EP3687902A1 - Aéronef d'épandage - Google Patents

Aéronef d'épandage

Info

Publication number
EP3687902A1
EP3687902A1 EP18792430.3A EP18792430A EP3687902A1 EP 3687902 A1 EP3687902 A1 EP 3687902A1 EP 18792430 A EP18792430 A EP 18792430A EP 3687902 A1 EP3687902 A1 EP 3687902A1
Authority
EP
European Patent Office
Prior art keywords
capsules
drone
ejector
spreading
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18792430.3A
Other languages
German (de)
English (en)
Inventor
Jean-Baptiste BRUGGEMAN
Christophe Pierre
Mostafa KASBARI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Drone Air Fly
Original Assignee
Drone Air Fly
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Drone Air Fly filed Critical Drone Air Fly
Publication of EP3687902A1 publication Critical patent/EP3687902A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/45UAVs specially adapted for particular uses or applications for releasing liquids or powders in-flight, e.g. crop-dusting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/13Propulsion using external fans or propellers

Definitions

  • the present invention is in the field of spreading in fields of culture.
  • the invention particularly relates to a spreading aircraft, in particular a drone for spreading capsules containing biological agents for controlling pests.
  • Such a device will find a particular application in the agricultural field, particularly in the biological control of harmful living beings called “harmful" ravaging crops and agricultural fields.
  • bacteria especially of the Bacillus type, for combating caterpillars;
  • - viruses such as the granulose virus to control the codling moth
  • the spreading with capsules containing biological actors requires a distribution of the latter on all the crop plots to be treated, usually with at least a grid of 20m x 20m, on a regular basis and precise .
  • the speed of movement of the current devices, turbulence generated, spreading is imprecise and does not allow to distribute the capsules containing the biological actors homogeneously on the desired area.
  • current solutions do not allow to obtain a spacing between each capsule of 20m or 15m both in the direction of the width and in the direction of the length with an accuracy of a few tens of centimeters.
  • the distribution and the release are random and do not allow a treatment adjusted to the fields of fields being able to be ravaged by pests with a precision essential to obtain a real effectiveness of the treatment.
  • Helicopters and ULMs Ultra Light Motorized require the intervention of a pilot on board to pay which increases disadvantageously the costs related to the operation of spreading in fields.
  • the risks of serious accidents for the passenger and the equipment are not insignificant and increased by the need to fly at very low altitude.
  • the complexity of implementation and the related costs have not allowed the biological control to completely replace chemical insecticide treatments and this since the 90s.
  • the current solutions have not been satisfactory.
  • helicopters or microlight are heavy and bulky, their propulsion means is generally multi-propeller type or thanks to very bulky blades.
  • propulsion means is generally multi-propeller type or thanks to very bulky blades.
  • the more the number of helices and / or blades increases the higher the turbulence in flight, and the more precise the dropping becomes complicated because the flight in flight is unstable.
  • the drones have the advantage of not requiring drivers on board, as a result, the costs associated with the operator are low, the use of a drone does not endanger a pilot or people on the ground.
  • the drones are also light and weigh only a few kilos in total compared to helicopters or ULMs, they can fly at very low altitude, close to the ground, which allows to obtain a great precision in the distribution of the capsules on the ground. Indeed, the more the flight is carried out at low altitude and close to the crops, the more one gains in precision of release of the capsules this in order to reach positions in the parcels with a much more precision than with heavier aircraft such as Helicopters or ULMs.
  • the UAVs used are of the multi-shell type with at least six propellers generating turbulence and their flight energy autonomy is often less than 30 min, the amounts of capsules they are able to ship are low, their speed of very limited movement. This is why, in general, the current drones can only treat 5 or 6 ha per flight with the need for recharging the batteries and re-supplying the capsule reservoir. This is therefore very disadvantageous, it is necessary to find an alternative solution to the existing drone which allows without requiring frequent reloading, to treat a large plot of crop.
  • the devices of the prior art are generally of the multi-type type, with one or more rotary wing propulsion propellers.
  • the presence of this multiplicity of propellers and their positioning on the device generates instability during flight and creates areas of turbulence, especially around the capsules release device. These areas of turbulence are generated by the rotation of the propellers. The latter often being close to the capsule release device, they impact the release accuracy of the capsules in flight by interfering with the release trajectory. Thus, it decreases and loses capsule release accuracy, resulting in a risk of not properly distributing on a field area that should yet be treated by the passage of the air device.
  • the present invention aims to overcome the disadvantages of the state of the art, by proposing a spreading aircraft, specifically a drone spreading capsules containing biological pest control agents.
  • the said drone of spreading comprises:
  • a propulsion means ensuring the displacement of the drone in a horizontal direction parallel to the ground
  • a system for dispensing and releasing said capsules provided with a vertical ejector, so that the ejection in flight to the ground of said capsules is in a direction perpendicular to said direction of horizontal movement of the drone.
  • said Propulsion means consists of a single rotating propeller.
  • said helix is rotated in a vertical plane to minimize the turbulence generated on the drone in flight.
  • said vertical ejector is positioned in front of said propulsion means.
  • said vertical ejector being positioned in front of the propulsion means, the risk of turbulence during the ejection of the capsules containing the biological assets is at a minimum.
  • the turbulence generated by said propulsion means and a nearby area does not offend to deflect the path of the capsules during ejection towards the ground.
  • the distance separating the propulsion means and the vertical ejector on the drone is advantageously the greatest possible in order to further limit the risk of turbulence.
  • - consists of a fixed-wing flying wing
  • said drone of the invention realizes parallel flight lines to obtain an exact spacing in the direction of the width, and an exact spacing in the direction of the displacement triggered according to its GPS position or according to a space-time at constant speed.
  • This displacement system is programmed from a ground base in radio connection with the drone.
  • the flight conditions for the movement of the drone and the frequency and drop zones of the capsules containing the biological assets are controlled by one or more software.
  • the associated software allows a single operator to control up to four drones that operate simultaneously.
  • said system for dispensing and releasing said capsules comprises a capsule reservoir connected to a guide element of said capsules to a counting and dosing system of the capsules, said metering and dosing system comprises a plate for selecting and isolating the capsules, said plate being provided with orifices calibrated for the passage of a single capsule towards said vertical discharge ejector, said plate being rotatably mounted relative to said ejector through an engine pulse generator.
  • Said system for dispensing and releasing said capsules of the drone of the invention allows an output and a unitary release of capsules through said vertical ejector which is of the order of four capsules per second, hence a speed to spread in fields .
  • the drones of the known prior art allow the unitary release of only one capsule every five or 10 seconds or per group with imprecise random dispersion.
  • the transfer and selection of capsules is very fast, it is conditioned by the speed of rotation of the plate and its ability to select a capsule orifice.
  • said system of counting and dosing includes an infra-red capsule detection system, so that it can count the number of capsules dispensed and dropped, to ensure that no capsule outlet failure has occurred and that the system does not has no jamming or failure type malfunction ...
  • said capsule reservoir makes it possible to store the capsules within the spreading drone before they are released in the direction of the ground.
  • the guide element will allow a distribution and distribution of the capsules defined, with certainty one by one.
  • the guide element will allow dispersion and a first disintegration of the capsules at the outlet of the reservoir.
  • the capsules will be able to reach the counting and dosing system in a non-agglomerated manner.
  • the dosing of the capsules and their selection before their exit by the ejector are carried out by at least one plate mounted mobile in rotation with respect to the orifice of the ejector and having orifices calibrated for the passage of a single capsule.
  • An infra-red capsule detection system positioned at the outlet of the orifice of the plate or at the outlet of the ejector makes it possible to detect the passage and the presence of a capsule, that is to say its exit for drop to the ground.
  • this system is connected to means for collecting the data of the flight of the drone in order to subsequently define statistics of correspondence between the number of capsules actually released and the number programmed by the management means of the flight plan.
  • the orifices will end up facing the ejector duct.
  • the capsules will be able to leave the drone for a fall to reach the soil to be treated.
  • the rotational movement of the plate is provided by a pulse generator motor comprising a valve connected to a permanent rotation motor through a connecting rod system.
  • the rotational movement of the plate is provided by a pulse generator motor comprising a stepping motor.
  • FIG. 1 shows schematically a top view of a particular embodiment of the drone of the invention
  • FIG. 2 diagrammatically represents a profile view of the capsule dispensing and dispensing system
  • FIG. 3 shows schematically a profile view in section of the capsule dispensing and dispensing system
  • FIG. 4 schematically shows a bottom view of the capsule dispensing and dispensing system.
  • the present invention relates to a spreading aircraft 1 of capsules 11 of drone 1 type.
  • the latter contain biological agents for controlling pests to be spread on the plants of the field to be treated.
  • the aircraft 1 consists of a flying wing fixed wing, including drone 1.
  • the flying wing has the advantage of being stable in space and during flight.
  • the drone 1 comprises at least one propulsion means 2.
  • said propulsion means 2 consists of a rotating propeller with horizontal axis of rotation parallel to the ground.
  • Said propulsion means 2 ensures the displacement of the drone 1 in a horizontal direction parallel to the ground, which allows the drone 1 to fly over the area to be treated.
  • the drone 1 of the invention also comprises a distribution and release system 3 of the capsules 11 towards the field to be treated during the flight of the drone 1.
  • said delivery and delivery system 3 is provided with a vertical ejector 31 through which pass the capsules 11 to be ejected during the flight.
  • the vertical ejector 31 preferably consisting of a tube, makes it possible for the capsules 11 to be ejected towards the ground to be treated during flight.
  • the ejector 31 is vertical, directed downwards, so that the outlet of the capsules 11 is in a direction perpendicular to the direction of movement of the drone 1 in a horizontal direction and in a plane parallel to the ground.
  • said vertical ejector 31 is positioned forward of said propulsion means 2, that is to say the propeller such as visible in Figure 1.
  • said propulsion means 2 making it possible to advance the drone 1 in a horizontal direction during flight, is located at the rear of the drone 1 and opposite the vertical thruster 31 located, , in the front.
  • the fact that the ejector is positioned before the propulsion means 2 makes it possible to avoid the impact of the turbulences, generated by the operation of the propulsion means 2, on the exit direction of the capsules 11 towards the ground to be treated. .
  • the ejection of the capsules 11 is more controllable so that they can reach the desired targets on the field to be treated.
  • said drone 1 comprises management means, through software:
  • said delivery and release system 3 of said capsules 11 comprises a reservoir 4 with capsules 11.
  • the tank 4 can embark a quantity of capsules 11 to treat an area of up to 100 ha in a single flight of one hour.
  • said reservoir 4 is connected to a guiding element 5 of said capsules 11 to a counting and dosing system of the capsules 11.
  • said guiding element 5 of the capsules 11 consists of a conical element allowing a distribution of the capsules 11 opening on the metering and dosing system.
  • said counting and dosing system comprises a plate for selecting and isolating the capsules 11. Said plate being provided with calibrated orifices for the passage of a single capsule 11 towards said vertical discharge ejector 31.
  • Each orifice allows only the passage one by one of a capsule 11. Consequently, the ejection of the capsules 11 to the ground is done one by one.
  • the conical element will make the connection between the reservoir of capsules 11 and the plate so that a single layer of capsules 11 can be directed towards the orifices of the plate.
  • the size of the orifices of the plate is therefore not possible thanks to the presence of the conical element which distributes the capsules 11 in a homogeneous manner.
  • said plate is rotatably mounted relative to said ejector 31 through a pulse generator motor 6.
  • said pulse generator motor 6 comprises a valve connected to a permanently rotated motor through a connecting rod system 61.
  • said pulse generator motor 6 comprises a stepping motor.
  • each pulse will make a hole is positioned vis-à-vis with the opening of the ejector 31, which will allow the passage of a capsule 11 and its output towards the ground.
  • said counting and dosing system 6 comprises an infra-red detection system 7 of the capsules 11, so as to be able to count the number of capsules 11 distributed and released in flight.
  • the plate rotates, and one of its orifices will coincide with the opening of the tube of the ejector 31 to then let a capsule 11.
  • the drone of the invention equipped with its distribution and release system has an energy autonomy, a capsule loading capacity and a flight speed to treat up to 100 ha per flight and in one hour; that is to say, performance 20 times higher than what currently exists in drones.
  • said drone 1 is connected to a geolocation system, after verification of the terrain, it allows to program the frequency, the quantity, and the location of release of the capsules 11 according to the flight plan and doses required for treatment.
  • the capsules 11 contain biological actors against pests at different stages of their development which allow a cure or preventive treatment of pests.
  • the drone 1 of the invention makes it possible to treat a field by spreading capsules containing 11 biological assets against pests.
  • the release of the capsules 11 on the ground is accurate and can be done according to the environment according to a geolocation system predefined by the flight plan.
  • the drone 1 of the invention has a flight time of 1h and can reach a flight speed to treat 100 ha / hour by applying accurately and controlled capsules containing biological assets against pests.
  • the piloting software of the drone can simultaneously drive four drones by the same operator from a single control console or computer in radio communication with the drone.
  • This device allows to reach a flow rate of 400 ha / hour on territories composed of large plains or large plateaus such as one found in South America, USA, Africa, Australia ....
  • drone 1 thus saves time and money and improves accuracy over existing devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Catching Or Destruction (AREA)
  • Insects & Arthropods (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

Drone d'épandage de capsules contenant des acteurs biologiques de lutte contre les nuisibles, ledit aéronef d'épandage comprenant : - un moyen de propulsion assurant le déplacement de l'aéronef selon une direction horizontale parallèle au sol, et - un système de distribution et de largage desdites capsules munis d'un éjecteur vertical, de sorte que l'éjection en vol vers le sol desdites capsules soit dans une direction perpendiculaire par rapport audit sens de déplacement horizontal du drone, caractérisé en ce que, en tenant compte du sens de déplacement du drone, ledit éjecteur vertical est positionné en avant dudit moyen de propulsion, et en ce que ledit système de distribution et de largage desdites capsules comprend un réservoir à capsules connecté à un élément de guidage desdites capsules vers un système de comptage et de dosage des capsules, ledit système de comptage et de dosage comprend une plaque de sélection et d'isolement des capsules, ladite plaque étant munie d'orifices calibrés pour le passage d'une seule capsule vers ledit éjecteur vertical de largage, ladite plaque étant montée en rotation par rapport audit éjecteur vertical au travers d'un moteur générateur d'impulsion.

Description

Aéronef d'épandage
La présente invention entre dans le domaine de l'épandage en champs de culture .
L ' invention concerne particulièrement un aéronef d'épandage, en particulier un drone d'épandage de capsules contenant des acteurs biologiques de lutte contre les nuisibles .
Un tel dispositif trouvera une application particulière dans le domaine agricole, en particulier en matière de lutte biologique contre les êtres vivants nocifs dits « nuisibles » ravageant les cultures et les champs agricoles .
Plus spécifiquement, à ce jour pour lutter biologiquement contre les nuisibles, il est usuel d'épandre en champs des gélules comprenant des acteurs biologiques vivants empêchant l'activité destructrice des nuisibles.
Par exemple, pour lutter contre la pyrale du mais, il est courant d' épandre en champs des gélules comprenant des larves de Trichogrammes empêchant la naissance des pyrales donc par conséquent leur activité dévastatrice sur les champs de culture .
Par exemple encore, il est possible d'épandre en gélules :
- des bactéries, notamment de type Bacillus, pour lutter contre les chenilles ;
- des virus, comme le virus de la granulose pour lutter contre le carpocapse du pommier ;
- des œufs ou des larves d'insectes, des phéromones,
- des champignons tels que queanthomphtorals contre les pucerons .
On notera que l'épandage à l'aide de gélules contenant des acteurs biologiques nécessite une répartition de ces derniers sur l'ensemble des parcelles de culture à traiter, le plus souvent selon au minimum un quadrillage de 20m X 20m, de façon régulière et précise .
Traditionnellement, l'épandage se fait manuellement. Or ceci nécessite un temps de réalisation trop long, un travail fastidieux et un coût de main d'œuvre élevé, d'où une perte économique .
Pour limiter le coup de la main d' œuvre et diminuer le temps de réalisation de l'épandage, des dispositifs d'épandage automatiques aériens de type hélicoptères, ULMs ou drones ont été expérimentés. Généralement, ces dispositifs sont équipés d'un système de distribution et de relargage des capsules renfermant les acteurs biologiques .
Néanmoins, ces dispositifs ne présentent pas pleine satisfaction sur bien des points c'est pourquoi les centres de recherches publiques brésilien et français ont sollicité un appel d' offre pour développer une solution qui réponde à ces problématiques .
En effet, en fonction des plans de vol, de la vitesse de déplacement des dispositifs actuels, des turbulences générées, l'épandage est imprécis et ne permet pas de répartir les capsules contenant les acteurs biologiques de manière homogène sur la zone désirée. Par exemple, les solutions actuelles ne permettent pas d'obtenir un espacement entre chaque gélule de 20m ou 15m à la fois dans le sens de la largeur et dans le sens de la longueur avec une précision de quelques dizaines de centimètres. La répartition et le largage sont aléatoires et ne permettent pas un traitement ajusté aux zones de champs risquant d' être ravagée par des nuisibles avec une précision indispensable pour obtenir une réelle efficacité du traitement.
Les hélicoptères et les ULMs (Ultra Léger Motorisé) nécessitent l'intervention d'un pilote à bord à rémunérer cequi augmente désavantageusement les frais liés à l'opération d'épandage en champs. Les risques d'accidents graves pour le passager et le matériel sont non négligeables et augmentés par la nécessité de voler à très basse altitude. La complexité de mise en œuvre et les coûts liés n ' ont pas permis à la lutte biologique de se substituer entièrement aux traitements par des insecticides chimiques et ceci depuis les années 90. Les solutions actuelles n ' ont pas apporté satisfaction .
En outre, aussi bien pour les hélicoptères que pour les
ULMs, la hauteur de vol, par rapport à la surface du champ, étant plus élevée que pour l'utilisation d'un drone, la précision du largage des gélules est complexe, car on est éloigné du sol. En effet, il est plus difficile d'avoir une précision de largage en volant à une altitude élevée qu'en volant à basse altitude.
De plus, les hélicoptères ou les ULM sont des engins lourds et volumineux, leurs moyens de propulsion est généralement de type multi hélices ou grâce à des pâles très encombrantes. Or plus le nombre d'hélices et/ou de pâles augmente, plus les turbulences en vol sont élevées et plus le largage avec précision devient compliqué, car le déplacement en vol est instable .
Pour remédier en partie à ces problèmes, il est connu d'utiliser des drones.
Les drones ont pour avantage de ne pas nécessiter de pilote à bord, en conséquence, les frais liés à l'opérateur sont faibles, l'utilisation d'un drone ne met pas en danger, un pilote ou des personnes au sol .
Les drones sont également légers et ne pèsent que quelques kilos au total par rapport aux hélicoptères ou ULMs, ils peuvent voler à très basse altitude, proche du sol, ce qui permet d'obtenir une grande précision dans la répartition des capsules au sol. En effet, plus le vol est effectué à basse altitude et proche des cultures, plus on gagne en précision de largage des capsules ceci afin d' atteindre des positionnements dans les parcelles avec une bien plus grande précision qu ' avec des aéronefs plus lourds tels que les hélicoptères ou les ULMs.
Actuellement, les drones utilisés sont de type multi-coptères avec au minimum six hélices générant des turbulences et leur autonomie énergétique de vol est souvent inférieure à 30 min, les quantités de gélules qu'ils sont capables d'embarquer sont faibles, leur vitesse de déplacement très limitée. C'est pourquoi, en général les drones actuels ne permettent de traiter que 5 ou 6 ha par vol avec nécessité d'un rechargement des batteries et un ré approvisionnement du réservoir de capsules. Ceci est donc très désavantageux, il convient de trouver une solution alternative au drone existant qui permette sans nécessiter un rechargement fréquent, de traiter une grande parcelle de culture.
Ainsi, le temps d'autonomie de vol et la vitesse de déplacement de ces drones connus de l'art antérieur ne permettent pas de réaliser l'opération d'épandage rapidement et sur une large superficie de champs .
Ceci ne permet pas d'intervenir rapidement sur un ensemble de parcelles présentant de grandes surfaces dans un temps limité ce qui génère une perte de temps dans le processus de traitement de la parcelle .
En outre, les dispositifs de l'art antérieur, en particulier les drones, sont généralement de type multi- coptères, avec une ou plusieurs hélices de propulsion à voilure tournantes. Or, la présence de cette multiplicité d'hélices et leur positionnement sur le dispositif engendre une instabilité en cours de vol et crée des zones de turbulence, notamment aux alentours du dispositif de largage des gélules. Ces zones de turbulence sont générées par la rotation des hélices. Ces dernières étant souvent à proximité du dispositif de largage des gélules, elles impactent la précision de largage des gélules en vol en interférant avec la trajectoire de largage. Ainsi, on diminue et perd en précision de largage des gélules, d' où un risque de ne pas répartir correctement sur une zone de champs qui devrait pourtant être traitée par le passage du dispositif aérien .
Lors du vol et pendant 1 ' opération de largage , si le dispositif est instable et que le système de distribution des acteurs biologiques subit des turbulences, le largage des gélules renfermant les acteurs de lutte biologique et la répartition en champs seront imprévisibles .
Malgré un système de distribution des gélules permettant un dosage précis, ou encore un plan de vol contrôlé, le risque de turbulences existant empêche un épandage de précision, d'où une perte de la capacité et de la qualité de traitement des nuisibles .
Il existe alors un risque que toutes les parcelles ne soient pas traitées contre les nuisibles, car la répartition des acteurs biologiques lors de l'épandage a été défaillante sur certaines parcelles de terrain.
Ainsi, il convient de trouver une solution alternative au dispositif d'épandage aérien connu de l'art antérieur qui :
- Permette une répartition précise et contrôlée des acteurs biologiques,
- Soit précise sur les trajectoires de vols et le largage des gélules,
- Permette de couvrir en un nombre minimum de vols, idéalement un seul vol, l'ensemble du terrain à traiter,
- Se fasse le plus rapidement possible, dans un temps faible, sur la surface la plus grande possible,
- Soit la plus efficace possible et ne fournisse que la dose, mais toute la dose nécessaire d'acteurs biologiques sur chaque parcelle du terrain,
- Cible spécifiquement les parcelles de terrain à traiter en ne larguant la dose de gélules contenant les acteurs biologiques que sur les zones du champ à traiter contre les nuisibles et avec un espacement précis entre chaque gélule ; espacement qui doit être prédéfini et modulable en fonction de la densité de parasites à traiter dans chaque parcelle.
La présente invention a pour but de pallier les inconvénients de 1 ' état de la technique , en proposant un aéronef d'épandage, plus précisément un drone d'épandage de capsules contenant des acteurs biologiques de lutte contre les nuisibles .
Ledit drone d'épandage comprend :
- un moyen de propulsion assurant le déplacement du drone selon une direction horizontale parallèle au sol
- un système de distribution et de largage desdites capsules munis d'un éjecteur vertical, de sorte que l'éjection en vol vers le sol desdites capsules soit dans une direction perpendiculaire par rapport audit sens de déplacement horizontal du drone .
Selon un mode de réalisation préféré de l'invention, ledit moyen de propulsion consiste en une hélice unique en rotation.
Avantageusement ladite hélice est en rotation dans un plan vertical pour minimiser au maximum les turbulences générées sur le drone en vol .
De manière spécifique au drone de l'invention, en tenant compte du sens de déplacement du drone, ledit éjecteur vertical est positionné en avant dudit moyen de propulsion .
Ainsi, ledit éjecteur vertical étant positionné en avant du moyen de propulsion, le risque de turbulences lors de l'éjection des capsules renfermant les actifs biologiques est à son minimum.
En effet, les turbulences générées par ledit moyen de propulsion et sur une zone à proximité ne contrevient pas à faire dévier le trajet des capsules lors de l'éjection en direction du sol.
Plus spécifiquement, la distance séparant le moyen de propulsion et l' éjecteur vertical sur le drone est avantageusement la plus grande possible afin de limiter encore davantage le risque de turbulences .
De cette manière et grâce au positionnement spécifique de
1' éjecteur en avant par rapport au moyen de propulsion à l'arrière, le risque de déviation des capsules en démarrage d'éjection, par les turbulences du moyen de propulsion, est négligeable. Ainsi, on augmente en précision de largage des capsules sur le champ à traiter.
De plus, selon d'autres caractéristiques le drone d' épandage :
- consiste en une aile volante à voilure fixe ,
- comprend des moyens de gestion, au travers d'un logiciel, du plan de vol, de la vitesse de déplacement du drone , de la fréquence de largage des capsules par le système de distribution et de largage par rapport à la surface à traiter, du nombre de capsules disponibles et de la zone à traiter.
Avantageusement, ledit drone de l'invention réalise des lignes de vols parallèles pour obtenir un espacement exact dans le sens de la largeur, et un espacement exact dans le sens du déplacement déclenché en fonction de sa position GPS ou selon un espace-temps à vitesse constante. Ce système de déplacement est programmé à partir d'une base sol en liaison radio avec le drone .
Ainsi, les conditions de vol pour le déplacement du drone ainsi que la fréquence et les zones de largage des capsules contenant les actifs biologiques sont contrôlées par un ou plusieurs logiciels. Le logiciel associé permet à un seul opérateur de contrôler jusqu'à quatre drones qui opèrent simultanément.
Selon une autre caractéristique de l'invention, ledit système de distribution et de largage desdites capsules comprend un réservoir à capsules connecté à un élément de guidage desdites capsules vers un système de comptage et de dosage des capsules, ledit système de comptage et de dosage comprend une plaque de sélection et d'isolement des capsules, ladite plaque étant munie d' orifices calibrés pour le passage d'une seule capsule vers ledit éjecteur vertical de largage, ladite plaque étant montée en rotation par rapport audit éjecteur au travers d'un moteur générateur d'impulsion.
Ledit système de distribution et de largage desdites capsules du drone de l'invention permet une sortie et un largage unitaire de capsules au travers dudit éjecteur vertical qui est de l'ordre de quatre capsules par seconde, d'où une rapidité pour épandre en champs. En comparaison, les drones de l'art antérieur connu ne permettent le largage unitaire que d'une gélule toutes les cinq ou 10 secondes ou par groupe avec dispersion aléatoire imprécise .
En effet, dans l'invention le transfert et la sélection des capsules est très rapide, il est conditionné par la vitesses de rotation de la plaque et sa capacité à sélectionner une capsule par orifice.
Selon l'invention, avec ledit système de distribution et de largage des capsules, en moyenne il se déroule ¼ de seconde entre l'éjection d'une capsule et l'éjection de la capsule suivante .
Selon un mode de réalisation particulier, ledit système de comptage et de dosage comprend un système infra-rouge de détection des capsules, de sorte à pouvoir compter le nombre de capsules distribuées et larguées, de s'assurer qu'aucun manquement de sortie de capsule n'a eu lieu et que le système ne présente aucun dysfonctionnement de type enrayement ou panne ...
Ainsi, selon l'invention, ledit réservoir à capsules permet de stocker les capsules au sein du drone d' épandage avant qu'elles ne soient larguées en direction du sol.
Avantageusement, l'élément de guidage va permettre une répartition et une distribution des capsules définies, avec certitude une à une. L'élément de guidage va permettre une dispersion et une première désagrégation des capsules en sortie de réservoir. Ainsi, les capsules vont pouvoir atteindre le système de comptage et de dosage de manière non agglomérée.
Le dosage des capsules et leur sélection avant leur sortie par l'éjecteur sont réalisés par au moins une plaque montée mobile en rotation par rapport à l'orifice de l'éjecteur et présentant des orifices calibrés pour le passage d'une seule capsule .
De cette manière, une deuxième désagrégation des capsules est réalisée avant de passer au travers du conduit de l'éjecteur, ainsi l'éjecteur ne va pouvoir laisser passer qu'une seule et unique capsule à la fois.
Un système infra-rouge de détection des capsules positionné à la sortie de l'orifice de la plaque ou en sortie de l'éjecteur permet de détecter le passage et la présence d'une capsule, c'est-à-dire sa sortie pour largage vers le sol.
De préférence, ce système est connecté à des moyens de récolte des données du vol du drone afin de pouvoir définir par la suite des statistiques de correspondance entre le nombre de capsules effectivement larguées et le nombre programmé par les moyens de gestion du plan de vol .
En conséquence, en cours de vol, selon le mouvement de la plaque, les orifices vont se retrouver en vis-à-vis avec le conduit de l'éjecteur. En conséquence, les capsules vont pouvoir quitter le drone en vue d'une chute pour atteindre le sol à traiter.
Selon un premier mode de réalisation de l'invention, le mouvement en rotation de la plaque est assuré par un moteur générateur d' impulsion comprenant un clapet relié à un moteur à rotation permanente au travers d'un système de bielle.
Selon un second mode de réalisation de l'invention, le mouvement en rotation de la plaque est assuré par un moteur générateur d' impulsion comprenant un moteur pas à pas .
D ' autres caractéristiques et avantages de 1 ' invention ressortiront de la description détaillée qui va suivre des modes de réalisation non limitatifs de l'invention, en référence aux figures annexées, dans lesquelles :
- la figure 1 représente schématiquement une vue du dessus d'un mode de réalisation particulier du drone de l'invention ;
- la figure 2 représente schématiquement une vue de profil du système de distribution et de largage des capsules ;
- la figure 3 représente schématiquement une vue de profil en coupe du système de distribution et de largage des capsules ;
- la figure 4 représente schématiquement une vue du dessous du système de distribution et de largage des capsules .
La présente invention concerne un aéronef d' épandage 1 de capsules 11 de type drone 1.
Ces dernières contiennent des acteurs biologiques de lutte contre les nuisibles à épandre sur les végétaux du champ à traiter .
Avantageusement, l'aéronef 1 consiste en une aile volante à voilure fixe, notamment de type drone 1. L'aile volante présente comme avantage d'être stable dans l'espace et en cours de vol . Le drone 1 comprend au moins un moyen de propulsion 2.
Selon un mode de réalisation préféré , ledit moyen de propulsion 2 consiste en une hélice tournante à axe de rotation horizontal parallèle au sol .
Ledit moyen de propulsion 2 assure le déplacement du drone 1 selon une direction horizontale parallèle au sol, ce qui permet au drone 1 de survoler la zone à traiter. Le drone 1 de l'invention comprend également un système de distribution et de largage 3 des capsules 11 en direction du champ à traiter lors du vol du drone 1.
Avantageusement, ledit système de distribution et de largage 3 est muni d'un éjecteur vertical 31 au travers duquel passent les capsules 11 à éjecter lors du vol.
L' éjecteur vertical 31, consistant avantageusement en un tube, permet de faire en sorte que les capsules 11 soient éjectées vers le sol à traiter en cours de vol.
L' éjecteur 31 est vertical, dirigé vers le bas, pour que la sortie des capsules 11 soit dans une direction perpendiculaire par rapport au sens de déplacement du drone 1 selon une direction horizontale et dans un plan parallèle au sol.
De manière spécifique selon l'invention, en tenant compte du sens de déplacement du drone 1 en cours de vol, ledit éjecteur vertical 31 est positionné en avant dudit moyen de propulsion 2, c'est-à-dire de l'hélice tel que visible sur la figure 1.
En d' autres termes , ledit moyen de propulsion 2 , permettant de faire avancer le drone 1 dans une direction horizontale en cours de vol est situé à l'arrière du drone 1 et à l'opposé de l' éjecteur vertical 31 situé, lui, à l'avant.
Ainsi, le fait que l' éjecteur soit positionné avant le moyen de propulsion 2 permet d'éviter l'impact des turbulences, générées par le fonctionnement du moyen de propulsion 2 , sur le sens de sortie des capsules 11 en direction du sol à traiter.
De cette manière, grâce à la position de l' éjecteur vertical 31 par rapport à la position du moyen de propulsion 2 , la trajectoire des capsules 11 sortant de l' éjecteur n'est pas altérée par les turbulences du moyen de propulsion 2 en fonctionnement .
En conséquence, l'éjection des capsules 11 est davantage contrôlable afin qu'elles puissent atteindre les cibles désirées sur le champ à traiter.
Avantageusement, pour contrôler l'éjection des capsules 11 sur leurs cibles, ledit drone 1 comprend des moyens de gestion, au travers d' un logiciel :
- du plan de vol,
- de la vitesse de déplacement du drone 1 ,
- de programmation des lignes de vol parfaitement parallèles entre elles,
- de la fréquence de largage des capsules 11 par le système de distribution et de largage 3 par rapport à la surface à traiter,
- de la quantité de largage des capsules 11 sur le sol, c'est-à-dire du nombre de capsules 11 disponibles, et
- de la zone à traiter, afin de pouvoir la repérer et la sélectionner .
Ainsi, au travers du logiciel, il est possible de régler le largage des capsules 11 en fonction des zones à traiter qui sont survolées par le drone 1.
Selon un mode de réalisation spécifique de l'invention, ledit système de distribution et de largage 3 desdites capsules 11 comprend un réservoir 4 à capsules 11.
Avantageusement, le réservoir 4 permet d'embarquer une quantité de capsules 11 pour traiter une surface allant jusqu'à 100 ha en un seul vol d'une heure.
Selon l'invention, ledit réservoir 4 est connecté à un élément de guidage 5 desdites capsules 11 vers un système de comptage et de dosage des capsules 11.
De préférence, ledit élément de guidage 5 des capsules 11 consiste en un élément conique permettant une répartition des capsules 11 débouchant sur le système de comptage et de dosage.
Avantageusement, ledit système de comptage et de dosage comprend une plaque de sélection et d' isolement des capsules 11. Ladite plaque étant munie d'orifices calibrés pour le passage d'une seule capsule 11 vers ledit éjecteur vertical 31 de largage .
Chaque orifice permet uniquement le passage un à un d'une capsule 11. En conséquence, l'éjection des capsules 11 au sol se fait une à une .
En d'autres termes, et afin d'éviter un bourrage des orifices de la plaque, l'élément conique va faire la liaison entre le réservoir 4 de capsules 11 et la plaque pour qu'une seule couche de capsules 11 puisse se diriger en direction des orifices de la plaque. L'encombrement des orifices de la plaque n'est donc pas possible grâce à la présence de l'élément conique qui réparti de manière homogène les capsules 11.
En outre, ladite plaque est montée en rotation par rapport audit éjecteur 31 au travers d'un moteur générateur d'impulsion 6.
Selon un premier mode de réalisation visible sur les figures, ledit moteur générateur d'impulsion 6 comprend un clapet relié à un moteur à rotation permanente au travers d' un système de bielle 61.
Selon un autre mode de réalisation, ledit moteur générateur 6 d'impulsion comprend un moteur pas à pas.
Ainsi, au travers du fonctionnement du moteur à impulsion, ladite plaque de sélection et de dosage va subir des rotations suite aux différentes impulsions . Chaque impulsion va faire en sorte qu'un orifice se positionne en vis-à-vis avec l'ouverture de l' éjecteur 31, ce qui va permettre le passage d'une capsule 11 et sa sortie en direction du sol.
Avantageusement, ledit système de comptage et de dosage 6 comprend un système infra-rouge de détection 7 des capsules 11, de sorte à pouvoir compter le nombre de capsules 11 distribuées et larguées en vol. Ainsi, sous l'effet d'une impulsion, la plaque tourne, et l'un de ses orifices va coïncider avec l'ouverture du tube de l' éjecteur 31 pour laisser passer alors une capsule 11.
Le drone de l'invention équipé de son système de distribution et de largage possède une autonomie énergétique, une capacité d'embarquement de capsules et une vitesse de vol permettant de traiter jusqu'à 100 ha par vol et en une heure; c'est-à-dire des performances 20 fois supérieures à ce qui existe actuellement en drones .
Avantageusement encore, ledit drone 1 est connecté à un système de géolocalisation, après vérification du terrain, il permet de programmer la fréquence, la quantité, et le lieu de largage des capsules 11 en fonction du plan de vol et des doses nécessaires au traitement.
De préférence, les capsules 11 contiennent des acteurs biologiques contre les nuisibles à différents stades de leur développement qui permettent un traitement curatif ou préventif des nuisibles .
Ainsi, au travers de la configuration du système de largage et de distribution 3 des capsules 11, et sous l'effet des instructions des moyens de gestion, le drone 1 de l'invention permet de traiter un champ par épandage de capsules 11 contenant des actifs biologiques contre les nuisibles.
En s' affranchissant des turbulences, le largage des capsules 11 sur le sol est précis et peut être fait en fonction de l'environnement suivant un système de géolocalisation prédéfinie par le plan de vol.
Avantageusement, le drone 1 de l'invention a une autonomie de vol de lh et peut atteindre une vitesse de vol permettant de traiter 100 ha/heure en épandant de manière précise et contrôlée des capsules contenant des actifs biologiques contre les nuisibles .
Le logiciel de pilotage du drone permet de piloter simultanément quatre drones par un même opérateur à partir d'une même console de pilotage ou ordinateur en liaison radio avec le drone. Ce dispositif permet d'atteindre un débit de 400 ha/heure sur des territoires composés de grandes plaines ou de grands plateaux tels que l'on en trouve en Amérique du Sud, USA, Afrique, Australie....
L'utilisation du drone 1 permet donc une économie de temps et d' argent et de gagner en précision par rapport aux dispositifs existants .

Claims

REVENDICATIONS
1. Drone d'épandage (1) de capsules (11) contenant des acteurs biologiques de lutte contre les nuisibles, ledit aéronef d'épandage (1) comprenant :
- un moyen de propulsion (2) assurant le déplacement de l'aéronef (1) selon une direction horizontale parallèle au sol, et
- un système de distribution et de largage (3) desdites capsules (11) munis d'un éjecteur vertical (31), de sorte que l'éjection en vol vers le sol desdites capsules (11) soit dans une direction perpendiculaire par rapport audit sens de déplacement horizontal du drone (1) ,
caractérisé en ce que, en tenant compte du sens de déplacement du drone (1) , ledit éjecteur vertical est positionné en avant dudit moyen de propulsion (2) , et en ce que ledit système de distribution et de largage (3) desdites capsules (11) comprend un réservoir (4) à capsules (11) connecté à un élément de guidage (5) desdites capsules (11) vers un système de comptage et de dosage des capsules (11) , ledit système de comptage et de dosage comprend une plaque de sélection et d'isolement des capsules (11), ladite plaque étant munie d'orifices calibrés pour le passage d'une seule capsule (11) vers ledit éjecteur vertical (31) de largage, ladite plaque étant montée en rotation par rapport audit éjecteur vertical (31) au travers d'un moteur générateur d'impulsion (6) .
2. Drone d'épandage (1) de capsules (11) selon la revendication 1, caractérisé en ce qu'il consiste en une aile volante à voilure fixe.
3. Drone d'épandage (1) de capsules (11) selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend des moyens de gestion, au travers d'un logiciel, du plan de vol, de la vitesse de déplacement de l'aéronef (1), de la fréquence de largage des capsules (11) par le système de distribution et de largage (3) par rapport à la surface à traiter, du nombre de capsules (11) disponibles et de la zone à traiter.
4. Drone d'épandage (1) de capsules (11) selon la revendication 1 , caractérisé en ce que ledit système de comptage et de dosage comprend un système infra-rouge de détection (7) des capsules (11) , de sorte à pouvoir compter le nombre de capsules (11) distribuées et larguées .
5 . Drone d'épandage (1) de capsules (11) selon la revendication 1 , caractérisé en ce que ledit moteur générateur d'impulsion (6) comprend un clapet relié à un moteur à rotation permanente au travers d' un système de bielle .
6. Drone d'épandage (1) de capsules (11) selon la revendication 1 , caractérisé en ce que ledit moteur générateur d'impulsion (6) comprend un moteur pas à pas .
EP18792430.3A 2017-09-27 2018-09-26 Aéronef d'épandage Withdrawn EP3687902A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1758932A FR3071482B1 (fr) 2017-09-27 2017-09-27 Aeronef d'epandage
PCT/FR2018/052375 WO2019063942A1 (fr) 2017-09-27 2018-09-26 Aéronef d'épandage

Publications (1)

Publication Number Publication Date
EP3687902A1 true EP3687902A1 (fr) 2020-08-05

Family

ID=61599244

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18792430.3A Withdrawn EP3687902A1 (fr) 2017-09-27 2018-09-26 Aéronef d'épandage

Country Status (5)

Country Link
US (1) US20200231281A1 (fr)
EP (1) EP3687902A1 (fr)
BR (1) BR112020006221A2 (fr)
FR (1) FR3071482B1 (fr)
WO (1) WO2019063942A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10499628B2 (en) * 2016-03-25 2019-12-10 Rutgers, The State University Of New Jersey Dispensers and methods of use thereof for dispensing solid mosquito larvicides and other materials of interest
CN112340026A (zh) * 2020-10-30 2021-02-09 广东农工商职业技术学院 植保无人机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2721102A (en) * 1953-06-25 1955-10-18 James M Nissen Agricultural sprayer
FR2501154A1 (fr) * 1981-03-06 1982-09-10 Perinet Roland Appareil pour l'epandage aerien
FR2583256B1 (fr) * 1985-06-18 1988-12-09 Limagrain Appareil d'epandage de capsules d'oeufs d'insectes en lutte biologique
FR2650247B1 (fr) * 1989-07-25 1993-04-16 Durand Gerard Appareil pour l'epandage de produits depuis un aeronef
JP3519835B2 (ja) * 1995-09-05 2004-04-19 三洋電機株式会社 固形製剤充填装置
US6926235B2 (en) * 2003-06-20 2005-08-09 The Boeing Company Runway-independent omni-role modularity enhancement (ROME) vehicle
CH707436B1 (de) * 2013-01-09 2017-04-28 Fenaco Genossenschaft Kugelabwurfvorrichtung.
FR3027284A1 (fr) * 2014-10-17 2016-04-22 Skeyelabs Dispositif d'epandage aerien et procede de pilotage associe
CN204507275U (zh) * 2015-02-15 2015-07-29 新疆天山羽人农业航空科技有限公司 一种可播种的无人飞行器
CN205150244U (zh) * 2015-11-09 2016-04-13 襄阳宏伟航空器有限责任公司 一种智能播撒无人机
WO2017136063A1 (fr) * 2016-02-02 2017-08-10 Bennett Chandler Procédé et appareil pour la lutte biologique contre des parasites agricoles
DE102016001353B4 (de) * 2016-02-05 2017-09-21 Thomas Wünsche System und Verfahren zur örtlich genauen Ausbringung von Feststoffen und Flüssigkeiten sowie deren Gemischen in der Land- und Forstwirtschaft
WO2018048665A1 (fr) * 2016-09-08 2018-03-15 Wal-Mart Stores, Inc. Systèmes et procédés de distribution de pollen sur des cultures par l'intermédiaire de véhicules sans pilote
GB2555439A (en) * 2016-10-27 2018-05-02 Mono Aerospace Ip Ltd Vertical take-off and landing aircraft and control method
CN206218230U (zh) * 2016-11-23 2017-06-06 西安航空职业技术学院 一种半环翼植保无人机
JP6906756B2 (ja) * 2017-01-30 2021-07-21 株式会社ナイルワークス 薬剤撒布用ドローン
US10537496B2 (en) * 2017-07-20 2020-01-21 Capsa Solutions, Llc Method and apparatus for the counting and dispensing of tablets
RU2766035C1 (ru) * 2018-10-29 2022-02-07 Валентин ЛУКА Высокоэффективный способ применения беспилотных летательных аппаратов для пожаротушения

Also Published As

Publication number Publication date
BR112020006221A2 (pt) 2020-10-13
US20200231281A1 (en) 2020-07-23
FR3071482B1 (fr) 2020-06-19
FR3071482A1 (fr) 2019-03-29
WO2019063942A1 (fr) 2019-04-04

Similar Documents

Publication Publication Date Title
US11718400B2 (en) Distribution assembly for an aerial vehicle
KR102155527B1 (ko) 분사노즐이 장착된 농업용 드론
US20160318607A1 (en) Tethered drone assembly
JP3836469B2 (ja) ラジコンヘリコプターを使用した散布装置および散布方法
US20190382116A1 (en) Drug spreading drone
EP3687902A1 (fr) Aéronef d'épandage
EP3150492B1 (fr) Dispositif d'éjection de balles
US20220073205A1 (en) Unmanned aerial vehicle (uav) pest abatement device
WO2019011487A1 (fr) Appareil permettant un épandage sélectif
EP3445148B1 (fr) Semeuse mono-graine
Akesson et al. The use of aircraft in agriculture
CN111204459A (zh) 具备输送带式排放器的农业无人机
CN113598148B (zh) 一种弥雾喷洒方法及装置
Souza et al. Impact of sprayer drone flight height on droplet spectrum in mountainous coffee plantation
Matthews Improved systems of pesticide application
Ozkan Herbicide formulations, adjuvants, and spray drift management
KR102345104B1 (ko) 농약 및 입자 살포가 가능한 드론
AU2004220723B2 (en) Reverse venturi atomization chamber and the use thereof
Parmar et al. Bio-efficacy of Unmanned Aerial Vehicle based spraying to manage pests
Parma et al. On-Farm Assessment of Unmanned Aerial Vehicle (UAV) Based Spraying Technology in Green Gram
Kilroy Aerial Application Equipment Guide, 2003
Post FROM THE AIR
Bader et al. Harvest-aid application technology
Maslykov et al. Pest control with unmanned aerial vehicles
Spillman The efficient aerial application of sprays

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200318

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210518

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210929