EP3679237B1 - Verfahren zur überprüfung der funktion eines drucksensors im luft-ansaugtrakt oder abgas-auslasstrakt eines verbrennungsmotors im betrieb und motor-steuerungseinheit - Google Patents

Verfahren zur überprüfung der funktion eines drucksensors im luft-ansaugtrakt oder abgas-auslasstrakt eines verbrennungsmotors im betrieb und motor-steuerungseinheit Download PDF

Info

Publication number
EP3679237B1
EP3679237B1 EP18768813.0A EP18768813A EP3679237B1 EP 3679237 B1 EP3679237 B1 EP 3679237B1 EP 18768813 A EP18768813 A EP 18768813A EP 3679237 B1 EP3679237 B1 EP 3679237B1
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
determined
tract
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18768813.0A
Other languages
English (en)
French (fr)
Other versions
EP3679237A1 (de
Inventor
Tobias Braun
Frank Maurer
Jürgen DINGL
Sven-Michael Eisen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vitesco Technologies GmbH
Original Assignee
Vitesco Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitesco Technologies GmbH filed Critical Vitesco Technologies GmbH
Publication of EP3679237A1 publication Critical patent/EP3679237A1/de
Application granted granted Critical
Publication of EP3679237B1 publication Critical patent/EP3679237B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/1038Sensors for intake systems for temperature or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount

Definitions

  • the present invention relates to a method with which a respective pressure sensor, which is arranged for pressure measurement in the air intake tract or in the exhaust gas outlet tract of an internal combustion engine, can be checked for its fault-free function, in particular with regard to its dynamic behavior, in order to ensure trouble-free and in particular to ensure legally compliant operation of the respective internal combustion engine over the entire operating life with regard to pollutant emissions.
  • the present invention also relates to a motor control unit which is set up to carry out the method according to the invention.
  • Reciprocating internal combustion engines which in the context of this description are also referred to for short as internal combustion engines, have one or more cylinders in each of which a reciprocating piston is arranged.
  • FIG Figure 1 To illustrate the principle of a reciprocating internal combustion engine, reference is made below to FIG Figure 1 taken, which exemplifies a cylinder of a possibly multi-cylinder internal combustion engine with the most important functional units.
  • the respective reciprocating piston 6 is arranged in a linearly movable manner in the respective cylinder 2 and encloses a combustion chamber 3 with the cylinder 2.
  • the respective reciprocating piston 6 is connected to a respective crank pin 8 of a crankshaft 9 via a so-called connecting rod 7, the crank pin 8 being arranged eccentrically to the crankshaft axis of rotation 9a.
  • the reciprocating piston 6 is driven linearly “downwards”.
  • the translational The stroke movement of the reciprocating piston 6 is transmitted to the crankshaft 9 by means of the connecting rod 7 and crank pin 8 and converted into a rotational movement of the crankshaft 9 which, after overcoming a bottom dead center in the cylinder 2, moves the reciprocating piston 6 back in the opposite direction "up" to a top dead center.
  • the combustion chamber 3 In order to enable continuous operation of the internal combustion engine 1, the combustion chamber 3 must first be filled with the fuel-air mixture during a so-called work cycle of a cylinder 2, the fuel-air mixture compressed in the combustion chamber 3, then ignited and expanding to drive the reciprocating piston 6 are burned and finally the exhaust gas remaining after the combustion is pushed out of the combustion chamber 3. Continuous repetition of this sequence results in continuous operation of the internal combustion engine 1 with the output of work proportional to the combustion energy.
  • a working cycle of cylinder 2 is divided into two cycles (two-stroke engine) distributed over one crankshaft revolution (360 °) or four cycles (four-stroke engine) distributed over two crankshaft revolutions (720 °).
  • the four-stroke engine has prevailed as a drive for motor vehicles to this day.
  • a fuel-air mixture or even just fresh air in the case of direct fuel injection
  • the fuel-air mixture or the fresh air is compressed in the combustion chamber 3 and, if necessary, fuel is injected directly into the combustion chamber 3 by means of an injection valve 5 belonging to a fuel supply system.
  • the fuel-air mixture is ignited by means of a spark plug 4, burned in an expanding manner and, when the reciprocating piston 6 moves downwards, relaxed while releasing work.
  • the reciprocating piston 6 moves up again, the remaining exhaust gas is pushed out of the combustion chamber 3 into the exhaust tract 30.
  • the delimitation of the combustion chamber 3 from the air intake tract 20 or exhaust tract 30 of the internal combustion engine is usually, and especially in the example shown here, via inlet valves 22 and outlet valves 32. According to the current state of the art, these valves are controlled via at least one camshaft.
  • the example shown has an intake camshaft 23 for actuating the intake valves 22 and an exhaust camshaft 33 for actuating the exhaust valves 32.
  • the inlet camshaft 23 and the outlet camshaft 33 are driven by the internal combustion engine 1 itself , which has, for example, a gear transmission, a timing chain or a timing belt, coupled to the crankshaft 9 in a predetermined position to one another and to the crankshaft 9 via a corresponding crankshaft control adapter 10, which is designed as a gearwheel, chain wheel or belt wheel.
  • This connection basically defines the rotational position of the inlet camshaft 23 and the exhaust camshaft 33 in relation to the rotational position of the crankshaft 9.
  • Figure 1 is an example of the coupling between intake camshaft 23 and exhaust camshaft 33 and the crankshaft 9 shown by means of pulleys and timing belts.
  • the angle of rotation of the crankshaft covered over a work cycle is referred to below as the work phase or simply phase.
  • An angle of rotation of the crankshaft covered within a work phase is accordingly referred to as the phase angle.
  • the current crankshaft phase angle of the crankshaft 9 can be continuously detected by means of a position transmitter 43 connected to the crankshaft 9 or the crankshaft control adapter 10 and an associated crankshaft position sensor 41.
  • the position encoder can be designed, for example, as a toothed wheel with a plurality of teeth arranged equidistantly over the circumference, the number of individual teeth determining the resolution of the crankshaft phase angle signal.
  • the current phase angles of the inlet camshaft 23 and the outlet camshaft 33 can also be continuously recorded by means of corresponding position sensors 43 and associated camshaft position sensors 42.
  • each specific crankshaft phase angle has a specific crank pin angle HZW ( Figure 2 ), a specific piston stroke, a specific intake camshaft angle and thus a specific intake valve lift and a specific exhaust camshaft angle and thus a specific exhaust valve lift can be assigned.
  • HZW Figure 2
  • crankshaft 9 and intake camshaft 23 and exhaust camshaft 33 can be present within the mechanical coupling path between crankshaft 9 and intake camshaft 23 and exhaust camshaft 33, for example integrated into intake camshaft adapter 24 and exhaust camshaft adapter 34, which provide a desired controllable phase offset between crankshaft 9 and intake camshaft 23 and the exhaust camshaft 33 cause.
  • phase adjusters in so-called variable valve trains.
  • An electronic, programmable motor control unit 50 for controlling the motor functions is also symbolically shown, with signal inputs 51 for receiving the various sensor signals and with signal and power outputs 52 for controlling corresponding actuators and actuators as well as with an electronic one Computing unit 53 and an associated electronic memory unit 54 is equipped.
  • CPU programmable motor control unit
  • the fresh gas charge introduced into the combustion chamber during the intake stroke should be known as well as possible in order to be able to identify the others Parameters for the combustion, such as the amount of fuel to be supplied, possibly directly injected, can be adjusted accordingly.
  • the so-called charge exchange i.e. the intake of fresh gas and the expulsion of the exhaust gas, is largely dependent on the control times of the inlet valves 22 and outlet valves 32, i.e. on the temporal course of the respective valve lifts in relation to the temporal course of the piston stroke and on the height and course the pressures in the air intake tract and in the exhaust gas outlet tract.
  • the gas exchange during operation is dependent on the phase positions of the inlet and outlet valves in relation to the crankshaft phase angle and thus to the phase position of the reciprocating piston in cooperation with the respective pressure profile in the air intake tract and in the exhaust gas outlet tract.
  • the state of the art for determining the fresh gas charge and for matching the control parameters of the internal combustion engine to it is the measurement of a so-called reference internal combustion engine in all operating states that occur, for example as a function of the speed, the load, possibly the valve control times that can be specified by the phase adjuster.
  • the operating parameters of the exhaust gas turbocharger or compressor, etc. and the storage of these measured values or derivatives thereof or of the model approaches reproducing the behavior on the engine control unit of a corresponding series internal combustion engine. All identical series-produced internal combustion engines of the same series are then operated with this generated reference data set.
  • the exhaust valve stroke and possibly the piston stroke in relation to the crankshaft phase angle specified by the crankshaft position sensor or the phase position of the crankshaft leads to the fact that the fresh gas charge actually sucked in deviates from the fresh gas charge determined as a reference and thus the control parameters based on the reference data set do not are optimal.
  • a deviation in the current measured values for the respective pressure in the air intake tract and in the exhaust gas outlet tract also leads to errors in determining the fresh gas charge actually drawn in.
  • exhaust gas tract or simply “exhaust tract”, “exhaust tract” or “exhaust system” summarizes all components through which the exhaust gas flows out and thus form the so-called exhaust gas path, such as: the exhaust duct of the respective cylinder, exhaust pipes, components for exhaust gas recirculation, particle filters, catalytic converters and silencers.
  • the phase position and / or the amplitude of at least one selected signal frequency of the measured pressure oscillations in relation to the crankshaft phase angle signal are determined from the pressure oscillation signal with the aid of discrete Fourier transformation. Furthermore, the current values of the specified deviations are determined on the basis of the determined phase position and / or amplitude of at least one respective selected signal frequency, using corresponding reference values or reference characteristic curves.
  • the reference values or reference characteristic curves were determined beforehand on an ideal reference internal combustion engine of the same type and stored in corresponding characteristic diagrams or determined up-to-date by means of a respective algebraic model function.
  • corrections or adaptations of the control parameters of the internal combustion engine are then carried out in the control unit, if necessary, as a function of the deviations determined.
  • Document DE 10 2015 209 665 A1 discloses a method for identifying valve timing of an internal combustion engine. As described above, the phase angles of selected signal frequencies of the measured pressure oscillations are determined. On the basis of the determined phase angles, the valve control times of the relevant internal combustion engine are then determined using reference phase angles and associated reference valve control times of the same signal frequencies of the pressure oscillations of a reference internal combustion engine and / or a model function derived therefrom.
  • phase positions of selected signal frequencies of the measured pressure oscillations in the inlet and / or outlet tract are determined in relation to the crankshaft phase angle signal by means of discrete Fourier transformation.
  • standing lines with the same phase positions of the selected signal frequencies are determined and a common point of intersection of the determined lines is determined by a signal frequency-dependent phase shift.
  • the intake valve lift phase difference and the exhaust valve lift phase difference are determined from the determined common intersection, and the piston lift phase difference is determined from the value of the phase shifts that have taken place.
  • the documents DE 10 2015 226 138 B3 and DE 10 2015 226 461 A1 each disclose a method for determining the composition of the fuel used to operate an internal combustion engine. These methods are also based on the measurement and analysis of the pressure oscillations in the intake tract of the internal combustion engine in question by means of discrete Fourier transformation. For example, in addition to the determined actual phase position of the selected signal frequency with suction-synchronous fuel injection, in the same way, without fuel injection or with direct fuel injection into the closed combustion chamber, a further comparison phase position of the selected signal frequency and the actual phase position difference between the two are determined. Then, using reference phase position differences of the same signal frequency for different fuel compositions, the fuel composition of the currently used fuel is determined.
  • a method for determining the injection start time and the injection quantity of the fuel in normal operation of an internal combustion engine, also based on measured pressure fluctuations in the intake tract of the internal combustion engine, is from the document DE 10 2015 226 461 A1 known.
  • DE 10 2009 027 400 A1 relates to a method for diagnosing a pressure sensor device of an internal combustion engine, in which a periodic output signal of the sensor device is compared with a setpoint value that is predetermined independently of the output signal.
  • the present invention is therefore based on the object of providing a simple, inexpensive and reliable method by means of which a malfunction of a pressure sensor arranged in the air intake tract or exhaust gas outlet tract of an internal combustion engine, during operation, in particular with regard to its dynamic behavior, can be determined reliably and promptly.
  • this object is achieved by a method for checking the function of a pressure sensor in the air intake tract or exhaust gas outlet tract of an internal combustion engine during operation according to the main claim.
  • the dynamic pressure oscillations of the intake air in the air intake tract or of the exhaust gas in the exhaust gas exhaust tract of the internal combustion engine in question are measured and measured during operation using the relevant pressure sensor a corresponding pressure oscillation signal is generated therefrom.
  • a value of a specific operating characteristic of the internal combustion engine is determined for several selected signal frequencies with the aid of discrete Fourier transformation.
  • deviation values are then used to assess the function of the respective pressure sensor, the correct function of the pressure sensor being confirmed if none of the deviation values determined exceeds a predefined deviation limit value and a malfunction of the pressure sensor is diagnosed if at least one of the determined deviation values exceeds a predefined deviation limit value at least once.
  • the advantages of the method according to the invention are that the function of this pressure sensor can be checked without additional sensors, purely on the basis of the pressure oscillation signal of the pressure sensor to be checked. For this purpose, the measurements and analyzes of the pressure oscillation signal that are already carried out repeatedly during operation can largely be used, which ensures prompt detection of a malfunction of the pressure sensor.
  • DFT discrete Fourier transformation
  • FFT Fast Fourier Transformation
  • deviation values are generally referred to here as deviation values.
  • a deviation limit value is established in advance, for example when specifying or measuring the respective sensor type. This deviation limit value is used when carrying out the method for comparison with the deviation values determined, the correct functioning of the pressure sensor being confirmed if none of the deviation values determined exceeds the specified deviation limit value and, on the other hand, a malfunction of the pressure sensor is diagnosed, if at least once , that is to say at least during one measurement run, at least one of the determined deviation values or at least the largest deviation value reaches or exceeds the predefined deviation limit value.
  • a further embodiment of the method according to the invention makes use of the knowledge that malfunctions of a pressure sensor have different effects both on the phase position and on the amplitude of the respective signal frequencies. Accordingly, this embodiment of the method is characterized in that, at the same time as the pressure oscillation signal, a crankshaft phase angle signal is determined and the phase position and / or the amplitude of the selected signal frequencies of the measured pressure oscillations in relation to the crankshaft phase angle signal are determined and that on the basis of the respective determined phase position or amplitude or Phase position and amplitude of the respective signal frequency are each determined a value of a certain operating characteristic of the internal combustion engine.
  • crankshaft phase angle signal required to carry out the method according to the invention can be determined with a toothed wheel connected to the crankshaft and a Hall sensor. Such a sensor arrangement is also already present in modern internal combustion engines for other purposes.
  • the crankshaft phase angle signal thus generated can be used in a simple manner by the method according to the invention. This has the advantage that no additional sensor has to be arranged and thus no additional costs are incurred for carrying out the method according to the invention.
  • This embodiment is advantageous in particular when the determination of the corresponding operating characteristic is also determined on the basis of the phase position or amplitude or phase position and amplitude of a respective signal frequency.
  • the specific operating characteristic of the internal combustion engine is one or more of the following operating parameters: an intake valve lift phase position, an exhaust valve lift phase position, a piston lift phase position, a fuel composition, a start time of the fuel injection, an injection quantity of the fuel injection, a compression ratio of the cylinders, a trim of the intake tract and a valve train deviation value.
  • a further deviation value can be determined on the basis of a further certain operating characteristic in order to confirm the first deviation value.
  • the selected signal frequencies for carrying out the method according to the invention correspond to the intake frequency as the basic frequency or 1st harmonic and the other multiples, i.e. the 2nd to nth of the so-called "harmonics" of the intake frequency of the internal combustion engine.
  • the intake frequency is in turn clearly related to the speed of the internal combustion engine.
  • phase position referred to in this context as the phase angle
  • amplitude of the selected signal frequencies in relation to the crankshaft phase angle can be determined.
  • the method as well as the individual methods for determining the operating parameters mentioned, can advantageously be carried out on an electronic programmable engine control unit (CPU) of the internal combustion engine in question.
  • CPU electronic programmable engine control unit
  • This has the advantage that no separate control or computing device is required and the algorithms of the method can be integrated into the corresponding sequences of the engine control programs, and in particular into the algorithms for determining the operating parameters.
  • an engine control unit if a malfunction of the pressure sensor is diagnosed, the engine control unit continues to operate the internal combustion engine in an emergency operating mode or initiate an emergency stop of the internal combustion engine.
  • an error message is output which, for example, signals to a vehicle driver that the pressure sensor has been recognized as defective. This advantageously ensures that the respective internal combustion engine is not operated with incorrect manipulated variables based on an incorrect pressure oscillation signal from the corresponding pressure sensor, which cannot guarantee compliance with the emission limits.
  • the engine control unit for controlling an internal combustion engine has at least one electronic computing unit, at least one electronic storage unit, several signal inputs and several signal outputs.
  • the electronic processing unit can also have a plurality of processing units and storage units that operate separately or in combination.
  • At least one of the electronic processing units and / or the electronic storage units is in this case a program code and calculation parameters are stored for carrying out the above-described method according to the invention according to one of the embodiments described, by means of the engine control unit, during normal operation of the internal combustion engine.
  • the advantage of the engine control unit according to the invention is that the program code and calculation parameters for performing the method according to the invention can be embedded directly in the routines and program sequences for controlling the operation of the internal combustion engine and that no separate control units are required either.
  • FIG. 2 shows a simplified block diagram in which the essential process steps are summarized in the individual blocks.
  • the values of the selected operating characteristic Emtlg_BChk_W1 ... X are determined on the basis of the pressure oscillation signal DS S, with the aid of discrete Fourier transformation DFT, which is represented by block B2.
  • a value of the specific operating characteristic BChk_W1, BChk_W2 to BChk_WX (also BChk_W1 .. .X) of the internal combustion engine 1 is determined.
  • the individually determined values of the operating characteristic, BChk_W1, BChk_W2 to BChk_WX are shown in Figure 2 represented by blocks B3.1, B3.2 to B3.X.
  • One or more operating parameters that are determined on the basis of the same pressure oscillation signal DS_S according to one of the methods from the prior art mentioned in the introduction can be used as a specific operating characteristic.
  • an intake valve lift phase position, an exhaust valve lift phase position or a piston lift phase position can be used as a specific operating characteristic, which can be determined, for example, using one of the methods disclosed in the prior art.
  • a fuel composition, a start time of the fuel injection, an injection quantity of the fuel injection, a compression ratio of the cylinders, a trim of the intake tract and a valve train deviation value, determined according to the methods disclosed in the intellectual property documents mentioned at the beginning, can also be used as certain Operating characteristic can be used.
  • deviation values Emtlg_Aw_W1 ... Y of the values of the operating characteristic BChk_W1 ... X determined for different signal frequencies SF1 ... X from one another are determined, which is symbolized by block B4.
  • This can be done, for example, by comparison, in particular by forming the difference between two determined values.
  • the values that are furthest apart from one another are first determined and the difference between these two values is formed. How a maximum deviation value is found.
  • the deviation limit value Aw_Gw was determined empirically or computationally, for example, in advance of the intended operation of the internal combustion engine 1 and in the, also in Figure 2
  • the illustrated electronic storage unit 54 of the engine control unit 50 (CPU) is stored.
  • the method according to the invention, which is stored there in the form of program code, can also be carried out on the same motor control unit 50.
  • a malfunction DSens_Ffkt of the pressure sensor (44) is diagnosed, as shown in block B7, if at least one of the determined deviation values Aw_W1 ... Y reaches or exceeds a predetermined deviation limit value Aw_Gw.
  • the internal combustion engine 1 can be switched to an emergency operating mode Nt-Btb by means of the engine control unit 50 and can continue to be operated as shown in block B8.1, or an emergency stop of the internal combustion engine 1, Nt_stop, can be initiated, as shown in block B8.2.
  • an error message (Info_Sig) is optionally output, as represented by block B8.3, which signals to a vehicle driver, for example, that the pressure sensor has been recognized as defective.
  • FIG. 11 shows a further detailed section from the simplified block diagram according to FIG Figure 1 for a further detailed illustration of an embodiment of the method according to the invention.
  • Block B1.1 shows that a crankshaft phase angle signal Kw_Pw is determined at the same time as the pressure oscillation signal DS-S. This takes place, for example, by means of a crankshaft position sensor 41 which is already provided on the internal combustion engine, as in FIG Figure 1 shown.
  • the block B2 in more detail in order to show by the blocks B2.1, B2.2 to B2.X that for the selected signal frequencies SF1, SF2 to SFX (also SF1 ... X) of the measured pressure oscillation signal DS_S the phase position Phl1, Phl2 to PhlX (also Phl1 ... X) and / or the amplitude Amp1, Amp2 to AmpX (also Amp1 ... X) of the selected signal frequencies SF1 ... X can be determined in relation to the crankshaft phase angle signal Kw_Pw_S.
  • the phase position Phll ... X or amplitude Amp1 ... X or phase position Phl1 ... X and amplitude Ampl ... X of each one value of a certain operating characteristic BChk_W1 ... X of the internal combustion engine 1 for the respective Signal frequency SF1 ... X is determined.
  • the invention relates to a method for checking the function of a pressure sensor in the air intake tract or exhaust gas exhaust tract of an internal combustion engine during operation and an engine control unit for carrying out the method and is based on dynamic pressure fluctuations of the intake air in the air intake tract or the exhaust gas in the exhaust gas outlet tract of the internal combustion engine in question can be measured during operation by means of the pressure sensor in question, and on the basis of the pressure oscillation signal obtained with the aid of discrete Fourier transformation for several selected signal frequencies, a value of a certain operating characteristic of the internal combustion engine as well as deviation values of the different ones Signal frequencies determined values are determined from each other.
  • the correct function of the pressure sensor is confirmed or a malfunction of the pressure sensor is diagnosed. This makes it possible to monitor proper functioning of the pressure sensor and, in the event of failure, to initiate appropriate measures to prevent malfunction of the internal combustion engine and, if necessary, an increase in pollutant emissions based on it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Analytical Chemistry (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren mit dem ein jeweiliger Drucksensor, der zur Druckmessung im Luft-Ansaugtrakt oder im Abgas-Auslasstrakt eines Verbrennungsmotors angeordnet ist auf seine fehlerfreie Funktion, insbesondere im Hinblick auf dessen dynamisches Verhalten, überprüft werden kann, um einen störungsfreien und insbesondere in Bezug auf den Schadstoffausstoß gesetzeskonformen Betrieb des jeweiligen Verbrennungsmotors über die gesamte Betriebsdauer hinweg sicher zu stellen. Weiterhin betrifft die vorliegende Erfindung eine Motor-Steuerungseinheit, die zur Durchführung des erfindungsgemäßen Verfahrens eingerichtet ist.
  • Hubkolben-Verbrennungsmotoren, die im Rahmen dieser Beschreibung verkürzt auch nur als Verbrennungsmotoren bezeichnet werden, weisen ein oder mehrere Zylinder auf in denen jeweils ein Hubkolben angeordnet ist. Zur Veranschaulichung des Prinzips eines Hubkolben-Verbrennungsmotors wird im Folgenden Bezug auf Figur 1 genommen, die beispielhaft einen Zylinder eines ggf. auch mehrzylindrigen Verbrennungsmotors mit den wichtigsten Funktionseinheiten darstellt.
    Der jeweilige Hubkolben 6 ist linear beweglich im jeweiligen Zylinder 2 angeordnet und schließt mit dem Zylinder 2 einen Brennraum 3 ein. Der jeweilige Hubkolben 6 ist über ein sogenanntes Pleuel 7 mit einem jeweiligen Hubzapfen 8 einer Kurbelwelle 9 verbunden, wobei der Hubzapfen 8 exzentrisch zur Kurbelwellendrehachse 9a angeordnet ist. Durch die Verbrennung eines Kraftstoff-Luft-Gemisches im Brennraum 3 wird der Hubkolben 6 linear "abwärts" angetrieben. Die translatorische Hubbewegung des Hubkolbens 6 wird mittels Pleuel 7 und Hubzapfen 8 auf die Kurbelwelle 9 übertragen und in eine Rotationsbewegung der Kurbelwelle 9 umgesetzt, die den Hubkolben 6 nach Überwindung eines unteren Totpunktes im Zylinder 2 wieder in Gegenrichtung "aufwärts" bis zu einem oberen Totpunkt bewegt. Um einen kontinuierlichen Betrieb des Verbrennungsmotors 1 zu ermöglichen muss während eines sogenannten Arbeitsspiels eines Zylinders 2 zunächst der Brennraum 3 mit dem Kraftstoff-Luft-Gemisch befüllt, das Kraftstoff-Luft-Gemisch im Brennraum 3 verdichtet, dann gezündet und zum Antrieb des Hubkolbens 6 expandierend verbrannt werden und schließlich das nach der Verbrennung verbleibende Abgas aus dem Brennraum 3 ausgeschoben werden. Durch kontinuierliche Wiederholung dieses Ablaufs ergibt sich ein kontinuierlicher Betrieb des Verbrennungsmotors 1 unter Abgabe einer zur Verbrennungsenergie proportionalen Arbeit.
  • Je nach Motorkonzept ist ein Arbeitsspiel des Zylinders 2 in zwei über eine Kurbelwellenumdrehung (360°) verteilte Takte (Zweitaktmotor) oder in vier über zwei Kurbelwellenumdrehungen (720°) verteilte Takte (Viertaktmotor) gegliedert.
  • Als Antrieb für Kraftfahrzeuge hat sich bis heute der Viertaktmotor durchgesetzt. In einem Ansaugtakt wird, bei Abwärtsbewegung des Hubkolbens 6, Kraftstoff-Luft-Gemisch oder auch nur Frischluft (bei Kraftstoff-Direkteinspritzung) aus dem Luft-Ansaugtrakt 20 in den Brennraum 3 eingebracht. Im folgenden Verdichtungstakt wird, bei Aufwärtsbewegung des Hubkolbens 6, das Kraftstoff-Luft-Gemisch oder die Frischluft im Brennraum 3 verdichtet sowie ggf. separat Kraftstoff mittels eines, zu einem Kraftstoff-Zuführsystem gehörenden, Einspritzventils 5 direkt in den Brennraum 3 eingespritzt. Im folgenden Arbeitstakt wird das Kraftstoff-Luft-Gemisch mittels einer Zündkerze 4 gezündet, expandierend verbrannt und bei Abwärtsbewegung des Hubkolbens 6 unter Abgabe von Arbeit entspannt. Schließlich wird in einem Ausschiebetakt, bei erneuter Aufwärtsbewegung des Hubkolbens 6, das verbleibende Abgas aus dem Brennraum 3 in den Abgastrakt 30 ausgeschoben.
  • Die Abgrenzung des Brennraumes 3 zum Luft-Ansaugtrakt 20 oder Abgastrakt 30 des Verbrennungsmotors erfolgt in der Regel und insbesondere bei dem hier zugrungegelegten Beispiel über Einlassventile 22 und Auslassventile 32. Die Ansteuerung dieser Ventile erfolgt nach heutigem Stand der Technik über mindestens eine Nockenwelle. Das gezeigte Beispiel verfügt über eine Einlassnockenwelle 23 zur Betätigung der Einlassventile 22 und über eine Auslassnockenwelle 33 zur Betätigung der Auslassventile 32. Zwischen den Ventilen und der jeweiligen Nockenwelle sind zumeist noch weitere, hier nicht dargestellte, mechanische Bauteile zur Kraftübertragung vorhanden, die auch einen Ventilspielausgleich beinhalten können (z.B. Tassenstößel, Kipphebel, Schlepphebel, Stößelstange, Hydrostößel etc.).
  • Der Antrieb der Einlassnockenwelle 23 und der Auslassnockenwelle 33 erfolgt über den Verbrennungsmotor 1 selbst. Hierzu werden die Einlassnockenwelle 23 und die Auslassnockenwelle 33 jeweils über geeignete Einlassnockenwellen-Steueradapter 24 und Auslassnockenwellen-Steueradapter 34, wie zum Beispiel Zahnräder, Kettenräder oder Riemenräder mithilfe eines Steuergetriebes 40, das zum Beispiel ein Zahnradgetriebe, eine Steuerkette oder einen Steuerzahnriemen aufweist, in vorgegebener Lage zueinander und zur Kurbelwelle 9 über einen entsprechenden Kurbelwellen-Steueradapter 10, der entsprechend als Zahnrad, Kettenrad oder Riemenrad ausgebildet ist, mit der Kurbelwelle 9 gekoppelt. Durch diese Verbindung ist die Drehlage der Einlassnockenwelle 23 und der Auslassnockenwelle 33 in Relation zur Drehlage der Kurbelwelle 9 prinzipiell definiert. In Figur 1 ist beispielhaft die Kopplung zwischen Einlassnockenwelle 23 und der Auslassnockenwelle 33 und der Kurbelwelle 9 mittels Riemenscheiben und Steuerzahnriemen dargestellt.
  • Der über ein Arbeitsspiel zurückgelegte Drehwinkel der Kurbelwelle wird im Weiteren als Arbeitsphase oder einfach nur Phase bezeichnet. Ein innerhalb einer Arbeitsphase zurückgelegter Drehwinkel der Kurbelwelle wird dem entsprechend als Phasenwinkel bezeichnet. Der jeweils aktuelle Kurbelwellen-Phasenwinkel der Kurbelwelle 9 kann mittels eines mit der Kurbelwelle 9 oder dem Kurbelwellen-Steueradapter 10 verbundenen Lagegebers 43 und einem zugeordneten Kurbelwellen-Lagesensor 41 laufend erfasst werden. Dabei kann der Lagegeber zum Beispiel als Zähnerad mit einer Mehrzahl von äquidistant über den Umfang verteilt angeordneten Zähnen ausgeführt sein, wobei die Anzahl der einzelnen Zähne die Auflösung des Kurbelwellen-Phasenwinkelsignals bestimmt.
  • Ebenso können ggf. zusätzlich die aktuellen Phasenwinkel der Einlassnockenwelle 23 und der Auslassnockenwelle 33 mittels entsprechender Lagegeber 43 und zugeordneter Nockenwellenlagesensoren 42 laufend erfasst werden.
  • Da sich der jeweilige Hubzapfen 8 und mit ihm der Hubkolben 6, die Einlassnockenwelle 23 und mit ihr das jeweilige Einlassventil 22 sowie die Auslassnockenwelle 33 und mit ihr das jeweilige Auslassventil 32 durch die vorgegebene mechanische Kopplung in vorgegebener Relation zueinander und in Abhängigkeit von der Kurbelwellendrehung bewegen, durchlaufen diese Funktionskomponenten synchron zur Kurbelwelle die jeweilige Arbeitsphase. Die jeweiligen Drehlagen der Einlassnockenwelle, der Auslassnockenwelle sowie der Kurbelwelle und die Hubpositionen von Hubkolben 6, Einlassventilen 22 und Auslassventilen 32 können so, unter Berücksichtigung der jeweiligen Übersetzungsverhältnisse, auf den durch den Kurbelwellen-Lagesensor 41 vorgegebenen Kurbelwellen-Phasenwinkel der Kurbelwelle 9 bezogen werden. Bei einem idealen Verbrennungsmotor ist somit jedem bestimmten Kurbelwellen-Phasenwinkel ein bestimmter Hubzapfenwinkel HZW (Figur 2), ein bestimmter Kolbenhub, ein bestimmter Einlassnockenwellenwinkel und somit ein bestimmter Einlassventilhub sowie ein bestimmter Auslassnockenwellenwinkel und somit ein bestimmter Auslassventilhub zuordenbar. Das heißt alle genannten Komponenten befinden sich bzw. bewegen sich in Phase mit der sich drehenden Kurbelwelle 9.
  • Bei modernen Verbrennungsmotoren 1 können innerhalb der mechanischen Koppelstrecke zwischen Kurbelwelle 9 und Einlassnockenwelle 23 sowie der Auslassnockenwelle 33 jedoch zusätzliche Stellglieder vorhanden sein, zum Beispiel integriert in den Einlassnockenwellenadapter 24 und den Auslassnockenwellenadapter 34, die einen gewünschten steuerbaren Phasenversatz zwischen der Kurbelwelle 9 und Einlassnockenwelle 23 sowie der Auslassnockenwelle 33 bewirken. Diese sind als sogenannte Phasensteller bei sogenannten variablen Ventiltrieben bekannt.
  • Symbolisch ist auch eine elektronische, programmierbare Motor-Steuerungseinheit 50 (CPU) zur Steuerung der Motorfunktionen dargestellt, das mit Signal-Eingängen 51 zur Entgegennahme der vielfältigen Sensorsignale und mit Signal- und Leistungs-Ausgängen 52 zur Ansteuerung entsprechender Stelleinheiten und Aktuatoren sowie mit einer elektronischen Recheneinheit 53 und einer zugeordneten elektronischen Speichereinheit 54 ausgestattet ist.
  • Für einen optimalen Betrieb des Verbrennungsmotors (bezüglich Emissionen, Verbrauch, Leistung, Laufruhe etc.) sollte die während des Ansaugtaktes in den Brennraum eingebrachte Frischgasladung bestmöglich bekannt sein, um die weiteren Parameter für die Verbrennung, wie zum Beispiel die zuzuführende, ggf. direkt eingespritzte Kraftstoffmenge darauf abstimmen zu können. Der sogenannte Ladungswechsel, also das Ansaugen von Frischgas und das Ausschieben des Abgases ist dabei in großem Maße abhängig von den Steuerzeiten der Einlassventile 22 und Auslassventile 32, also vom zeitlichen Verlauf der jeweiligen Ventilhübe in Bezug auf den zeitlichen Verlauf des Kolbenhubs sowie von Höhe und Verlauf der Drücke im Luft-Ansaugtrakt und im Abgas-Auslasstrakt. In anderen Worten ist der Ladungswechsel im Betrieb abhängig von den Phasenlagen der Ein- und Auslassventile in Relation zum Kurbelwellen-Phasenwinkel und somit zur Phasenlage des Hubkolbens im Zusammenwirken mit dem jeweiligen Druckverlauf im Luft-Ansaugtrakt und im Abgas-Auslasstrakt.
  • Stand der Technik zur Ermittlung der Frischgasladung und zur Abstimmung der Steuerparameter des Verbrennungsmotors darauf, ist die Vermessung eines sogenannten Referenz-Verbrennungsmotors in allen auftretenden Betriebszuständen, zum Beispiel in Abhängigkeit von der Drehzahl, der Last, ggf. der durch Phasensteller vorgebbaren Ventilsteuerzeiten, ggf. den Betriebsparametern von Abgasturbolader oder Kompressor, etc. und die Speicherung von diesen Messwerten oder Derivaten davon oder von das Verhalten wiedergebenden Modellansätzen auf dem Motorsteuergerät eines entsprechenden Serien-Verbrennungsmotors. Alle baugleichen, in Serie produzierten Verbrennungsmotoren der gleichen Baureihe werden dann mit diesem erzeugten Referenz-datensatz betrieben.
  • Eine, zum Beispiel durch Fertigungstoleranzen verursachte, Abweichung der tatsächlichen Relativpositionen zwischen Einlass- und Auslassventilen und dem Kurbelwellen-Phasenwinkel bzw. der Hubkolbenposition eines Serien-Verbrennungsmotors in Bezug auf die idealen Referenzpositionen des Referenz-Verbrennungsmotors, also eine Phasendifferenz des Einlassventilhubs, des Auslassventilhubs und gegebenenfalls des Kolbenhubs in Bezug auf den durch den Kurbelwellen-Lagesensor vorgegebenen Kurbelwellen-Phasenwinkel bzw. die Phasenlage der Kurbelwelle führt dazu, dass die tatsächlich angesaugte Frischgasladung von der als Referenz bestimmten Frischgasladung abweicht und somit die auf dem Referenz-Datensatz basierenden Steuerparameter nicht optimal sind. Auch eine Abweichung der laufenden Messwerte für den jeweiligen Druck im Luft-Ansaugtrakt und im Abgas-Auslasstrakt führt zu Fehlern bei der Ermittlung der tatsächlich angesaugten Frischgasladung. Weitere Fehlerquellen, die sich negativ auf das Betriebsverhalten des Verbrennungsmotors auswirken können sind zum Beispiel eine abweichende Kraftstoffzusammensetzung, abweichende Trimmung des Ansaugtraktes bzw. des Abgastraktes, abweichende Kraftstoff-Einspritzzeitpunkte, abweichende Kraftstoff-Einspritzmengen und ggf. abweichende Verdichtungsverhältnisse. Beim Betrieb des Verbrennungsmotors können sich durch diese Fehler erhebliche negative Auswirkungen bezüglich Emissionen, Verbrauch, Leistung, Laufruhe etc. ergeben.
  • Mögliche Ursachen für die beschriebenen Abweichungen können z.B. sein:
    • Fertigungs- und/oder Montagetoleranzen der beteiligten mechanischen Komponenten, sowie
    • Verschleißerscheinungen im Betrieb sowie
    • Verformungserscheinungen elastisch oder plastisch durch hohe mechanische Belastungszustände.
  • Die bisherige Lösung der beschriebenen Problematik, gemäß dem aktuellen Stand der Technik, liegt dabei prinzipiell in der wiederkehrenden oder kontinuierlichen Ermittlung und Quantifizierung der auftretenden Abweichungen zwischen Referenz-Verbrennungsmotor und Serien-Verbrennungsmotor im laufenden Betrieb, um entsprechende Maßnahmen zur Korrektur oder Kompensation mittels Anpassung von Steuerungsparametern durchführen zu können.
  • Zu weiteren Steigerung der Genauigkeit und ggf. zur Plausibilisierung und Überwachung der Ermittlung der oben genannten Abweichungen wurden in kürzerer Vergangenheit Verfahren entwickelt die unabhängig von entsprechenden Positions- und Lagesensoren arbeiten.
  • Bei den oben genannten Verfahren zur wiederkehrenden oder kontinuierlichen Ermittlung der genannten Abweichungen, werden dem jeweiligen Zylinder zuordenbare dynamische Druckschwingungen im Luft-Ansaugtrakt oder im Abgas-Auslasstrakt des betreffenden Verbrennungsmotors im laufenden Betrieb gemessen und daraus ein entsprechendes Druckschwingungssignal erzeugt. Gleichzeitig wird ein Kurbelwellen-Phasenwinkelsignal ermittelt.
    Unter dem Begriff "Luft-Ansaugtrakt" oder auch einfach "Ansaugtrakt", "Ansaugsystem" oder "Einlasstrakt" eines Verbrennungsmotors fasst der Fachmann dabei alle Komponenten, die der Luftzuführung zu den jeweiligen Brennräumen der Zylinder dienen und somit den sogenannten Luftpfad definieren zusammen. Dazu können zum Beispiel ein Luftfilter, ein Ansaugrohr, Ansaugkrümmer oder Verteilerrohr oder kurz Saugrohr, ein Drosselklappenventil, sowie ggf. ein Verdichter und die Ansaugöffnung im Zylinder bzw. der Einlasskanal des Zylinders gehören.
    Unter dem Begriff "Abgas-Auslasstrakt" oder auch einfach "Auslasstrakt", "Abgastrakt" oder "Abgas-System" dagegen werden alle Komponenten zusammengefasst, über die das Abgas abströmt und somit den sogenannten Abgaspfad bilden, wie zum Beispiel: Die Auslassöffnung bzw. der Auslasskanal des jeweiligen Zylinders, Abgas führende Rohre, Komponenten zur Abgasrückführung, Partikelfilter, Katalysatoren und Schalldämpfer.
  • Aus dem Druckschwingungssignal werden mit Hilfe Diskreter-Fourier-Transformation die Phasenlage und/oder die Amplitude zumindest einer ausgesuchten Signalfrequenz der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal ermittelt. Im Weiteren werden auf Basis der ermittelten Phasenlage und/oder Amplitude zumindest einer jeweiligen ausgesuchten Signalfrequenz, unter Heranziehung entsprechender Referenzwerte oder Referenz-Kennlinien, die aktuellen Werte der genannten Abweichungen ermittelt. Dazu wurden die Referenzwerte oder Referenz-Kennlinien zuvor an einem idealen Referenz-Verbrennungsmotor gleicher Bauart ermittelt und in entsprechenden Kennfeldern hinterlegt oder mittels einer jeweiligen algebraischen Modell-Funktion aktuell ermittelt.
  • Auf Grundlage der ermittelten Abweichungen werden dann ggf. Korrekturen oder Adaptionen der Steuerparameter des Verbrennungsmotors, in Abhängigkeit von den ermittelten Abweichungen, im Steuergerät vorgenommen.
  • So wird beispielsweise in Dokument DE 10 2015 209 665 A1 ein Verfahren zur Identifizierung von Ventilsteuerzeiten eines Verbrennungsmotors offenbart. Dabei werden, wie oben beschrieben, die Phasenwinkel ausgesuchter Signalfrequenzen der gemessenen Druckschwingungen ermittelt. Auf Basis der ermittelten Phasenwinkel werden dann unter Heranziehung von Referenz-Phasenwinkeln und zugehöriger Referenz-Ventilsteuerzeiten gleicher Signalfrequenzen der Druckschwingungen eines Referenz-Verbrennungsmotors und/oder einer daraus hergeleiteten Modell-Funktion, die Ventilsteuerzeiten des betreffenden Verbrennungsmotors ermittelt.
  • Ein weiteres Verfahren zur kombinierten Identifizierung einer Kolbenhub-Phasendifferenz, einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors ist aus Dokument DE 10 2015 222 408 B3 bekannt. Auch hier werden mittels Diskreter-Fourier-Transformation die Phasenlagen ausgesuchter Signalfrequenzen der gemessenen Druckschwingungen im Einlass- und/oder Auslasstrakt, in Bezug auf das Kurbelwellen-Phasenwinkelsignal ermittelt. Auf dieser Basis werden in Abhängigkeit von Einlassventilhub-Phasendifferenz und Auslassventilhub-Phasendifferenz stehende Linien gleicher Phasenlagen der ausgesuchten Signalfrequenzen ermittelt und ein gemeinsamer Schnittpunkt der ermittelten Linien durch signalfrequenzabhängige Phasenverschiebung bestimmt. Aus dem ermittelten gemeinsamen Schnittpunkt werden die Einlassventilhub-Phasendifferenz und die Auslassventilhub-Phasendifferenz bestimmt und die Kolbenhub-Phasendifferenz wird bestimmt aus dem Wert der erfolgten Phasenverschiebungen.
  • Die Dokumente DE 10 2015 226 138 B3 und DE 10 2015 226 461 A1 offenbaren jeweils ein Verfahren zur Ermittlung der Zusammensetzung des zum Betrieb eines Verbrennungsmotors verwendeten Kraftstoffes. Auch diese Verfahren basieren auf der Messung und Analyse der Druckschwingungen im Einlasstrakt des betreffenden Verbrennungsmotors mittels Diskreter-Fourier-Transformation. Hierbei wird beispielsweise zusätzlich zur ermittelten Ist-Phasenlage der ausgesuchten Signalfrequenz bei saugsynchroner Kraftstoffeinspritzung, in gleicher Weise, ohne Kraftstoffeinspritzung oder bei direkter Kraftstoffeinspritzung in den geschlossenen Brennraum, eine weitere Vergleichs-Phasenlage der ausgesuchten Signalfrequenz und die Ist-Phasenlagendifferenz zwischen beiden ermittelt. Dann wird unter Heranziehung von Referenz-Phasenlagendifferenzen der gleichen Signalfrequenz für unterschiedliche Kraftstoffzusammensetzungen, die Kraftstoffzusammensetzung des aktuell verwendeten Kraftstoffes ermittelt.
  • Ein Verfahren zur Ermittlung des Einspritzbeginn-Zeitpunktes und der Einspritzmenge des Kraftstoffes im Normalbetrieb eines Verbrennungsmotors, ebenfalls auf Basis von gemessenen Druckschwingungen im Einlasstrakt des Verbrennungsmotors, ist aus Dokument DE 10 2015 226 461 A1 bekannt.
  • DE 10 2009 027 400 A1 betrifft ein Verfahren zur Diagnose einer Drucksensoreinrichtung einer Brennkraftmaschine, bei welchem ein periodisches Ausgangssignal der Sensoreinrichtung mit einem unabhängig von dem Ausgangssignal vorgegebenen Sollwert verglichen wird.
  • Weitere Verfahren, die auf Basis der Messung der dynamischen Druckschwingungen in Ansaugtrakt oder Abgastrakt und deren Analyse mittels Diskreter-Fourier Transformation basieren, wie zum Beispiel:
    • die kombinierte Identifizierung von Phasendifferenzen des Einlassventilhubs und des Auslassventilhubs eines Verbrennungsmotors;
    • die Ermittlung des Verdichtungsverhältnisses eines Verbrennungsmotors;
    • die Überwachung von im Ventiltrieb eines Verbrennungsmotors auftretenden Abweichungen und
    • die Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb, sind in den deutschen Patentanmeldungen mit den Aktenzeichen DE 10 2016 219 584 A1 ; 10 2017 209 112 ;
  • DE 10 2016 222 533 A1 und 10 2017 209386 offenbart. Bei der Anwendung der oben genannten Verfahren können sich bei fehlerhaften Druckschwingungssignalen, zum Beispiel aufgrund eines Defektes oder einer mangelhaften Funktion des Drucksensors, in der Konsequenz daraus, erhebliche Verschlechterungen im Betriebsverhalten und insbesondere im Abgasverhalten des Verbrennungsmotors ergeben. Aus diesem Grund ist es wichtig und teilweise gar vom Gesetzgeber vorgeschrieben, die einwandfreie, fehlerlose Funktion solcher, das Abgasverhalten beeinflussenden Komponenten über die gesamte Betriebsdauer des jeweiligen Verbrennungsmotors sicherzustellen bzw. Fehlfunktionen im Betrieb zu erkennen.
  • Der vorliegenden Erfindung liegt deshalb die Aufgabe zugrunde, ein einfaches, kostengünstiges und zuverlässiges Verfahren zur Verfügung zu stellen, mittels dem eine Fehlfunktion eines im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors angeordneten Drucksensors, im Betrieb, insbesondere in Bezug auf dessen dynamisches Verhalten, zuverlässig und zeitnah festgestellt werden kann.
  • Diese Aufgabe wird erfindungsgemäß durch ein Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb gemäß dem Hauptanspruch gelöst.
  • Ausführungsbeispiele und Weiterbildungen des erfindungsgemäßen Gegenstandes sind Gegenstand der Unteransprüche.
  • Gemäß dem erfindungsgemäßen Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb werden die dynamischen Druckschwingungen der Ansaugluft im Luft-Ansaugtrakt oder des Abgases im Abgas-Auslasstrakt des betreffenden Verbrennungsmotors im Betrieb mittels des betreffenden Drucksensors gemessen und daraus ein entsprechendes Druckschwingungssignal erzeugt. Auf Basis dieses Druckschwingungssignals wird mit Hilfe Diskreter-Fourier-Transformation, für mehrere ausgesuchte Signalfrequenzen jeweils ein Wert eines bestimmten Betriebscharakteristikums des Verbrennungsmotors ermittelt. Durch Vergleich der ermittelten Werte mit einander werden dann Abweichungswerte der für unterschiedliche Signalfrequenzen ermittelten Werte des Betriebscharakteristikums voneinander ermittelt. Diese Abweichungswerte werden dann zur Beurteilung der Funktion des jeweiligen Drucksensors herangezogen, wobei die einwandfreie Funktion des Drucksensors bestätigt wird, wenn keiner der ermittelten Abweichungswerte einen vorgegebenen Abweichungs-Grenzwert überschreitet und wobei eine Fehlfunktion des Drucksensors diagnostiziert wird, wenn zumindest einmal mindestens einer der ermittelten Abweichungswerte einen vorgegebenen Abweichungs-Grenzwert überschreitet.
  • Die Vorteile des erfindungsgemäßen Verfahrens liegen darin, dass ohne zusätzliche Sensorik, rein auf Basis des Druckschwingungssignals des zu überprüfenden Drucksensors selbst, die Funktion dieses Drucksensors überprüft werden kann. Dazu kann zudem weitgehend auf die ohnehin im Betrieb wiederholend ausgeführten Messungen und Analysen des Druckschwingungssignals zurückgegriffen werden, was eine zeitnahe Erkennung einer Funktionsstörung des Drucksensors gewährleistet.
  • Zur Analyse des Druckschwingungssignals, wird dieses einer Diskreten Fourier-Transformation (DFT) unterzogen. Dazu kann ein als Fast Fourier-Transformation (FFT) bekannter Algorithmus zur effizienten Berechnung der DFT herangezogen werden. Mittels DFT wird nun das Druckschwingungssignal in einzelne Signalfrequenzen zerlegt, die im Weiteren separat vereinfacht bezüglich ihrer Amplitude und der Phasenlage analysiert werden können.
  • Im vorliegenden Fall hat sich gezeigt, dass sich Fehlfunktionen eines Drucksensors, insbesondere bei der Messung von hochdynamischen Druckschwingungen, auf die als Signalfrequenzen bezeichneten unterschiedlichen Frequenzanteile des Druckschwingungssignals, unterschiedlich auswirken. Ergeben sich also bei der Ermittlung eines bestimmten Betriebscharakteristikums auf Basis des Druckschwingungssignals stark unterschiedliche Werte für unterschiedliche Signalfrequenzen, so ist davon auszugehen, dass eine Fehlfunktion oder zumindest eine Beeinträchtigung der einwandfreien Funktion des Drucksensors vorliegt. Dies macht sich das erfindungsgemäße Verfahren zunutze, indem je ein aktueller Wert des Betriebscharakteristikums für mehrere, voneinander verschiedene Signalfrequenzen ermittelt wird und diese Werte miteinander verglichen werden. Dies kann beispielsweise durch einfache Differenzbildung zwischen jeweils zwei Werten erfolgen. Dabei kann jeweils nur der höchste Wert mit dem niedrigsten Wert oder jeder Wert mit jedem anderen Wert verglichen werden. Die so ermittelten Differenzwerte werden hier allgemein als Abweichungswerte bezeichnet. Für die zulässige maximale Größe des Abweichungswertes wird im Vorfeld, zum Beispiel bei der Spezifizierung oder einer Vermessung des jeweiligen Sensortyps, ein Abweichungs-Grenzwert festgelegt. Dieser Abweichungs-Grenzwert wird bei der Durchführung des Verfahrens zum Vergleich mit den ermittelten Abweichungswerten herangezogen, wobei die einwandfreie Funktion des Drucksensors bestätigt wird, wenn keiner der ermittelten Abweichungswerte den vorgegebenen Abweichungs-Grenzwert überschreitet und andererseits eine Fehlfunktion des Drucksensors diagnostiziert wird, wenn zumindest einmal, also zumindest bei einem Messdurchgang, mindestens einer der ermittelten Abweichungswerte oder zumindest der größte Abweichungswert den vorgegebenen Abweichungs-Grenzwert erreicht oder überschreitet.
  • Eine weiterführende Ausführung des erfindungsgemäßen Verfahrens macht sich die Erkenntnis zunutze, dass sich Fehlfunktionen eines Drucksensors sowohl auf die Phasenlage als auch auf die Amplitude der jeweiligen Signalfrequenzen unterschiedlich auswirken. Dem entsprechend ist diese Ausführung des Verfahrens dadurch gekennzeichnet, dass gleichzeitig zu dem Druckschwingungssignal ein Kurbelwellen-Phasenwinkelsignal ermittelt wird und die Phasenlage und/oder die Amplitude der ausgesuchten Signalfrequenzen der gemessenen Druckschwingungen in Bezug auf das Kurbelwellen-Phasenwinkelsignal ermittelt werden und dass auf Basis der jeweils ermittelten Phasenlage oder Amplitude oder Phasenlage und Amplitude der jeweiligen Signalfrequenz je ein Wert eines bestimmten Betriebscharakteristikums des Verbrennungsmotors ermittelt wird.
    Das zur Durchführung des erfindungsgemäßen Verfahrens erforderliche Kurbelwellen-Phasenwinkelsignal kann mit einem mit der Kurbelwelle verbundenen Zähnerad und einem Hall-Sensor ermittelt werden. Eine solche Sensoranordnung ist ebenfalls in modernen Verbrennungsmotoren zu anderen Zwecken bereits vorhanden. Das damit erzeugte Kurbelwellen-Phasenwinkelsignal kann in einfacher Weise von dem erfindungsgemäßen Verfahren mitbenutzt werden. Dies hat den Vorteil, dass kein zusätzlicher Sensor angeordnet werden muss und so keine Zusatzkosten zur Durchführung des erfindungsgemäßen Verfahrens verursacht werden.
  • Diese Ausführung bietet sich in vorteilhafter Weise insbesondere dann an, wenn auch die Ermittlung des entsprechenden Betriebscharakteristikums auf der Phasenlage oder Amplitude oder Phasenlage und Amplitude einer jeweiligen Signalfrequenz ermittelt wird.
  • In weiteren Ausführungen des Verfahrens ist das bestimmte Betriebscharakteristikum des Verbrennungsmotors eine oder mehrere der folgenden Betriebsparameter: eine Einlassventilhub-Phasenlage, eine Auslassventilhub-Phasenlage, eine Kolbenhub-Phasenlage, eine Kraftstoff-Zusammensetzung, ein Beginn-Zeitpunkt der Kraftstoffeinspritzung, eine Einspritzmenge der Kraftstoffeinspritzung, ein Verdichtungsverhältnis der Zylinder, eine Trimmung des Einlasstraktes und ein Ventiltrieb-Abweichungswert. Zur Ermittlung dieser genannten Betriebsparameter auf Basis des im Luft-Ansaugtrakt oder Abgas-Auslasstrakt ermittelten Druckschwingungssignals wird hier auf die Offenbarung der einleitend zum Stand der Technik genannten Dokumente verwiesen, in denen die einzelnen Verfahren im Detail erläutert werden.
  • Bei der Heranziehung mehrerer der genannten Betriebsparameter als Betriebscharakteristikum, kann beispielsweise nach der Ermittlung eines über den Abweichungs-Grenzwert hinausgehenden ersten Abweichungswertes eines bestimmten ersten Betriebscharakteristikums zunächst noch ein weiterer Abweichungswert auf Basis eines weiteren bestimmten Betriebscharakteristikums ermittelt werden, um den ersten Abweichungswert zu bestätigen.
  • Die Vorteile der Verwendung der genannten Betriebsparameter als Betriebscharakteristikum liegen darin, dass diese Betriebsparameter ohnehin laufend im Betrieb ermittelt werden und sich der Zusatzaufwand für die Überprüfung der Funktion des Drucksensors somit sehr niedrig gehalten werden kann.
  • In vorteilhafter Weise entsprechen zur Durchführung des erfindungsgemäßen Verfahrens die ausgesuchten Signalfrequenzen der Ansaugfrequenz als Grundfrequenz oder 1. Harmonische und den weiteren vielfachen, also der 2. bis n. der sogenannten "Harmonischen" der Ansaugfrequenz des Verbrennungsmotors. Dabei steht die Ansaugfrequenz wiederum in eindeutigem Zusammenhang mit der Drehzahl des Verbrennungsmotors.
  • Für diese ausgesuchten Signalfrequenzen kann dann beispielsweise, unter Heranziehung eines parallel erfassten Kurbelwellen-Phasenwinkelsignals, die in diesem Zusammenhang als Phasenwinkel bezeichnete Phasenlage und die Amplitude der ausgesuchten Signalfrequenzen in Bezug auf den Kurbelwellen-Phasenwinkel ermittelt werden.
  • Hierdurch ergeben sich besonders eindeutige und somit gut auszuwertende Ergebnisse bei der Ermittlung des jeweiligen bestimmten Betriebscharakteristikums, wodurch eine hohe Genauigkeit der Ergebnisse gewährleitet werden kann.
  • Vorteilhaft kann das Verfahren, wie auch die einzelnen Verfahren zur Ermittlung der genannten Betriebsparameter, auf einer elektronischen programmierbaren Motor-Steuerungseinheit (CPU) des betreffenden Verbrennungsmotors ausgeführt werden. Dies hat den Vorteil, dass kein separates Steuer- oder Rechengerät erforderlich ist und die Algorithmen des Verfahrens in die entsprechenden Abläufe der Motor-Steuerprogramme, und insbesondere in die Algorithmen zur Ermittlung der Betriebsparameter eingebunden werden können.
  • In weiterer Ausgestaltung der vorausgehend erläuterten Ausführung des erfindungsgemäßen Verfahrens auf einer Motor-Steuerungseinheit wird, sofern eine Fehlfunktion des Drucksensors diagnostiziert wird, mittels der Motor-Steuerungseinheit der Verbrennungsmotor in einer Notlauf-Betriebsart weiter betrieben oder ein Notstop des Verbrennungsmotors eingeleitet. Alternativ oder ergänzend dazu wird eine Fehlermeldung ausgegeben, die beispielsweise einem Fahrzeugführer signalisiert, dass der Drucksensor als defekt erkannt worden ist.
    So wird in vorteilhafter Weise sicher gestellt, das der jeweilige Verbrennungsmotor nicht mit auf einem fehlerhaften Druckschwingungssignal des entsprechenden Drucksensors basierenden fehlerhaften Stellgrößen betrieben wird, die eine Einhaltung der Emissionsgrenzen nicht gewährleisten können.
  • Die erfindungsgemäße Motor-Steuerungseinheit zur Steuerung eines Verbrennungsmotors, weist zumindest eine elektronische Recheneinheit, zumindest eine elektronische Speichereinheit, mehrere Signaleingänge und mehrere Signalausgänge auf. Optional kann die elektronische Recheneinheit auch mehrere separat oder in Kombination arbeitende Recheneinheiten und Speichereinheiten aufweisen. Dabei ist in zumindest einer der elektronischen Recheneinheiten und/oder in der elektronischen Speichereinheiten ein Programmcode und Berechnungsparameter hinterlegt, zur Durchführung des zuvor beschriebenen erfindungsgemäßen Verfahrens gemäß einer der beschriebenen Ausführungen, mittels der Motor-Steuerungseinheit, während des bestimmungsgemäßen Betriebs des Verbrennungsmotors.
  • Vorteil der erfindungsgemäßen Motor-Steuerungseinheit ist es, dass der Programmcode und Berechnungsparameter zur Durchführung des erfindungsgemäßen Verfahrens unmittelbar eingebettet werden können in die Routinen und Programmabläufe zur Steuerung der Betriebs des Verbrennungsmotors und dass gleichfalls keine separaten Steuerungseinheiten erforderlich werden.
  • Eine detaillierte Beschreibung des erfindungsgemäßen Verfahrens erfolgt im Weiteren unter Zuhilfenahme der Figuren.
    Es zeigen:
  • Figur 1:
    Eine vereinfachte Schemazeichnung zur Erläuterung des Aufbaus und der Funktion eines Hubkolben-Verbrennungsmotors.
    Figur 2:
    Ein vereinfachtes Blockdiagramm zur Veranschaulichung einer Ausführung des erfindungsgemäßen Verfahrens
    Figur 3:
    Ein weiter detaillierter Ausschnitt aus dem vereinfachten Blockdiagramm gemäß Figur 1 zur weiter detaillierten Darstellung einer Ausführung des erfindungsgemäßen Verfahrens.
  • Funktions- und Benennungsgleiche Teile sind in den Figuren durchgängig mit denselben Bezugszeichen gekennzeichnet.
  • Die in Figur 1 dargestellte Schemazeichnung zur Erläuterung des Aufbaus und der Funktion eines Hubkolben-Verbrennungsmotors wurde bereits einleitend beschrieben. Es ist jedoch anzumerken, dass die dargestellte Motor-Steuerungseinheit 50, zumindest eine elektronische Recheneinheit 53, zumindest eine elektronische Speichereinheit 54, mehrere Signaleingänge 51 und mehrere Signalausgänge 52, die auch durch Leistungsausgänge ergänzt werden können, aufweist. Weiterhin sind in der elektronischen Recheneinheit 53 und/oder in der elektronischen Speichereinheit 54 ein Programmcode und Berechnungsparameter hinterlegt, mittels der die Ausführung des erfindungsgemäßen Verfahrens, wie vorausgehend beschrieben, mittels der Motor-Steuerungseinheit 50, während des bestimmungsgemäßen Betriebs des Verbrennungsmotors erfolgt.
  • Figur 2 zeigt ein vereinfachtes Blockdiagramm, bei dem die wesentlichen Verfahrensschritten in den einzelnen Blöcken zusammengefasst dargestellt sind.
  • Zu Beginne werden dynamische Druckschwingungen der Ansaugluft im Luft-Ansaugtrakt 20 und/oder des Abgases im Abgas-Auslasstrakt 30 des betreffenden Verbrennungsmotors 1 mittels des betreffenden Drucksensors 44 im Betrieb gemessen und daraus ein entsprechendes Druckschwingungssignal DS_S erzeugt, was durch den mit B1 gekennzeichneten Block dargestellt ist.
  • In dem mit D2 gekennzeichneten Block findet dann auf Basis des Druckschwingungssignals DS S, mit Hilfe Diskreter-Fourier-Transformation DFT, die Ermittlung der Werte des ausgesuchten Betriebscharakteristikums Emtlg_BChk_W1...X statt, was durch Block B2 dargestellt ist. Dabei wird auf Basis des Druckschwingungssignals DS_S mit Hilfe Diskreter-Fourier--Transformation DFT, für mehrere ausgesuchte Signalfrequenzen SF1, SF2 bis SFX (auch SF1...X) jeweils ein Wert des bestimmten Betriebscharakteristikums BChk_W1, BChk_W2 bis BChk_WX (auch BChk_W1...X) des Verbrennungsmotors 1 ermittelt. Die einzelnen ermittelten Werte des Betriebscharakteristikums, BChk_W1, BChk_W2 bis BChk_WX, werden in Figur 2 durch die Blöcke B3.1, B3.2 bis B3.X dargestellt.
  • Als bestimmtes Betriebscharakteristikum kann einer oder mehrere Betriebsparameter herangezogen werden, die auf Basis des gleichen Druckschwingungssignals DS_S ermittelt werden, nach einem der einleitend genannten Verfahren aus dem Stand der Technik. So kann beispielsweise eine Einlassventilhub-Phasenlage, eine Auslassventilhub-Phasenlage oder eine Kolbenhub-Phasenlage als bestimmtes Betriebscharakteristikum genutzt werden, die beispielsweise mit einem der im Stand der Technik offenbarten Verfahren ermittelt werden können. Auch eine Kraftstoff-Zusammensetzung, ein Beginn-Zeitpunkt der Kraftstoffeinspritzung, eine Einspritzmenge der Kraftstoffeinspritzung, ein Verdichtungsverhältnis der Zylinder, eine Trimmung des Einlasstraktes und ein Ventiltrieb-Abweichungswert, ermittelt gemäß den Verfahren, die in den Eingangs genannten Schutzrechtsdokumenten offenbart sind, können als bestimmtes Betriebscharakteristikum genutzt werden.
  • Werden beispielsweise mehrere der oben genannten Betriebsparameter aus dem Druckschwingungssignal DS_S des zu überprüfenden Drucksensors 44 ermittelt, so bietet es sich an, das erfindungsgemäße Verfahren auf Basis dieser mehreren Betriebsparameter als jeweiliges Betriebscharakteristikum durchzuführen und die Ergebnisse zur Verifizierung bzw. Bestätigung des Einzel-Ergebnisses abzugleichen. So können ggf. Fehlbeurteilungen aufgrund von sogenannten Ausreißer-Messwerten vermieden werden.
  • Im weiteren Verlauf des erfindungsgemäßen Verfahrens erfolgt nunmehr die Ermittlung sogenannter Abweichungswerte Emtlg_Aw_W1...Y der für unterschiedliche Signalfrequenzen SF1...X ermittelten Werte des Betriebscharakteristikums BChk_W1...X voneinander, was durch Block B4 symbolisiert wird. Dies kann beispielsweise erfolgen durch Vergleich, insbesondere Differenzbildung jeweils zweier ermittelter Werte. Dabei können beispielsweise zunächst die am weitesten voneinander entfernten Werte ermittelt und die Differenz dieser beiden Werte gebildet werden. Wodurch ein maximaler Abweichungswert gefunden ist. Oder es werden alle ermittelten Werte des Betriebscharakteristikums BChk_W1...X mit jeweils allen anderen Werten des Betriebscharakteristikums verglichen, was mehrere Abweichungswerte Aw_W1, Aw_W2 bis Aw_WY (auch Aw_Wl...Y) ergibt, die in Figur 2 beispielhaft durch die mit B4.1, B4.2 bis B4.Y bezeichneten Blöcke dargestellt ist.
  • Im weiteren Verlauf des erfindungsgemäßen Verfahrens erfolgt nun ein jeweiliger Vergleich der ermittelten Abweichungswerte Aw_W1, Aw_W2 bis Aw_WX mit einem vorgegebenen Abweichungs-Grenzwert Aw_Gw dahingehend, ob zumindest einer der ermittelten Abweichungswerte Aw_W1, Aw_W2 bis Aw_WX den Abweichungs-Grenzwert Aw_Gw erreicht oder überschreitet Aw_W1...X ≥ Aw_Gw. Dies ist in Block B5 veranschaulicht.
  • Der Abweichungsgrenzwert Aw_Gw wurde dazu im Vorfeld des bestimmungsgemäßen Betriebs des Verbrennungsmotors 1 beispielsweise empirisch oder rechnerisch ermittelt und in der, auch in Figur 2 dargestellten elektronischen Speichereinheit 54 der Motor-Steuerungseinheit 50 (CPU) hinterlegt. Auf der gleichen Motor-Steuerungseinheit 50 kann ebenso das erfindungsgemäße Verfahren ausgeführt werden, das dort in Form von Programmcode hinterlegt ist.
  • Auf Grundlage des Ergebnisses des vorgenannten Vergleichs Aw_Wl...X ≥ Aw_Gw, erfolgt eine Bestätigung der einwandfreien Funktion des Drucksensors 44, DSens=ok, wie in Block B6 dargestellt, wenn keiner der ermittelten Abweichungswerte Aw_W1...Y einen vorgegebenen Abweichungs-Grenzwert Aw_Gw erreicht oder überschreitet.
  • Dagegen wird eine Fehlfunktion DSens_Ffkt des Drucksensors (44) diagnostiziert, wie in Block B7 dargestellt, wenn zumindest einmal mindestens einer der ermittelten Abweichungswerte Aw_W1...Y einen vorgegebenen Abweichungs-Grenzwert Aw_Gw erreicht oder überschreitet.
  • In Weiterführung des erfindungsgemäßen Verfahrens kann dann, sofern eine Fehlfunktion DSens_Ffkt des Drucksensors 44 diagnostiziert wurde, mittels des Motor-Steuergeräts 50 der Verbrennungsmotor 1 in eine Notlauf-Betriebsart Nt-Btb umgeschaltet und weiter so betrieben werden, wie in Block B8.1 dargestellt, oder es kann ein Notstop des Verbrennungsmotors 1, Nt_stop, eingeleitet werden, wie in Block B8.2 dargestellt. Ebenso wird wahlweise alternativ oder ergänzend dazu eine Fehlermeldung (Info_Sig) ausgegeben, wie durch Block B8.3 dargestellt, die beispielsweise einem Fahrzeugführer signalisiert, dass der Drucksensor als defekt erkannt wurde.
  • Figur 3 zeigt einen weiter detaillierter Ausschnitt aus dem vereinfachten Blockdiagramm gemäß Figur 1 zur weiter detaillierten Darstellung einer Ausführung des erfindungsgemäßen Verfahrens. Hierbei ist mittels des Blocks B1.1 dargestellt, dass gleichzeitig zu dem Druckschwingungssignal DS-S ein Kurbelwellen-Phasenwinkelsignal Kw_Pw ermittelt wird. Dies erfolgt beispielsweise mittels eines ohnehin am Verbrennungsmotor vorgesehenen Kurbelwellen-Lagesensors 41, wie in Figur 1 dargestellt.
  • Weiterhin ist in Figur 3 der Block B2 weiter detailliert, um durch die Blöcke B2.1, B2.2 bis B2.X darzustellen, dass für die ausgesuchten Signalfrequenzen SF1, SF2 bis SFX (auch SF1...X) des gemessenen Druckschwingungssignals DS_S jeweils die Phasenlage Phl1, Phl2 bis PhlX (auch Phl1...X) und/oder die Amplitude Amp1, Amp2 bis AmpX (auch Amp1...X) der ausgesuchten Signalfrequenzen SF1...X in Bezug auf das Kurbelwellen-Phasenwinkelsignal Kw_Pw_S ermittelt werden. Auf Basis der jeweils ermittelten Phasenlage Phll...X oder Amplitude Amp1...X oder Phasenlage Phl1...X und Amplitude Ampl...X der jeweils eine Wert eines bestimmten Betriebscharakteristikums BChk_W1...X des Verbrennungsmotors 1 für die jeweilige Signalfrequenz SF1...X ermittelt wird.
  • Nochmal in Kürze zusammengefasst, betrifft die Erfindung ein Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb sowie eine Motor-Steuerungseinheit zur Durchführung des Verfahrens und basiert darauf, dass dynamische Druckschwingungen der Ansaugluft im Luft-Ansaugtrakt oder des Abgases im Abgas-Auslasstrakt des betreffenden Verbrennungsmotors im Betrieb mittels des betreffenden Drucksensors gemessen werden, und auf Basis des erhaltenen Druckschwingungssignals mit Hilfe Diskreter-Fourier-Transformation für mehrere ausgesuchten Signalfrequenzen jeweils ein Wert eines bestimmten Betriebscharakteristikums des Verbrennungsmotors sowie Abweichungswerte der für die unterschiedlichen Signalfrequenzen ermittelten Werte voneinander ermittelt werden. In Abhängigkeit davon, ob ermittelte Abweichungswerte einen vorgegebenen Grenzwert unter- oder überschreiten, wird die einwandfreie Funktion des Drucksensors bestätigt oder eine Fehlfunktion des Drucksensors diagnostiziert.
    Hierdurch gelingt es, eine einwandfreie Funktion des Drucksensors zu überwachen und im Versagensfall entsprechende Maßnahmen einzuleiten, die eine Fehlfunktion des Verbrennungsmotors und einen ggf. darauf basierenden erhöhten Schadstoffausstoß verhindern.

Claims (7)

  1. Verfahren zur Überprüfung der Funktion eines Drucksensors (44) im Luft-Ansaugtrakt (20) oder Abgas-Auslasstrakt (30) eines Verbrennungsmotors (1) im Betrieb, wobei
    - dynamische Druckschwingungen der Ansaugluft im Luft-Ansaugtrakt (20) oder des Abgases im Abgas-Auslasstrakt (30) des betreffenden Verbrennungsmotors (1) im Betrieb mittels des betreffenden Drucksensors (44) gemessen werden und daraus ein entsprechendes Druckschwingungssignal (DS_S) erzeugt wird; und
    - wobei auf Basis des Druckschwingungssignals (DS_S) mit Hilfe Diskreter-Fourier-Transformation (DFT), für mehrere ausgesuchte Signalfrequenzen (SF1...X) jeweils ein Wert eines bestimmten Betriebscharakteristikums (BChk_W1...X) des Verbrennungsmotors (1) ermittelt wird und Abweichungswerte (Aw_W1...Y) der für unterschiedliche Signalfrequenzen (SF1...X) ermittelten Werte des Betriebscharakteristikums (BChk _W1...X) voneinander ermittelt werden;
    - wobei die einwandfreie Funktion des Drucksensors (44) bestätigt wird (DSens=ok), wenn keiner der ermittelten Abweichungswerte (Aw_W1...Y) einen vorgegebenen Abweichungs-Grenzwert (Aw_Gw) erreicht oder überschreitet und
    - wobei eine Fehlfunktion (DSens_Ffkt) des Drucksensors (44) diagnostiziert wird, wenn zumindest einmal mindestens einer der ermittelten Abweichungswerte (Aw_W1...Y) einen vorgegebenen Abweichungs-Grenzwert (Aw_Gw) erreicht oder überschreitet.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass gleichzeitig zu dem Druckschwingungssignal (DS-S) ein Kurbelwellen-Phasenwinkelsignal (Kw_Pw) ermittelt wird und die Phasenlage und/oder die Amplitude der ausgesuchten Signalfrequenzen (SF1...X) des gemessenen Druckschwingungssignals (DS_S) in Bezug auf das Kurbelwellen-Phasenwinkelsignal (Kw_Pw_S) ermittelt werden und dass
    auf Basis der jeweils ermittelten Phasenlage oder Amplitude oder Phasenlage und Amplitude der jeweils eine Wert eines bestimmten Betriebscharakteristikums (BChk_W1...X) des Verbrennungsmotors (1) ermittelt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das bestimmte Betriebscharakteristikum des Verbrennungsmotors einer oder mehrere der Betriebsparameter: eine Einlassventilhub-Phasenlage, eine Auslassventilhub-Phasenlage, eine Kolbenhub-Phasenlage, eine Kraftstoff-Zusammensetzung, ein Beginn-Zeitpunkt der Kraftstoffeinspritzung, eine Einspritzmenge der Kraftstoffeinspritzung, ein Verdichtungsverhältnis der Zylinder, eine Trimmung des Einlasstraktes und ein Ventiltrieb-Abweichungswert, ist/sind.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die ausgesuchten Signalfrequenzen (SF1...X) die Ansaugfrequenz und zumindest eine weitere Vielfache der Ansaugfrequenz des Verbrennungsmotors (1) sind.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Verfahren auf einer elektronischen programmierbaren Motor-Steuerungseinheit (50) des betreffenden Verbrennungsmotors (1) ausgeführt wird.
  6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass sofern eine Fehlfunktion (DSens_Ffkt) des Drucksensors (44) diagnostiziert wird, mittels der Motor-Steuerungseinheit (50) der Verbrennungsmotor (1) in einer Notlauf-Betriebsart (Nt-Btb) weiter betrieben wird oder ein Notstop des Verbrennungsmotors (1) (Nt_stop) eingeleitet wird, wobei alternaitiv oder ergänzend dazu jeweils eine Fehlermeldung (Info_Sig) ausgegeben wird.
  7. Motor-Steuerungseinheit (50) zur Steuerung eines Verbrennungsmotors (1), die zumindest eine elektronische Recheneinheit (53), zumindest eine elektronische Speichereinheit (54), mehrere Signaleingänge (51) und mehrere Signalausgänge (52) aufweist, wobei in der elektronische Recheneinheit (53) und/oder in der elektronischen Speichereinheit (54) ein Programmcode und Berechnungsparameter hinterlegt sind zur Ausführung des Verfahrens nach einem der Ansprüche 1 bis 4 oder 6 mittels der Motor-Steuerungseinheit (50), während des bestimmungsgemäßen Betriebs des Verbrennungsmotors.
EP18768813.0A 2017-09-08 2018-09-04 Verfahren zur überprüfung der funktion eines drucksensors im luft-ansaugtrakt oder abgas-auslasstrakt eines verbrennungsmotors im betrieb und motor-steuerungseinheit Active EP3679237B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017215849.2A DE102017215849B4 (de) 2017-09-08 2017-09-08 Verfahren zur Überprüfung der Funktion eines Drucksensors im Luft-Ansaugtrakt oder Abgas-Auslasstrakt eines Verbrennungsmotors im Betrieb und Motor-Steuerungseinheit
PCT/EP2018/073706 WO2019048416A1 (de) 2017-09-08 2018-09-04 Verfahren zur überprüfung der funktion eines drucksensors im luft-ansaugtrakt oder abgas-auslasstrakt eines verbrennungsmotors im betrieb und motor-steuerungseinheit

Publications (2)

Publication Number Publication Date
EP3679237A1 EP3679237A1 (de) 2020-07-15
EP3679237B1 true EP3679237B1 (de) 2021-05-19

Family

ID=63556293

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18768813.0A Active EP3679237B1 (de) 2017-09-08 2018-09-04 Verfahren zur überprüfung der funktion eines drucksensors im luft-ansaugtrakt oder abgas-auslasstrakt eines verbrennungsmotors im betrieb und motor-steuerungseinheit

Country Status (7)

Country Link
US (1) US11293368B2 (de)
EP (1) EP3679237B1 (de)
JP (1) JP2020532680A (de)
KR (1) KR102283112B1 (de)
CN (1) CN111133184B (de)
DE (1) DE102017215849B4 (de)
WO (1) WO2019048416A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017209112B4 (de) * 2017-05-31 2019-08-22 Continental Automotive Gmbh Verfahren zur Ermittlung des aktuellen Verdichtungsverhältnisses eines Verbrennungsmotors im Betrieb
DE102017209386B4 (de) * 2017-06-02 2024-05-08 Vitesco Technologies GmbH Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb
WO2020066548A1 (ja) * 2018-09-26 2020-04-02 日立オートモティブシステムズ株式会社 内燃機関制御装置
DE102020210878A1 (de) * 2020-08-28 2022-03-03 Volkswagen Aktiengesellschaft Verfahren zur Dynamikdiagnose eines Sensors im Frischluft- oder Abgastrakt von Brennkraftmaschinen

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63195370A (ja) * 1987-02-06 1988-08-12 Toyota Motor Corp 内燃機関の排気ガス再循環装置のダイアグノ−シス装置
JPS648337A (en) * 1987-06-29 1989-01-12 Daihatsu Motor Co Ltd Method for controlling fuel at time of pressure sensor breakdown
DE3835285A1 (de) 1988-10-15 1990-04-19 Bosch Gmbh Robert Verfahren und vorrichtung zur zuendaussetzerkennung
JPH11294234A (ja) * 1998-04-09 1999-10-26 Unisia Jecs Corp 内燃機関の補助空気制御装置
DE19927846C2 (de) 1999-06-18 2001-09-13 Mtu Friedrichshafen Gmbh Verfahren zur Überwachung einer Brennkraftmaschine
DE102004057963A1 (de) * 2004-12-01 2006-06-08 Robert Bosch Gmbh Verfahren und Vorrichtung zur Anregung von Druckschwankungen in einem Kraftstoffversorgungssystem einer Brennkraftmaschine
JP4345688B2 (ja) * 2005-02-24 2009-10-14 株式会社日立製作所 内燃機関の診断装置および制御装置
ITTO20050316A1 (it) * 2005-05-10 2006-11-11 Varian Spa Sensore di pressione
DE102005027565A1 (de) 2005-06-14 2006-12-21 Robert Bosch Gmbh Verfahren zur Fehlerdiagnose eines Umgebungsdrucksensors und eines Saugrohrdrucksensors
DE102007013252A1 (de) * 2007-03-20 2008-09-25 Robert Bosch Gmbh Verfahren und Vorrichtung zur Überwachung des Saugrohrdruckes einer Brennkraftmaschine
DE102009027400A1 (de) * 2009-07-01 2011-01-05 Robert Bosch Gmbh Verfahren zur Diagnose einer Sensoreinrichtung einer Brennkraftmaschine
US8516895B2 (en) * 2009-10-08 2013-08-27 GM Global Technology Operations LLC In-cylinder pressure sensor diagnostic systems and methods
JP2011221007A (ja) * 2010-03-25 2011-11-04 Seiko Epson Corp 圧力検出装置
US8631688B1 (en) * 2012-09-05 2014-01-21 GM Global Technology Operations LLC System and method for detecting a fault in a pressure sensor that measures pressure in a hydraulic valve actuation system
JP6130124B2 (ja) * 2012-10-30 2017-05-17 日立オートモティブシステムズ株式会社 多気筒エンジンの制御装置
DE102014205686A1 (de) * 2014-03-26 2015-10-01 Mtu Friedrichshafen Gmbh Verfahren zum Betreiben einer Brennkraftmaschine, Verfahren zum Ermitteln einer Lernstruktur für den Betrieb einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine und Brennkraftmaschine
DE102015209665B4 (de) 2014-06-25 2022-10-20 Vitesco Technologies GmbH Verfahren zur Identifizierung von Ventilsteuerzeiten eines Verbrennungsmotors
JP6156276B2 (ja) 2014-07-23 2017-07-05 トヨタ自動車株式会社 空燃比センサの異常検出方法
DE102015222408B3 (de) 2015-11-13 2017-03-16 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung einer Kolbenhub-Phasendifferenz, einer Einlassventilhub-Phasendifferenz und einer Auslassventilhub-Phasendifferenz eines Verbrennungsmotors
DE102015224736A1 (de) 2015-12-09 2017-06-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Prüfen der Funktionsfähigkeit einer Sensoreinrichtung
DE102015225922A1 (de) 2015-12-18 2017-06-22 Robert Bosch Gmbh Diagnose einer oder mehrerer Komponenten eines Kraftfahrzeugs
DE102015226138B3 (de) 2015-12-21 2016-12-29 Continental Automotive Gmbh Verfahren zur Ermittlung der Zusammensetzung des zum Betrieb eines Verbrennungsmotors verwendeten Kraftstoffes
DE102015226461B4 (de) 2015-12-22 2018-10-04 Continental Automotive Gmbh Verfahren zur Ermittlung des Einspritzbeginn-Zeitpunktes und der Einspritzmenge des Kraftstoffes im Normalbetrieb eines Verbrennungsmotors
DE102016219584B4 (de) 2016-10-10 2018-05-30 Continental Automotive Gmbh Verfahren zur kombinierten Identifizierung von Phasendifferenzen des Einlassventilhubs und des Auslassventilhubs eines Verbrennungsmotors mittels Linien gleicher Phasenlagen und Amplituden
DE102016222533B4 (de) 2016-11-16 2018-07-26 Continental Automotive Gmbh Verfahren zur Überwachung von im Ventiltrieb eines Verbrennungsmotors auftretenden Abweichungen und elektronisches Motorsteuergerät zur Ausführung des Verfahrens
DE102017209112B4 (de) 2017-05-31 2019-08-22 Continental Automotive Gmbh Verfahren zur Ermittlung des aktuellen Verdichtungsverhältnisses eines Verbrennungsmotors im Betrieb
DE102017209386B4 (de) 2017-06-02 2024-05-08 Vitesco Technologies GmbH Verfahren zur Ermittlung der aktuellen Trimmung des Einlasstraktes eines Verbrennungsmotors im Betrieb

Also Published As

Publication number Publication date
JP2020532680A (ja) 2020-11-12
BR112020004203A2 (pt) 2020-09-01
KR102283112B1 (ko) 2021-07-28
DE102017215849A1 (de) 2019-03-14
DE102017215849B4 (de) 2019-07-18
WO2019048416A1 (de) 2019-03-14
CN111133184B (zh) 2022-08-30
EP3679237A1 (de) 2020-07-15
US11293368B2 (en) 2022-04-05
US20200200113A1 (en) 2020-06-25
CN111133184A (zh) 2020-05-08
KR20200047674A (ko) 2020-05-07

Similar Documents

Publication Publication Date Title
EP3542042B1 (de) Verfahren zur überwachung von im ventiltrieb eines verbrennungsmotors auftretenden abweichungen und elektronisches motorsteuergerät zur ausführung des verfahrens
EP3679237B1 (de) Verfahren zur überprüfung der funktion eines drucksensors im luft-ansaugtrakt oder abgas-auslasstrakt eines verbrennungsmotors im betrieb und motor-steuerungseinheit
EP3374617B1 (de) Verfahren zur kombinierten identifizierung einer kolbenhub-phasendifferenz, einer einlassventilhub-phasendifferenz und einer auslassventilhub-phasendifferenz eines verbrennungsmotors
EP3523529B1 (de) Verfahren zur kombinierten identifizierung von phasendifferenzen des einlassventilhubs und des auslassventilhubs eines verbrennungsmotors mittels linien gleicher phasenlagen und amplituden
EP2593650B1 (de) Verfahren zum steuern einer brennkraftmaschine
DE102007045817B4 (de) Verfahren und Vorrichtung zum Steuern des Motorbetriebs während der Regeneration eines Abgasnachbehandlungssystems
EP3394414B1 (de) Verfahren zur ermittlung des einspritzbeginn-zeitpunktes und der einspritzmenge des kraftstoffes im normalbetrieb eines verbrennungsmotors
DE112014001479T5 (de) Fehlzündungs-Detektionssystem
DE102010027215B4 (de) Verfahren und Steuergerät zum Steuern einer Brennkraftmaschine
DE102010027214A1 (de) Verfahren und Steuergerät zum Steuern einer Brennkraftmaschine
EP3394413B1 (de) Verfahren zur ermittlung der zusammensetzung des zum betrieb eines verbrennungsmotors verwendeten kraftstoffes
WO2017021183A1 (de) Verfahren zur erkennung fehlerhafter komponenten eines kraftstoffeinspritzsystems
DE102006007698A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Computerprogramm-Produkt, Computerprogramm und Steuer- und/oder Regeleinrichtung für eine Brennkraftmaschine
EP1664492A1 (de) Verfahren und vorrichtung zum ermitteln einer phasenlage zwischen einer kurbelwelle und einer nockenwelle einer brennkraftmaschine
EP3507475A1 (de) Verfahren, steuervorrichtung und system zum erkennen einer abweichung eines tatsächlichen betätigungszeitpunkts eines gaswechselventils einer verbrennungskraftmaschine von einem vorgegebenen betätigungszeitpunkt
WO2018219754A1 (de) Verfahren zur ermittlung des aktuellen verdichtungsverhältnisses eines verbrennungsmotors im betrieb
DE102007007815A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10307307A1 (de) Verfahren zum Steuern einer Brennkraftmaschine
EP2236798B1 (de) Verfahren und Vorrichtung zur Diagnose eines variablen Ventiltriebs einer Brennkraftmaschine
DE102020201953A1 (de) Verfahren zur Adaption einer erfassten Nockenwellenstellung, Motorsteuergerät zur Durchführung des Verfahrens, Verbrennungsmotor und Fahrzeug
DE102015216258A1 (de) Verfahren und Vorrichtung zum Durchführen einer Diagnose eines VCR-Stellers in einem Verbrennungsmotor
DE102017201866A1 (de) Verfahren und Anordnung zur Kontrolle eines Mechanismus zum Einstellen einer Ventilerhebungskurve
DE102013202141A1 (de) Verfahren zum Betreiben einer Verbrennungskraftmaschine mit mehreren Zylindern
DE102010001657A1 (de) Verfahren und Vorrichtung zur Diagnose einer Stelleinrichtung zur Deaktivierung eines Auslassventils in einem Verbrennungsmotor
DE102008040023A1 (de) Verfahren und Vorrichtung zur Diagnose einer Brennkraftmaschine, Computerprogramm und Computerprogrammprodukt

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200408

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210129

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005359

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1394192

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210920

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VITESCO TECHNOLOGIES GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005359

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502018005359

Country of ref document: DE

26N No opposition filed

Effective date: 20220222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210904

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210904

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230920

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230928

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519