EP3698048A1 - Dispositif et procédé de compression et machine de réfrigération - Google Patents

Dispositif et procédé de compression et machine de réfrigération

Info

Publication number
EP3698048A1
EP3698048A1 EP18765154.2A EP18765154A EP3698048A1 EP 3698048 A1 EP3698048 A1 EP 3698048A1 EP 18765154 A EP18765154 A EP 18765154A EP 3698048 A1 EP3698048 A1 EP 3698048A1
Authority
EP
European Patent Office
Prior art keywords
gas
motor
compressor
pipe
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18765154.2A
Other languages
German (de)
English (en)
Other versions
EP3698048B1 (fr
Inventor
Fabien Durand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Publication of EP3698048A1 publication Critical patent/EP3698048A1/fr
Application granted granted Critical
Publication of EP3698048B1 publication Critical patent/EP3698048B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0606Units comprising pumps and their driving means the pump being electrically driven the electric motor being specially adapted for integration in the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/006Cooling of compressor or motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements

Definitions

  • the invention relates to a device and a method of compression and a refrigeration machine.
  • the invention relates more particularly to a device for centrifugally compressing a working gas, in particular for a refrigeration machine, comprising a plurality of centrifugal compressors forming successive and / or parallel compression stages and a plurality of compressor drive motors, the device comprising a gas circuit comprising a first gas inlet pipe to be compressed connected to an inlet of a first compressor for conveying gas to be compressed in the first compressor, the circuit comprising a second pipe connected to an outlet of said first compressor to evacuate the gas compressed in the latter, the second pipe being connected to an inlet of a second compressor for conveying the gas which has been compressed in the first compressor in the second compressor to achieve a second compression, the circuit comprising a third pipe having a connected upstream end an output of at least one compressor and a downstream end connected to an inlet of at least a first motor for transferring a fraction of the gas compressed in said compressor in said at least a first motor in order to limit its heating.
  • a centrifugal compressor using a direct drive between the (electric) motor and the compression wheel (s) requires a gas flow to evacuate the heat generated in the engine. This heat is generated mainly by the losses of the motor and by the friction of the rotor with the gas which surrounds it.
  • This cooling rate is usually injected from one side of the motor (at an inlet) and discharged from the other side (at an outlet) with a higher temperature. It can also be injected in the middle of the engine and evacuated on both sides of it. A greater or lesser part of the heat is also usually discharged not a heat transfer fluid flowing in a circuit surrounding the stator part of the engine (water or air or other heat transfer fluid for cooling the stator).
  • the gas circulating in the engine to cool it usually has the same composition as the compressed gas.
  • the driving force necessary to circulate the gas through the engine (s) is generated by one or more compression stages (ie by one or more compressors). ).
  • US6,64,469 describes the use of a portion of the gas leaving the first compression stage to cool the engine. This gas is then returned to the compressor inlet.
  • US8899945 discloses a multi-motor architecture.
  • An object of the present invention is to overcome all or part of the disadvantages of the prior art noted above.
  • the device according to the invention is essentially characterized in that the circuit comprises a fourth pipe having an upstream end connected to an output of the first engine for recovering the gas having circulated in the first engine and a downstream end connected to an inlet of a second engine to transfer the gas therein to limit heating of the second engine.
  • embodiments of the invention may include one or more of the following features: the fourth pipe comprises a gas cooling member for cooling the gas between its exit from the first engine and its entry into the second engine,
  • the circuit comprises a fifth pipe having an upstream end connected to an outlet of the second engine for recovering the gas having circulated in the second engine and a downstream end connected to the inlet of the first compressor for the purpose of compressing it;
  • the device comprises a system of pipe (s) and valve (s) for distributing the quantities of cooling gas between the first motor and the second motor,
  • the fifth pipe comprises a gas cooling member
  • the fourth pipe has a second downstream end connected to the fifth pipe, the device comprising a valve system for distributing the flow of gas coming from the first motor between the second motor and the fifth pipe;
  • the second pipe comprises a pipe member; gas cooling,
  • the cooling member of the second pipe comprises a heat exchanger cooled by a heat transfer fluid
  • the circuit comprises a gas cooling member at an outlet of the second compressor
  • the third conduit comprises a gas flow control valve transferred into the first engine
  • the device comprises at least one motor driving one or more compressors and at least one motor coupled to one or more expansion turbines,
  • the device comprises one or more rotating joints between the motor (s) and the compressor (s) or one or more stages of expansion so that the pressure in the cavities of the motor (s) is close to the lowest pressure of the compressor , ie the compressor inlet pressure,
  • the device comprises several compressors driven by the same motor, -
  • the device comprises one or more expansion stages formed by one or more expansion turbines, preferably centripetal and directly coupled to the motor.
  • the invention also relates to a low temperature refrigeration machine of -100 ° C to -273 ° C comprising a working circuit containing a working fluid, the working circuit comprising a centrifugal compression device and a cooling device and the compressed gas is expanded in the compression device, the compression device being in accordance with any of the above characteristics or below.
  • the invention also relates to a centrifugal compression process for a working gas, in particular for a refrigeration machine using a plurality of centrifugal compressors forming successive and / or parallel compression stages and a plurality of compressor drive motors, the compressors being driven in accordance with the invention. direct rotation by the motors, the method comprising:
  • a step of sampling a fraction of the compressed gas leaving at least one of the compressors and putting into circulation this gas taken from a first engine for cooling purposes the process comprising a step of cooling the gas that has been used cooling the first engine and a step of circulating this cooled gas in a second engine for cooling.
  • the invention may also relate to any alternative device or method comprising any combination of the above or below features.
  • FIG. 1 represents a schematic and partial view illustrating an exemplary structure and operation of a compression device according to the invention
  • FIG. 2 shows a schematic and partial view illustrating an example of structure and operation of a cooling machine comprising such a compression device.
  • the compression device 18 shown schematically in Figure 1 comprises two compressor 1, 3 centrifugal (that is to say two compressor wheels) forming two successive compression stages.
  • the two compressors 1, 3 are each driven by a respective drive motor 5, 6.
  • the compressors 1, 3 are rotated directly by their motor 5, 6 corresponding.
  • the device 18 comprises a gas circuit comprising a first gas inlet pipe 16 to be compressed connected to the inlet of a first compressor 1, for conveying gas to be compressed in the first compressor 1.
  • the circuit comprises a second pipe 14 having an upstream end connected to an outlet of said first compressor 1 for discharging the compressed gas therein.
  • the second pipe 14 has a downstream end connected to an inlet of the second compressor 3, for conveying the compressed gas into the first compressor 1 in the second compressor 3 in order to achieve a second compression (a second compression stage).
  • the second pipe 14 preferably comprises a gas cooling member 2, for example a heat exchanger cooled by a heat transfer fluid. This makes it possible to cool the compressed gas before entering the second compressor 3.
  • the circuit preferably comprises a gas cooling member 4 at the outlet of the second compressor 3 (for example a heat exchanger in exchange with a heat transfer fluid).
  • the circuit comprises a third pipe 10 having an upstream end connected to the output of a compressor 1 and a downstream end connected to a first 6 of the two motors.
  • the upstream end of the third pipe 10 can be connected to the output of the first compressor 1 via the second pipe 14. That is to say that the third pipe 10 is connected bypass to the second pipe 14 between the first 1 and second 3 compressors.
  • the third pipe 10 takes a fraction of the compressed gas intended to feed the second compressor 3 to sweep (cool) the first engine. This fraction may correspond to one to forty percent of the flow of gas leaving the first compressor 1.
  • the third pipe 10 may comprise a gas flow control valve 8 transferred into the first motor 6 (or any other suitable member including a pressure reducing member such as an orifice, turbine, Ranque tube or Vortex tube, orifice , capillary).
  • a gas flow control valve 8 transferred into the first motor 6 (or any other suitable member including a pressure reducing member such as an orifice, turbine, Ranque tube or Vortex tube, orifice , capillary).
  • the circuit comprises a fourth pipe 12 having an upstream end connected to an output of the first motor 6 to recover the gas having circulated in the first engine 6 and the first downstream end connected to an inlet of a second engine 5 to transfer the gas therein. to limit the heating of the second motor 5.
  • the same cooling gas is used successively to cool the two motors 6, 5.
  • the fourth pipe 12 comprises a gas cooling member 13 for cooling the gas between its outlet of the first engine 6 and its entry into the second engine 5.
  • this cooling member 13 comprises a heat exchanger in exchange thermal with a heat transfer fluid.
  • the cooling gas which has circulated in the second motor 5 is discharged via a fifth pipe 7 having an upstream end connected to an output of the second motor 5 (to recover the gas having circulated in the second motor 5 and a downstream end connected to the input of the first compressor 1 for compression
  • the fifth pipe 7 can be connected to the inlet of the first compressor 1 via the first pipe 16.
  • the fifth pipe 7 (and possibly the fourth pipe 12) can also be used if necessary to recover gas from possible leaks (for example, seals located near the engines, such as rotating joints for example).
  • the fifth pipe 7 may comprise a gas cooling member 9, for example a heat exchanger in heat exchange with a cooling heat transfer fluid.
  • the fourth pipe 12 may comprise a second downstream end connected to the fifth pipe 7 and a valve system January 1 to distribute the flow of gas from the first motor 6 between the second engine 5 and the fifth pipe 7. That is to say that the gas leaving the first engine 6 (cooling gas) can be distributed between the second motor 5 (to cool it) and inlet of the first compressor 1. This is obtained via two parallel lines and at least one valve 1 1 (and / or any other compression element: turbine, orifice ).
  • the valve 1 1 (or equivalent) can be arranged at the terminals of the engine 6 (or engines).
  • the valve 1 1 (or the valves) can be a controlled control valve.
  • bypass line of the first motor 6 (for example between the third pipe 10 and the fourth pipe) to relatively reduce the amount of cooling gas in the first motor 6 relative to the amount of cooling gas of the second motor 5.
  • bypass line between the second pipe 14 (for example after the cooling member 2) and the fourth pipe (upstream or downstream of the cooling member 13).
  • a system (s) and valve (s) can be provided to distribute different amounts of cooling gas between the first motor 6 and the second motor 5 as needed.
  • a bypass valve 1 1 may advantageously be placed between the inlet and the outlet of the cooling gas of the second motor 5 in order to limit the flow of cooling gas through this second motor 5 in the case where it is too important.
  • the mechanical power necessary to compress for example, a flow rate of 1.26 kg / s of nitrogen gas having an initial pressure of 5 bars absolute and a temperature of 288 K at a pressure of 18.34. Absolute bar is 188 kW.
  • This compression power can be distributed in 88kW for the motor 5 which drives the first compressor 1 and 100kW for the motor 6 which drives the second compressor 3.
  • the nitrogen is compressed, for example, up to 8.87 bar absolute in the first centrifugal compression stage 1 having a power of 83 kW and a typical isentropic efficiency of 86%. Then this compressed gas is cooled in the heat exchanger 2.
  • Part of the gas is withdrawn via the valve 8 to cool the first motor 6.
  • the rest (the main flow) is then compressed again to 18.34 bar absolute in the second compression stage 3.
  • This second compressor 3a for example a power of 95 kW and a typical isentropic efficiency of 86%.
  • the gas is cooled in the heat exchanger 4 at the outlet of the second compressor 3.
  • the gas is then brought to the outlet 15 of the device 18.
  • Part of the nitrogen flow at the outlet of the exchanger 2 will therefore be sent through the valve 8 and the third pipe 10 to supply the first engine 6 with cooling gas.
  • Delta T the increase in temperature of the gas between the pipes 10 and 12 in K (between the inlet and the outlet of the engine 6).
  • the nitrogen will then escape from the first engine 6 via the fourth pipe 12 and join the exchanger 13 to be cooled to a temperature preferably close to or equal to the inlet temperature of the first compressor 1.
  • This cooling is carried out before the gas enters the second engine 5.
  • the rise in the temperature of the gas through the second motor 5 is preferably of the same order of magnitude as that through the first motor 6 (the flow rate and the power to be extracted are preferably close).
  • the cooling gas After having passed through the second motor 5, the cooling gas is sent to the downstream heat exchanger 9 via the fifth pipe 7 to be cooled before returning to the inlet 16 of the first compressor 1.
  • the solution according to the invention uses the same gas flow that is put into operation. circulation to cool two motors (in series on the cooling gas circuit). This makes it possible to halve the required flow of cooling gas.
  • the invention allows efficient cooling (thermally and energetically) of a plurality of engines of a compression device.
  • the gas used for the cooling of the engines could be taken at the output of another or more other compressors than the first compression stage.
  • the device could include more than two compressors and more than two motors.
  • expansion turbines could be included in the device.
  • one or more expansion stages can be mounted on the same motor shaft as one or more compressors.
  • cooling members 9, 13 can be omitted (their use can improve the efficiency of the system but they are not necessary).
  • the valve or valves 8, 1 1 may advantageously be adjustable so as to slave for example the temperature of one or more engines and / or the cooling rate and / or the temperature of the cooling gas.
  • these expansion members 8, 1 1 may optionally cool the gas before entering the engine (s).
  • these detent members 8, 11 may be replaced (or supplemented) by any other pressure-reducing element such as an orifice, for example a turbine or a capillary.
  • the valves 8, 1 1 can be replaced by or associated with one or more turbines and / or tubes of Ranque (Vortex tube).
  • the member 8 may be located alternately on the second pipe 14 for example.
  • the member 1 1 may be located alternately on the first pipe 16 for example.
  • rotating joints can be used between the motor (s) 5, 6 and the compression stage (s) 1, 3 or the expansion stage (s) so that the pressure in the motor cavities is close to the lowest pressure of the compressor, that is to say the inlet pressure 13 of the compressor.
  • This has the effect of lowering the friction losses between the rotor or rotors and the gas because these losses are proportional to the pressure in the motor cavity. The leaks recovered from this or these seals will be added to the flow of cooling gas from the third pipe.
  • the compression device 18 can be part of a low temperature refrigeration machine, for example between -100 ° C. and -273 ° C., and comprising a working circuit 10 containing a fluid of work, the work circuit comprising a device 18 for centrifugal compression and a device 19 for cooling and expansion of the compressed gas in the device 18 for compression.
  • the working gas may comprise all or part of: nitrogen, helium, hydrogen, neon, argon, carbon monoxide, methane, krypton, xenon, iron ethane, carbon dioxide, propane, butane, oxygen.
  • a duct provided with a valve system connecting the second duct 14 and the fourth duct 12 can be provided,
  • the cooling member 2 can be configured to cool the gas to a lower temperature, for example 0 ° C, to improve the cooling of the engine, -
  • the cooling member 2 may optionally be disposed on the third pipe 10 (instead of or in addition to the second pipe 14),
  • the flow direction of the cooling gas can be reversed (firstly in the second motor 5 and then in the first 6),
  • the device may comprise more than two engines cooled in this way,
  • the device can comprise several compressors mounted on a motor and one or more stages of expansion on this motor or another motor,

Abstract

Dispositif de compression centrifuge d'un gaz de travail comprenant plusieurs compresseurs (1, 3) centrifuges formant plusieurs étages de compression et plusieurs moteurs (5, 6) d'entraînement des compresseurs (1, 3), le dispositif comprenant un circuit de gaz comprenant une première conduite (16) pour acheminer du gaz à comprimer dans le premier compresseur (1), le circuit comprenant une seconde conduite (14) pour évacuer le gaz comprimé dans ce dernier, la seconde conduite (14) étant reliée à une entrée d'un second compresseur (3) en vue de réaliser une seconde compression, le circuit comprenant une troisième conduite (10) de refroidissement pour transférer une fraction du gaz comprimé dans ledit compresseur (1) dans ledit au moins un premier moteur (6) en vue de limiter son échauffement, le circuit comprenant une quatrième conduite (12) pour récupérer le gaz ayant circulé dans le premier moteur (6) et une extrémité aval reliée à une entrée d'un second moteur (5) pour y transférer le gaz en vue de limiter l'échauffement du second moteur (5).

Description

Dispositif et procédé de compression et
machine de réfrigération
L'invention concerne un dispositif et un procédé de compression ainsi qu'une machine de réfrigération.
L'invention concerne plus particulièrement un dispositif de compression centrifuge d'un gaz de travail, notamment pour machine de réfrigération, comprenant plusieurs compresseurs centrifuges formant plusieurs étages de compression successifs et/ou parallèles et plusieurs moteurs d'entraînement des compresseurs, le dispositif comprenant un circuit de gaz comprenant une première conduite d'entrée de gaz à comprimer reliée à une entrée d'un premier compresseur pour acheminer du gaz à comprimer dans le premier compresseur, le circuit comprenant une seconde conduite reliée à une sortie dudit premier compresseur pour évacuer le gaz comprimé dans ce dernier, la seconde conduite étant reliée à une entrée d'un second compresseur pour acheminer le gaz qui a été comprimé dans le premier compresseur dans le second compresseur en vue de réaliser une seconde compression, le circuit comprenant une troisième conduite de refroidissement ayant une extrémité amont raccordée à une sortie d'au moins un des compresseurs et une extrémité aval raccordée à une entrée d'au moins un premier moteur pour transférer une fraction du gaz comprimé dans ledit compresseur dans ledit au moins un premier moteur en vue de limiter son échauffement.
Un compresseur centrifuge utilisant un entraînement direct entre le moteur (électrique) et la ou les roues de compression (c'est-à-dire sans multiplicateur de vitesse) nécessite un débit de gaz afin d'évacuer la chaleur générée dans le moteur. Cette chaleur est générée principalement par les pertes du moteur et par le frottement du rotor avec le gaz qui l'entoure.
Ce débit de refroidissement est habituellement injecté d'un côté du moteur (au niveau d'une entrée) et évacué de l'autre côté (au niveau d'une sortie) avec une température plus élevée. Il peut aussi être injecté au milieu du moteur et être évacué des deux côtés de celui-ci. Une part plus ou moins importante de la chaleur est aussi habituellement évacuée pas un fluide caloporteur circulant dans un circuit entourant la partie statorique du moteur (eau ou air ou tout autre fluide caloporteur permettant de refroidir le stator).
Dans le but de ne pas perdre ou de ne pas polluer le gaz comprimé, le gaz circulant dans le moteur pour le refroidir a habituellement la même composition que le gaz comprimé.
Dans le but de limiter le nombre d'équipement, la force motrice nécessaire pour faire circuler le gaz au travers du ou des moteurs, est générée par un ou plusieurs étages de compression (c'est-à-dire par un ou plusieurs des compresseurs).
Il existe plusieurs exemples connus utilisant cette technique de refroidissement.
Le document US6,64,469 décrit l'utilisation d'une partie du gaz sortant du premier étage de compression pour refroidir le moteur. Ce gaz est ensuite renvoyé vers l'entrée du compresseur.
Le document US5,980,218 décrit l'utilisation d'une partie du gaz sortant de l'échangeur de refroidissement situé en aval du premier étage de compression pour refroidir le moteur. Ce gaz est ensuite renvoyé vers l'entrée du compresseur.
Le document US8899945 décrit une architecture à plusieurs moteurs.
Ces solutions sont cependant peu adaptées à une architecture à plusieurs moteurs et/ou les performances sont insatisfaisantes.
Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.
A cette fin, le dispositif selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est essentiellement caractérisé en ce que le circuit comprend une quatrième conduite ayant une extrémité amont reliée à une sortie du premier moteur pour récupérer le gaz ayant circulé dans le premier moteur et une extrémité aval reliée à une entrée d'un second moteur pour y transférer le gaz en vue de limiter réchauffement du second moteur.
Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes : - la quatrième conduite comprend un organe de refroidissement du gaz pour refroidir le gaz entre sa sortie du premier moteur et son entrée dans le second moteur,
- que le circuit comprend une cinquième conduite ayant une extrémité amont reliée à une sortie du second moteur pour récupérer le gaz ayant circulé dans le second moteur et une extrémité aval reliée à l'entrée du premier compresseur en vue de sa compression,
- le dispositif comprend un système de conduite(s) et de vanne(s) pour répartir les quantités de de gaz de refroidissement entre le premier moteur et le second moteur,
- la cinquième conduite comprend un organe de refroidissement du gaz,
- la quatrième conduite a une seconde extrémité aval reliée à la cinquième conduite, le dispositif comprenant un système de de vanne pour répartir le flux de gaz provenant du premier moteur entre le second moteur et la cinquième conduite, - la seconde conduite comprend un organe de refroidissement du gaz,
- l'organe de refroidissement de la seconde conduite comprend un échangeur de chaleur refroidi par un fluide caloporteur,
- le circuit comprend un organe de refroidissement du gaz à une sortie du second compresseur,
- la troisième conduite comprend une vanne de régulation de débit du gaz transféré dans le premier moteur,
- le dispositif comprend au moins un moteur entraînent un ou plusieurs compresseurs et au moins un moteur accouplé à une ou plusieurs turbines de détente,
- le dispositif comporte un ou des joints tournants entre le ou les moteurs et le ou les compresseurs ou un ou des étages de détente de manière à ce que la pression dans les cavités du ou des moteurs soit proche de la pression la plus basse du compresseur, c'est à dire la pression d'entrée du compresseur,
- les compresseurs sont entraînés en rotation de façon directe par les moteurs correspondants,
- le dispositif comprend plusieurs compresseurs entraînés par un même moteur, - le dispositif comprend un ou plusieurs étages de détente formés par un ou des turbines de détente, de préférence centripète et à accouplement direct avec le moteur.
L'invention concerne également une machine de réfrigération à basse température comprise entre -100°C et -273°C comprenant un circuit de travail contenant un fluide de travail, le circuit de travail comprenant un dispositif de compression centrifuge et un dispositif de refroidissement et de détente du gaz comprimé dans le dispositif de compression, le dispositif de compression étant conforme à l'une quelconque des caractéristiques ci-dessus ou ci-dessous.
L'invention concerne également un procédé de compression centrifuge d'un gaz de travail, notamment pour machine de réfrigération utilisant plusieurs compresseurs centrifuges formant plusieurs étages de compression successifs et/ou parallèles et plusieurs moteurs d'entraînement des compresseurs, les compresseurs étant entraînés en rotation de façon directe par les moteurs, le procédé comprenant :
- une étape de compression d'un gaz de travail dans un premier compresseur puis dans un second compresseur disposé en série ou en parallèle,
- une étape prélèvement d'une fraction du gaz compressé sortant d'au moins un des compresseurs et de mise en circulation de ce gaz prélevé dans un premier un moteur en vue de son refroidissement, le procédé comportant une étape de refroidissement du gaz ayant servi à refroidir le premier moteur puis une étape de mise en circulation de ce gaz refroidi dans un second moteur en vue de son refroidissement.
L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous.
D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :
- la figure 1 représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'un dispositif de compression selon l'invention,
- la figure 2 représente une vue schématique et partielle illustrant un exemple de structure et de fonctionnement d'une machine de refroidissement comprenant un tel dispositif de compression. Le dispositif de compression 18 représenté schématiquement à la figure 1 comprend deux compresseur 1 , 3 centrifuges (c'est-à-dire deux roues de compresseur) formant deux étages de compression successifs.
Les deux compresseurs 1 , 3 sont entraînés chacun par un moteur 5, 6 d'entraînement respectif.
De préférence, les compresseurs 1 , 3 sont entraînés en rotation de façon directe par leur moteur 5, 6 correspondant.
Le dispositif 18 comprend un circuit de gaz comprenant une première conduite 16 d'entrée de gaz à comprimer reliée à l'entrée d'un premier compresseur 1 , pour acheminer du gaz à comprimer dans le premier compresseur 1 .
Le circuit comprend une seconde conduite 14 ayant une extrémité amont reliée à une sortie dudit premier compresseur 1 pour évacuer le gaz comprimé dans ce dernier. La seconde conduite 14 possède une extrémité aval reliée à une entrée du second compresseur 3, pour acheminer le gaz comprimé dans le premier compresseur 1 dans le second compresseur 3 en vue de réaliser une seconde compression (un deuxième étage de compression).
La seconde conduite 14 comprend de préférence un organe 2 de refroidissement du gaz, par exemple un échangeur de chaleur refroidi par un fluide caloporteur. Ceci permet de refroidir le gaz comprimé avant son entrée dans le second compresseur 3.
Comme illustré le circuit comprend de préférence un organe 4 de refroidissement du gaz à la sortie du second compresseur 3 (par exemple un échangeur en échange avec un fluide caloporteur).
Le circuit comprend une troisième conduite 10 ayant une extrémité amont raccordée à la sortie d'un compresseur 1 et une extrémité aval raccordée à un premier 6 des deux moteurs.
Comme illustré, l'extrémité amont de la troisième conduite 10 peut être reliée à la sortie du premier compresseur 1 via la seconde conduite 14. C'est-à-dire que la troisième conduite 10 est raccordée en dérivation à la seconde conduite 14 entre les premier 1 et second 3 compresseurs.
C'est-à-dire que la troisième conduite 10 vient prélever une fraction du gaz comprimé destiné à alimenter le second compresseur 3 pour balayer (refroidir) le premier moteur. Cette fraction peut correspondre à un à quarante pourcent du débit de gaz sortant du premier compresseur 1 .
De préférence, la troisième conduite 10 peut comprendre une vanne 8 de régulation de débit du gaz transféré dans le premier moteur 6 (ou tout autre organe approprié notamment un organe déprimogène tel qu'un orifice, turbine, tube de Ranque ou tube Vortex, orifice, capillaire...)..
Le circuit comprend une quatrième conduite 12 ayant une extrémité amont reliée à une sortie du premier moteur 6 pour récupérer le gaz ayant circulé dans le premier moteur 6 et première extrémité aval reliée à une entrée d'un second moteur 5 pour y transférer le gaz en vue de limiter réchauffement du second moteur 5.
C'est-à-dire que le même gaz de refroidissement est utilisé successivement pour refroidir les deux moteurs 6, 5.
De préférence, la quatrième conduite 12 comprend un organe 13 de refroidissement du gaz pour refroidir le gaz entre sa sortie du premier 6 moteur et son entrée dans le second moteur 5. Par exemple, cet organe 13 de refroidissement comprend un échangeur de chaleur en échange thermique avec un fluide caloporteur de refroidissement.
Le gaz de refroidissement qui a circulé dans le second moteur 5 est évacué via une cinquième conduite 7 ayant une extrémité amont reliée à une sortie du second moteur 5 (pour récupérer le gaz ayant circulé dans le second moteur 5 et une extrémité aval reliée à l'entrée du premier compresseur 1 en vue de sa compression. Comme illustré, la cinquième conduite 7 peut être reliée à l'entrée du premier compresseur 1 via la première conduite 16.
La cinquième conduite 7 (et éventuellement la quatrième conduite 12) peut être utilisée également le cas échéant pour récupérer le gaz provenant d'éventuelles fuites (au niveau par exemple de joints situés à proximité des moteurs, tels que des joints tournants par exemple).
De même, la cinquième conduite 7 peut comprendre un organe 9 de refroidissement du gaz, par exemple un échangeur de chaleur en échange thermique avec un fluide caloporteur de refroidissement.
Comme illustré également, la quatrième conduite 12 peut comporter une seconde extrémité aval reliée à la cinquième conduite 7 et un système de de vanne 1 1 pour répartir le flux de gaz provenant du premier moteur 6 entre le second moteur 5 et la cinquième conduite 7. C'est-à-dire que le gaz sortant du premier moteur 6 (gaz de refroidissement) peut être réparti entre le deuxième moteur 5 (pour le refroidir) et entrée du premier compresseur 1 . Ceci est obtenu via deux lignes parallèles et au moins une vanne 1 1 (et/ou tout autre organe déprimogène : turbine, orifice...). Bien entendu la vanne 1 1 (ou équivalent) peut être disposée aux bornes du moteur 6 (ou des moteurs). La vanne 1 1 (ou les vannes) peut être une vanne de régulation pilotée.
De même il peut être prévu une conduite de dérivation du premier moteur 6 (par exemple entre la troisième conduite 10 et la quatrième conduite) pour diminuer relativement la quantité de gaz de refroidissement dans le premier moteur 6 par rapport à la quantité de gaz de refroidissement du second moteur 5.
De même, il peut être prévu une conduite de dérivation entre la seconde conduite 14 (par exemple après l'organe 2 de refroidissement) et la quatrième conduite (en amont ou en aval de l'organe 13 de refroidissement).
Ainsi, un système de conduite(s) et de vanne(s) peut être prévu pour répartir des quantités différentes de gaz de refroidissement entre le premier moteur 6 et le second moteur 5 suivant les besoins.
Par exemple, une vanne de by-pass 1 1 peut avantageusement être placée entre l'entrée et la sortie du gaz de refroidissement du second moteur 5 afin de limiter le débit de gaz de refroidissement au travers de ce second moteur 5 dans le cas où il est trop important.
Exemple de fonctionnement avec de l'azote dans le circuit.
Dans la configuration de la figure 1 , la puissance mécanique nécessaire pour comprimer par exemple un débit de 1 .26 kg/s d'azote gazeux ayant une pression initiale de 5 bars absolu et une température de 288 K à une pression de 18,34 bars absolu est de 188 kW. Cette puissance de compression peut se répartir en 88kW pour le moteur 5 qui entraîne le premier compresseur 1 et 100kW pour le moteur 6 qui entraîne le second compresseur 3.
Ceci permet de diminuer la puissance par rapport aux solutions connues (typiquement 6% par rapport à l'état de l'art).
En effet, si l'on vient refroidir deux moteurs 5, 6 avec deux flux de gaz distincts (deux flux parallèles prélevés à la sortie d'un compresseur), la quantité de gaz prélevée pour le refroidissement des deux moteurs 5, 6 serait double par rapport à la quantité utilisée dans l'architecture décrite ci-dessus. Cette quantité double de gaz augmente le débit volumique du premier compresseur 1 et donc la puissance requise.
Selon un mode de réalisation, l'azote est comprimé par exemple jusqu'à 8,87 bar absolu dans le premier étage de compression 1 centrifuge ayant une puissance de 83 kW et un rendement isentropique typique de 86%. Puis ce gaz comprimé est refroidi dans l'échangeur 2 de chaleur.
Une partie du gaz est soutiré via la vanne 8 pour refroidir le premier moteur 6. Le reste (le débit principal) est ensuite à nouveau comprimé jusqu'à 18,34 bar absolu dans le deuxième étage de compression 3. Ce second compresseur 3 a par exemple une puissance de 95 kW et un rendement isentropique typique de 86%. Puis le gaz est refroidi dans l'échangeur 4 de chaleur en sortie du second compresseur 3. Le gaz est ensuite amené à la sortie 15 du dispositif 18.
Sur les 88kW et 100kW de puissance fournies par les moteurs 5, 6, typiquement 5% seront transformés en chaleur (pertes du moteur électrique et pertes par frottement du rotor avec l'azote) soit environ 5kW par moteur.
Une partie du débit d'azote à la sortie de l'échangeur 2 va donc être envoyé au travers de la vanne 8 et de la troisième conduite 10 pour alimenter le premier moteur 6 en gaz de refroidissement.
L'élévation de la température du gaz au travers du premier moteur 6 va typiquement être limitée à 30 K (pour limiter échauffement du moteur) en pilotant la vanne 8. Ceci va se traduire par un débit massique = Puissance/Cp/deltaT = 5000/1048/30=0.159 kg/s.
Avec Puissance = les pertes thermiques du moteur à évacuer par le gaz en W Cp= la capacité thermique du gaz (azote dans cet exemple) en J/kg/K.
Delta T = l'augmentation de température du gaz entre les conduites 10 et 12 en K (entre l'entrée et la sortie du moteur 6).
L'azote va ensuite s'échapper du premier moteur 6 via la quatrième conduite 12 et rejoindre l'échangeur 13 pour être refroidi jusqu'à une température de préférence proche ou égale à la température d'entrée du premier compresseur 1 .
Ce refroidissement est réalisé avant que le gaz n'entre dans le deuxième moteur 5. L'élévation de la température du gaz au travers du second moteur 5 est de préférence du même ordre de grandeur que celle au travers du premier moteur 6 (le débit et la puissance à extraire sont de préférence proches).
Après avoir traversé le second moteur 5 le gaz de refroidissement est envoyé à l'échangeur 9 de chaleur en aval via la cinquième conduite 7 pour être refroidi avant de retourner à l'entrée 16 du premier compresseur 1 .
Ainsi, par rapport à une solution où les deux moteurs 5, 6 seraient refroidis en parallèle (via deux flux de gaz de refroidissement distincts issu d'un compresseur), la solution selon l'invention utilise un même flux de gaz qui est mis en circulation pour refroidir deux moteurs (en série sur le circuit du gaz de refroidissement). Ceci permet de diviser par deux le débit de gaz de refroidissement nécessaire.
Ainsi tout en étant de structure simple et peu coûteuse, l'invention permet un refroidissement efficace (thermiquement et énergétiquement) d'une pluralité de moteurs d'un dispositif de compression.
Bien entendu, l'invention n'est pas limitée à l'exemple de réalisation décrit ci- dessus.
Ainsi, le gaz utilisé pour le refroidissement des moteurs pourrait être prélevé à la sortie d'un autre ou plusieurs autres compresseurs que le premier étage de compression. De plus, le dispositif pourrait comprendre plus de deux compresseurs et plus de deux moteurs. De même, des turbines de détente pourraient être incluses dans le dispositif.
De plus, plusieurs étages de compression pourraient être entraînés par un même moteur.
En outre, un ou des étages de détente (turbine(s) de préférence centripète(s)) peuvent être montées sur le même arbre moteur qu'un ou plusieurs compresseurs.
De plus, tout ou partie des organes de refroidissement 9, 13 peuvent être omis (leur utilisation permet d'améliorer le rendement du système mais ces derniers ne sont pas nécessaires).
La ou les vannes 8, 1 1 peuvent avantageusement être réglable de manière à asservir par exemple la température d'un ou des moteurs et/ou le débit de refroidissement et/ou la température du gaz de refroidissement. De plus ces organes de détente 8, 1 1 peuvent le cas échéant refroidir le gaz avant son entrée dans le ou les moteurs. De plus ces organes 8, 1 1 de détente peuvent être remplacés (ou suppléés) par tout autre organe déprimogène tel qu'un orifice, turbine ou capillaire par exemple. Ainsi, les vannes 8, 1 1 peuvent être remplacées par ou associées à une ou des turbines et/ou des tubes de Ranque (tube Vortex). De même l'organe 8 peut être situé alternativement sur la seconde conduite 14 par exemple. De même, l'organe 1 1 peut être situé alternativement sur la première conduite 16 par exemple.
De plus, des joints tournants peuvent être utilisés entre le ou les moteurs 5, 6 et le ou les étages de compression 1 , 3 ou le ou les étages de détente de manière à ce que la pression dans les cavités du moteur soit proche de la pression la plus basse du compresseur, c'est à dire la pression d'entrée 13 du compresseur. Ceci a pour conséquence d'abaisser les pertes par friction entre le ou les rotors et le gaz car ces pertes sont proportionnelles à la pression dans la cavité du moteur. Les fuites récupérées de ce ou ces joints s'ajouteront au débit de gaz de refroidissement provenant de la troisième conduite.
Comme schématisé à la figure 3, le dispositif 18 de compression peut faire partie d'une machine de réfrigération à basse température, par exemple comprise entre -100°C et -273°C, et comprenant un circuit de travail 10 contenant un fluide de travail, le circuit de travail comprenant un dispositif 18 de compression centrifuge et un dispositif 19 de refroidissement et de détente du gaz comprimé dans le dispositif 18 de compression.
Le gaz de travail peut comprendre tout ou partie parmi : de l'azote, de l'hélium, de l'hydrogène, du néon, de l'argon, du monoxyde de carbone, du méthane, du krypton, du xénon, de l'éthane, du dioxyde de carbone, du propane, du butane, de l'oxygène.
Selon d'autres particularités possible :
- il peut être prévu une conduite munie d'un système de vanne reliant la seconde conduite 14 et la quatrième conduite 12,
- l'organe 2 de refroidissement peut être configuré pour refroidir le gaz à une température plus basse, par exemple 0°C pour améliorer le refroidissement du moteur, - l'organe 2 de refroidissement peut le cas échéant être disposé sur la troisième conduite 10 (à la place ou en plus de la seconde conduite 14),
- le sens de circulation du gaz de refroidissement peut être inversé (d'abord dans le second moteur 5 puis dans le premier 6),
- le dispositif peut comporter plus de deux moteurs refroidis de la sorte,
- le dispositif peut comporter plusieurs compresseurs montés sur un moteur et un ou plusieurs étages de détente sur ce moteur ou un autre moteur,

Claims

REVENDICATIONS
1 . Dispositif de compression centrifuge d'un gaz de travail, notamment pour machine de réfrigération, comprenant plusieurs compresseurs (1 , 3) centrifuges formant plusieurs étages de compression successifs et/ou parallèles et plusieurs moteurs (5, 6) d'entraînement des compresseurs (1 , 3), le dispositif comprenant un circuit de gaz comprenant une première conduite (16) d'entrée de gaz à comprimer reliée à une entrée d'un premier compresseur (1 ) pour acheminer du gaz à comprimer dans le premier compresseur (1 ), le circuit comprenant une seconde conduite (14) reliée à une sortie dudit premier compresseur (1 ) pour évacuer le gaz comprimé dans ce dernier, la seconde conduite (14) étant reliée à une entrée d'un second compresseur (3) pour acheminer le gaz qui a été comprimé dans le premier compresseur (1 ) dans le second compresseur (3) en vue de réaliser une seconde compression, le circuit comprenant une troisième conduite (10) de refroidissement ayant une extrémité amont raccordée à une sortie d'au moins un des compresseurs (1 , 3) et une extrémité aval raccordée à une entrée d'au moins un premier moteur (6) pour transférer une fraction du gaz comprimé dans ledit compresseur (1 ) dans ledit au moins un premier moteur (6) en vue de limiter son échauffement, caractérisé en ce que le circuit comprend une quatrième conduite (12) ayant une extrémité amont reliée à une sortie du premier moteur (6) pour récupérer le gaz ayant circulé dans le premier moteur (6) et une extrémité aval reliée à une entrée d'un second moteur (5) pour y transférer le gaz en vue de limiter échauffement du second moteur (5).
2. Dispositif selon la revendication 1 , caractérisé en ce que la quatrième conduite (12) comprend un organe (13) de refroidissement du gaz pour refroidir le gaz entre sa sortie du premier (6) moteur et son entrée dans le second moteur (5).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le circuit comprend une cinquième conduite (7) ayant une extrémité amont reliée à une sortie du second (5) moteur pour récupérer le gaz ayant circulé dans le second moteur (5) et une extrémité aval reliée à l'entrée du premier compresseur (1 ) en vue de sa compression.
4. Dispositif selon la revendication 3, caractérisé en ce que la cinquième conduite (7) comprend un organe (9) de refroidissement du gaz.
5. Dispositif selon la revendication 3 ou 4, caractérisé en ce que la quatrième conduite (12) a une seconde extrémité aval reliée à la cinquième conduite (7).
6. Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend un système de conduite(s) et de vanne(s) (1 1 ) pour répartir les quantités de de gaz de refroidissement entre le premier moteur (6) et le second moteur (5).
7. Dispositif selon l'une quelconque des revendications 1 à 6, caractérisé en ce que la seconde conduite (14) comprend un organe (2) de refroidissement du gaz.
8. Dispositif selon la revendication 7, caractérisé en ce que l'organe (2) de refroidissement de la seconde conduite (14) comprend un échangeur de chaleur refroidi par un fluide caloporteur.
9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le circuit comprend un organe (4) de refroidissement du gaz à une sortie (15) du second compresseur (3).
10. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que la troisième conduite (10) comprend une vanne (8) de régulation de débit du gaz transféré dans le premier moteur (6).
1 1 . Dispositif selon l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend au moins un moteur entraînent un ou plusieurs compresseurs et au moins un moteur accouplé à une ou plusieurs turbines de détente.
12. Dispositif selon l'une quelconque des revendications 1 à 1 1 , caractérisé en ce qu'il comporte un ou des joints tournants entre le ou les moteurs (5, 6) et le ou les compresseurs (1 , 3) ou un ou des étages de détente de manière à ce que la pression dans les cavités du ou des moteurs soit proche de la pression la plus basse du compresseur (1 ), c'est à dire la pression d'entrée (13) du compresseur (1 ).
13. Machine de réfrigération à basse température comprise entre -100°C et -273°C comprenant un circuit de travail contenant un fluide de travail, le circuit de travail comprenant un dispositif (18) de compression centrifuge et un dispositif (19) de refroidissement et de détente du gaz comprimé dans le dispositif (18) de compression, caractérisé en ce que le dispositif (18) de compression est conforme à l'une quelconque des revendications 1 à 12.
14. Procédé de compression centrifuge d'un gaz de travail, notamment pour machine de réfrigération utilisant plusieurs compresseurs (1 , 3) centrifuges formant plusieurs étages de compression successifs et/ou parallèles et plusieurs moteurs (5, 6) d'entraînement des compresseurs (1 , 3), les compresseurs (1 , 3) étant entraînés en rotation de façon directe par les moteurs (5, 6), le procédé comprenant :
- une étape de compression d'un gaz de travail dans un premier compresseur (1 ) puis dans un second compresseur (3) disposés en série ou en parallèle,
- une étape prélèvement d'une fraction du gaz compressé sortant d'au moins un des compresseur (1 ) et de mise en circulation de ce gaz prélevé dans un premier un moteur (6) en vue de son refroidissement, caractérisé en ce qu'il comporte une étape de refroidissement du gaz ayant servi à refroidir le premier moteur (6) puis une étape de mise en circulation de ce gaz refroidi dans un second moteur (5) en vue de son refroidissement.
EP18765154.2A 2017-10-16 2018-08-01 Dispositif et procédé de compression et machine de réfrigération Active EP3698048B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1701076A FR3072428B1 (fr) 2017-10-16 2017-10-16 Dispositif et procede de compression et machine de refrigeration
PCT/FR2018/051975 WO2019077212A1 (fr) 2017-10-16 2018-08-01 Dispositif et procédé de compression et machine de réfrigération

Publications (2)

Publication Number Publication Date
EP3698048A1 true EP3698048A1 (fr) 2020-08-26
EP3698048B1 EP3698048B1 (fr) 2021-10-20

Family

ID=60765664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18765154.2A Active EP3698048B1 (fr) 2017-10-16 2018-08-01 Dispositif et procédé de compression et machine de réfrigération

Country Status (11)

Country Link
US (1) US11384768B2 (fr)
EP (1) EP3698048B1 (fr)
JP (1) JP7234225B2 (fr)
KR (1) KR102503137B1 (fr)
CN (1) CN111212981B (fr)
AU (1) AU2018350938B2 (fr)
CA (1) CA3079027A1 (fr)
DK (1) DK3698048T3 (fr)
ES (1) ES2903562T3 (fr)
FR (1) FR3072428B1 (fr)
WO (1) WO2019077212A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023151862A1 (fr) 2022-02-10 2023-08-17 Cryostar Sas Système de turbomachine à étages multiples et procédé de fonctionnement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425308B2 (ja) * 1996-09-17 2003-07-14 株式会社 日立インダストリイズ 多段圧縮機
JPH11294879A (ja) * 1998-02-16 1999-10-29 Daikin Ind Ltd 冷凍装置
JP2000087900A (ja) 1998-09-09 2000-03-28 Hitachi Ltd 圧縮機用モータの冷却方法
EP1074746B1 (fr) 1999-07-16 2005-05-18 Man Turbo Ag Turbo-compresseur
GB2469015B (en) * 2009-01-30 2011-09-28 Compair Uk Ltd Improvements in multi-stage centrifugal compressors
EP2273130A1 (fr) * 2009-07-08 2011-01-12 Siemens Aktiengesellschaft Boîtier de compresseur de gaz et système comportant le boîtier
FR2966528B1 (fr) * 2010-10-25 2016-12-30 Thermodyn Groupe compresseur centrifuge
US9200643B2 (en) * 2010-10-27 2015-12-01 Dresser-Rand Company Method and system for cooling a motor-compressor with a closed-loop cooling circuit
DE102010053091A1 (de) * 2010-12-01 2012-06-06 Linde Aktiengesellschaft Mehrstufiger Kolbenverdichter
KR101318800B1 (ko) * 2012-05-25 2013-10-17 한국터보기계(주) 3단 터보압축기
JP6276000B2 (ja) * 2013-11-11 2018-02-07 株式会社前川製作所 膨張機一体型圧縮機及び冷凍機並びに冷凍機の運転方法
EP3102833B1 (fr) 2014-02-03 2021-03-31 Nuovo Pignone S.r.l. Turbomachine à plusieurs étages dotée de moteurs électriques intégrés
BE1022138B1 (nl) * 2014-05-16 2016-02-19 Atlas Copco Airpower, Naamloze Vennootschap Compressorinrichting en een daarbij toepasbare koeler
US20160003558A1 (en) 2014-07-03 2016-01-07 General Electric Company Fluid processing system, heat exchange sub-system, and an associated method thereof
US20170174049A1 (en) * 2015-12-21 2017-06-22 Ford Global Technologies, Llc Dynamically controlled vapor compression cooling system with centrifugal compressor

Also Published As

Publication number Publication date
ES2903562T3 (es) 2022-04-04
KR20190042463A (ko) 2019-04-24
FR3072428B1 (fr) 2019-10-11
KR102503137B1 (ko) 2023-02-22
CA3079027A1 (fr) 2019-04-25
JP2020537075A (ja) 2020-12-17
CN111212981A (zh) 2020-05-29
CN111212981B (zh) 2022-11-01
JP7234225B2 (ja) 2023-03-07
AU2018350938A1 (en) 2020-05-21
AU2018350938B2 (en) 2023-12-07
US20200240437A1 (en) 2020-07-30
WO2019077212A1 (fr) 2019-04-25
EP3698048B1 (fr) 2021-10-20
FR3072428A1 (fr) 2019-04-19
DK3698048T3 (da) 2022-01-10
US11384768B2 (en) 2022-07-12

Similar Documents

Publication Publication Date Title
EP1269025B1 (fr) Compresseur thermocinetique
EP2225501A2 (fr) Dispositif et procede de refrigeration cryogenique
FR2686654A1 (fr) Ameliorations dans la propulsion aerospatiale.
WO2021023428A1 (fr) Procédé, dispositif et installation de réfrigération et/ou de liquéfaction
EP3698048B1 (fr) Dispositif et procédé de compression et machine de réfrigération
WO2019077213A1 (fr) Dispositif et procédé de compression
WO2021023458A1 (fr) Installation et procede de refroidissement et/ou de liquefaction
WO2021023459A1 (fr) Dispositif et installation de réfrigération
FR3098574A1 (fr) Dispositif de réfrigération et/ou de liquéfaction
FR3033836A1 (fr) Systeme de production d'energie ou de couple
FR3116106A1 (fr) Installation et procédé de production d’hydrogène à température cryogénique
FR2717253A1 (fr) Dissipateur d'énergie sans contamination et procédé d'optimisation du fonctionnement de turbodétendeurs.
WO2021014106A1 (fr) Système de conditionnement d'air à récupération d'air cabine
WO2019150033A1 (fr) Procede de refroidissement d'un dispositif de stockage electrique equipant un vehicule
WO2024008434A1 (fr) Dispositif et procédé de liquéfaction d'un fluide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210531

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTG Intention to grant announced

Effective date: 20210827

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018025366

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1440168

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220107

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

Ref country code: NO

Ref legal event code: T2

Effective date: 20211020

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1440168

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211020

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2903562

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018025366

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230824

Year of fee payment: 6

Ref country code: IT

Payment date: 20230822

Year of fee payment: 6

Ref country code: GB

Payment date: 20230822

Year of fee payment: 6

Ref country code: FI

Payment date: 20230821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230821

Year of fee payment: 6

Ref country code: FR

Payment date: 20230828

Year of fee payment: 6

Ref country code: DK

Payment date: 20230823

Year of fee payment: 6

Ref country code: DE

Payment date: 20230821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231027

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020