EP3697958B1 - Procédé de fabrication d'un article textile ayant une surface textile hydrophobisée par traitement plasma et un traitement chimique au mouillé - Google Patents

Procédé de fabrication d'un article textile ayant une surface textile hydrophobisée par traitement plasma et un traitement chimique au mouillé Download PDF

Info

Publication number
EP3697958B1
EP3697958B1 EP18783048.4A EP18783048A EP3697958B1 EP 3697958 B1 EP3697958 B1 EP 3697958B1 EP 18783048 A EP18783048 A EP 18783048A EP 3697958 B1 EP3697958 B1 EP 3697958B1
Authority
EP
European Patent Office
Prior art keywords
group
textile surface
range
textile
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18783048.4A
Other languages
German (de)
English (en)
Other versions
EP3697958A1 (fr
Inventor
Vera Gratzl
Andreas Brakemeier
Gaffar HOSSAIN
Günter GRABHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plasmabionic GmbH
Werner and Mertz GmbH
Original Assignee
Plasmabionic GmbH
Werner and Mertz GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plasmabionic GmbH, Werner and Mertz GmbH filed Critical Plasmabionic GmbH
Priority to PL18783048T priority Critical patent/PL3697958T3/pl
Priority to RS20210468A priority patent/RS61750B1/sr
Priority to SI201830248T priority patent/SI3697958T1/sl
Publication of EP3697958A1 publication Critical patent/EP3697958A1/fr
Application granted granted Critical
Publication of EP3697958B1 publication Critical patent/EP3697958B1/fr
Priority to HRP20210558TT priority patent/HRP20210558T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/267Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having amino or quaternary ammonium groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/02Processes in which the treating agent is releasably affixed or incorporated into a dispensing means
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/15Proteins or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Definitions

  • the invention also relates to a textile article which can be produced by the method according to the invention.
  • the invention also relates to the use of a low-pressure plasma process for the preparatory treatment of a textile surface of an article, prior to the wet-chemical hydrophobing of the textile surface, the low-pressure plasma treatment with at least one oxygen-containing compound selected from the group consisting of O, O 2 , O 3 , NO, N 2 O and CO 2 , is carried out, the at least one oxygen-containing compound being present in a gas mixture which comprises O 2 and at least one inert gas selected from the group consisting of He and Ar, the gas mixture having a proportion of O 2 in the range from 70% by volume to 90% by volume and a proportion of inert gas in the range from 10% by volume to 30% by volume.
  • Textile articles with a hydrophobic surface for example a water-repellent or waterproof surface, such as outdoor clothing articles, are currently mainly produced by finishing them with fluorine-containing chemicals.
  • fluorine-containing chemicals Often perfluorinated or polyfluorinated organic compounds, also known as “fluorocarbons", are used for this purpose.
  • fluorocarbons are very durable and are in the environment as well as accumulate in the human body - although a risk to the environment and the health of living organisms cannot be ruled out - alternatives are sought in the professional world which have similarly advantageous surface properties but avoid the aforementioned disadvantages.
  • Contributions to this discussion can be found in the publication " Perfluorinated and polyfluorinated chemicals - avoiding pollution - protecting the environment "of the Federal Environment Agency from July 2009 and press release no. 32 of the Federal Environment Agency from October 2016 .
  • Plasma treatment is also known per se for modifying textile surfaces.
  • a plasma is a partially ionized gas, which is often referred to as the "fourth physical state of matter".
  • Phenomena such as lightning or the northern lights ( aurora borealis ) are plasmas that occur in nature. Technically, they can be generated by applying electrical fields. Plasmas are interesting because of their physical and chemical properties. Highly excited particles and radicals are generated in them. These can trigger chemical reactions which are not possible under normal conditions. The temperature of the workpieces to be treated with a plasma can be kept very low.
  • the document DE 101 11 427 A1 teaches a method and an apparatus for cleaning and treating textiles in low pressure plasma.
  • the document EP 695 622 A2 describes a method and a device for plasma modification of porous objects, for example textiles.
  • Impregnating agents which contain non-fluorinated silicones and at least one cationic polymer.
  • the document JP S62 104975 A describes a method for producing a water-repellent fabric which comprises the application of a liquid containing organopolysiloxanes and / or fluorine compounds to a fabric, a low-temperature plasma treatment and a repeated application of the liquid.
  • the document JP S60 194183 A describes a permanently coated synthetic or natural fabric which comprises a silicone rubber film formed on a base fabric.
  • the textile articles produced according to the aforementioned method should retain the hydrophobic, in particular water-repellent or waterproof, surface properties, preferably even after demanding use - such as professional or industrial use, for example as work clothing - with increased requirements for abrasion resistance and resilience of the surface finish.
  • Another specific object of the present invention was to provide an environmentally friendly process which reduces or at least largely and ideally completely avoids the use of long-lasting chemicals such as fluorocarbons or alkylphenol ethoxylates that are at best only slowly degradable in the environment.
  • An important aspect of this specific task was also to use the aforementioned environmentally friendly process to produce textile articles which are at least partially and ideally completely biodegradable (i.e. through biological mechanisms such as the action of microorganisms) and thus at least partially or ideally completely compostable and are accordingly suitable for a biological cycle management.
  • textile articles with robust, long-lasting water-repellent or waterproof properties can be produced in an environmentally friendly way, even with reduced use or extensive or complete avoidance of long-life chemicals such as fluorocarbons or alkylphenol ethoxylates, which are at best only slowly degradable in the environment.
  • Textile articles produced by the method according to the invention are suitable for demanding use such as professional or industrial use with its increased requirements for abrasion resistance and resistance of the surface finish, for example for use as work clothing and / or also for industrial washing processes, since the textile articles are advantageous Maintain properties for a long time even under these demanding operating conditions.
  • the textile articles produced by the method according to the invention have further advantageous surface properties, for example they can additionally be dirt-repellent, weatherproof, easy to clean and / or difficult or hardly adhesive (beading effect).
  • a further advantage of the textile articles produced by the method according to the invention is their suitability for refreshing the hydrophobization or impregnation or a post-hydrophobization or post-impregnation, if, for example, after prolonged use of the textile article its water-repellent or waterproof property should decrease: a
  • textile articles produced by the process according to the invention can again be given improved hydrophobic or water-repellent or waterproof properties by renewed wet-chemical treatment according to step (c) described above, for example by washing-in impregnation in the washing machine.
  • plasma treatment is generally understood to mean all plasma processes that can be used for surface treatment, in particular for surface treatment of textile articles, especially plasma cleaning, plasma activation, plasma etching and plasma coating.
  • the plasma treatment can comprise one or more of the above-mentioned plasma processes, which are explained in more detail below.
  • Plasma cleaning often precedes subsequent further plasma treatment steps and is usually carried out in low-pressure plasma.
  • a universally applicable low-pressure plasma system is therefore often equipped in such a way that the essential cleaning processes, in particular cleaning in oxygen plasma, can be carried out.
  • Such a low-pressure plasma system used for cleaning processes is also referred to as a "plasma cleaner".
  • Plasma activation is mostly used to increase the surface tension of non-polar substrates (i.e. materials or substances that are to be processed by plasma activation).
  • oxygen radicals are usually generated in the oxygen plasma (i.e. using oxygen or compounds that form oxygen in the plasma, mostly gases), which, due to their high reactivity, can form bonds to the surface structures of a substrate, thereby increasing the surface tension and / or the wettability of the substrate surface becomes.
  • No polymerizable monomers are used in plasma activation, since the aim is not to directly coat the substrate surface with polymer films.
  • Plasma activation is usually carried out for shorter periods of time, for example in the range of less than 10 minutes.
  • the quality of a plasma activation can be assessed or checked, for example, by means of known contact angle measurements. In this method, the contact angle of a drop of test liquid to the activated surface is measured. The better the activation, the flatter the drop lies on the surface.
  • Plasma etching refers to material-removing plasma-assisted etching processes on solids. During plasma etching, parts of the surface of a substrate are removed by chemical reaction with a process gas. The high reactivity of the excited atoms and molecules and especially of the radicals is used. The most important criterion when selecting the etching gas is its ability to form a highly volatile reaction product with the solid to be etched. The etching rate is very different (selective) on different substrates.
  • Suitable organic etching gases are, for example, perfluorinated hydrocarbons (perfluorocarbons, PFCs) such as tetrafluoromethane (CF 4 ), hexafluoroethane (C 2 F 6 ), perfluoropropane (C 3 F 8 ), perfluorobutadiene (C 4 F 6 ), unsaturated PFCs, perfluorinated aromatics and perfluorinated heteroaromatics.
  • PFCs perfluorinated hydrocarbons
  • PFCs perfluorocarbons
  • Inorganic etching gases are suitable for example sulfur hexafluoride, nitrogen (III) fluoride, boron trichloride, chlorine, hydrogen chloride or hydrogen bromide.
  • Oxygen is usually not used as an etching gas if a high material removal with significant changes in physical or mechanical surface properties (mostly with high energy input) is to be achieved. Mixtures of different caustic gases are also common. Plasma etching is usually carried out for longer periods of time, for example in the range from 15 to 120 minutes.
  • polymerizable monomers are introduced into a plasma chamber, usually in low-pressure plasma, which then polymerize under the influence of the plasma.
  • the layer thicknesses achieved with plasma polymerisation are usually in the range of micrometers.
  • the process technology for plasma coating is much more complex than, for example, for plasma activation.
  • the plasma treatment comprises a low-pressure plasma treatment or a low-pressure plasma treatment and at least one further plasma treatment step, the low-pressure plasma treatment being carried out with at least one oxygen-containing compound selected from the group consisting of O, O 2 , O 3 , NO, N 2 O and CO 2 wherein the at least one oxygen-containing compound is present in a gas mixture which comprises O 2 and at least one inert gas selected from the group consisting of He and Ar, the gas mixture having a proportion of O 2 in the range from 70% by volume to 90% by volume and a proportion of inert gas in the range from 10% by volume to 30% by volume.
  • the low-pressure plasma treatment being carried out with at least one oxygen-containing compound selected from the group consisting of O, O 2 , O 3 , NO, N 2 O and CO 2 wherein the at least one oxygen-containing compound is present in a gas mixture which comprises O 2 and at least one inert gas selected from the group consisting of He and Ar, the gas mixture having a proportion of O 2 in the range from 70% by volume to
  • the textile surface of an article produced or provided in step (a) can - in particular for the purpose of a comparison with a method according to the invention and the textile surfaces resulting from a method according to the invention - be treated directly, i.e. without prior plasma treatment, wet-chemically. If the wet chemical treatment of an article produced or provided in step (a) for the purposes of comparison is carried out in the same way as in step (c) according to the invention, a textile surface is obtained which can be evaluated in direct comparison with regard to its hydrophobicity. A corresponding comparative study is given below in Example 6 (cf. Table 3, values "A: moisture repellency initial").
  • “Comparatively more permanently hydrophobized” preferably means that the plasma-treated hydrophobized textile surface resulting from step (c) has a higher value determined according to the spray test of the AATCC TM22-2014 standard (in standard values according to the standard specification) than that under the same conditions treated corresponding textile surface of the article produced or provided in step (a) after only wet chemical treatment as in step (c), but without prior plasma treatment in step (b).
  • "comparatively more permanently hydrophobicized” means that the plasma-treated hydrophobicized textile surface resulting from step (c) also after five washing and drying cycles (preferably carried out in accordance with ISO 6330: 2000 (E), conditions: washing machine type A / front loader; Wash program 5A "Normal” at 40 ⁇ 3 ° C; tumble-dry) has a higher value than the one treated for comparison purposes under the same conditions (ie also present after five washing and drying cycles), determined in accordance with the AATCC TM22-2014 standard ) corresponding textile surface of the article produced or provided in step (a) after only wet chemical treatment as in step (c), but without prior plasma treatment in step (b).
  • the wet-chemical treatment in step (c) of the method according to the invention is preferably an aqueous wet-chemical treatment, i.e. a wet-chemical treatment, the plasma-treated textile surface being contacted both with the hydrophobing agent and with water, preferably simultaneously.
  • the one or more materials comprised by the textile surface of the article produced or provided in step (a) of the method according to the invention can be used individually or in combination.
  • one or more materials from a first material ie selected from the material group of a first material or a first material group as defined above
  • a second material ie selected from the material group a second material or a second material group as defined above
  • a mixture or combination of one or more materials of a first material ie selected from the material group of a first material or a first material group as defined above
  • a second material ie from the material group of a second material or a second material group as defined above
  • Combinations of preferred materials (thus) in turn result in preferred materials or material combinations.
  • the textile surface of the article produced or provided in step (a) comprises at least one second material selected from the group (preferably a second material group) consisting of polyesters, polyamides, polyamide-imides, polypropylene, polyacrylonitrile and polyacryl methacrylate and their Mixtures; particularly preferably selected from the group of synthetic polymers, preferably biodegradable synthetic polymers, consisting of substituted polyesters, unsubstituted polyesters, substituted polyamides and unsubstituted polyamides and mixtures thereof.
  • the textile surface of the article produced or provided in step (a) comprises only a second material selected from the group (ie one or more materials selected from a second group of materials) consisting of polyesters, polyamides, polyamide-imides, Polypropylene, polyacrylonitrile and polyacryl methacrylate and mixtures thereof; particularly preferably selected from the group of synthetic polymers, preferably biodegradable synthetic polymers, consisting of substituted polyesters, unsubstituted polyesters, substituted polyamides and unsubstituted polyamides and mixtures thereof.
  • a second material selected from the group (ie one or more materials selected from a second group of materials) consisting of polyesters, polyamides, polyamide-imides, Polypropylene, polyacrylonitrile and polyacryl methacrylate and mixtures thereof.
  • the textile surface of the article produced or provided in step (a) does not comprise a first material (preferably natural material), ie no material that is preferably selected from the group (preferably a first material group) consisting of cotton, Wool, silk, cellulose and regenerated cellulose and their mixtures.
  • a first material preferably natural material
  • the group preferably a first material group
  • the textile surface of the article produced or provided in step (a) comprises one or more materials which - as indicated above - are selected from the group consisting of at least one first material (as defined above), preferably a natural (and therefore biological degradable) material, preferably selected from the group (preferably a first group of materials) consisting of cotton, wool, silk, cellulose and regenerated cellulose; and at least one second material (as defined above), preferably a synthetic material, which is selected from the group (preferably a second group of materials) the synthetic polymers, preferably the biodegradable synthetic polymers, consisting of substituted polyesters, unsubstituted polyesters, substituted polyamides and unsubstituted polyamides, as well as mixtures of the aforementioned materials
  • the textile articles produced by the process according to the invention are advantageously at least partially and - depending on the other components of the textile article such as the water repellent - ideally completely biodegradable (ie through biological mechanisms such as the action of microorganisms) and thus at
  • Biodegradable means in the context of the present invention that a textile article, a material, or a substance with this property is compostable and preferably within a period in the range from 12 to 36 months, particularly preferably in the range from 18 to 30 months, and preferably at a temperature in the range from 40 ° C. to 80 ° C., particularly preferably in the range from 50 ° C. to 75 ° C., at least predominantly (ie> 90% by weight, preferably> 95% by weight, of the starting material are biodegraded under the conditions specified here) and ideally practically completely biodegraded (ie by biological mechanisms such as the action of microorganisms).
  • the textile surface of the article produced or provided in step (a) comprises one or more materials selected from the group consisting of at least one first material (as defined above), preferably a natural (and therefore biodegradable) material from the group (preferably a first group of materials) consisting of cellulose and regenerated cellulose; and at least one second material (as defined above), preferably a synthetic material selected from the group (preferably a second group of materials) of synthetic polymers, preferably biodegradable synthetic polymers, consisting of substituted polyesters, unsubstituted polyesters, substituted polyamides and unsubstituted polyamides , as well as mixtures of the aforementioned materials
  • the products produced by the process according to the invention are not only advantageously at least partially and ideally practically completely biodegradable and thus at least partially and ideally completely compostable, but they are also suitable for particularly high requirements their mechanical resilience and the longevity or durability of the to correspond to hydrophobic or water-repellent or waterproof properties.
  • This variant of the method according to the invention is
  • regenerator cellulose preferably includes regenerated fibers.
  • Regenerated fibers are fibers that are produced from naturally occurring, renewable raw materials using chemical processes. These are mainly cellulose derivatives made from wood.
  • Cellulose (pulp) or regenerated cellulose which can be used in step (a) of the process according to the invention preferably comprise, within the scope of the present invention, the materials (or the fibers from the materials) viscose, modal, lyocell and cupro, particularly preferably lyocell.
  • Viscose fibers are chemical fibers (regenerated fibers) that are industrially produced using the viscose process, a widely known wet spinning process.
  • the starting raw material of the viscose process is cellulose, mainly in the form of wood, from which the high-purity cellulose is extracted using various processes.
  • Modal fibers like viscose fibers, also consist of 100 percent cellulose, but, unlike other regenerated fibers, are mainly made from beech wood.
  • the starting material is beech wood that has been debarked and then chopped into pieces for separation from the lignin.
  • you can achieve at Modal fibers have higher fiber strength and improved fiber properties than other cellulose fibers.
  • the modal fiber has a higher moisture absorption and dries quickly.
  • Lyocell is an industrially produced regenerated cellulose fiber, which is known per se and consists of cellulose and which is produced by the direct solvent process known per se. It is used in particular for the production of textiles and nonwovens. Lyocell fibers have high dry and wet strength, are soft and absorb moisture very well. Textiles made from it usually have a smooth and cool handle with a flowing drape, have a low tendency to crease and can be washed and dry-cleaned.
  • Cupro also known as copper silk or copper fiber
  • Cupro fibers are mainly processed into textile lining materials because they are breathable, hygroscopic and do not become statically charged. In addition, the fabrics have a silky soft feel and are smooth and shiny. Cupro can be washed and ironed, but it is not iron-free. Cupro is usually produced using the copper oxide-ammonia process (Cuoxam process).
  • Second, preferably synthetic, material which can be used in step (a) of the method according to the invention also comprises elastomers, preferably biodegradable elastomers.
  • Particularly preferred synthetic polymers to be used as the second material in step (a) of the process according to the invention preferably biodegradable synthetic polymers, comprise substituted and / or unsubstituted polyesters and particularly preferably comprise copolyesters of aromatic and aliphatic monomers.
  • These particularly preferred copolyesters of aromatic and aliphatic monomers preferably comprise, as monomers, terephthalic acid and one or more alkanediols, preferably selected from the group consisting of ethanediol, 1,3-propanediol and 1,4-butanediol.
  • the second, preferably synthetic, material to be used in step (a) comprises terephthalic acid and one or more alkanediols (preferably an alkanediol, ie an alkanediol of one type) selected from the group consisting of ethanediol as monomers , 1,3-propanediol and 1,4-butanediol (preferably ethanediol), and preferably comprise at least one further monomer.
  • alkanediols preferably an alkanediol, ie an alkanediol of one type
  • biodegradable substituted or unsubstituted polyesters or fibers of such biodegradable substituted or unsubstituted polyesters are polybutylene adipate terephthalate ("PBAT”), Ecoflex® (BASF) and infinito® (Lauffenmühle GmbH & Co. KG).
  • PBAT polybutylene adipate terephthalate
  • Ecoflex® Ecoflex®
  • infinito® Lauffenmühle GmbH & Co. KG
  • Preferred polyamides which can be used in step (a) of the process according to the invention are or include polyamide-imides and aramids (the latter are also referred to as "aromatic polyamides"), preferably according to the definition of the US Federal Trade Commission, according to which aramids are polyamides with aromatic groups in of the main chain in which at least 85% of the amide groups are bonded directly to two aromatic rings.
  • a particularly preferred biodegradable polyamide to be used in step (a) of the process according to the invention is known polyamide 6.
  • An example of a biodegradable polyamide particularly preferred according to the invention is Amni Soul Eco® (Rhodia / Solvay).
  • the above-mentioned variants of the textile surface of the article produced or provided in step (a) can be used individually or in combination (together).
  • threads, fibers or yarns made from one or more of the materials specified above can be used individually or in combination.
  • threads made of at least one synthetic material and / or threads made of at least one natural material can be spun individually or together to form yarns, or such different threads can be processed individually or together to form a fleece, fabric or fabric, for example joined, woven or knitted , become.
  • step (a) of the method according to the invention textile articles produced or provided are preferably used, the textile surface of which is selected from the group consisting of woven and knitted fabrics.
  • the plasma treatment of woven and knitted fabrics in step (b) of the method according to the invention can be carried out particularly efficiently and effectively.
  • Textile fabrics or knitted fabrics produced by the method according to the invention can be further processed directly into ready-made textile articles, for example into textile articles for daily use, such as outdoor clothing.
  • the aforementioned materials for example cellulose or regenerated cellulose and / or one or more synthetic polymers as defined above
  • the aforementioned types of textile surfaces for example woven or knitted fabrics
  • An aqueous waterproofing agent allows the process to be carried out as an aqueous process (i.e. carried out at least in the presence of water), ideally without the presence of organic solvents. In this way, few or no organic solvents get into the environment without the need for complex filtering or retention measures or there are few organic or no organic solvent residues that could affect the environment or would have to be disposed of in a costly manner.
  • Polydimethylsiloxanes are known to be at most slightly toxic and at least largely chemically inert, so that when they are used in the method according to the invention, health damage to living organisms can be at least largely and ideally completely excluded.
  • the polyacrylates which can be used in step (c) of the process according to the invention which are preferably selected from the group consisting of homopolymers and copolymers of acrylic acid, acrylic acid esters, methacrylic acid and methacrylic acid esters, can optionally contain further monomer units which can be copolymerized with acrylic acid, acrylic acid esters, methacrylic acid and / or methacrylic acid esters contain.
  • homopolymers and copolymers are formed from monomers of acrylic acid, acrylic acid esters, methacrylic acid and methacrylic acid esters, whereby (depending on the requirements of the individual case) further monomers co-polymerizable with acrylic acid, acrylic acid esters, methacrylic acid and / or methacrylic acid esters are integrated or not integrated.
  • the modified polydimethylsiloxane is preferably used in the aqueous waterproofing agent in step (c) of the process according to the invention in a weight ratio in the range from 1:20 to 20: 1, preferably in the range from 1:10 to 10: 1, particularly preferably in the range from 7: 1 to 1: 7, used in relation to the one or more cationic polymers.
  • the aqueous hydrophobing agent in step (c) of the process according to the invention preferably contains the modified polydimethylsiloxane in a total amount in the range from 0.1% by weight to 20% by weight, particularly preferably in the range from 0.2% by weight to 15% % By weight and particularly preferably in the range from 0.3% by weight to 10% by weight, based on the total weight of the aqueous waterproofing agent.
  • the aqueous hydrophobing agent in step (c) of the process according to the invention preferably contains the one or more cationic polymers in a total amount in the range from 0.05% by weight to 15% by weight, particularly preferably in the range from 0.1% by weight. % to 10% by weight and particularly preferably in the range from 0.15% by weight to 5% by weight, based on the total weight of the aqueous waterproofing agent.
  • the modified polydimethylsiloxane which can be used in step (c) of the method according to the invention preferably comprises one or more polydimethylsiloxanes which are selected from the group consisting of aminoalkyl-polydimethylsiloxane, amidoaminoalkyl-polydimethylsiloxane, alkyl-aminoalkyl-polydimethylsiloxane, alkyl-amidoaminoalkyl-polydimethylsiloxane, alkyl-amidoaminoalkylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsiloxanydimethylsi
  • the aforementioned modified polydimethylsiloxanes can be used individually or in combination with one another.
  • the cationic polymers that can be used in step (c) of the process according to the invention are preferably homopolymers or copolymers which, as constituents of the side chains of the corresponding monomers, comprise uncharged basic groups, preferably primary, secondary or tertiary amino groups, which contain cationic groups by taking up H + ions can form.
  • Examples of such cationic polymers which are preferably used in step (c) of the process according to the invention are in particular in the document WO 2010/139466 disclosed.
  • the aforementioned cationic polymers can be used individually or in combination with one another.
  • polysaccharide includes modified and unmodified polysaccharides, preferably modified chitin and modified and unmodified chitosan, with differences in the molar masses, in terms of degrees of deacetylation and in terms of polysaccharide derivatives suitable according to the invention, such as preferably chitosan derivatives.
  • Chitosan derivatives to be preferably used in the method according to the invention include chitosan succinate (N-succinyl-chitosan), chitosan propionate (N-propionyl-chitosan) and chitosan adipate (N-adipyl-chitosan).
  • Cationic polymers to be used with preference in the above-mentioned process according to the invention are the biopolymers chitin and / or chitosan and their derivatives, preferably chitosan and its derivatives. If there are more deacetylated than acetylated 2-amino-2-deoxy-ß-D-glucopyranose units in the overall biopolymer molecule (> 50% deacetylated units), this is indicated in the present text, in accordance with the usual understanding in the specialist field, called chitosan.
  • chitin If there are more acetylated than deacetylated 2-amino-2-deoxy-ß-D-glucopyranose units in the overall biopolymer molecule ( ⁇ 50% deacetylated units), this is indicated in the present text, in accordance with the usual understanding in the specialist field, called chitin.
  • the degree of the resulting deacetylation in the chitin or chitosan can vary. To improve the solubility in aqueous solutions and / or to reduce the viscosity, the chain length and / or the degree of deacetylation of the polysaccharide (chitin or chitosan) can be changed. Due to the free amino groups formed by deacetylation, chitosan is a polycation with a high charge density in acidic solution.
  • a chitosan with a degree of deacetylation of> 75% is preferred, particularly preferably with a degree of deacetylation of> 85% and very particularly preferably with a degree of deacetylation of> 90%.
  • the molecular weight of the chitosan used in step (c) of the process according to the invention is preferably in a range from 10,000 Daltons to 5,000,000 Daltons, particularly preferably in a range from 100,000 Daltons to 2,000,000 Daltons and very particularly preferably in a range from 150,000 Daltons up to 1,000,000 daltons.
  • Examples of chitosan types which can be used or preferably used in step (c) of the method according to the invention are in particular in the document WO 2010/139466 disclosed.
  • polyamides and “polypeptides” (i.e. a natural or synthetic polymer linked by peptide bonds between amino acids) are used synonymously and are used differently depending on the objective context.
  • polypeptide is usually used in connection with corresponding natural polymers.
  • aqueous, fluorine-free water repellants which are preferably used in step (c) of the process according to the invention are in particular in the document WO 2010/139466 disclosed.
  • a low-pressure plasma is usually generated between two or more electrodes by electromagnetic high-frequency fields, at a pressure that is considerably lower than the pressure of the earth's atmosphere. Due to the large (mean) free path of excited particles generated in this way, the expansion of the plasma can go beyond the effective range of the high-frequency field and also cover the entire volume of a plasma chamber.
  • the at least one further plasma treatment step preferably comprises plasma cleaning, particularly preferably plasma cleaning, of the textile surface produced or provided in step (a) before plasma activation of said textile surface is carried out.
  • the plasma cleaning is thus followed by the low-pressure plasma treatment, preferably the low-pressure plasma activation.
  • a method according to the invention or a method according to the invention described above or below as preferred is preferred, the low-pressure plasma treatment being carried out at a pressure in the range from 1 Pa (0.01 mbar) to 20 kPa (200 mbar), preferably at a pressure in the range of 1 Pa (0.01 mbar) to 0.5 kPa (5 mbar), particularly preferably at a pressure in the range from 10 Pa to 50 Pa (0.1 mbar to 0.5 mbar).
  • step (b) A method according to the invention or a preferred method according to the invention is therefore preferred, the pressure ranges specified above for step (b) as preferred or particularly preferred for the low-pressure plasma treatment, preferably low-pressure plasma activation, being combined with the pressure ranges given below for step (b) ranges of the duration indicated as preferred or particularly preferred for the low-pressure plasma treatment, preferably the low-pressure plasma activation.
  • the low-pressure plasma treatment (step (b)) being carried out at a temperature in the range from 10 ° C. to 50 ° C., preferably from 15 ° C. to 40 ° C. .
  • a plasma process in particular a low-pressure plasma process or low-pressure plasma activation process in the specified temperature range and under the conditions or preferred conditions specified above and below, one usually speaks of a "low temperature plasma process" (“LTP") .
  • LTP low temperature plasma process
  • step (b) of the process according to the invention is carried out at temperatures above the specified temperature range or preferred temperature range, the rate of deposition of constituents of the gas or gas mixture forming the plasma can be undesirably reduced, which can impair the desired effect of the plasma treatment.
  • the low-pressure plasma treatment, preferably the low-pressure plasma activation, in step (b) of the method according to the invention is carried out in the presence of a reactive gas and an inert gas.
  • the reactive gas used is one or more oxygen-containing compounds which release or make available molecular oxygen at least as an intermediate (e.g. precursors or "precursors" of oxygen) at least under the conditions of low-pressure plasma activation.
  • oxygen-containing compounds which release or make available molecular oxygen at least as an intermediate (e.g. precursors or "precursors" of oxygen) at least under the conditions of low-pressure plasma activation.
  • the low-pressure plasma treatment is carried out with at least one oxygen-containing compound selected from the group consisting of O, O 2 , O 3 , NO, N 2 O and CO 2 , so that preferably oxygen-containing functional groups (preferably - OH, -CO, -CHO or -COOH) are generated on the textile surface, which are preferably covalently bound to the textile surface.
  • oxygen-containing functional groups preferably - OH, -CO, -CHO or -COOH
  • the detection of the generation of such oxygen-containing functional groups on the or the detection of their covalent bond to the textile surface can be carried out by suitable physical or physico-chemical methods, for example by Fourier transform infrared spectroscopy (FT-IR spectroscopy) or by X-ray Photoelectron Spectroscopy for Chemical Analysis (ESCA).
  • FT-IR spectroscopy Fourier transform infrared spectroscopy
  • ESA X-ray Photoelectron Spectroscopy for Chemical Analysis
  • the low-pressure plasma treatment preferably the low-pressure plasma activation, is preferably carried out in step (b) of the method according to the invention with a gas or gas mixture which (before the transition to the plasma state) does not contain more than 1% by volume besides the oxygen-containing gas (s) , comprises gaseous components.
  • a gas or gas mixture which (before the transition to the plasma state) does not contain more than 1% by volume besides the oxygen-containing gas (s) , comprises gaseous components.
  • the method according to the invention contains the aforementioned mixture, preferably said gas mixture, which comprises O 2 and at least one inert gas selected from the group consisting of He and Ar (before the transition to the plasma state) a proportion of O 2 in the range of 70 vol. -% to 90% by volume and a proportion of inert gas, preferably He and / or Ar, in the range of 10% by volume to 30% by volume.
  • said gas mixture which comprises O 2 and at least one inert gas selected from the group consisting of He and Ar (before the transition to the plasma state) a proportion of O 2 in the range of 70 vol. -% to 90% by volume and a proportion of inert gas, preferably He and / or Ar, in the range of 10% by volume to 30% by volume.
  • step (b) of the method according to the invention specified above as preferred or particularly preferred can preferably be combined and, in combination, result in particularly preferred method conditions for carrying out step (b).
  • variants of the method according to the invention are preferred, wherein in step (b) a low-pressure plasma treatment, preferably a low-pressure plasma activation, at a pressure in the range from 1 Pa (0.01 mbar) to 0.5 kPa (5 mbar) and for a duration is carried out in the range of 30 seconds to 5 minutes.
  • a low-pressure plasma treatment preferably a low-pressure plasma activation, at a pressure in the range from 10 Pa to 50 Pa (0.1 mbar to 0.5 mbar) and for a duration is carried out in the range of 1 minute to 3 minutes.
  • the electrode density preferably being in the above range, a particularly effective and uniform (homogeneous) activation and subsequent hydrophobization of the textile surface is achieved.
  • step (b) of the method according to the invention the low-pressure plasma treatment is carried out in a plasma treatment chamber with an output in the above-mentioned range or with a plasma generation source with an output in the above-mentioned range, particularly good results are achieved with regard to the activation of the textile surface or the subsequent Hydrophobization and its longevity achieved.
  • step (b) it has been shown that particularly good or even the best results with regard to the preparatory plasma activation of a textile surface using the method according to the invention and thus also very good or even the best results with regard to the moisture-repellent properties of the plasma-treated hydrophobized textile surface and the durability of the moisture-repellent properties result when the method according to the invention (in step (b)) is carried out as a low-pressure plasma treatment with a plasma generation source at an output in the range specified above or in the preferred range specified above.
  • the power of the plasma generation source is lower than the values given above, there may be insufficient plasma activation of the textile surface, which ultimately also leads to unsatisfactory moisture-repellent properties of the treated textile surface and / or unsatisfactory durability of these moisture-repellent properties.
  • the power of the plasma generation source is higher than the values given above, the textile surface used may even be damaged.
  • the impregnation in the course of the aforementioned wet chemical treatment in step (c) of the method according to the invention can be carried out using any method suitable for this purpose, for example by spraying, dipping, pressure impregnation, patting ("kiss-and-roll"), Wash-in impregnation, for example in the washing machine, full bath impregnation (preferred) or by a combination of several of the aforementioned methods.
  • the impregnation is preferably carried out by full bath impregnation, particularly preferably by means of padding, preferably if the wet chemical treatment is an aqueous wet chemical treatment.
  • the plasma-treated hydrophobized textile surface obtained in step (c) of the method according to the invention is most effectively brought into contact with the hydrophobing agent and a particularly completely and permanently hydrophobized textile surface results.
  • step (c) in particular on a textile surface as described above of an article produced or provided in step (a) which contains one or more materials comprises, which are selected from the group consisting of a first material selected from the group consisting of cellulose and regenerated cellulose and mixtures thereof), the best results are achieved according to the method according to the invention in terms of moisture-repellent properties of the resulting impregnated fabric and durability of the impregnation.
  • concentrations of modified polydimethylsiloxane lower than those indicated above can result in unsatisfactory moisture-repellent properties of the treated textile surface.
  • concentrations of modified polydimethylsiloxane higher than those indicated above can even lead to a reduced durability of the moisture-repellent properties of the treated textile surface.
  • the measures specified above for the wet chemical treatment in step (c) of the method according to the invention or specified as (particularly) preferred, including drying and fixing, are preferably combined with one another, which results in particularly preferred variants of the method according to the invention which are particularly effective and / or permanently hydrophobized textile surfaces lead.
  • Such particularly permanently hydrophobized textile surfaces retain their advantageous, in particular water-repellent or waterproof, properties for a particularly long time and are particularly resistant to mechanical stress, for example from abrasion or washing or drying processes.
  • the present invention also relates to a textile article comprising a hydrophobized textile surface, producible by a method according to the invention, preferably producible by a method according to the invention described above as preferred.
  • the textile article according to the invention is preferably selected from the group consisting of weather protection clothing; Outdoor clothing, functional clothing; Work clothes, preferably for outdoor use; Rain cloaks; Ponchos; Tarpaulins for motor vehicles or construction; Awnings; Sunroofs; Umbrellas; Parasols; Tent sheets; Tents and transport containers, preferably suitcases, carrier bags, sports bags, rucksacks and panniers.
  • the present invention also relates to the use of a low-pressure plasma process for the preparatory treatment of a textile surface of an article, prior to the wet-chemical hydrophobing of the textile surface, the low-pressure plasma treatment with at least one oxygen-containing compound selected from the group consisting of O, O 2 , O 3 , NO , N 2 O and CO 2 , the at least one oxygen-containing compound being present in a gas mixture which comprises O 2 and at least one inert gas selected from the group consisting of He and Ar, the gas mixture having a proportion of O 2 in the range from 70% by volume to 90% by volume and a proportion of inert gas in the range from 10% by volume to 30% by volume.
  • the low-pressure plasma treatment with at least one oxygen-containing compound selected from the group consisting of O, O 2 , O 3 , NO , N 2 O and CO 2 , the at least one oxygen-containing compound being present in a gas mixture which comprises O 2 and at least one inert gas selected from the group consisting of He and Ar, the gas
  • Example 1 Providing an article with a textile surface
  • a fabric was used (provided) in each of the examples given below, which is made from 100% individual threads of a biodegradable synthetic polymer (a copolyester comprising as Monomers terephthalic acid and ethanediol and at least one other monomer) existed.
  • the weight per unit area of the fabric was approx. 150 g / m 2 and the thread density was approx. 100 warp threads / cm and approx. 50 weft threads / cm.
  • Example 2 Plasma treatment of a textile surface
  • a sample of the tissue provided above was subjected to low-pressure plasma activation in a Nano-Plasmacoater BAG with a plasma chamber (approx. 11 m 3 ) and a plurality of electrodes (electrode density approx. 3.5 electrodes / m 2 of tissue) subject, whereby the following parameters were set: Frequency: 13.56 MHz Duration of treatment: 2 min Power (plasma source): 9 kW Print: 0.3 mbar (30 Pa) Process gas: O 2 (molecular oxygen) Inert gas: Ar (argon) Process gas / inert gas ratio: 20 vol% Ar / 80 vol% O 2
  • the tissue treated with plasma in this way was designated “G-tO-pbh (Ar / O 2 )”.
  • Example 1 Another sample of the fabric provided above (see Example 1) was subjected to the same low-pressure plasma activation as described above under 2.1, but only the inert gas argon, but not the process gas molecular oxygen (100% by volume argon) was used.
  • Example 1 Another sample of the fabric provided above (see Example 1) was subjected to the same low-pressure plasma activation as described above under 2.1, but only the process gas molecular oxygen, but not the inert gas argon (100% by volume O 2 ) was used. .
  • tissue treated with plasma in this way was designated "G-tO-pbh (O 2 )".
  • compositions indicated below (cf. Table 1) of aqueous hydrophobizing agents (hereinafter also abbreviated as "HPM”) which can be used in the process according to the invention (step (c)) and containing modified polydimethylsiloxane (hereinafter also abbreviated as "PDMS”) were used ) produced.
  • HPM aqueous hydrophobizing agents
  • PDMS modified polydimethylsiloxane
  • a chitosan with a degree of deacetylation of 95% and a molecular weight of 300,000 to 500,000 g / mol (Da) was used as the chitosan.
  • An emulsifier-containing dispersion (approx. 35% by weight active content) of an acrylate-styrene copolymer with 25-45% by weight of amino-functional monomers and a molecular weight between 50,000 and 500,000 g / mol (Da) is used.
  • compositions of water repellants component function HPM 1 HPM 2 HPM 3 Amount [wt .-%] Amount [wt .-%] Amount [wt .-%] Amino-amido-siloxane 1 Modified PDMS 0.6 0 0 Amino-functionalized polydimethylsiloxane 1 Modified PDMS 0 1.7 5.1 Amino-functionalized (styrene) acrylate copolymer Cationic polymer 0 0.25 0.74 Chitosan Cationic polymer 0.5 0 0.1 Formic acid acid 0.25 0.06 0.06 water Solvents (including preservatives) ad 100 ad 100 ad 100 1 : as an aqueous microemulsion
  • Example 4 Wet chemical treatment of a textile surface
  • a plasma-treated fabric “G-tO-pbh (Ar / O 2 )” produced as indicated above (cf. Example 2.1) was processed in a manner known per se in a padding machine (also known as a “padding machine” or “padding mangle ”) impregnated with the aqueous hydrophobing agent HPM3 (concentration: 300 g / L) prepared as above (cf. Example 3), the following parameters being set: Print: 300 kPa (3 bar) Temperature: 21 ° C Feed rate: 2 m / min
  • the wet-chemically treated (impregnated) fabric was then dried for 2 min at 120 ° C. on a tenter.
  • the dried fabric was then treated on a tenter at 180 ° C. for a further 1 min.
  • the hydrophobized fabric plasma-treated in this way corresponded to an article produced according to the invention with a hydrophobized textile surface and was designated "G-tO-pbh (Ar / O 2 ) -hydr".
  • a non-plasma-treated fabric "G-tO" provided as indicated above (cf. Example 1) was impregnated in a padding machine with the hydrophobicizing agent HPM3 prepared as indicated above in otherwise the same manner as described in Example 4.1, then likewise dried and fixed.
  • the non-plasma-treated hydrophobic fabric produced in this way was designated “G-tO-hydr” and used as a comparison fabric not produced according to the invention.
  • the contact angle 0 of liquids surrounded by gas on a solid surface denotes the angle at the phase boundary between gaseous, liquid and solid phases.
  • the size of the contact angle between liquid and solid depends on the interaction between the fabrics at the contact surface. The smaller this interaction, the larger the contact angle.
  • certain properties of the surface of a solid can be determined, e.g. B. the surface energy.
  • the surface is called hydrophilic at low contact angles (approx. 0 °), hydrophobic at angles around 90 ° and superhydrophobic at even larger angles. The latter is also known as the lotus effect at very high angles (approx. 160 °) and corresponds to extremely low wettability.
  • the contact angle can be changed by surface treatment.
  • the contact angle 0 can be measured with a contact angle goniometer.
  • Example 6a Durability of the water repellency in relation to washing-drying cycles
  • G-tO-pbh (Ar / O 2 ) -hydr (manufactured according to the invention) G-tO-pbh (Ar) -hydr (not according to the invention) and G-tO-pbh ( O 2 ) -hydr (not according to the invention) and G-tO-hydr (comparison) each carried out a spray test with water according to the AATCC TM22-2014 standard.
  • This spray test is used to determine the water-repellent properties of textile surfaces with or without finishing.
  • the stretched textile surface is wetted with water under controlled conditions, creating a moisture pattern on the textile surface, the extent of which depends on the relative water repellency of the textile surface under consideration.
  • the evaluation of the test result as the degree of "moisture repellency" is carried out by comparing the resulting moisture pattern with corresponding reference standard samples on a scale from 0 ("complete moistening of the entire upper and lower surfaces") to 100 ("no sticking or no moistening either.” only the upper surface ").
  • Example 6b Durability of the hydrophobization against abrasion
  • an (impregnated) textile surface produced according to the method according to the invention has better, more permanent and more resistant hydrophobic (ie here: water-repellent or waterproof) properties than one produced (impregnated) according to a known method of the prior art ) textile surface.
  • the degree of water resistance of an article with a hydrophobized textile surface produced according to the method according to the invention was determined and compared with an article which had been produced (impregnated) according to a known method of the prior art.
  • G-tO-pbh (Ar / O 2 ) -hydr (manufactured according to the invention) G-tO-pbh (Ar) -hydr (not according to the invention) and G-tO-pbh (O 2 ) -hydr (not according to the invention) and G-tO-hydr (comparison) a test for determining the resistance against the penetration of water according to the standard ISO 811: 1981-10 / DIN EN 20811: 1992-08 (water column above the textile surface, i.e. above / facing the plasma-treated textile surface or above / facing the plasma-treated, hydrophobized surface) ( "hydrostatic pressure test").
  • the water resistance is given as the resistance of the textile surface under consideration to a water column.
  • the height of that water column in cm which, according to the test conditions of the above-mentioned standard, leads to the permeability of the textile surface to water is given as a measure of the water resistance of the textile surface.
  • brackets in Table 4 are to be assigned to a separate series of measurements.
  • the values not in brackets in Table 4 are also to be assigned to a further separate measurement series.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Claims (15)

  1. Procédé de fabrication d'un article textile ayant une surface textile rendue hydrophobe, comprenant les étapes suivantes :
    (a) fabrication ou fourniture d'un article ayant une surface textile
    (b) traitement au plasma de la surface textile fabriquée ou fournie à l'étape (a), de telle sorte qu'il en résulte une surface textile traitée au plasma,
    (c) traitement chimique par voie humide de la surface textile traitée au plasma issue de l'étape (b) ou d'une surface textile fabriquée à partir de celle-ci lors d'autres étapes avec un agent d'hydrophobisation, de telle sorte qu'il en résulte une surface textile rendue hydrophobe traitée au plasma,
    le traitement au plasma à l'étape (b) étant
    - un traitement au plasma basse pression
    ou
    - comprenant un traitement au plasma basse pression et au moins une autre étape de traitement au plasma,
    dans les deux cas, le traitement au plasma à basse pression étant exécuté avec au moins un composé oxygéné sélectionné parmi le groupe constitué d'O, d'O2, d'O3, de NO, de N2O et de CO2,
    l'au moins un composé oxygéné étant présent sous forme d'un mélange gazeux qui comprend de l'O2 et au moins un gaz inerte sélectionné parmi le groupe constitué d'He et d'Ar,
    le mélange gazeux contenant une part d'O2 dans la plage de 70% en volume à 90% en volume et une part de gaz inerte dans la plage de 10% en volume à 30% en volume.
  2. Procédé suivant une des revendications précédentes, dans lequel la surface textile de l'article fabriqué ou fourni à l'étape (a) comprend un ou plusieurs matériaux qui sont sélectionnés parmi le groupe constitué
    - d'un premier matériau, de préférence d'un matériau naturel sélectionné de préférence parmi le groupe constitué de coton, de laine, de soie, de cellulose et de cellulose régénérée et de leurs mélanges, sélectionné plus préférablement parmi le groupe constitué de cellulose et de cellulose régénérée et de leurs mélanges,
    - d'un second matériau, de préférence d'un matériau synthétique, sélectionné de préférence parmi le groupe constitué de polyesters, de polyamides, de polyamideimides, de polypropylène, de polyacrylonitrile et de polyacrylméthacrylate et de leurs mélanges, sélectionné plus préférablement parmi le groupe des polymères synthétiques, de préférence des polymères synthétiques dégradables biologiquement, constitué de polyesters substitués, de polyesters non substitués, de polyamides substitués et de polyamides non substitués et de leurs mélanges,
    ainsi que
    - de leurs mélanges.
  3. Procédé suivant une des revendications précédentes, de préférence suivant la revendication 2, dans lequel la surface textile de l'article fabriqué ou fourni à l'étape (a) comprend un ou plusieurs matériaux qui sont sélectionnés parmi le groupe constitué
    - d'un premier matériau sélectionné parmi le groupe constitué de cellulose et de cellulose régénérée et de leurs mélanges,
    - d'un second matériau sélectionné parmi le groupe constitué de polyesters substitués, de polyesters non substitués, de polyamides substitués et de polyamides non substitués et de leurs mélanges,
    ainsi que
    - de leurs mélanges,
    la surface textile comprenant de préférence un ou plusieurs matériaux, dont au moins un est sélectionné parmi le groupe constitué
    - d'un second matériau sélectionné parmi le groupe constitué de polyesters substitués, de polyesters non substitués, de polyamides substitués et de polyamides non substitués et de leurs mélanges.
  4. Procédé suivant une des revendications précédentes, dans lequel la surface textile de l'article fabriqué ou fourni à l'étape (a)
    - est sélectionnée parmi le groupe constitué de tissus, de tissus à mailles, de tricots, de tressages, de tissus à mailles liés par piqûre, de feutres, de matériaux textiles composites, de tissus non tissés, de manchons textiles, de cordes, de fibres, de filaments, de fils, de mèches et de leurs mélanges, sélectionnée de préférence parmi le groupe constitué de tissus, de tissus à mailles, de tricots, de matériaux textiles composites, de tissus non tissés et de leurs mélanges
    et/ou
    - comprend un tissu, un tissu à mailles, un tricot, un tressage, un tissu à mailles lié par piqûre, un feutre, un tissu non tissé et/ou un manchon textile, de préférence un tissu et/ou un tricot, plus préférablement un tissu, qui
    - présente un grammage dans la plage de 20g/m2 à 200g/m2, et/ou
    - une densité de fils dans la plage de 80 à 120 fils de chaîne/cm et de 40 à 80 fils de trame/cm.
  5. Procédé suivant une des revendications précédentes, de préférence suivant la revendication 3, dans lequel l'agent d'hydrophobisation utilisé à l'étape (c)
    - est un agent d'hydrophobisation aqueux qui comprend de préférence du polydimétylsiloxane modifié
    et/ou
    - qui ne comprend pas de composés organiques fluorés
    et/ou
    l'agent d'hydrophobisation est un agent d'hydrophobisation aqueux qui comprend
    - du polydiméthylsiloxane modifié, de préférence du polydiméthylsiloxane modifié, dans lequel un ou plusieurs groupes méthyle sont remplacés par des substituants possédant des groupes fonctionnels alcalins, des groupes alkyle et ou des groupes polyéthers,
    ainsi qu'en plus,
    - un ou plusieurs polymères cationiques qui sont sélectionnés parmi le groupe constitué
    - de polyacrylates, de préférence sélectionnés parmi le groupe constitué d'homopolymères et de copolymères d'acide acrylique, d'esters d'acide acrylique, d'acide méthacrylique, d'esters d'acide méthacrylique et, le cas échéant, d'autres monomères, copolymérisables avec de l'acide acrylique, des esters d'acide acrylique, d'acide méthacrylique et/ou d'esters d'acide méthacrylique, de préférence avec du styrène,
    - de polyuréthanes, de préférence de polyuréthane de type polyester et/ou de type polycarbonate,
    - de polyester,
    - de polypeptide,
    - de polyamide
    et
    - de polysaccharides sélectionnés de préférence parmi le groupe
    constitué de chitine et de chitosane,
    et/ou
    dans lequel l'agent d'hydrophobisation est un agent d'hydrophobisation aqueux qui comprend un polydiméthylsiloxane modifié,
    - le polydiméthylsiloxane étant un polydiméthylsiloxane modifié,
    - dans lequel un ou plusieurs groupes méthyle sont respectivement remplacés par un substituant possédant un groupe fonctionnel alcalin, de préférence respectivement par un groupe aminoalkyle ou un groupe amido-aminoalkyle,
    et qui comprend de préférence des groupes méthoxy terminaux,
    et/ou
    - l'un ou les plusieurs polymères cationiques compris en plus sont sélectionnés parmi le groupe constitué
    - de polyacrylates qui sont fonctionnalisés par des groupes cationiques ou des groupes alcalins, de préférence par des groupes amino, de préférence par du copolymère styrène-acrylate, qui sont fonctionnalisés par des groupes alcalins, de préférence des groupes amino,
    - de polyuréthanes qui sont fonctionnalisés par des groupes cationiques ou des groupes alcalins, de préférence par des groupes amino,
    - de polyesters qui sont fonctionnalisés par des groupes cationiques ou des groupes alcalins, de préférence par des groupes amino,
    - de polypeptides comprenant un ou plusieurs acides aminés alcalins sélectionnés, de préférence parmi le groupe constitué de lysine, d'arginine, d'histidine, de citrulline et d'ornithine,
    et
    - de chitosane, de préférence avec un degré de désacétylation supérieur à 75%,
    de préférence, au moins un parmi les un ou plusieurs polymères cationiques étant sélectionné parmi le groupe constitué
    - de polyacrylates, de préférence de copolymères styrène-acrylate, qui sont fonctionnalisés par des groupes cationiques ou des groupes alcalins, de préférence par des groupes alcalins, plus préférablement par des groupes aminés,
    et
    - de chitosane, de préférence avec un degré de désacétylation supérieur à 75%.
  6. Procédé suivant une des revendications précédentes, dans lequel le traitement au plasma à l'étape (b)
    - est une activation de plasma à basse pression
    ou
    - comprend une activation de plasma à basse pression et au moins une autre étape de traitement au plasma
    et/ou dans lequel
    le traitement au plasma à basse pression a lieu à une pression dans la plage de 1 Pa à 20 kPa, de préférence à une pression dans la plage de 1 Pa à 0,5 kPa, plus préférablement à une pression dans la plage de 10 Pa à 50 Pa.
  7. Procédé suivant la revendication 6, dans lequel le traitement au plasma à basse pression est exécuté avec au moins un composé oxygéné sélectionné parmi le groupe constitué d'O, d'O2, d'O3, de NO, de N2O et de CO2, de telle sorte que des groupes fonctionnels oxygénés sont produits sur la surface textile, à laquelle ils sont liés, de préférence de manière covalente.
  8. Procédé suivant la revendication 7, dans lequel l'au moins un composé oxygéné
    - est présent sous la forme d'un mélange gazeux qui comprend de l'O2 et au moins un gaz inerte sélectionné parmi le groupe constitué d'He et d'Ar, ledit mélange gazeux qui comprend de l'O2 et au moins un gaz inerte sélectionné parmi le groupe constitué d'He et d'Ar contient au moins 99% en volume d'O2 et au moins un gaz inerte sélectionné parmi le groupe constitué d'He et d'Ar,
    et plus préférablement, au moins 99% en volume d'O2 et d'Ar, le mélange gazeux contenant de préférence une part d'O2 dans la plage de 70% en volume à 90% en volume et une part d'He et/ou d'Ar dans la plage de 10% en volume à 30% en volume.
  9. Procédé suivant une des revendications précédentes,
    dans lequel
    la surface textile de l'article fabriqué ou fourni à l'étape (a) comprend un ou plusieurs matériaux qui sont sélectionnés parmi le groupe constitué
    - d'un premier matériau sélectionné parmi le groupe constitué de coton, de laine, de soie, de cellulose et de cellulose régénérée et de leurs mélanges, sélectionné plus préférablement, parmi le groupe constitué de cellulose et de cellulose régénérée et de leurs mélanges,
    - d'un second matériau sélectionné parmi le groupe constitué de polyesters, de polyamides, de polyamideimides, de polypropylène, de polyacrilonitrile et de polyacrylméthacrylate et de leurs mélanges, sélectionné plus préférablement parmi le groupe des polymères synthétiques, de préférence des polymères synthétiques dégradables biologiquement, constitués de polyesters substitués, de polyesters non substitués, de polyamides substitués et de polyamides non substitués et de leurs mélanges,
    ainsi que
    - de leurs mélanges,
    le traitement au plasma à l'étape (b)
    - est un traitement au plasma à basse pression, de préférence une activation de plasma à basse pression, le traitement au plasma à basse pression étant exécuté avec au moins un composé oxygéné sélectionné parmi le groupe constitué d'O2, d'O3, de NO, de N2O et de CO2, de telle sorte que des groupes fonctionnels oxygénés sont produits de préférence sur la surface textile, à laquelle ils sont liés de préférence de manière covalente,
    et
    l'agent d'hydrophobisation utilisé à l'étape (c) est un agent d'hydrophobisation aqueux, qui
    comprend du polydiméthylsiloxane modifié, de préférence du polydiméthylsiloxane modifié, dans lequel un ou plusieurs groupes méthyle sont remplacés par des substituants possédant des groupes fonctionnels alcalins, des groupes alkyle et/ou des groupes polyéther,
    ainsi qu'en plus
    un ou plusieurs polymères cationiques qui sont sélectionnés parmi le groupe constitué
    - de polyacrylates sélectionnés de préférence parmi le groupe constitué d'homopolymères et de copolymères d'acide acrylique, d'esters d'acide acrylique, d'acide méthacrylique, d'esters d'acide méthacrylique et, le cas échéant, d'autres monomères co-polymérisables avec de l'acide acrylique, des esters d'acide acrylique, de l'acide méthacrylique et/ou des esters d'acide méthacryliques, de préférence avec du styrène,
    - de polyuréthanes, de préférence de polyuréthane de type polyester et/ou de type polycarbonate,
    - de polyester,
    - de polypeptide
    - de polyamide
    et
    - de polysaccharides sélectionnés de préférence parmi le groupe constitué de chitine et de chitosane.
  10. Procédé suivant une des revendications précédentes, de préférence suivant la revendication 9,
    dans lequel
    la surface textile de l'article fabriqué ou fourni à l'étape (a) comprend un ou plusieurs matériaux qui sont sélectionnés parmi le groupe constitué
    - d'un premier matériau sélectionné parmi le groupe constitué de cellulose et de cellulose régénérée et de leurs mélanges,
    - d'un second matériau sélectionné parmi le groupe constitué de polyesters substitués, de polyesters non substitués, de polyamides substitués et de polyamides non substitués et de leurs mélanges,
    ainsi que
    - de leurs mélanges,
    la surface textile comprenant de préférence un ou plusieurs matériaux, dont au moins un est sélectionné parmi le groupe constitué
    - d'un second matériau sélectionné parmi le groupe constitué de polyesters substitués, de polyesters non substitués, de polyamides substitués et de polyamides non substitués et de leurs mélanges,
    le traitement au plasma à l'étape (b)
    - est un traitement au plasma à basse pression, de préférence une activation de plasma à basse pression, qui est exécuté en présence d'un mélange gazeux qui comprend de l'O2 et au moins un gaz inerte, sélectionné parmi le groupe constitué d'He et d'Ar,
    ledit mélange gazeux contenant de préférence au moins 99% en volume d'O2 et au moins un gaz inerte, sélectionné parmi le groupe constitué d'He et d'Ar,
    et ledit mélange gazeux contenant plus préférablement au moins 99% en volume d'O2 et d'Ar,
    et
    l'agent d'hydrophobisation utilisé à l'étape (c) est un agent d'hydrophobisation aqueux qui
    comprend du polydiméthylsiloxane modifié, de préférence du polydiméthylesiloxane modifié, dans lequel un ou plusieurs groupes méthyle sont remplacés par des substituants possédant des groupes fonctionnels alcalins, des groupes alkyle et/ou des groupes polyéther,
    ainsi qu'en plus,
    un ou plusieurs polymères cationiques qui sont sélectionnés parmi le groupe constitué
    - de polyacrylates sélectionnés de préférence parmi le groupe constitué d'homopolymères et de copolymères d'acide acrylique, d'esters d'acide acrylique, d'acide méthacrylique, d'esters d'acide méthacrylique et, le cas échéant, d'autres monomères co-polymérisables avec de l'acide acrylique, des esters d'acides acryliques et/ou des esters d'acide méthacrylique, de préférence avec du styrène,
    - de polyuréthanes, de préférence de polyuréthane de type polyester et/ou de type polycarbonate,
    - de polyester,
    - de polypeptide,
    - de polyamide
    et
    - de polysaccharides sélectionnés de préférence parmi le groupe constitué de chitine et de chitosane.
  11. Procédé suivant une des revendications 6 à 10, dans lequel, à l'étape b),
    - le traitement au plasma à basse pression est exécuté pour une durée dans la plage de 10 secondes à 10 minutes, de préférence dans la plage de 30 secondes à 5 minutes, plus préférablement dans la plage de 1 minute à 3 minutes,
    et/ou
    - le plasma à basse pression est produit à une fréquence dans la plage de 10 MHz à 18 MHz, de préférence dans la plage de 11 MHz à 15 MHz,
    et/ou
    - le plasma à basse pression est produit avec des électrodes, la densité d'électrodes se situant de préférence dans la plage de 1 à 10 électrodes/m2, plus préférablement dans la plage de 2 à 5 électrodes/m2, encore mieux dans la plage de 2,5 à 4 électrodes/m2 par rapport à la surface textile fabriquée ou fournie à l'étape a),
    et/ou
    - le traitement au plasma à basse pression avec une source générant du plasma est exécuté avec une puissance dans la plage de 0,05 kW à 100 kW, de préférence dans la plage de 1 kW à 25 kW, plus préférablement dans la plage de 2 kW à 15 kW, encore mieux dans la plage de 5kW à 10 kW,
    et/ou
    - le traitement au plasma à basse pression est exécuté dans une chambre de traitement au plasma avec une puissance dans la plage de 0,25 kW/m3 à 2,0 kW/m3, de préférence dans la plage de 0,5 kW/m3 à 1,5 kW/m3.
  12. Procédé suivant une des revendications précédentes, dans lequel le traitement chimique par voie humide à l'étape (c) comprend une ou plusieurs ou toutes les mesures suivantes :
    - imprégnation, de préférence imprégnation par immersion dans un bain, plus préférablement au moyen de foulardage de la surface textile traitée au plasma issue de l'étape (b) ou d'une surface textile fabriquée à partir de celle-ci lors d'autres étapes,
    - séchage de l'agent d'hydrophobisation reçu sur la surface textile,
    - fixation de l'agent d'hydrophobisation reçu sur la surface textile,
    le traitement chimique par voie humide
    comprenant de préférence, une imprégnation par immersion dans un bain, plus préférablement au moyen de foulardage de la surface textile traitée au plasma issue de l'étape (b) ou d'une surface textile fabriquée à partir de celle-ci lors d'autres étapes,
    de préférence, c'est ensuite, qu'a lieu le séchage et/ou la fixation de l'agent d'hydrophobisation reçu sur la surface textile.
  13. Procédé suivant une des revendications précédentes, dans lequel la surface textile rendue hydrophobe traitée au plasma issue de l'étape (c) est
    - comparativement plus hydrophobe que la surface textile de l'article fabriqué ou fourni à l'étape (a)
    et/ou
    - que la surface textile traitée au plasma issue de l'étape (b),
    et/ou
    - que l'article fabriqué ou fourni à l'étape (a) après le traitement chimique par voie humide seulement comme à l'étape (c), mais sans traitement au plasma préalable à l'étape (b),
    et/ou
    - comparativement rendue hydrophobe de façon plus durablement que la surface textile correspondante de l'article fabriqué ou fourni à l'étape (a) après le traitement chimique par voie humide comme à l'étape (c), mais sans traitement au plasma préalable à l'étape (b).
  14. Article textile comprenant une surface textile rendue hydrophobe, l'article textile pouvant être fabriqué au moyen d'un procédé suivant une des revendications précédentes.
  15. Utilisation d'un procédé de traitement au plasma à basse pression pour un traitement préparatif d'une surface textile d'un article, préalablement à l'hydrophobisation chimique par voie humide de la surface textile,
    le traitement au plasma à basse pression étant exécuté avec au moins un composé oxygéné sélectionné parmi le groupe constitué d'O, d'O2, de NO, de N2O et de CO2,
    l'au moins un composé oxygéné étant présent sous la forme d'un mélange gazeux qui comprend de l'O2 et au moins un gaz inerte sélectionné parmi le groupe constitué d'He et d'Ar,
    le mélange gazeux contenant une part d'O2 dans la plage de 70% en volume à 90% en volume et une part de gaz inerte dans la plage de 10% en volume à 30% en volume.
EP18783048.4A 2017-10-16 2018-10-15 Procédé de fabrication d'un article textile ayant une surface textile hydrophobisée par traitement plasma et un traitement chimique au mouillé Active EP3697958B1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PL18783048T PL3697958T3 (pl) 2017-10-16 2018-10-15 Sposób wytwarzania wyrobu tekstylnego z hydrofobizowaną powierzchnią tekstylną metodą obróbki plazmowej i obróbki chemicznej na mokro
RS20210468A RS61750B1 (sr) 2017-10-16 2018-10-15 Postupak za proizvodnju predmeta od tekstila sa hidrofobnom tekstilnom površinom pomoću obrade plazmom i mokre hemijske obrade
SI201830248T SI3697958T1 (sl) 2017-10-16 2018-10-15 Postopek za izdelavo tekstilnega izdelka s hidrofobirano tekstilno površino z obdelavo s plazmo in mokro kemično obdelavo
HRP20210558TT HRP20210558T1 (hr) 2017-10-16 2021-04-08 Postupak za proizvodnju tekstilnog proizvoda s hidrofobnom tekstilnom površinom pomoću obrade plazmom i mokre kemijske obrade

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17196664.1A EP3470573A1 (fr) 2017-10-16 2017-10-16 Processus de fabrication d'un article textile pourvu de surface textile par traitement par plasma et par traitement chimique humide
PCT/EP2018/078096 WO2019076823A1 (fr) 2017-10-16 2018-10-15 Procédé pour fabriquer un article textile ayant une surface textile rendue hydrophobe par traitement au plasma et traitement chimique par voie humide

Publications (2)

Publication Number Publication Date
EP3697958A1 EP3697958A1 (fr) 2020-08-26
EP3697958B1 true EP3697958B1 (fr) 2021-03-10

Family

ID=60186016

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17196664.1A Withdrawn EP3470573A1 (fr) 2017-10-16 2017-10-16 Processus de fabrication d'un article textile pourvu de surface textile par traitement par plasma et par traitement chimique humide
EP18783048.4A Active EP3697958B1 (fr) 2017-10-16 2018-10-15 Procédé de fabrication d'un article textile ayant une surface textile hydrophobisée par traitement plasma et un traitement chimique au mouillé

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17196664.1A Withdrawn EP3470573A1 (fr) 2017-10-16 2017-10-16 Processus de fabrication d'un article textile pourvu de surface textile par traitement par plasma et par traitement chimique humide

Country Status (12)

Country Link
EP (2) EP3470573A1 (fr)
CY (1) CY1124169T1 (fr)
DK (1) DK3697958T3 (fr)
ES (1) ES2868050T3 (fr)
HR (1) HRP20210558T1 (fr)
HU (1) HUE054827T2 (fr)
LT (1) LT3697958T (fr)
PL (1) PL3697958T3 (fr)
PT (1) PT3697958T (fr)
RS (1) RS61750B1 (fr)
SI (1) SI3697958T1 (fr)
WO (1) WO2019076823A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112301725B (zh) * 2019-08-02 2023-04-07 香港纺织及成衣研发中心 通过等离子体技术获得的防水织物
SE543907C2 (en) * 2019-12-13 2021-09-21 Organoclick Ab Non-rewetting o/w (oil in water) emulsification system for hydrophobic compounds

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194183A (ja) * 1984-03-07 1985-10-02 東レ株式会社 耐久性のあるコ−テイング布帛
JPS6189374A (ja) * 1984-10-05 1986-05-07 平岡織染株式会社 防水シ−トの製造方法
JPS62104975A (ja) * 1985-10-31 1987-05-15 東レ株式会社 撥水性布帛の製造法
ATE208700T1 (de) 1994-07-22 2001-11-15 Fraunhofer Ges Forschung Verfahren und vorrichtung zur plasmamodifizierung von flächigen porösen gegenständen
DE10111427A1 (de) 2001-03-09 2002-09-12 Linde Ag Textilreinigung und Textilbehandlung im Niederdruckplasma
DE10300820A1 (de) * 2003-01-10 2004-07-22 Bayer Ag Verfahren zur Filzfreiausrüstung von Keratinfasern
DE102009023878A1 (de) 2009-06-04 2010-12-09 Werner & Mertz Gmbh Zusammensetzung mit imprägnierender Wirkung
CN102444021B (zh) * 2011-08-22 2014-07-16 翔瑞(泉州)纳米科技有限公司 一种智能型防水透湿织物及其制备方法
DE102015204736A1 (de) * 2015-03-16 2016-09-22 Cht R. Beitlich Gmbh Fluorfreie Hydrophobierung
EP3101170B1 (fr) 2015-06-03 2018-08-22 Europlasma NV Revêtements de surface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PT3697958T (pt) 2021-04-19
DK3697958T3 (da) 2021-05-03
PL3697958T3 (pl) 2021-10-04
EP3697958A1 (fr) 2020-08-26
LT3697958T (lt) 2021-05-10
EP3470573A1 (fr) 2019-04-17
RS61750B1 (sr) 2021-05-31
HRP20210558T1 (hr) 2021-05-14
WO2019076823A1 (fr) 2019-04-25
ES2868050T3 (es) 2021-10-21
HUE054827T2 (hu) 2021-10-28
SI3697958T1 (sl) 2021-07-30
CY1124169T1 (el) 2022-05-27

Similar Documents

Publication Publication Date Title
EP1379725B1 (fr) Produit plat textile pourvu d'une surface auto-nettoyante et hydrofuge
Morent et al. Non-thermal plasma treatment of textiles
DE4035378C2 (de) Textiles Material sowie Verfahren zur Herstellung eines derartigen textilen Materials
AU688898B2 (en) Lyocell fabric treatment to reduce fibrillation tendency
Roy et al. Chitosan-based sustainable textile technology: process, mechanism, innovation, and safety
WO1993015254A1 (fr) Agent de traitement pour produits fibreux, procede de traitement de produits fibreux et produits fibreux traites selon ce procede
EP3697958B1 (fr) Procédé de fabrication d'un article textile ayant une surface textile hydrophobisée par traitement plasma et un traitement chimique au mouillé
DE60207156T2 (de) Verfahren zur Herstellung von wasserabweisenden Akrylfasermaterialien
EP1396572B1 (fr) Procédé de fabrication d'un tissu d'aramide hydrofuge et son utilisation
JPH06313271A (ja) セルロース繊維の防汚加工方法
KR101793864B1 (ko) 안트라센-퍼플루오르폴리에테르 기반의 초발수성 표면 처리제 및 이를 이용한 pet 섬유의 초발수성 표면 처리방법
JP5865648B2 (ja) 防汚性布帛の製造方法
DE10239004A1 (de) Textiles Flächengebilde und Garn aus Synthesefasern, Verfahren zu deren Herstellung und deren Verwendung
DE10135157A1 (de) Verfahren zum Aufbringen einer selbstreinigenden Beschichtung auf Textilien
CH635368A5 (en) Heat-treated nickel-based superalloy object and process for producing it
EP1463858B1 (fr) Procede de traitement de corps moules cellulosiques
RASLAN et al. Recent advances in plasma/nanoparticles treatments of textile fibers
EP0695384B2 (fr) Procede d'enrobage de fils et de fibres dans des objets textiles
DE60207361T2 (de) Wasserdampfdurchlässiges und wasserundurchlässiges verbundgewebe, dieses enthaltender wasserundurchlässiger gegenstand sowie verfahren zur herstellung desselben
DE102006042635A1 (de) Textilprodukt und Verfahren zu seiner Herstellung
EP3298191B1 (fr) Surface textile à apprêt hydrophobe et son procédé de production
Nagarajan et al. Investigation of Cotton Fabrics Treated With Sericin & Cross Linking Agents
EP1008688B1 (fr) Procédé de traitement de tissus techniques avec des silicones
DE102021124437A1 (de) Hydrophobierung und antimikrobielle Ausrüstung von Textilien aus Kunststofffasern mit Betulin
Naebe et al. Plasma assisted finishing of cotton fabric with chitosan

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200518

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201103

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GRABHER, GUENTER

Inventor name: GRATZL, VERA

Inventor name: HOSSAIN, GAFFAR

Inventor name: BRAKEMEIER, ANDREAS

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1369916

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210315

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE V, CH

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004300

Country of ref document: DE

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20210558T

Country of ref document: HR

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3697958

Country of ref document: PT

Date of ref document: 20210419

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20210412

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210427

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20210558

Country of ref document: HR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20210310

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 37183

Country of ref document: SK

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210401064

Country of ref document: GR

Effective date: 20210614

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E021026

Country of ref document: EE

Effective date: 20210609

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2868050

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211021

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E054827

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210558

Country of ref document: HR

Payment date: 20211007

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004300

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210310

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211015

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210558

Country of ref document: HR

Payment date: 20221011

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AL

Payment date: 20221104

Year of fee payment: 5

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210558

Country of ref document: HR

Payment date: 20231003

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230920

Year of fee payment: 6

Ref country code: NL

Payment date: 20231023

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20231009

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 6

Ref country code: GR

Payment date: 20231019

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20231031

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231005

Year of fee payment: 6

Ref country code: SI

Payment date: 20231002

Year of fee payment: 6

Ref country code: SE

Payment date: 20231025

Year of fee payment: 6

Ref country code: RS

Payment date: 20231004

Year of fee payment: 6

Ref country code: RO

Payment date: 20231004

Year of fee payment: 6

Ref country code: PT

Payment date: 20230929

Year of fee payment: 6

Ref country code: NO

Payment date: 20231023

Year of fee payment: 6

Ref country code: LV

Payment date: 20231019

Year of fee payment: 6

Ref country code: LT

Payment date: 20230928

Year of fee payment: 6

Ref country code: IT

Payment date: 20231031

Year of fee payment: 6

Ref country code: IE

Payment date: 20231019

Year of fee payment: 6

Ref country code: HU

Payment date: 20231005

Year of fee payment: 6

Ref country code: HR

Payment date: 20231003

Year of fee payment: 6

Ref country code: FR

Payment date: 20231023

Year of fee payment: 6

Ref country code: FI

Payment date: 20231023

Year of fee payment: 6

Ref country code: EE

Payment date: 20231019

Year of fee payment: 6

Ref country code: DK

Payment date: 20231025

Year of fee payment: 6

Ref country code: DE

Payment date: 20231109

Year of fee payment: 6

Ref country code: CZ

Payment date: 20231002

Year of fee payment: 6

Ref country code: CY

Payment date: 20231004

Year of fee payment: 6

Ref country code: CH

Payment date: 20231101

Year of fee payment: 6

Ref country code: BG

Payment date: 20231019

Year of fee payment: 6

Ref country code: AT

Payment date: 20231019

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231023

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MK

Payment date: 20230929

Year of fee payment: 6