the junction area 22 and has a spatial opening angle ⁇ of approximately 10°.
  • the closing body 13 can be controlled via a servo-hydraulic, a mechanical or a direct-acting actuator, which can be operated magnetically or piezoelectrically, in order to, in cooperation with the control (not shown) and - optionally - a servo-hydraulic switching valve to be able to switch between its open position and its blocked position.
  • a servo-hydraulic a mechanical or a direct-acting actuator, which can be operated magnetically or piezoelectrically, in order to, in cooperation with the control (not shown) and - optionally - a servo-hydraulic switching valve to be able to switch between its open position and its blocked position.
  • adjustable pulse frequencies for the solidified pulsating jet of up to about 5 kHz are possible.
  • the pulse length and/or the pulse spacing can also be set separately.
  • the pulse interval can be varied as a beam parameter.
  • the pulse length can be at least 90 ⁇ s, with a typical pulse length, for example, preferably being
  • a pulsating fluid jet is generated in a nozzle body 11, the flow path 12 being alternately opened and closed by means of the closing body 13 in order to let the fluid jet through in pulses in each open state of the flow path 12, whereupon via the supply channels 14, 14' are caught and entrained by the fluid jet that is let through in pulses in such a way that a pulsating jet 17 solidified from fluid 15 and solid particles 16 is generated, and that the solidified pulsating jet 17 then passes through at least one nozzle outlet opening 18 onto a surface 19' of the component 19 is radiated in order to cause internal stresses there at least locally.
  • the solidified pulsating jet is generated with a pulse frequency which is in a pulse frequency range from a few Hertz to about 5 kHz. Depending on the application, the pulse frequency can therefore be adjusted.
  • Pulse frequency, pulse length and/or pulse spacing are adjustable beam parameters of the method according to the invention, which serve as variable process parameters for and/or during the treatment procedure of a component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Nozzles (AREA)

Description

Die Erfindung betrifft eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1 zum Behandeln eines Bauteils, und ferner ein Verfahren gemäß dem Oberbegriff des Anspruchs 8 zum Behandeln eines Bauteils. Eine derartige Vorrichtung und ein derartiges Verfahren sind aus dem Dokument DE 10 2013 201 197 A1 bekannt.The invention relates to a device according to the preamble of claim 1 for treating a component, and also to a method according to the preamble of claim 8 for treating a component. Such a device and such a method are from the document DE 10 2013 201 197 A1 known.

Stand der TechnikState of the art

Die Festigkeit von Bauteilen lässt sich durch gezieltes Einbringen von Druckeigenspannungen signifikant steigern. Dafür in Frage kommende Bauteile sind beispielsweise Schweißnähte aufweisende Komponenten und innendruckbelastete Bauteile oder auch Achswellen oder dergleichen. Ein zur Steigerung der Festigkeit geeignetes Verfahren stellt neben dem Strahlen mittels Druckluft das Flüssigkeitsstrahlen zur Behandlung einer Bauteiloberfläche dar, wobei die Tiefenwirkung gering ist und die Kontrolle über den Behandlungsprozess lediglich in begrenztem Maße möglich ist.The strength of components can be significantly increased by the targeted introduction of residual compressive stresses. Components that come into consideration for this are, for example, components having weld seams and components subjected to internal pressure or also axle shafts or the like. In addition to blasting with compressed air, a method suitable for increasing the strength is liquid blasting for treating a component surface, with the depth effect being small and control over the treatment process being possible only to a limited extent.

Aus der DE 10 2010 043 285 A1 sind ein Verfahren und eine Vorrichtung zum Behandeln eines Bauelements bekannt, wobei zur Erzeugung von Druckeigenspannungen wenigstens ein Teil der Oberfläche des Bauelements mit einem Strahlmittel bestrahlt wird, wobei das Strahlmittel eine Flüssigkeit und Partikel umfasst, wobei die Flüssigkeit und die Partikel derart ausgestaltet sind, dass bei dem Bestrahlen im Wesentlichen der Eigenspannungszustand des Bauelements verändert wird.From the DE 10 2010 043 285 A1 a method and a device for treating a component are known, in which at least a part of the surface of the component is blasted with a blasting medium to generate internal compressive stresses, the blasting medium comprising a liquid and particles, the liquid and the particles being designed in such a way that during the irradiation essentially the internal stress state of the component is changed.

Die DE 10 2013 201 797 A1 offenbart bei einer Vorrichtung mit einer Hochdruckpumpe zum Fördern eines Fluids durch mindestens eine Düse zur Erzeugung mindestens eines Fluidstrahls, der zur erosiven Bearbeitung eines Werkstoffs geeignet ist, eine Einrichtung zum Erzeugen von durch die Düse austretenden Neue Seite 1a der Beschreibungthe DE 10 2013 201 797 A1 discloses in a device with a high-pressure pump for conveying a fluid through at least one nozzle to generate at least one fluid jet which is suitable for the erosive machining of a material, a device for generating emerging through the nozzle New page 1a of the description

Fluidimpulsen, wobei die Fluidimpulse jeweils dazu ausgebildet sind, eine vorgegebene Menge von Partikeln vom Werkstoff abzutragen.Fluid pulses, wherein the fluid pulses are each designed to remove a predetermined amount of particles from the material.

Offenbarungepiphany Vorteile der ErfindungAdvantages of the Invention

Die Vorrichtung mit den Merkmalen des Patentanspruchs 1 hat den Vorteil, dass eine stärkere Kontrolle über den Oberflächenbehandlungsprozess von Bauteilen möglich ist. Dazu ist vorgesehen, dass ein Schließkörper in dem wenigstens einen Strömungspfad des Düsenkörpers angeordnet ist, wobei der Schließkörper alternierend zwischen einer den Strömungspfad freigebenden Stellung und einer den Strömungspfad absperrenden Stellung hin- und her bewegbar ist, um einen pulsierenden Strahl auszubilden, dass ein Einmündungsbereich, wo der wenigstens eine Zuführungskanal in den Strömungspfad übergeht, in Strömungsrichtung dem Schließkörper nachgeordnet ist, damit Strahlimpulse des pulsierenden Strahls auf ihrem Weg zur Düsenaustrittsöffnung durch Mitreißen von festen Partikeln aus dem wenigstens einen Zuführungskanal einen aus Fluid und Partikeln verfestigten pulsierenden Strahl bilden. Dadurch ist es möglich, definiert Eigenspannungen in die Oberfläche eines zu behandelnden Bauteils bis in tiefere Atomlagen hinein einzubringen. Die festen Partikel können beispielsweise aus Nano-Partikeln gebildete Mischungen sein, die mittels hoher Geschwindigkeit auf eine Oberfläche aufgebracht werden können, um diese zu bearbeiten, was zu entsprechend strukturierten oder hochglatten Oberflächen hoher Güte sowie zu besonderen Funktionsflächen führt. Da der wenigstens eine Strömungspfad zwischen dem Schließkörper und einer Düsenaustrittsöffnung des Düsenkörpers einen etwa konstanten Leitungsquerschnitt aufweist, bildet sich mithin an der Düsenaustrittsöffnung ein verfestigter pulsierender Strahl mit annähernd homogen verdichtetem Strahlquerschnitt aus.The device with the features of patent claim 1 has the advantage that greater control over the surface treatment process of components is possible. For this purpose it is provided that a closing body is arranged in the at least one flow path of the nozzle body, wherein the closing body can be moved back and forth alternately between a position releasing the flow path and a position blocking the flow path in order to form a pulsating jet that where the at least one feed channel merges into the flow path, is arranged downstream of the closing body in the direction of flow, so that jet pulses of the pulsating jet form a solidified fluid and particle jet on their way to the nozzle outlet opening by entraining solid particles from the at least one feed channel. This makes it possible to introduce defined residual stresses into the surface of a component to be treated down to deeper atomic layers. The solid particles can be mixtures formed from nanoparticles, for example, which can be applied to a surface at high speed in order to process it, which leads to correspondingly structured or extremely smooth surfaces of high quality and to special functional surfaces. Since the at least one flow path between the closing body and a nozzle outlet opening of the nozzle body has an approximately constant line cross section, a solidified pulsating jet with an approximately homogeneously compressed jet cross section forms at the nozzle outlet opening.

Weitere vorteilhafte Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich durch die in den Unteransprüchen aufgeführten Maßnahmen.Further advantageous developments and refinements of the invention result from the measures listed in the dependent claims.

Zweckmäßigerweise sind mehrere Zuführungskanäle im Düsenkörper vorgesehen, wodurch es möglich ist, eine hohe Dichte von festen Partikeln im verfestigten pulsierenden Strahl zu erzeugen.A plurality of feed channels are expediently provided in the nozzle body, which makes it possible to produce a high density of solid particles in the solidified pulsating jet.

Indem gemäß einer Weiterbildung der Erfindung die Zuführungskanäle im Einmündungsbereich jeweils einen Winkel mit dem Strömungspfad bilden, welcher kleiner oder gleich 90° ist, vorzugsweise zwischen etwa 30° und 60° liegt, ergibt sich aufgrund der im Einmündungsbereich herrschenden turbulenten Strömungsverhältnisse im Zusammenwirken mit den schräg bzw. spitzwinklig in den Strömungspfad übergehenden Zuführungskanälen eine relativ starke Sogwirkung auf die in den Zuführungskanälen herangeführten festen Partikel, was zu einem hohen Anteil und mithin hohen Durchmischungsgrad dieser Partikel in der Fluidkomponente führt.According to a further development of the invention, the supply channels in the junction area each form an angle with the flow path which is less than or equal to 90°, preferably between about 30° and 60° or at an acute angle merging into the flow path, a relatively strong suction effect on the solid particles brought up in the feed channels, which leads to a high proportion and therefore high degree of mixing of these particles in the fluid component.

Eine bevorzugte Ausgestaltung der Erfindung, mit welcher diese Sogwirkung optimal ausnutzbar ist, kann darin bestehen, dass die Zuführungskanäle in Strömungsrichtung jeweils einen sich zum Einmündungsbereich hin allmählich verengenden Leitungsquerschnitt aufweisen.A preferred embodiment of the invention, with which this suction effect can be optimally utilized, can consist in the supply channels each having a line cross section that gradually narrows towards the junction area in the direction of flow.

Um eine möglichst homogene Mischung von festen Partikeln im verfestigten pulsierenden Strahl zu erzeugen, sind die Zuführungskanäle symmetrisch zur Verlaufsrichtung des Strömungspfads verlaufend angeordnet.In order to produce a mixture of solid particles that is as homogeneous as possible in the solidified pulsating jet, the feed channels are arranged to run symmetrically to the direction of the flow path.

Eine relativ einfach zu realisierende Ausgestaltung der Erfindung besteht darin, dass sich der wenigstens eine Strömungspfad entlang einer Längsmittelachse des Düsenkörpers erstreckt.A configuration of the invention that is relatively easy to implement consists in that the at least one flow path extends along a longitudinal central axis of the nozzle body.

Um ein schnelles Umschalten des Schließkörpers zwischen seiner Offenstellung und seiner Sperrstellung zu ermöglichen, ist der Schließkörper über ein servo-hydraulisches, ein mechanisch oder ein direkt wirkendes Stellglied, welches magnetisch oder piezo-elektrisch betreibbar ist, steuerbar.In order to enable rapid switching of the closing body between its open position and its locked position, the closing body can be controlled via a servo-hydraulic, a mechanical or a directly acting actuator which can be operated magnetically or piezoelectrically.

Bei dem Verfahren gemäß Anspruch 8, das zum Behandeln eines Bauteils dient, ist vorgesehen, dass ein pulsierender Fluidstrahl in einem Düsenkörper erzeugt wird, wobei wenigstens ein Strömungspfad mittels eines Schließkörpers alternierend freigegeben und abgesperrt wird, um den Fluidstrahl in jeweils freigegebenem Zustand des Strömungspfads impulsweise durchzulassen, worauf über wenigstens einen Zuführungskanal herangeführte feste Partikel von dem impulsweise durchgelassenen Fluidstrahl sukzessive so erfasst und mitgerissen werden, dass ein aus Fluid und festen Partikeln verfestigter pulsierender Strahl erzeugt wird, und dass dann der verfestigte pulsierende Strahl durch wenigstens eine Düsenaustrittsöffnung auf eine Oberfläche des Bauteils abgestrahlt wird, um dort zumindest lokal Eigenspannungen zu bewirken, wobei der wenigstens eine Strömungspfad (12) zwischen dem Schließkörper (13) und der Düsenaustrittsöffnung (18) des Düsenkörpers (11) einen etwa konstanten Leitungsquerschnitt aufweist. In vorteilhafter Weise eignet sich das Verfahren zum Plattieren von Bauteilen, indem beispielsweise Partikel aus metallischem Material auf eine Bauteiloberfläche aufgebracht werden können, wodurch lokal Funktionsflächen geschaffen werden können. Das Plattieren kann auch punktuell erfolgen. In vorteilhafter Weise eignet sich das Verfahren auch zum Dotieren von Materialien, indem beispielsweise Partikel aus ferromagnetischem Material in Oberflächen eines nichtferromagnetischen Materials eingestrahlt bzw. eingeschossen werden, wodurch beispielweise ein lokaler Informationsträger erzeugbar ist, der magnetisch ausgelesen werden kann. Das Verfahren ist auch zur Oberflächenstrukturierung geeignet. Die festen Partikel können zusammen mit einer Fluidkomponente über den wenigstens einen Zuführungskanal herangeführt werden.In the method according to claim 8, which is used to treat a component, it is provided that a pulsating fluid jet is generated in a nozzle body, at least one flow path being alternately opened and closed by means of a closing body, in order to pulse the fluid jet in each open state of the flow path to pass, whereupon solid particles brought in via at least one feed channel are successively caught and entrained by the fluid jet let through in pulses in such a way that a pulsating jet solidified from fluid and solid particles is generated, and that the solidified pulsating jet then passes through at least one nozzle outlet opening onto a surface of the Component is radiated to there at least locally To cause internal stresses, wherein the at least one flow path (12) between the closing body (13) and the nozzle outlet opening (18) of the nozzle body (11) has an approximately constant line cross section. The method is advantageously suitable for plating components, in that, for example, particles of metallic material can be applied to a component surface, as a result of which functional surfaces can be created locally. The plating can also be done selectively. The method is also advantageously suitable for doping materials, for example by radiating or shooting particles of ferromagnetic material into surfaces of a non-ferromagnetic material, whereby a local information carrier can be generated, for example, which can be read out magnetically. The method is also suitable for surface structuring. The solid particles can be brought in together with a fluid component via the at least one feed channel.

Eine Ausgestaltung des erfindungsgemäßen Verfahrens kann darin bestehen, dass der verfestigte pulsierende Strahl mit einer einstellbaren Pulsfrequenz erzeugt wird, welche in einem Pulsfrequenzbereich von einem einzelnen Schuss bis hin zu einer Pulsfrequenz von etwa 5 kHz liegt. Die Pulsfrequenz als Strahlparameter lässt sich mithin vorteilhaft in Abhängigkeit vom jeweiligen Anwendungsfall einstellen und kann auch während des Behandlungsvorgangs - als für die Bauteilbehandlung relevanter Prozessparameter - variiert werden. Durch weitere Strahlparameter wie Pulslänge und Pulsabstand, deren Einstellung konstruktionsbedingt möglich ist, lässt sich die Kontrolle des Behandlungs- bzw. Fertigungsprozesses noch stärker verbessern.One embodiment of the method according to the invention can consist in the solidified pulsating jet being generated with an adjustable pulse frequency which lies in a pulse frequency range from a single shot up to a pulse frequency of approximately 5 kHz. The pulse frequency as a beam parameter can therefore advantageously be set as a function of the respective application and can also be varied during the treatment process—as a process parameter relevant to component treatment. Additional beam parameters such as pulse length and pulse spacing, which can be set due to the design, allow the control of the treatment or production process to be improved even more.

Vorteilhaft ist ein präprozeduraler Reinigungsschritt von zu bestrahlenden Bauteilen bzw. Werkstücken wegen der fluiden Strahlkomponente nicht zwingend erforderlich, so dass mithin eine Kostenreduktion erzielbar ist. Zudem ist durch die hohe Fertigungskontrolle bei der Strahlbehandlung von Bauteilen eine Ausschussquotenreduktion und somit eine Effizienz- und Produktivitätssteigerung möglich.Advantageously, a pre-procedural cleaning step of components or workpieces to be irradiated is not absolutely necessary because of the fluid jet component, so that a cost reduction can therefore be achieved. In addition, the high level of production control during the blasting of components makes it possible to reduce the reject rate and thus increase efficiency and productivity.

Ein Bauteil, das gemäß einem derartigen Verfahren oberflächenbehandelt ist, weist aufgrund von eingebrachten Druckeigenspannungen eine gesteigerte Festigkeit seiner Struktur auf und ist mithin für den Einsatz bei höheren Belastungen ohne weitere Anpassung von Geometrie und/oder Werkstoff geeignet, wie dies beispielsweise für Komponenten in hochdruckführenden oder unter andersartiger Belastung stehenden Systemen der Fall ist.A component that is surface-treated according to such a method has increased structural strength due to internal compressive stresses that have been introduced and is therefore suitable for use under higher loads without further adaptation of the geometry and/or material, as is the case here This is the case, for example, for components in systems that carry high pressure or are under other types of loads.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Ausführungsbeispiele der Erfindung sind in der nachfolgenden Beschreibung und in den beigefügten Zeichnungen näher erläutert. Es zeigt:
Fig. 1 eine vorwiegend im Längsschnitt gehaltene Ansicht eines Ausschnitts eines Düsenkörpers der erfindungsgemäßen Vorrichtung.
Exemplary embodiments of the invention are explained in more detail in the following description and in the accompanying drawings. It shows:
1 a view of a section of a nozzle body of the device according to the invention, mainly in longitudinal section.

Beschreibung der AusführungsformenDescription of the embodiments

Fig. 1 veranschaulicht in einem stark schematisch gehaltenen Längsschnitt eine im Ganzen mit 10 bezeichnete Vorrichtung, welche einen Düsenkörper 11 mit einem zentralen Strömungspfad bzw. Durchgangskanal 12, der koaxial zur Längsmittelachse 11' des Düsenkörpers 11 verläuft, einen in dem Durchgangskanal 12 aufgenommenen Schließkörper 13 und mehrere Zuführungskanäle 14, 14' aufweist, die in den Durchgangskanal 12 in einem dem Schließkörper 13 abströmseitig nachgeordneten Bereich 12' einmünden, wo aus einem in dem zentralen Durchgangskanal 12 strömenden Fluid 15 und aus den Zuführungskanälen 14, 14' herangeführten festen Partikeln 16 ein daraus verfestigter Strahl 17 erzeugt wird, der aus einer als Spitzloch ausgebildeten Austrittsöffnung 18 des Düsenkörpers 11 austritt und eine in Strahlrichtung angeordnete Oberfläche 19' eines zu behandelnden Bauteils 19 bestrahlt, wobei die Strahlrichtung mit der Längsmittelachse 11' des Düsenkörpers 11 fluchtet. Indem der Schließkörper 13 in einem durchmessergrößeren Bereich 20 des zentralen Durchgangskanals 12 entlang der Längsmittelachse 11' verschieblich angeordnet ist und im Takt einer - nicht dargestellten - Ansteuerung alternierend zwischen einer den Durchgangskanal 12 öffnenden Stellung und einer absperrenden Stellung axial hin- und her bewegt wird, wird ein pulsierender Fluidstrahl erzeugt. Das Fluid, das in den Durchgangskanal 12 eingeleitet wird, kann im Ausführungsbeispiel als Prüföl oder auch als Wasser ausgebildet sein, während die Partikel 16, welche als festes Strahlmittel über die Zuführungskanäle 14, 14' herangeführt werden, beispielsweise als Stahlkugeln oder als Nanopartikel ausgebildet sein können; andere Ausführungsbeispiele für das feste Strahlmittel umfassen runde, kantige oder auch längliche Partikel. Die Partikel können organisch, anorganisch, mineralisch (z.B. Korund, Glas) aber auch metallisch (z.B. Hartguss, Stahl, Zink) ausgebildet sein. Die verwendeten Partikelgrößen können im Nano-Bereich, je nach Anwendung auch im µm-Bereich, beispielsweise in einer Größenverteilung zwischen 40 bis 70 µm, oder auch im Millimeterbereich, liegen. 1 shows a highly schematic longitudinal section of a device designated as a whole by 10, which has a nozzle body 11 with a central flow path or through-channel 12, which runs coaxially to the longitudinal central axis 11' of the nozzle body 11, a closing body 13 accommodated in the through-channel 12, and a plurality of supply channels 14, 14', which open into the through-channel 12 in a region 12' downstream of the closing body 13, where a fluid 15 flowing in the central through-channel 12 and solid particles 16 brought in from the supply channels 14, 14' form a solidified jet 17 is generated, which emerges from an outlet opening 18 designed as a pinhole in the nozzle body 11 and irradiates a surface 19' of a component 19 to be treated which is arranged in the jet direction, the jet direction being aligned with the longitudinal central axis 11' of the nozzle body 11. Since the closing body 13 is arranged in a larger-diameter region 20 of the central through-channel 12 so as to be displaceable along the longitudinal central axis 11' and is moved axially back and forth in time with a control (not shown) alternating between a position opening the through-channel 12 and a shutting-off position, a pulsating fluid jet is generated. In the exemplary embodiment, the fluid that is introduced into the through-channel 12 can be in the form of test oil or water, while the particles 16, which are fed in as solid blasting media via the supply channels 14, 14', can be in the form of steel balls or nanoparticles, for example be able; other Exemplary embodiments of the solid blasting agent include round, angular or elongated particles. The particles can be organic, inorganic, mineral (eg corundum, glass) but also metallic (eg chilled cast iron, steel, zinc). The particle sizes used can be in the nano range, depending on the application also in the μm range, for example in a size distribution between 40 and 70 μm, or also in the millimeter range.

Mit jedem Öffnungstakt, den der Schließkörper 13 ausführt, strömt das Fluid 15, das mittels einer Hochdruckförderpumpe (nicht dargestellt) dem zentralen Durchgangskanal 12 des Düsenkörpers 11 komprimiert zugeführt wird, impulsweise durch den Bereich 20 an dem Schließkörper 13 vorbei über einen sich verjüngenden Bereich 21 in einen durchmesserkleineren Endabschnitt 12' des Durchgangskanals 12. In diesem Endabschnitt 12' mit konstantem Leitungsquerschnitt reißt das Fluid - aufgrund der im verengten Leitungsquerschnitt erhöhten Fluidgeschwindigkeit von beispielsweise 500 m/s in Abhängigkeit vom Systemdruck - mit jedem Strahlimpuls Partikel 16 mit sich fort, welche sich in den Zuführungskanälen 14, 14' befinden, die in den Endabschnitt 12' des Durchgangskanals 12 und zwar in den Einmündungsbereich 22 einmünden. Der Einmündungsbereich 22 ist etwa intermediär zwischen dem sich konusförmig verjüngenden Bereich 21 und der Düsenaustrittsöffnung 18 angeordnet. Dadurch wird ein pulsierender verfestigter Strahl 17 erzeugt, der aus zeitlich aufeinanderfolgenden und mithin in Strahlrichtung voneinander beabstandet laufenden Strahlimpulsen gebildet ist, welche sodann durch die Austrittsöffnung 18 austreten und mit hoher Strahlgeschwindigkeit auf die Oberfläche 19' des Bauteils 19 auftreffen.With each opening cycle that the closing body 13 executes, the fluid 15, which is supplied in compressed form to the central passage 12 of the nozzle body 11 by means of a high-pressure feed pump (not shown), flows in pulses through the area 20 past the closing body 13 via a tapering area 21 into an end section 12' of the through-channel 12 with a smaller diameter. In this end section 12' with a constant line cross-section, the fluid - due to the increased fluid speed of, for example, 500 m/s in the narrowed line cross-section as a function of the system pressure - carries away particles 16 with each jet pulse, which are located in the supply channels 14, 14', which open into the end section 12' of the through-channel 12, namely into the junction area 22. The junction area 22 is arranged approximately intermediately between the conically tapering area 21 and the nozzle outlet opening 18 . This generates a pulsating solidified jet 17, which is formed from jet pulses that follow one another in time and are therefore spaced apart from one another in the jet direction.

Mit jedem auf den Öffnungstakt folgenden Schließtakt, den der Schließkörper 13 ausführt, wird der Strömungspfad bzw. Durchgangskanal 12 für das Fluid abgesperrt und mithin ein jeweiliger Strahlimpuls im pulsierenden Fluid-Strahl festgelegt. Beim Schließtakt befindet sich der Schließkörper 13 in seiner den Strömungspfad bzw. Durchlasskanal 12 absperrenden Stellung, wobei der Schließkörper 13 mit seinem konusförmigen Kopf 13' formschlüssig an dem sich konusförmig verjüngenden Bereich 21 des Durchlasskanals 12 anliegt.With each closing stroke which follows the opening stroke and which the closing body 13 executes, the flow path or through-channel 12 for the fluid is shut off and a respective jet impulse is thus defined in the pulsating fluid jet. During the closing stroke, the closing body 13 is in its position blocking the flow path or throughflow channel 12 , the closing body 13 with its cone-shaped head 13 ′ being in positive contact with the conically tapering area 21 of the throughflow channel 12 .

Die Zuführungskanäle 14, 14' weisen jeweils zwei Abschnitte auf, wovon ein jeweils erster Abschnitt 14-1, 14'-1 parallel zur Längsmittelachse 11' und somit parallel zum Durchgangskanal 12 verläuft, um dann in Strömungsrichtung in einen zweiten Abschnitt 14-2, 14'-2 überzugehen, der unter einem Winkel θ zur Längsmittelachse 11' schräg verlaufend in den Strömungspfad bzw. Durchgangskanal 12 einmündet. Um einen relativ homogen verfestigten bzw. durchmischten Strahlquerschnitt für jeden Strahlimpuls zu erzielen, verlaufen beide Zuführkanäle 14, 14' symmetrisch zur Längsmittelachse 11'. Um einen optimalen Mitreißeffekt für die Partikel 16 zu erzielen, ist der Winkel θ so bemessen, dass er in einem Winkelbereich 30° < θ <_ 60° liegt. Zusätzlich weist der jeweilige zweite Abschnitt der Zuführkanäle 14, 14' einen sich zum Einmündungsbereich 22 hin kontinuierlich verengenden Leitungsquerschnitt mit einem Raumöffnungswinkel φ von etwa 10° auf.The supply channels 14, 14' each have two sections, of which a respective first section 14-1, 14'-1 is parallel to the longitudinal central axis 11' and thus parallel to the through-channel 12, in order then to merge into a second section 14-2, 14'-2 in the flow direction, which runs obliquely at an angle θ to the longitudinal central axis 11' and opens into the flow path or through-channel 12. In order to achieve a relatively homogeneously solidified or mixed jet cross section for each jet pulse, both feed channels 14, 14' run symmetrically to the longitudinal central axis 11'. In order to achieve an optimal entrainment effect for the particles 16, the angle θ is dimensioned such that it lies in an angular range of 30°<θ<_60°. In addition, the respective second section of the supply channels 14, 14' has a line cross section that narrows continuously towards the junction area 22 and has a spatial opening angle φ of approximately 10°.

Der Schließkörper 13 ist über ein servo-hydraulisches, ein mechanisch oder ein direkt wirkendes Stellglied, welches magnetisch oder piezo-elektrisch betreibbar ist, steuerbar, um im Zusammenwirken mit der Ansteuerung (nicht dargestellt) und - optional - einem servo-hydraulisch ausgebildeten Schaltventil schnell zwischen seiner Offenstellung und seiner Sperrstellung umschalten zu können. Bei einer konstruktionsbedingten Schaltzeit von etwa 90 µs für den Schließkörper sind einstellbare Pulsfrequenzen für den verfestigten pulsierenden Strahl von bis zu etwa 5 kHz möglich. Gesondert einstellbar ist konstruktionsbedingt auch die Pulslänge und/oder der Pulsabstand. Der Pulsabstand ist als Strahlparameter variierbar. Die Pulslänge kann minimal 90 µs betragen, wobei eine beispielsweise typische Pulslänge vorzugsweise zwischen 150 µs und 10 ms liegen kann.The closing body 13 can be controlled via a servo-hydraulic, a mechanical or a direct-acting actuator, which can be operated magnetically or piezoelectrically, in order to, in cooperation with the control (not shown) and - optionally - a servo-hydraulic switching valve to be able to switch between its open position and its blocked position. With a construction-related switching time of about 90 µs for the closing body, adjustable pulse frequencies for the solidified pulsating jet of up to about 5 kHz are possible. Due to the design, the pulse length and/or the pulse spacing can also be set separately. The pulse interval can be varied as a beam parameter. The pulse length can be at least 90 μs, with a typical pulse length, for example, preferably being between 150 μs and 10 ms.

In verfahrenstechnischer Hinsicht ist vorgesehen, dass ein pulsierender Fluidstrahl in einem Düsenkörper 11 erzeugt wird, wobei der Strömungspfad 12 mittels des Schließkörpers 13 alternierend freigegeben und abgesperrt wird, um den Fluidstrahl in jeweils freigegebenem Zustand des Strömungspfads 12 impulsweise durchzulassen, worauf über die Zuführungskanäle 14, 14' herangeführte feste Partikel von dem impulsweise durchgelassenen Fluidstrahl so erfasst und mitgerissen werden, dass ein aus Fluid 15 und festen Partikeln 16 verfestigter pulsierender Strahl 17 erzeugt wird, und dass dann der verfestigte pulsierende Strahl 17 durch wenigstens eine Düsenaustrittsöffnung 18 auf eine Oberfläche 19' des Bauteils 19 abgestrahlt wird, um dort zumindest lokal Eigenspannungen zu bewirken. Dabei wird der verfestigte pulsierende Strahl mit einer Pulsfrequenz erzeugt, welche in einem Pulsfrequenzbereich von wenigen Hertz bis etwa 5 kHz liegt. Je nach Anwendungsfall kann mithin die Pulsfrequenz eingestellt werden. Pulsfrequenz, Pulslänge und/oder Pulsabstand sind einstellbare Strahlparameter des erfindungsgemäßen Verfahrens, die als variierbare Prozessparameter für und/oder während der Behandlungsprozedur eines Bauteils dienen.From a procedural point of view, it is provided that a pulsating fluid jet is generated in a nozzle body 11, the flow path 12 being alternately opened and closed by means of the closing body 13 in order to let the fluid jet through in pulses in each open state of the flow path 12, whereupon via the supply channels 14, 14' are caught and entrained by the fluid jet that is let through in pulses in such a way that a pulsating jet 17 solidified from fluid 15 and solid particles 16 is generated, and that the solidified pulsating jet 17 then passes through at least one nozzle outlet opening 18 onto a surface 19' of the component 19 is radiated in order to cause internal stresses there at least locally. The solidified pulsating jet is generated with a pulse frequency which is in a pulse frequency range from a few Hertz to about 5 kHz. Depending on the application, the pulse frequency can therefore be adjusted. Pulse frequency, pulse length and/or pulse spacing are adjustable beam parameters of the method according to the invention, which serve as variable process parameters for and/or during the treatment procedure of a component.

Claims (9)

  1. Apparatus for treating a component, wherein the apparatus has a nozzle body having at least one flow path for introduction of a fluid and having at least one supply channel for solid particles, wherein a jet formed from the fluid and the solid particles exits via at least one nozzle outlet opening in the nozzle body, wherein a closing body (13) is arranged in the at least one flow path (12) of the nozzle body (11), wherein the closing body (13) can be moved back and forth in an alternating manner between a position which unblocks the flow path (12) and a position which blocks the flow path (12), in order to form a pulsing jet, wherein an issuing region (22) in which the at least one supply channel (14, 14') merges into the flow path (12) is arranged downstream of the closing body (13) in a flow direction, so that jet pulses of the pulsing jet form, on their way to the nozzle outlet opening (18), by entraining solid particles from the at least one supply channel, a pulsing jet consolidated from fluid (15) and particles (16), characterized in that the at least one flow path (12) between the closing body (13) and a nozzle outlet opening (18) in the nozzle body (11) has an approximately constant line cross section.
  2. Apparatus according to Claim 1, characterized in that a plurality of supply channels (14, 14') are provided in the nozzle body (11).
  3. Apparatus according to Claim 2, characterized in that the supply channels (14, 14') in the issuing region (22) each form an angle of less than or equal to 90°, preferably of between approximately 30° and 60°, with the flow path (12).
  4. Apparatus according to Claim 2 or 3, characterized in that the supply channels (14, 14') in the flow direction each have a line cross section which gradually narrows in the direction of the issuing region (22).
  5. Apparatus according to one of Claims 2 to 4, characterized in that the supply channels (14, 14') are arranged so as to run symmetrically with respect to the extent direction of the flow path (12).
  6. Apparatus according to one of Claims 1 to 5, characterized in that the at least one flow path (12) extends along a longitudinal central axis (11') of the nozzle body (11).
  7. Apparatus according to one of Claims 1 to 6, characterized in that the closing body (13) can be controlled by means of a servo-hydraulic actuating element, a mechanical actuating element or a direct-acting actuating element that can be operated magnetically or piezo-electrically.
  8. Method for treating a component, wherein a pulsing fluid jet is generated in a nozzle body (11), wherein at least one flow path (12) is unblocked and blocked in an alternating manner by means of a closing body (13), in order to allow the fluid jet to pass through in a pulsed manner in the respectively unblocked state of the flow path (12), whereupon solid particles which are introduced via at least one supply channel (14, 14') are successively collected and entrained by the fluid jet allowed to pass through in a pulsed manner such that a pulsing jet consolidated from fluid and solid particles is generated, and such that the consolidated pulsing jet is then blasted onto a surface of the component (19) through at least one nozzle outlet opening (18), in order to there at least locally give rise to residual stresses, characterized in that the at least one flow path (12) between the closing body (13) and the nozzle outlet opening (18) in the nozzle body (11) has an approximately constant line cross section.
  9. Method according to Claim 8, characterized in that the consolidated pulsing jet is generated with a settable pulse frequency which lies in a pulse range of a single shot up to a pulse frequency of approximately 5 kHz.
EP18795363.3A 2017-10-26 2018-10-22 Device and method for treating a component Active EP3700711B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017219248.8A DE102017219248A1 (en) 2017-10-26 2017-10-26 Apparatus and method for treating a component
PCT/EP2018/078843 WO2019081403A1 (en) 2017-10-26 2018-10-22 Device and method for treating a component

Publications (2)

Publication Number Publication Date
EP3700711A1 EP3700711A1 (en) 2020-09-02
EP3700711B1 true EP3700711B1 (en) 2023-01-25

Family

ID=64049108

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18795363.3A Active EP3700711B1 (en) 2017-10-26 2018-10-22 Device and method for treating a component

Country Status (3)

Country Link
EP (1) EP3700711B1 (en)
DE (1) DE102017219248A1 (en)
WO (1) WO2019081403A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4762277A (en) * 1982-12-06 1988-08-09 Briggs Technology Inc. Apparatus for accelerating slugs of liquid
DE3516103A1 (en) * 1985-05-04 1986-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Mixing head for introducing abrasive particles into a high-pressure water jet
JPS6228173A (en) * 1985-07-30 1987-02-06 Inoue Japax Res Inc Method and device for surface treatment or material cutting
WO2011042244A2 (en) * 2009-10-06 2011-04-14 Sulzer Metco (Us) Inc. Method and apparatus for preparation of cylinder bore surfaces for thermal spray coating with pulsed waterjet
US8389066B2 (en) * 2010-04-13 2013-03-05 Vln Advanced Technologies, Inc. Apparatus and method for prepping a surface using a coating particle entrained in a pulsed waterjet or airjet
DE102010043285A1 (en) 2010-11-03 2012-05-03 Aktiebolaget Skf Method, blasting medium and apparatus for treating a component
DE102013201797A1 (en) * 2013-02-05 2014-08-07 Robert Bosch Gmbh Water jet cutting device used for cutting of e.g. steel, has fluid pulse generation unit that produces fluid pulses through nozzle such that predetermined amount of material is cleared away by fluid pulses
US9512531B2 (en) * 2013-11-08 2016-12-06 Vln Advanced Technologies Inc. Integrated fluidjet system for stripping, prepping and coating a part
DE102014226432A1 (en) * 2014-12-18 2016-06-23 Robert Bosch Gmbh Process for fluid jet stripping of surfaces

Also Published As

Publication number Publication date
DE102017219248A1 (en) 2019-05-02
EP3700711A1 (en) 2020-09-02
WO2019081403A1 (en) 2019-05-02

Similar Documents

Publication Publication Date Title
EP3230025B1 (en) Method for cutting with a fluid jet
EP2723508B1 (en) Device for treating workpieces
EP3233397B1 (en) Method for cutting with a fluid jet
DE102006037069B4 (en) Method for modifying a hole surface
DE102007049607A1 (en) Fuel injection valve and fuel injection system for an internal combustion engine with the same
WO2013020732A1 (en) Device for generating a pulsating fluid jet subjected to pressure
DE3319508A1 (en) DEVICE AND METHOD FOR SPRAYING LIQUID METALS FOR THE PRODUCTION OF A FINE-GRAIN POWDER
EP3233292B1 (en) Method for removing surface layers by a liquid jet
EP3532245A1 (en) Device for abrasive fluid-jet cutting
DE2928698A1 (en) Dispenser for liq. bearing particulate abrasive material - has fluid fed through nozzle to mixing chamber to pick up abrasive material in suspension
EP3700711B1 (en) Device and method for treating a component
WO2018184798A1 (en) Device and method for a high-pressure fluid jet cutting process
DE3852493T2 (en) Manufacturing process for a perforated plate for fuel injection valves.
WO2018188915A1 (en) Fluid jet cutting device
DE102018207717A1 (en) Apparatus for generating a high pressure fluid jet
EP2998034B1 (en) Screen lining and method for producing a screen lining
DE69011357T2 (en) Cutting method and device.
EP2785494A2 (en) Apparatus and method for wet-blasting workpieces
DE102018207720A1 (en) Apparatus for generating a high pressure fluid jet
DE2908530A1 (en) High pressure textile web or granite cutting water jet - has its efficiency increased by discharging cyclically through orifice
DE19929526A1 (en) Method and device for producing pellets
DE102013021809B3 (en) Method for flow grinding the inlet region of injection nozzle holes of a nozzle body
DE102011003161A1 (en) Injection valve with flow-forming element
EP1570950B1 (en) Method and device for machining a workpiece
DE102021133674A1 (en) Nozzle with adjustable jet geometry, nozzle arrangement and method for operating a nozzle

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200526

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210628

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1545606

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230215

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011519

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230525

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230425

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230525

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230426

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011519

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20231026

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231013

Year of fee payment: 6

Ref country code: FR

Payment date: 20231023

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231218

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231022

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231022