EP3679237B1 - Procédé de vérification de l'activité d'un capteur de pression dans le système d'admission d'air ou dans le système d'échappement de gaz d'un moteur à combustion interne en fonctionnement, et unité de gestion du moteur - Google Patents

Procédé de vérification de l'activité d'un capteur de pression dans le système d'admission d'air ou dans le système d'échappement de gaz d'un moteur à combustion interne en fonctionnement, et unité de gestion du moteur Download PDF

Info

Publication number
EP3679237B1
EP3679237B1 EP18768813.0A EP18768813A EP3679237B1 EP 3679237 B1 EP3679237 B1 EP 3679237B1 EP 18768813 A EP18768813 A EP 18768813A EP 3679237 B1 EP3679237 B1 EP 3679237B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
determined
tract
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18768813.0A
Other languages
German (de)
English (en)
Other versions
EP3679237A1 (fr
Inventor
Tobias Braun
Frank Maurer
Jürgen DINGL
Sven-Michael Eisen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP3679237A1 publication Critical patent/EP3679237A1/fr
Application granted granted Critical
Publication of EP3679237B1 publication Critical patent/EP3679237B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount

Definitions

  • the present invention relates to a method with which a respective pressure sensor, which is arranged for pressure measurement in the air intake tract or in the exhaust gas outlet tract of an internal combustion engine, can be checked for its fault-free function, in particular with regard to its dynamic behavior, in order to ensure trouble-free and in particular to ensure legally compliant operation of the respective internal combustion engine over the entire operating life with regard to pollutant emissions.
  • the present invention also relates to a motor control unit which is set up to carry out the method according to the invention.
  • Reciprocating internal combustion engines which in the context of this description are also referred to for short as internal combustion engines, have one or more cylinders in each of which a reciprocating piston is arranged.
  • FIG Figure 1 To illustrate the principle of a reciprocating internal combustion engine, reference is made below to FIG Figure 1 taken, which exemplifies a cylinder of a possibly multi-cylinder internal combustion engine with the most important functional units.
  • the respective reciprocating piston 6 is arranged in a linearly movable manner in the respective cylinder 2 and encloses a combustion chamber 3 with the cylinder 2.
  • the respective reciprocating piston 6 is connected to a respective crank pin 8 of a crankshaft 9 via a so-called connecting rod 7, the crank pin 8 being arranged eccentrically to the crankshaft axis of rotation 9a.
  • the reciprocating piston 6 is driven linearly “downwards”.
  • the translational The stroke movement of the reciprocating piston 6 is transmitted to the crankshaft 9 by means of the connecting rod 7 and crank pin 8 and converted into a rotational movement of the crankshaft 9 which, after overcoming a bottom dead center in the cylinder 2, moves the reciprocating piston 6 back in the opposite direction "up" to a top dead center.
  • the combustion chamber 3 In order to enable continuous operation of the internal combustion engine 1, the combustion chamber 3 must first be filled with the fuel-air mixture during a so-called work cycle of a cylinder 2, the fuel-air mixture compressed in the combustion chamber 3, then ignited and expanding to drive the reciprocating piston 6 are burned and finally the exhaust gas remaining after the combustion is pushed out of the combustion chamber 3. Continuous repetition of this sequence results in continuous operation of the internal combustion engine 1 with the output of work proportional to the combustion energy.
  • a working cycle of cylinder 2 is divided into two cycles (two-stroke engine) distributed over one crankshaft revolution (360 °) or four cycles (four-stroke engine) distributed over two crankshaft revolutions (720 °).
  • the four-stroke engine has prevailed as a drive for motor vehicles to this day.
  • a fuel-air mixture or even just fresh air in the case of direct fuel injection
  • the fuel-air mixture or the fresh air is compressed in the combustion chamber 3 and, if necessary, fuel is injected directly into the combustion chamber 3 by means of an injection valve 5 belonging to a fuel supply system.
  • the fuel-air mixture is ignited by means of a spark plug 4, burned in an expanding manner and, when the reciprocating piston 6 moves downwards, relaxed while releasing work.
  • the reciprocating piston 6 moves up again, the remaining exhaust gas is pushed out of the combustion chamber 3 into the exhaust tract 30.
  • the delimitation of the combustion chamber 3 from the air intake tract 20 or exhaust tract 30 of the internal combustion engine is usually, and especially in the example shown here, via inlet valves 22 and outlet valves 32. According to the current state of the art, these valves are controlled via at least one camshaft.
  • the example shown has an intake camshaft 23 for actuating the intake valves 22 and an exhaust camshaft 33 for actuating the exhaust valves 32.
  • the inlet camshaft 23 and the outlet camshaft 33 are driven by the internal combustion engine 1 itself , which has, for example, a gear transmission, a timing chain or a timing belt, coupled to the crankshaft 9 in a predetermined position to one another and to the crankshaft 9 via a corresponding crankshaft control adapter 10, which is designed as a gearwheel, chain wheel or belt wheel.
  • This connection basically defines the rotational position of the inlet camshaft 23 and the exhaust camshaft 33 in relation to the rotational position of the crankshaft 9.
  • Figure 1 is an example of the coupling between intake camshaft 23 and exhaust camshaft 33 and the crankshaft 9 shown by means of pulleys and timing belts.
  • the angle of rotation of the crankshaft covered over a work cycle is referred to below as the work phase or simply phase.
  • An angle of rotation of the crankshaft covered within a work phase is accordingly referred to as the phase angle.
  • the current crankshaft phase angle of the crankshaft 9 can be continuously detected by means of a position transmitter 43 connected to the crankshaft 9 or the crankshaft control adapter 10 and an associated crankshaft position sensor 41.
  • the position encoder can be designed, for example, as a toothed wheel with a plurality of teeth arranged equidistantly over the circumference, the number of individual teeth determining the resolution of the crankshaft phase angle signal.
  • the current phase angles of the inlet camshaft 23 and the outlet camshaft 33 can also be continuously recorded by means of corresponding position sensors 43 and associated camshaft position sensors 42.
  • each specific crankshaft phase angle has a specific crank pin angle HZW ( Figure 2 ), a specific piston stroke, a specific intake camshaft angle and thus a specific intake valve lift and a specific exhaust camshaft angle and thus a specific exhaust valve lift can be assigned.
  • HZW Figure 2
  • crankshaft 9 and intake camshaft 23 and exhaust camshaft 33 can be present within the mechanical coupling path between crankshaft 9 and intake camshaft 23 and exhaust camshaft 33, for example integrated into intake camshaft adapter 24 and exhaust camshaft adapter 34, which provide a desired controllable phase offset between crankshaft 9 and intake camshaft 23 and the exhaust camshaft 33 cause.
  • phase adjusters in so-called variable valve trains.
  • An electronic, programmable motor control unit 50 for controlling the motor functions is also symbolically shown, with signal inputs 51 for receiving the various sensor signals and with signal and power outputs 52 for controlling corresponding actuators and actuators as well as with an electronic one Computing unit 53 and an associated electronic memory unit 54 is equipped.
  • CPU programmable motor control unit
  • the fresh gas charge introduced into the combustion chamber during the intake stroke should be known as well as possible in order to be able to identify the others Parameters for the combustion, such as the amount of fuel to be supplied, possibly directly injected, can be adjusted accordingly.
  • the so-called charge exchange i.e. the intake of fresh gas and the expulsion of the exhaust gas, is largely dependent on the control times of the inlet valves 22 and outlet valves 32, i.e. on the temporal course of the respective valve lifts in relation to the temporal course of the piston stroke and on the height and course the pressures in the air intake tract and in the exhaust gas outlet tract.
  • the gas exchange during operation is dependent on the phase positions of the inlet and outlet valves in relation to the crankshaft phase angle and thus to the phase position of the reciprocating piston in cooperation with the respective pressure profile in the air intake tract and in the exhaust gas outlet tract.
  • the state of the art for determining the fresh gas charge and for matching the control parameters of the internal combustion engine to it is the measurement of a so-called reference internal combustion engine in all operating states that occur, for example as a function of the speed, the load, possibly the valve control times that can be specified by the phase adjuster.
  • the operating parameters of the exhaust gas turbocharger or compressor, etc. and the storage of these measured values or derivatives thereof or of the model approaches reproducing the behavior on the engine control unit of a corresponding series internal combustion engine. All identical series-produced internal combustion engines of the same series are then operated with this generated reference data set.
  • the exhaust valve stroke and possibly the piston stroke in relation to the crankshaft phase angle specified by the crankshaft position sensor or the phase position of the crankshaft leads to the fact that the fresh gas charge actually sucked in deviates from the fresh gas charge determined as a reference and thus the control parameters based on the reference data set do not are optimal.
  • a deviation in the current measured values for the respective pressure in the air intake tract and in the exhaust gas outlet tract also leads to errors in determining the fresh gas charge actually drawn in.
  • exhaust gas tract or simply “exhaust tract”, “exhaust tract” or “exhaust system” summarizes all components through which the exhaust gas flows out and thus form the so-called exhaust gas path, such as: the exhaust duct of the respective cylinder, exhaust pipes, components for exhaust gas recirculation, particle filters, catalytic converters and silencers.
  • the phase position and / or the amplitude of at least one selected signal frequency of the measured pressure oscillations in relation to the crankshaft phase angle signal are determined from the pressure oscillation signal with the aid of discrete Fourier transformation. Furthermore, the current values of the specified deviations are determined on the basis of the determined phase position and / or amplitude of at least one respective selected signal frequency, using corresponding reference values or reference characteristic curves.
  • the reference values or reference characteristic curves were determined beforehand on an ideal reference internal combustion engine of the same type and stored in corresponding characteristic diagrams or determined up-to-date by means of a respective algebraic model function.
  • corrections or adaptations of the control parameters of the internal combustion engine are then carried out in the control unit, if necessary, as a function of the deviations determined.
  • Document DE 10 2015 209 665 A1 discloses a method for identifying valve timing of an internal combustion engine. As described above, the phase angles of selected signal frequencies of the measured pressure oscillations are determined. On the basis of the determined phase angles, the valve control times of the relevant internal combustion engine are then determined using reference phase angles and associated reference valve control times of the same signal frequencies of the pressure oscillations of a reference internal combustion engine and / or a model function derived therefrom.
  • phase positions of selected signal frequencies of the measured pressure oscillations in the inlet and / or outlet tract are determined in relation to the crankshaft phase angle signal by means of discrete Fourier transformation.
  • standing lines with the same phase positions of the selected signal frequencies are determined and a common point of intersection of the determined lines is determined by a signal frequency-dependent phase shift.
  • the intake valve lift phase difference and the exhaust valve lift phase difference are determined from the determined common intersection, and the piston lift phase difference is determined from the value of the phase shifts that have taken place.
  • the documents DE 10 2015 226 138 B3 and DE 10 2015 226 461 A1 each disclose a method for determining the composition of the fuel used to operate an internal combustion engine. These methods are also based on the measurement and analysis of the pressure oscillations in the intake tract of the internal combustion engine in question by means of discrete Fourier transformation. For example, in addition to the determined actual phase position of the selected signal frequency with suction-synchronous fuel injection, in the same way, without fuel injection or with direct fuel injection into the closed combustion chamber, a further comparison phase position of the selected signal frequency and the actual phase position difference between the two are determined. Then, using reference phase position differences of the same signal frequency for different fuel compositions, the fuel composition of the currently used fuel is determined.
  • a method for determining the injection start time and the injection quantity of the fuel in normal operation of an internal combustion engine, also based on measured pressure fluctuations in the intake tract of the internal combustion engine, is from the document DE 10 2015 226 461 A1 known.
  • DE 10 2009 027 400 A1 relates to a method for diagnosing a pressure sensor device of an internal combustion engine, in which a periodic output signal of the sensor device is compared with a setpoint value that is predetermined independently of the output signal.
  • the present invention is therefore based on the object of providing a simple, inexpensive and reliable method by means of which a malfunction of a pressure sensor arranged in the air intake tract or exhaust gas outlet tract of an internal combustion engine, during operation, in particular with regard to its dynamic behavior, can be determined reliably and promptly.
  • this object is achieved by a method for checking the function of a pressure sensor in the air intake tract or exhaust gas outlet tract of an internal combustion engine during operation according to the main claim.
  • the dynamic pressure oscillations of the intake air in the air intake tract or of the exhaust gas in the exhaust gas exhaust tract of the internal combustion engine in question are measured and measured during operation using the relevant pressure sensor a corresponding pressure oscillation signal is generated therefrom.
  • a value of a specific operating characteristic of the internal combustion engine is determined for several selected signal frequencies with the aid of discrete Fourier transformation.
  • deviation values are then used to assess the function of the respective pressure sensor, the correct function of the pressure sensor being confirmed if none of the deviation values determined exceeds a predefined deviation limit value and a malfunction of the pressure sensor is diagnosed if at least one of the determined deviation values exceeds a predefined deviation limit value at least once.
  • the advantages of the method according to the invention are that the function of this pressure sensor can be checked without additional sensors, purely on the basis of the pressure oscillation signal of the pressure sensor to be checked. For this purpose, the measurements and analyzes of the pressure oscillation signal that are already carried out repeatedly during operation can largely be used, which ensures prompt detection of a malfunction of the pressure sensor.
  • DFT discrete Fourier transformation
  • FFT Fast Fourier Transformation
  • deviation values are generally referred to here as deviation values.
  • a deviation limit value is established in advance, for example when specifying or measuring the respective sensor type. This deviation limit value is used when carrying out the method for comparison with the deviation values determined, the correct functioning of the pressure sensor being confirmed if none of the deviation values determined exceeds the specified deviation limit value and, on the other hand, a malfunction of the pressure sensor is diagnosed, if at least once , that is to say at least during one measurement run, at least one of the determined deviation values or at least the largest deviation value reaches or exceeds the predefined deviation limit value.
  • a further embodiment of the method according to the invention makes use of the knowledge that malfunctions of a pressure sensor have different effects both on the phase position and on the amplitude of the respective signal frequencies. Accordingly, this embodiment of the method is characterized in that, at the same time as the pressure oscillation signal, a crankshaft phase angle signal is determined and the phase position and / or the amplitude of the selected signal frequencies of the measured pressure oscillations in relation to the crankshaft phase angle signal are determined and that on the basis of the respective determined phase position or amplitude or Phase position and amplitude of the respective signal frequency are each determined a value of a certain operating characteristic of the internal combustion engine.
  • crankshaft phase angle signal required to carry out the method according to the invention can be determined with a toothed wheel connected to the crankshaft and a Hall sensor. Such a sensor arrangement is also already present in modern internal combustion engines for other purposes.
  • the crankshaft phase angle signal thus generated can be used in a simple manner by the method according to the invention. This has the advantage that no additional sensor has to be arranged and thus no additional costs are incurred for carrying out the method according to the invention.
  • This embodiment is advantageous in particular when the determination of the corresponding operating characteristic is also determined on the basis of the phase position or amplitude or phase position and amplitude of a respective signal frequency.
  • the specific operating characteristic of the internal combustion engine is one or more of the following operating parameters: an intake valve lift phase position, an exhaust valve lift phase position, a piston lift phase position, a fuel composition, a start time of the fuel injection, an injection quantity of the fuel injection, a compression ratio of the cylinders, a trim of the intake tract and a valve train deviation value.
  • a further deviation value can be determined on the basis of a further certain operating characteristic in order to confirm the first deviation value.
  • the selected signal frequencies for carrying out the method according to the invention correspond to the intake frequency as the basic frequency or 1st harmonic and the other multiples, i.e. the 2nd to nth of the so-called "harmonics" of the intake frequency of the internal combustion engine.
  • the intake frequency is in turn clearly related to the speed of the internal combustion engine.
  • phase position referred to in this context as the phase angle
  • amplitude of the selected signal frequencies in relation to the crankshaft phase angle can be determined.
  • the method as well as the individual methods for determining the operating parameters mentioned, can advantageously be carried out on an electronic programmable engine control unit (CPU) of the internal combustion engine in question.
  • CPU electronic programmable engine control unit
  • This has the advantage that no separate control or computing device is required and the algorithms of the method can be integrated into the corresponding sequences of the engine control programs, and in particular into the algorithms for determining the operating parameters.
  • an engine control unit if a malfunction of the pressure sensor is diagnosed, the engine control unit continues to operate the internal combustion engine in an emergency operating mode or initiate an emergency stop of the internal combustion engine.
  • an error message is output which, for example, signals to a vehicle driver that the pressure sensor has been recognized as defective. This advantageously ensures that the respective internal combustion engine is not operated with incorrect manipulated variables based on an incorrect pressure oscillation signal from the corresponding pressure sensor, which cannot guarantee compliance with the emission limits.
  • the engine control unit for controlling an internal combustion engine has at least one electronic computing unit, at least one electronic storage unit, several signal inputs and several signal outputs.
  • the electronic processing unit can also have a plurality of processing units and storage units that operate separately or in combination.
  • At least one of the electronic processing units and / or the electronic storage units is in this case a program code and calculation parameters are stored for carrying out the above-described method according to the invention according to one of the embodiments described, by means of the engine control unit, during normal operation of the internal combustion engine.
  • the advantage of the engine control unit according to the invention is that the program code and calculation parameters for performing the method according to the invention can be embedded directly in the routines and program sequences for controlling the operation of the internal combustion engine and that no separate control units are required either.
  • FIG. 2 shows a simplified block diagram in which the essential process steps are summarized in the individual blocks.
  • the values of the selected operating characteristic Emtlg_BChk_W1 ... X are determined on the basis of the pressure oscillation signal DS S, with the aid of discrete Fourier transformation DFT, which is represented by block B2.
  • a value of the specific operating characteristic BChk_W1, BChk_W2 to BChk_WX (also BChk_W1 .. .X) of the internal combustion engine 1 is determined.
  • the individually determined values of the operating characteristic, BChk_W1, BChk_W2 to BChk_WX are shown in Figure 2 represented by blocks B3.1, B3.2 to B3.X.
  • One or more operating parameters that are determined on the basis of the same pressure oscillation signal DS_S according to one of the methods from the prior art mentioned in the introduction can be used as a specific operating characteristic.
  • an intake valve lift phase position, an exhaust valve lift phase position or a piston lift phase position can be used as a specific operating characteristic, which can be determined, for example, using one of the methods disclosed in the prior art.
  • a fuel composition, a start time of the fuel injection, an injection quantity of the fuel injection, a compression ratio of the cylinders, a trim of the intake tract and a valve train deviation value, determined according to the methods disclosed in the intellectual property documents mentioned at the beginning, can also be used as certain Operating characteristic can be used.
  • deviation values Emtlg_Aw_W1 ... Y of the values of the operating characteristic BChk_W1 ... X determined for different signal frequencies SF1 ... X from one another are determined, which is symbolized by block B4.
  • This can be done, for example, by comparison, in particular by forming the difference between two determined values.
  • the values that are furthest apart from one another are first determined and the difference between these two values is formed. How a maximum deviation value is found.
  • the deviation limit value Aw_Gw was determined empirically or computationally, for example, in advance of the intended operation of the internal combustion engine 1 and in the, also in Figure 2
  • the illustrated electronic storage unit 54 of the engine control unit 50 (CPU) is stored.
  • the method according to the invention, which is stored there in the form of program code, can also be carried out on the same motor control unit 50.
  • a malfunction DSens_Ffkt of the pressure sensor (44) is diagnosed, as shown in block B7, if at least one of the determined deviation values Aw_W1 ... Y reaches or exceeds a predetermined deviation limit value Aw_Gw.
  • the internal combustion engine 1 can be switched to an emergency operating mode Nt-Btb by means of the engine control unit 50 and can continue to be operated as shown in block B8.1, or an emergency stop of the internal combustion engine 1, Nt_stop, can be initiated, as shown in block B8.2.
  • an error message (Info_Sig) is optionally output, as represented by block B8.3, which signals to a vehicle driver, for example, that the pressure sensor has been recognized as defective.
  • FIG. 11 shows a further detailed section from the simplified block diagram according to FIG Figure 1 for a further detailed illustration of an embodiment of the method according to the invention.
  • Block B1.1 shows that a crankshaft phase angle signal Kw_Pw is determined at the same time as the pressure oscillation signal DS-S. This takes place, for example, by means of a crankshaft position sensor 41 which is already provided on the internal combustion engine, as in FIG Figure 1 shown.
  • the block B2 in more detail in order to show by the blocks B2.1, B2.2 to B2.X that for the selected signal frequencies SF1, SF2 to SFX (also SF1 ... X) of the measured pressure oscillation signal DS_S the phase position Phl1, Phl2 to PhlX (also Phl1 ... X) and / or the amplitude Amp1, Amp2 to AmpX (also Amp1 ... X) of the selected signal frequencies SF1 ... X can be determined in relation to the crankshaft phase angle signal Kw_Pw_S.
  • the phase position Phll ... X or amplitude Amp1 ... X or phase position Phl1 ... X and amplitude Ampl ... X of each one value of a certain operating characteristic BChk_W1 ... X of the internal combustion engine 1 for the respective Signal frequency SF1 ... X is determined.
  • the invention relates to a method for checking the function of a pressure sensor in the air intake tract or exhaust gas exhaust tract of an internal combustion engine during operation and an engine control unit for carrying out the method and is based on dynamic pressure fluctuations of the intake air in the air intake tract or the exhaust gas in the exhaust gas outlet tract of the internal combustion engine in question can be measured during operation by means of the pressure sensor in question, and on the basis of the pressure oscillation signal obtained with the aid of discrete Fourier transformation for several selected signal frequencies, a value of a certain operating characteristic of the internal combustion engine as well as deviation values of the different ones Signal frequencies determined values are determined from each other.
  • the correct function of the pressure sensor is confirmed or a malfunction of the pressure sensor is diagnosed. This makes it possible to monitor proper functioning of the pressure sensor and, in the event of failure, to initiate appropriate measures to prevent malfunction of the internal combustion engine and, if necessary, an increase in pollutant emissions based on it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Claims (7)

  1. Procédé de vérification du fonctionnement d'un capteur de pression (44) dans le conduit d'admission d'air (20) ou le conduit de sortie de gaz d'échappement (30) d'un moteur à combustion interne (1) en fonction,
    - des oscillations de pression dynamiques de l'air d'admission dans le conduit d'admission d'air (20) ou des gaz d'échappement dans le conduit de sortie de gaz d'échappement (30) dudit moteur à combustion interne (1) étant mesurées pendant le fonctionnement au moyen dudit capteur de pression (44) et un signal d'oscillation de pression correspondant (DS_S) étant généré à partir de là ; et
    - une valeur d'une caractéristique de fonctionnement déterminée (BChk_W1...X) du moteur à combustion interne (1) étant déterminée, et des valeurs d'écart (Aw_W1...Y) entre les valeurs de la caractéristique de fonctionnement (BChk_W1...X) déterminées pour différentes fréquences de signal (SF1...X) étant déterminées, sur la base du signal d'oscillation de pression (DS_S) à l'aide d'une transformation de Fourier discrète (DFT), pour plusieurs fréquences de signal sélectionnées (SF1...X) ;
    - le bon fonctionnement du capteur de pression (44) étant confirmé (DSens=ok) si aucune des valeurs d'écart déterminées (Aw_W1...Y) n'atteint ou ne dépasse une valeur d'écart limite prédéterminée (Aw_Gw) et
    - un dysfonctionnement (DSens_Ffkt) du capteur de pression (44) étant diagnostiqué si au moins une des valeurs d'écart déterminées (Aw_W1...Y) atteint ou dépasse une valeur d'écart limite prédéterminée (Aw_Gw).
  2. Procédé selon la revendication 1, caractérisé en ce qu'un signal d'angle de phase de vilebrequin (Kw_Pw) est déterminé simultanément au signal d'oscillation de pression (DS-S) et la position de phase et/ou l'amplitude des fréquences de signal sélectionnées (SF1...X) du signal d'oscillation de pression mesuré (DS_S) sont déterminées en fonction du signal d'angle de phase de vilebrequin (Kw_Pw_S) et en ce que
    l'une des valeurs d'une caractéristique de fonctionnement déterminée (BChk_W1...X) du moteur à combustion interne (1) est déterminée sur la base de la position de phase ou de l'amplitude ou de la position de phase et de l'amplitude respectivement déterminées.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la caractéristique de fonctionnement déterminée du moteur à combustion interne est un ou plusieurs des paramètres de fonctionnement : une position de phase de levée de soupape d'admission, une position de phase de levée de soupape d'échappement, une position de phase de levée de piston, une composition de carburant, un instant de début de l'injection de carburant, une quantité d'injection de carburant, un taux de compression des cylindres, un réglage du conduit d'admission et une valeur de déviation du train de soupapes.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que les fréquences de signal sélectionnées (SF1...X) sont la fréquence d'admission et au moins un autre multiple de la fréquence d'admission du moteur à combustion interne (1).
  5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le procédé est réalisé sur une unité de commande de moteur électronique programmable (50) dudit moteur à combustion interne (1).
  6. Procédé selon la revendication 5, caractérisé en ce que, si un dysfonctionnement (DSens_Ffkt) du capteur de pression (44) est diagnostiqué, le moteur à combustion interne (1) continue de fonctionner dans un mode de fonctionnement d'urgence (Nt-Btb) au moyen de l'unité de commande de moteur (50) ou un arrêt d'urgence du moteur à combustion interne (1) (Nt_stop) est déclenché, en variante ou en complément un message d'erreur (Info_Sig) étant émis.
  7. Unité de commande de moteur (50) destinée à commander un moteur à combustion interne (1) et comportant au moins une unité de calcul électronique (53), au moins une unité de mémorisation électronique (54), plusieurs entrées de signal (51) et plusieurs sorties de signal (52), un code de programme et des paramètres de calcul étant mémorisés dans l'unité de calcul électronique (53) et/ou dans l'unité de mémorisation électronique (54) pour exécuter le procédé selon l'une des revendications 1 à 4 ou 6 au moyen de l'unité de commande de moteur (50) pendant le fonctionnement normal du moteur à combustion interne.
EP18768813.0A 2017-09-08 2018-09-04 Procédé de vérification de l'activité d'un capteur de pression dans le système d'admission d'air ou dans le système d'échappement de gaz d'un moteur à combustion interne en fonctionnement, et unité de gestion du moteur Active EP3679237B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017215849.2A DE102017215849B4 (de) 2017-09-08 2017-09-08 Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb und Motor-Steuerungseinheit
PCT/EP2018/073706 WO2019048416A1 (fr) 2017-09-08 2018-09-04 Procédé de vérification de l'activité d'un capteur de pression dans le système d'admission d'air ou dans le système d'échappement de gaz d'un moteur à combustion interne en fonctionnement, et unité de gestion du moteur

Publications (2)

Publication Number Publication Date
EP3679237A1 EP3679237A1 (fr) 2020-07-15
EP3679237B1 true EP3679237B1 (fr) 2021-05-19

Family

ID=63556293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18768813.0A Active EP3679237B1 (fr) 2017-09-08 2018-09-04 Procédé de vérification de l'activité d'un capteur de pression dans le système d'admission d'air ou dans le système d'échappement de gaz d'un moteur à combustion interne en fonctionnement, et unité de gestion du moteur

Country Status (7)

Country Link
US (1) US11293368B2 (fr)
EP (1) EP3679237B1 (fr)
JP (1) JP2020532680A (fr)
KR (1) KR102283112B1 (fr)
CN (1) CN111133184B (fr)
DE (1) DE102017215849B4 (fr)
WO (1) WO2019048416A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209112B4 (de) * 2017-05-31 2019-08-22 Continental Automotive Gmbh Verfahren zur Ermittlung des aktuellen Verdichtungsverhältnisses eines Verbrennungsmotors im Betrieb
DE102017209386B4 (de) * 2017-06-02 2024-05-08 Vitesco Technologies GmbH Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb
JP6970309B2 (ja) * 2018-09-26 2021-11-24 日立Astemo株式会社 内燃機関制御装置
DE102020210878A1 (de) * 2020-08-28 2022-03-03 Volkswagen Aktiengesellschaft Verfahren zur Dynamikdiagnose eines Sensors im Frischluft- oder Abgastrakt von Brennkraftmaschinen

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195370A (ja) * 1987-02-06 1988-08-12 Toyota Motor Corp 内燃機関の排気ガス再循環装置のダイアグノ−シス装置
JPS648337A (en) * 1987-06-29 1989-01-12 Daihatsu Motor Co Ltd Method for controlling fuel at time of pressure sensor breakdown
DE3835285A1 (de) * 1988-10-15 1990-04-19 Bosch Gmbh Robert Verfahren und vorrichtung zur zuendaussetzerkennung
JPH11294234A (ja) * 1998-04-09 1999-10-26 Unisia Jecs Corp 内燃機関の補助空気制御装置
DE19927846C2 (de) 1999-06-18 2001-09-13 Mtu Friedrichshafen Gmbh Verfahren zur Überwachung einer Brennkraftmaschine
DE102004057963A1 (de) 2004-12-01 2006-06-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Anregung von Druckschwankungen in einem Kraftstoffversorgungssystem einer Brennkraftmaschine
JP4345688B2 (ja) * 2005-02-24 2009-10-14 株式会社日立製作所 内燃機関の診断装置および制御装置
ITTO20050316A1 (it) 2005-05-10 2006-11-11 Varian Spa Sensore di pressione
DE102005027565A1 (de) * 2005-06-14 2006-12-21 Robert Bosch Gmbh Verfahren zur Fehlerdiagnose eines Umgebungsdrucksensors und eines Saugrohrdrucksensors
DE102007013252A1 (de) * 2007-03-20 2008-09-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung des Saugrohrdruckes einer Brennkraftmaschine
DE102009027400A1 (de) * 2009-07-01 2011-01-05 Robert Bosch Gmbh Verfahren zur Diagnose einer Sensoreinrichtung einer Brennkraftmaschine
US8516895B2 (en) * 2009-10-08 2013-08-27 GM Global Technology Operations LLC In-cylinder pressure sensor diagnostic systems and methods
JP2011221007A (ja) * 2010-03-25 2011-11-04 Seiko Epson Corp 圧力検出装置
US8631688B1 (en) * 2012-09-05 2014-01-21 GM Global Technology Operations LLC System and method for detecting a fault in a pressure sensor that measures pressure in a hydraulic valve actuation system
JP6130124B2 (ja) * 2012-10-30 2017-05-17 日立オートモティブシステムズ株式会社 多気筒エンジンの制御装置
DE102014205686A1 (de) * 2014-03-26 2015-10-01 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Verfahren zum Ermitteln einer Lernstruktur für den Betrieb einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine und Brennkraftmaschine
DE102015209665B4 (de) * 2014-06-25 2022-10-20 Vitesco Technologies GmbH Verfahren zur Identifizierung von Ventilsteuerzeiten eines Verbrennungsmotors
JP6156276B2 (ja) * 2014-07-23 2017-07-05 トヨタ自動車株式会社 空燃比センサの異常検出方法
DE102015222408B3 (de) 2015-11-13 2017-03-16 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung einer Kolbenhub-Phasendifferenz, einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors
DE102015224736A1 (de) * 2015-12-09 2017-06-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Prüfen der Funktionsfähigkeit einer Sensoreinrichtung
DE102015225922A1 (de) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Diagnose einer oder mehrerer Komponenten eines Kraftfahrzeugs
DE102015226138B3 (de) 2015-12-21 2016-12-29 Continental Automotive Gmbh Verfahren zur Ermittlung der Zusammensetzung des zum Betrieb eines Verbrennungsmotors verwendeten Kraftstoffes
DE102015226461B4 (de) 2015-12-22 2018-10-04 Continental Automotive Gmbh Verfahren zur Ermittlung des Einspritzbeginn-Zeitpunktes und der Einspritzmenge des Kraftstoffes im Normalbetrieb eines Verbrennungsmotors
DE102016219584B4 (de) 2016-10-10 2018-05-30 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung von Phasendifferenzen des Einlassventilhubs und des Auslassventilhubs eines Verbrennungsmotors mittels Linien gleicher Phasenlagen und Amplituden
DE102016222533B4 (de) 2016-11-16 2018-07-26 Continental Automotive Gmbh Verfahren zur Überwachung von im Ventiltrieb eines Verbrennungsmotors auftretenden Abweichungen und elektronisches Motorsteuergerät zur Ausführung des Verfahrens
DE102017209112B4 (de) 2017-05-31 2019-08-22 Continental Automotive Gmbh Verfahren zur Ermittlung des aktuellen Verdichtungsverhältnisses eines Verbrennungsmotors im Betrieb
DE102017209386B4 (de) 2017-06-02 2024-05-08 Vitesco Technologies GmbH Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb

Also Published As

Publication number Publication date
CN111133184B (zh) 2022-08-30
JP2020532680A (ja) 2020-11-12
WO2019048416A1 (fr) 2019-03-14
KR20200047674A (ko) 2020-05-07
DE102017215849B4 (de) 2019-07-18
BR112020004203A2 (pt) 2020-09-01
EP3679237A1 (fr) 2020-07-15
DE102017215849A1 (de) 2019-03-14
US11293368B2 (en) 2022-04-05
KR102283112B1 (ko) 2021-07-28
CN111133184A (zh) 2020-05-08
US20200200113A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
EP3542042B1 (fr) Procédé de surveillance d'écarts apparaissant dans le mécanisme de distribution d'un moteur à combustion interne et unité de commande électronique du moteur pour la mise en uvre du procédé
EP3679237B1 (fr) Procédé de vérification de l'activité d'un capteur de pression dans le système d'admission d'air ou dans le système d'échappement de gaz d'un moteur à combustion interne en fonctionnement, et unité de gestion du moteur
EP3374617B1 (fr) Procédé d'identification combinée d'une différence de phase de course de piston, d'une différence de phase de course de soupape d'admission et d'une différence de phase de course de soupape d'échappement d'un moteur à combustion interne
EP3523529B1 (fr) Procédé d'identification combinée de décalages de phase de la levée des soupapes d'admission et de la levée des soupapes d'échappement d'un moteur à combustion interne à l'aide de lignes de mêmes positions de phase et amplitudes
EP3523528B1 (fr) Procédé d'identification combinée d'un décalage de phase de la levée des soupapes d'admission et d'un décalage de phase de la levée des soupapes d'échappement d'un moteur à combustion interne à l'aide de lignes de même amplitude
EP2593650B1 (fr) Procédé de commande d'un moteur à combustion interne
DE102007045817B4 (de) Verfahren und Vorrichtung zum Steuern des Motorbetriebs während der Regeneration eines Abgasnachbehandlungssystems
EP3394414B1 (fr) Procédé pour déterminer le point de début d'injection et la quantité de carburant injectée pendant le fonctionnement normal d'un moteur à combustion interne
DE112014001479T5 (de) Fehlzündungs-Detektionssystem
DE102010027215B4 (de) Verfahren und Steuergerät zum Steuern einer Brennkraftmaschine
DE102010027214A1 (de) Verfahren und Steuergerät zum Steuern einer Brennkraftmaschine
EP3394413B1 (fr) Procédé pour déterminer la composition du carburant utilisé pour faire fonctionner un moteur à combustion interne
WO2017021183A1 (fr) Procédé de détection de composants défectueux dans un système d'injection de carburant
DE102006007698A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm-Produkt, Computerprogramm und Steuer- und/oder Regeleinrichtung für eine Brennkraftmaschine
WO2005031124A1 (fr) Procede et dispositif pour determiner une position de phase entre un vilebrequin et un arbre a cames d'un moteur a combustion interne
EP3507475A1 (fr) Procédé, dispositif de commande et système permettant de détecter un écart entre un instant d'actionnement réel d'une soupape d'échange de gaz d'un moteur à combustion interne et un instant d'actionnement prédéfini
WO2018219754A1 (fr) Procédé de détermination du rapport de compression effectif d'un moteur à combustion interne en fonctionnement
DE102007007815A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10307307A1 (de) Verfahren zum Steuern einer Brennkraftmaschine
EP2236798B1 (fr) Procédé et dispositif de diagnostic d'une commande de soupape variable d'un moteur à combustion interne
DE102020201953A1 (de) Verfahren zur Adaption einer erfassten Nockenwellenstellung, Motorsteuergerät zur Durchführung des Verfahrens, Verbrennungsmotor und Fahrzeug
DE102015216258A1 (de) Verfahren und Vorrichtung zum Durchführen einer Diagnose eines VCR-Stellers in einem Verbrennungsmotor
DE102017201866A1 (de) Verfahren und Anordnung zur Kontrolle eines Mechanismus zum Einstellen einer Ventilerhebungskurve
DE102013202141A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine mit mehreren Zylindern
DE102008040023A1 (de) Verfahren und Vorrichtung zur Diagnose einer Brennkraftmaschine, Computerprogramm und Computerprogrammprodukt

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200408

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005359

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1394192

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210920

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005359

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502018005359

Country of ref document: DE

26N No opposition filed

Effective date: 20220222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210904

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210904

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519