EP3667086A1 - Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage - Google Patents

Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage Download PDF

Info

Publication number
EP3667086A1
EP3667086A1 EP18212076.6A EP18212076A EP3667086A1 EP 3667086 A1 EP3667086 A1 EP 3667086A1 EP 18212076 A EP18212076 A EP 18212076A EP 3667086 A1 EP3667086 A1 EP 3667086A1
Authority
EP
European Patent Office
Prior art keywords
scroll
channel
pressure chamber
compressor
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP18212076.6A
Other languages
English (en)
French (fr)
Other versions
EP3667086B1 (de
Inventor
Dennis RYMA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brose Fahrzeugteile SE and Co KG
Original Assignee
Brose Fahrzeugteile SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brose Fahrzeugteile SE and Co KG filed Critical Brose Fahrzeugteile SE and Co KG
Priority to EP19191561.0A priority Critical patent/EP3670915B1/de
Priority to EP18212076.6A priority patent/EP3667086B1/de
Priority to PCT/EP2019/084837 priority patent/WO2020120659A1/de
Priority to CN201980080121.2A priority patent/CN113167273B/zh
Publication of EP3667086A1 publication Critical patent/EP3667086A1/de
Application granted granted Critical
Publication of EP3667086B1 publication Critical patent/EP3667086B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0292Ports or channels located in the wrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump

Definitions

  • the invention is in the field of positive displacement machines according to the spiral principle and relates to a scroll compressor, in particular an electric motor, as a refrigerant compressor for a vehicle air conditioning system, according to the preamble of claim 1.
  • a scroll compressor in particular an electric motor
  • Such a positive displacement machine and in particular such a scroll compressor is known from DE 10 2017 110 913 B3 known.
  • Air conditioning systems are regularly installed in motor vehicles, which air condition the vehicle interior with the aid of a system which forms a refrigerant circuit.
  • Such systems basically have a circuit in which a refrigerant is carried.
  • the refrigerant for example carbon dioxide (CO 2 ) or R-134a (1,1,1,2-tetrafluoroethane) or R-744 (carbon dioxide), is heated on an evaporator and compressed by means of a (refrigerant) compressor or compressor, whereby the refrigerant then releases the absorbed heat again via a heat exchanger before it is again led to the evaporator via a throttle.
  • Scroll technology is often used as a refrigerant compressor to compress a refrigerant-oil mixture.
  • the resulting gas-oil mixture is separated, the separated gas being introduced into the air conditioning circuit, while the separated oil can optionally be introduced to the scroll compressor as a suitably electromotive-driven refrigerant compressor for the lubrication of moving parts.
  • the essential components of the scroll compressor are a fixed scroll and a movable orbiting scroll.
  • the two scrolls are basically constructed in the same way and each have a base plate and a spiral-shaped wall (wrap) extending from the base plate in the axial direction.
  • the spiral walls of the two scrolls lie one inside the other and form a plurality of compression chambers between the scroll walls touching in sections.
  • the sucked-in gas-oil mixture passes through an inlet to a first, radially outer compressor chamber and from there via further compressor chambers to the radially innermost compressor chamber and from there via a central outlet, for example in the form of a bore, and if appropriate two adjacent auxiliary valves in the form of bores in the base plate of the fixed scroll in an outlet or high pressure chamber.
  • the chamber volume in the compressor chambers becomes smaller from the radially outside to the radially inside, and the pressure of the increasingly compressing medium increases.
  • the pressure in the compression chambers increases from radially outside to radially inside.
  • the central gas-oil outlet (and, if applicable, each of the secondary valves or bores) is through on the back of the base plate of the fixed scroll Spring valve closed.
  • the spring valve opens due to the pressure difference between the compression chambers and the high pressure chamber. If necessary, the compressed gas-oil mixture flows into the high-pressure chamber of the scroll compressor (on the back of the fixed scroll) after the spring valve has been triggered, in order to be separated there into oil and gas. Then, when the pressure in the compression chambers opposite the high pressure chamber has dropped accordingly, the spring valve closes automatically.
  • the two scrolls are pressed apart due to the pressure generated in the compressor chambers and the axial force caused thereby, so that a gap and thus leaks can occur between the compressor chambers.
  • the orbiting scroll is pressed against the fixed scroll, possibly in addition to an oil film between the friction surfaces of the two scrolls.
  • the corresponding axial force (counterforce) is generated by providing a pressure chamber (back pressure chamber) on the back of the base of the orbiting scroll in which a specific pressure is generated.
  • a medium pressure channel (passage, opening, backpressure port) is introduced at a certain position in the base plate of the orbiting scroll, which connects at least one of the compression chambers formed by the scrolls to the back pressure chamber (back pressure chamber), so that refrigerant gas from the compression process between the scroll spirals goes directly into the counter or medium pressure chamber.
  • the medium pressure channel in the movable scroll in connection with the back pressure chamber the movable scroll is self-adjusting (automatically) pressed against the fixed scroll, so that there is sufficient tightness (axial tightness).
  • the medium pressure channel can be arranged in the fixed scroll and guided around the movable scroll to the counter or medium pressure chamber.
  • the pressure in the back pressure chamber rises to, for example, about 6 bar to about 9 bar at a pressure ratio of, for example, 3 bar (low pressure) to 25 bar (high pressure) .
  • the medium pressure channel is positioned at about 405 °, starting from the beginning of the scroll spiral (spiral wall) of the movable (orbiting) scroll.
  • a scroll compressor with a housing in which a fixed scroll with a base plate and a spiral formed thereon and a movable scroll rotating around a circumferential axis with a base plate and a spiral formed thereon are arranged.
  • a discharge chamber (high pressure chamber) is formed between the base plate of the fixed scroll and a housing section.
  • a bearing partition in the housing with a shaft bearing delimits a suction or inlet chamber and forms a back pressure chamber (backpressure chamber) with the base plate of the movable scroll, which communicates with the compressor chamber between the scrolls via a delivery channel in the movable scroll.
  • the dispensing chamber and the back pressure chamber are connected via a secondary delivery channel which extends essentially axially through an outer wall of the fixed scroll.
  • the secondary delivery channel in the delivery chamber supplies oil or coolant gas separated by means of an oil separator to the back pressure chamber in order to restore the pressure in the back pressure chamber after a pressure drop in a short time.
  • the invention is based on the object of a particularly suitable scroll compressor, in particular driven or driven by an electric motor To specify refrigerant compressors for a vehicle air conditioning system.
  • a suitable pressure channel system is intended to achieve the most flexible and effective possible adaptation of the pressure in the back pressure chamber (backpressure chamber) to operating points of the scroll compressor for a vehicle air conditioning system, preferably in the cooling and heat pump mode. Leakages should also be reduced as much as possible and friction losses between the fixed scroll and the orbiting scroll should be avoided or at least kept to a minimum.
  • the scroll compressor In a housing with a high-pressure chamber and with compression chambers and with a counter-pressure chamber, the scroll compressor has a fixed scroll and a movable, i.e. H. in the driven state - i.e. in operation (compressor operation) - orbiting (oscillating) scroll.
  • the scrolls or scroll parts each have a base plate and a spiral wall, the compression chambers being formed between the interlocking spiral walls of the two scrolls (scroll parts).
  • the base plate of the fixed scroll defines the high pressure chamber and the base plate of the movable scroll defines the counter pressure chamber.
  • the back pressure chamber is connected to at least one of the compressor chambers via a pressure line running at least partially in the fixed scroll.
  • the pressure line is connected to at least one of the compressor chambers via a first channel and also to the high pressure chamber via a second channel.
  • a static pressure also acting in the back pressure chamber is created in the pressure line, via which the back pressure chamber communicates in terms of flow with the high pressure chamber and with the at least one compression chamber.
  • the scroll compressor is provided and set up in particular for refrigerants in a vehicle air conditioning system.
  • at least one of the channels is arranged in the base plate of the fixed scroll.
  • the first channel connected to the compression chamber and the second channel connected to the high-pressure chamber are preferably arranged in the base plate of the fixed scroll.
  • the second channel is arranged in a filter (filter insert), which is inserted in the high-pressure chamber in a bore opening which is introduced into the base plate on its high-pressure chamber plate side and there from a positioning and holding collar for the filter Insert is surrounded.
  • filter insert filter insert
  • the pressure line expediently has at least a first line section which is arranged in the base plate of the fixed scroll and a second line section which is connected to the first line section and which is arranged in a boundary wall of the fixed scroll.
  • the boundary wall can be part of the fixed scroll or the housing.
  • the first line section can be made radially into the base plate and the second line section axially or obliquely into the boundary wall of the fixed scroll in the form of a hole, the holes opening into the base plate to form the pressure line . merge.
  • first line sections are provided starting from the bore opening in the base plate of the fixed scroll.
  • One of these first line sections runs to the second line section in the boundary wall and opens into it.
  • the other of these first line sections runs to the first channel, i. H. within the base plate of the fixed scroll in the direction of the (selected) position of the first channel.
  • the back pressure chamber is delimited by a partition from a low pressure chamber.
  • this intermediate wall which suitably serves as a bearing plate for a shaft driving the movable scroll, there is a counter-pressure chamber leading (third) line section of the pressure line arranged.
  • This line section can in turn be designed in a simple manner as a radial bore in the intermediate wall.
  • this line section of the pressure line is designed as a groove in the intermediate wall in connection with a plate covering it (wear plate).
  • the cross-sectional area of the pressure line is at least a factor of two (2) larger than the cross-sectional area of the first duct connected to the compression chamber and the second duct connected to the high pressure chamber.
  • the cross-sectional area of the first channel connected to the compressor chamber is advantageously again larger than the cross-sectional area of the second channel connected to the high-pressure chamber.
  • the ratio between the cross-sectional area of the first duct connected to the compression chamber and the cross-sectional area of the second duct connected to the high pressure chamber is between 3 (three) and 5 (five), preferably 4 (four).
  • the cross-sectional areas of the two channels should expediently be as small as possible.
  • the cross-sectional area of the first duct connected to the compressor chamber is expediently between 0.03 mm 2 and 1.5 mm 2 , preferably 0.2 mm 2 .
  • the cross-sectional area of the second channel connected to the high-pressure chamber is expediently between 0.008 mm 2 and 0.2 mm 2 , preferably 0.05 mm 2 .
  • the diameter of the first channel should be between 0.2 mm and 1 mm, preferably 0.5 mm, and that of the second channel between 0.1 mm and 0.5 mm, preferably 0.25 mm.
  • the first and / or the second channel are designed as a bore which opens into the pressure line. Due to the small wall thickness (wall thickness) of the base plate of the fixed scroll in the region of the two channels, the respective bore or channel thus acts as an orifice or throttle.
  • This fluidic control and an effective adaptive adaptation of the pressure in the back pressure chamber to different operating points of the scroll compressor (in cooling or heat pump mode) is supported or can be further improved by the fact that the first channel connected to the compressor chamber - starting from a relative one Chamber volume of approximately 100% in the radially outermost compressor chamber and a rotation or shaft angle of 0 ° - at a rotation or shaft angle of (63.5 ⁇ 5.5) ° is fully open and up to a rotation or shaft angle of ( 343.5 ⁇ 5.5) ° remains open. This corresponds to a relative change in volume of the compressor chamber volume from (91.15 ⁇ 0.75) ° to (23.0 ⁇ 0.3) °.
  • the radial distances between the two channels to a central outlet arranged in the fixed base plate and leading into the high-pressure chamber are suitably of different sizes, so that the operating channels are deliberately not arranged directly (axially) opposite one another.
  • the radial distance of the second channel leading into the high-pressure chamber can be greater or smaller than the radial distance of the first channel connected to the compression chamber from the central outlet.
  • the advantages achieved by the invention are, in particular, that through the two flow-regulating channels in connection with the pressure line in the fixed scroll, an effective and self-adjusting adjustment of the pressure in the counter-pressure chamber to the respective operating point of the scroll compressor without additional flow-regulating components for flow restriction, such as valves, nozzles, throttles or other channels, bores or orifices.
  • the adaptive control of the pressure in the back pressure chamber is also reliably self-adjusting by means of the two channels and the pressure line in the fixed scroll at a pressure ratio between suction pressure (low pressure) and high pressure of 5 (at a suction pressure of 3 bar and a high pressure of 15 bar), as with a pressure ratio of about 8 (at a suction pressure of 3 bar and a high pressure of 25 bar) or 10 (at a suction pressure of 1.5 bar and a high pressure of 15 bar) for the refrigerant R-134A (operating point when operating as a heat pump).
  • this two-channel pressure line system in the fixed scroll enables high process stability for series production.
  • the two channels in the fixed scroll are subject to virtually the same conditions in the course of a scroll coating, for example a color coating, so that tolerances that can lead to fluctuations in the counterpressure or backpressure level cancel each other out (shorten them).
  • the scroll compressor can be operated with high efficiency due to the adaptive adjustment of the pressure in the back pressure chamber at operating points in the cooling and in the heat pump mode, because in particular leakages can be reduced and friction losses between the scroll parts can be kept to a minimum. Because of the adaptive adaptation, the axial force that is effective as a result of the self-adjusting pressure in the counterpressure chamber is not, or always only by a small amount, greater than the sum of the axial forces in the compressor chambers, which typically have different pressures during compressor operation.
  • the particularly effective fluidic control and adaptive adaptation of the pressure in the back pressure chamber to different operating points of the scroll compressor is advantageously determined or influenced by the specified cross-sectional relationships of the pressure line and the two channels and their positioning in relation to the compressor chamber (s).
  • the positioning is suitably chosen such that in particular the first channel opens at a relative volume of the compression chamber (compression chamber volume) of approx. 90% and remains open in the course of a relative pressure change up to a relative volume of the compression chamber of approx. 23% the respective channel is covered or overlapped by its spiral wall during the orbiting movement of the orbiting scroll and is connected (overlapping) to a compression chamber located radially further out.
  • the first channel connecting the compressor chamber to the pressure line should be positioned in the fixed scroll at an angle (spiral angle ⁇ ) of 350 ° to 390 °, in particular 370 °, this angle ⁇ starting from both the beginning and the end the spiral wall (scroll spiral) of the fixed scroll can be measured (applied).
  • the two axially spaced channels can be arranged at different radial and / or azimuthal positions.
  • the in Fig. 1 The refrigerant compressor 1 shown is installed in a refrigerant circuit (not shown in more detail) of an air conditioning system of a motor vehicle.
  • the electromotive refrigerant compressor 1 has an electrical (electromotive) drive module 2 and a compressor module coupled to it in the form of a scroll compressor 3.
  • the scroll compressor 3 is connected to the drive module 2 in terms of drive technology via a mechanical interface 4 formed between the drive module 2 and the scroll compressor 3.
  • the mechanical interface 4 serves as a drive-side end shield and forms an intermediate wall 5 ( Figures 2 and 3rd ).
  • the scroll compressor 3 is connected (joined, screwed) to the drive module 2 by means of flange connections 6 distributed around the circumference and extending in the axial direction A of the refrigerant compressor 1.
  • a partial housing area of a drive housing 7 of the refrigerant compressor 1 is designed as a motor housing 7a for receiving an electric motor 13 ( Fig. 2 ) and on the one hand by an integrated partition wall 7b ( Fig. 2 ) to an electronics housing 7d provided with a housing cover 7c with motor electronics (electronics) 8 controlling the electric motor 13 and on the other hand closed by the mechanical interface 4 with the end shield and the intermediate wall 5.
  • the drive housing 7 has a connection section 9 with motor connections 9a and 9b leading to the electronics 8 for electrical contacting of the electronics 8 to an electrical system of the motor vehicle.
  • the drive housing 7 has a refrigerant inlet or refrigerant inlet 10 for connection to the refrigerant circuit and a refrigerant outlet 11.
  • the outlet 11 is formed on the bottom of a compressor housing 12 of the scroll compressor 3. In the connected state, the inlet 10 forms the low-pressure or suction side (suction gas side) and the outlet 11 forms the high-pressure or pump side (pump side) of the refrigerant compressor 1.
  • Fig. 2 schematically shows the electromotive refrigerant compressor 1 in a sectional view along an axis of rotation 14 of the electric motor 13, which here is a brushless DC motor (BLDC) and has a cylindrical rotor 15. This is circumferentially surrounded by a hollow cylindrical stator 16.
  • the rotor 15 comprises a number of permanent magnets and is rotatably supported about the axis of rotation 14 by means of a shaft 17.
  • the stator 16 has a number of electrical coils which are energized by means of the electronics 8, which in turn are connected, for example, to a bus system and the vehicle electrical system.
  • the electronics 8 is arranged in the electronics housing 7d of the drive housing 7, which is separated from the stator 16 and the rotor 15 by means of the intermediate wall 5.
  • the housing cover 7c which is detachably fastened to the electronics housing 7d by means of screws, closes an access opening of the electronics housing 7b.
  • the motor electronics 8 have printed circuit boards 18, 19 which are arranged one above the other in the axial direction A.
  • a bridge circuit of the printed circuit board 18, which is closest to the intermediate wall 7b, is in contact with the electrical coils of the stator 16 via current supply lines 19, which are passed through the intermediate wall 7b.
  • the bridge circuit is fed by means of the vehicle electrical system and controlled by means of a control circuit of the other printed circuit board 19, which is connected to the bus system in terms of signal technology.
  • the scroll compressor 3 has a movable scroll (scroll part) 21 arranged in the compressor housing 12. This is coupled to the shaft 17 of the electric motor 13 via an eccentric shaft journal 17a with, for example, two joining pins, of which only one joint journal 17b is visible, which shaft is guided into the mechanical interface 4 with an A-side bearing plate.
  • the eccentric shaft journal 17a is mounted in a roller or ball bearing 22a held in the movable scroll 21.
  • Another roller or ball bearing 22b supporting the shaft 17 is arranged in the mechanical interface 4 serving as the A-side bearing plate and there in the intermediate wall 5.
  • the movable scroll (scroll part) 21 is driven orbiting during operation of the scroll compressor 3.
  • the scroll compressor 3 also has a fixed scroll (scroll part) 23 fixed rigidly in the compressor housing 12.
  • the two scrolls (scroll parts) 21, 23 engage with one another with their helical or spiral scroll walls (scroll spirals) 21a, 23a, which project axially from a respective base plate 21b, 23b.
  • Compressor chambers 24 are formed between their scroll walls or scroll spirals 21a, 23a and the base plates 21b, 23b, the volume of which is changed when the electric motor 13 is in operation.
  • a counterpressure chamber (backpressure chamber) 25 is located in the intermediate wall 5 between the A-side bearing plate and the movable scroll 21. This is in the compressor housing 12 - hereinafter simply referred to as the housing - from the base plate 21b of the movable scroll 21 and / or an intermediate plate (wear plate) 5a ( Fig. 3 ) limited in the form of a steel plate, which has good sliding properties for the orbiting scroll 21.
  • the back pressure chamber 25 extends in some areas into the base plate 21b of the movable scroll 21.
  • the refrigerant is introduced through the inlet 10 into the drive housing 7 and there into the motor housing 7a.
  • This region of the drive housing 7 forms the suction or low-pressure side 26.
  • the intermediate wall 7b prevents the refrigerant from penetrating into the electronics housing 7d.
  • the refrigerant is mixed with oil present in the refrigerant circuit and along the rotor 15 and the stator 16 through an opening (or several openings, Fig. 3 ) 27 in the intermediate wall 5 to the scroll compressor 3.
  • the mixture of refrigerant and oil is compressed by means of the scroll compressor 3, the oil being used to lubricate the two scrolls 21, 23, so that friction is reduced and consequently efficiency is increased.
  • the oil also serves as a seal in order to avoid an uncontrolled escape of the refrigerant located between the two scrolls (scroll parts) 21, 23.
  • the compressed mixture of refrigerant and oil is fed into a high-pressure chamber via a central outlet 28 in the base plate 23b of the fixed scroll 23 29 passed within the compressor housing 12.
  • an oil separator (cyclone separator) 30 In the high-pressure chamber 29 there is an oil separator (cyclone separator) 30. Inside the oil separator 30, the mixture of refrigerant and oil is set in a rotational movement, the heavier oil being guided to the walls of the oil separator 30 and in one because of the increased inertia and increased mass lower region of the oil separator 30 is collected while the refrigerant is discharged upwards or laterally through the outlet 11.
  • the high-pressure chamber 29 is limited within the housing 12 by means of the base plate 23b of the fixed scroll 23.
  • the central outlet 28 in the high-pressure or outlet chamber 29, which is located in the radially innermost chamber region 24 ′ of the compression chambers 24, is drilled into the base plate 23b of the fixed scroll 23.
  • the central outlet 28 is closed with a spring valve (finger spring valve) 33, as long as the pressure in the compression chambers 24 is lower than the pressure in the high-pressure chamber 29.
  • the pressure of the compressed refrigerant-oil mixture in the compression chambers 24, in particular in the central chamber region 24 ', greater than the pressure in the high-pressure chamber 29, the spring valve 33 opens quasi automatically.
  • a stop element 34 which is fastened in the high-pressure chamber 29 to the fixed scroll 23, for example on its base plate 23b, limits the stroke of the spring valve 33.
  • the spring valve 33 closes the outlet 28 again automatically due to its spring preload. In this way, the compressed refrigerant-oil mixture - depending on the speed of the shaft 17 or depending on the operating point of the scroll compressor 3 - passes continuously (continuously) or intermittently or pulsatingly through the central outlet 28 from the compressor chamber 24 into the high-pressure chamber 29.
  • a pressure line 35 is provided in the fixed scroll 23, via which the compression chambers 24 and the high-pressure chamber 29 communicate with the counter-pressure chamber 25 in terms of flow.
  • the pressure line 35 is above a first channel 36 with the compression chambers 24 formed between the scroll walls 21a, 23a and via a second channel 37 with the high-pressure chamber 29 in a region in connection which in operation essentially contains the refrigerant and only a small amount of oil.
  • Fig. 4 shows schematically in a block diagram the fluidic or pressure-carrying connection of the counter-pressure chamber 25 via the pressure line 35 and the two channels 36, 37, which act as orifices or as throttles, on the one hand with the high-pressure chamber 29 and on the other hand with the compressor chambers 24.
  • the in the base plate 23b of the fixed scroll 23, for example introduced as a bore, is provided with the reference symbol 36, as is its orifice or throttle symbol.
  • FIG. 4 An oil return 38, including the throttle element 39, is shown as a broken line (dashed line) from the high-pressure chamber 29 in the area of the oil separator 30 to the low-pressure chamber (suction chamber) 26. This is connected to the compression chambers 24 of the scroll compressor 3 in terms of flow technology via the suction gas opening 27 , as illustrated by the broken arrow line 40.
  • the pressure line 35 is formed from a first line section 35a, which is suitably introduced into the base plate 23b of the fixed scroll 23 as a radial bore, and from a second line section 35b, which is suitably as an axial bore into a cup-shaped boundary wall 23c of the fixed scroll 23 is arranged.
  • the second line section 35b can also be introduced into the (axial) housing wall of the compressor housing 12.
  • the bores or line sections 35a, 35b open into one another within the base plate 23b or merge into one another.
  • the inlet opening of the radial bore of the first line section 35a is closed on the circumference of the boundary wall 23c in a manner not shown in detail.
  • the back pressure chamber 25 is delimited by the intermediate wall 5 from the suction or low pressure chamber 26.
  • a third line section 35c of the pressure line 35 leading to the counter pressure chamber 25 is arranged in the intermediate wall 5, which receives the bearings 22a and 22b for the shaft journal 17a and the shaft 17 as a bearing plate.
  • This line section 35c can be designed analogously as a radially running bore in the intermediate wall 5.
  • the third line section 35c into the intermediate wall (interface) 5 can be designed as a groove which is open towards the orbiting scroll 21 and closed by the intermediate plate (commodity plate) 5a.
  • the cross-sectional area of the pressure line 35 is many times, for example ten times, smaller than the cross-sectional area of the central outlet 28. However, the cross-sectional area of the pressure line 35 is many times larger than the cross-sectional area of the two channels 36 and 37 first duct 36 connected to the compression chambers 24 is larger than the cross-sectional area of the second duct 37 connected to the high pressure chamber 29.
  • the diameter of the central outlet 28 is between 5 mm and 10 mm.
  • the diameter of the pressure line 35 is between 1 mm and 10 mm.
  • the diameter of the first channel 36 is, for example, 0.5 mm, and the diameter of the second channel 37 is, for example, 0.25 mm, in each case with a circular bore or channel cross section.
  • the first channel 36 and the second channel 37 are designed as bores and (fluidically) act as an orifice or throttle. With this channel system formed from the pressure line 35 and the two channels 36, 37, a particularly effective fluidic regulation of the (static) pressure in the back pressure chamber 25 is achieved.
  • the radial distance of the first channel 36 connected to the compression chambers 24 to the central outlet 28 arranged in the base plate 23b of the fixed scroll 23 and leading into the high pressure chamber 29 is greater in the exemplary embodiment than the radial distance of the second channel 37 connected to the high pressure chamber 29 from the central one Outlet 28.
  • the second channel 37 can also be arranged closer to the central outlet 28 than the first channel 36. It is essential that the two channels 36 and 37 are not arranged directly axially opposite one another.
  • the Figures 5 and 6 show in a perspective view or in a plan view the fixed scroll 23 with the first channel 36, which is arranged in the base plate 23b at an angle position P K1 predetermined within the scroll wall (scroll spiral) 23a and there to the pressure line 35, ie to the inside thereof of the base plate 23b extends first line section 35a.
  • a position P K2 of the first channel 36 is also based on FIG Fig.
  • the channel outlet of the second line section 35b opening into the third line section 35c can also be seen within the, preferably circumferentially closed, boundary wall 23c of the fixed scroll 23.
  • the Figures 7 and 8 show in a perspective view or in a plan view the fixed scroll 23 with a view of the plate side of the base plate 23b located in the high-pressure chamber 29.
  • a filter (filter insert) 42 is received, which has a filter shaft 42a and an orifice or throttle head 42b, in which the second channel 37 is provided, for example as a central bore.
  • the opening 41 is surrounded by a wall 43 for receiving, positioning and / or stabilizing the aperture or throttle head 42b of the filter (filter insert) 42.
  • Fig. 9 shows a sectional view of the fixed scroll 23 along the lines IX-IX in Fig. 8 .
  • the first line section 35a of the pressure line 35 is formed by two sections a 1 , a 2 in the form of obliquely running bores which are introduced into the base plate 23b from the receiving opening 41.
  • the first section a 1 runs in the direction of the center or the central region of the base plate 23b.
  • the second section a 2 runs to the second line section 35b of the pressure line 35 in the boundary wall 35c of the fixed scroll 23 and opens there into the second line section 35b of the pressure line 35.
  • the first channel opens into the first section a 1 of the first line section 35a of the pressure line 35 36 producing the (pressure and / or fluidic) connection of the compression chambers 24 with the pressure line 35 and via this with the in Figure 9 Back pressure chamber 25, not shown.
  • the flow control and adaptive adjustment of the pressure in the back pressure chamber 25, even at different operating points of the scroll compressor 3, can be influenced by the cross-sectional relationships of the pressure line 35 and the two channels 36, 37 and their positioning in relation to the compressor chamber (s) 24.
  • the position P K1 , P K2 of the first channel 36 is selected such that it opens at a relative volume of the compressor chamber 24 of approximately 90% and remains open up to a relative chamber volume of approximately 25%.
  • the scroll compressor 3 which is provided and set up especially for refrigerants in a vehicle air conditioning system, has a fixed scroll 23 and a movable (or oscillating (oscillating) oscillator during compressor operation) in a compressor housing 12 with a high-pressure chamber 27 and with compressor chambers 24 and with a back pressure chamber (backpressure chamber) 25 , scroll 21).
  • the scrolls 21, 23, which each have a base plate 21a, 23a and a scroll or spiral wall 21a which is integral therewith (formed on them), form the compression chamber (s) 24 between their intermeshing scroll or spiral walls 21a and 23a
  • the base plate 23b of the fixed scroll 23 defines the high pressure chamber 27, and the base plate 21b of the movable scroll 21 defines the back pressure chamber 25.
  • the back pressure chamber 25 is connected to at least one of the compressor chambers 24 via a pressure line 35 running at least partially in the fixed scroll 23 and a first channel 36 and to the high pressure chamber 27 via a second channel 37.
  • a static pressure also acts or prevails in the pressure line 35, via which the back pressure chamber 25 communicates fluidically with the high pressure chamber 27 and with the at least one of the compression chambers 24.

Abstract

Die Offenbarung betrifft einen Scrollverdichter (3) für Kältemittel einer Fahrzeugklimaanlage, aufweisend ein Gehäuse (12) mit einer Hochdruckkammer (29) und mit Verdichterkammern (24) sowie mit einer Gegendruckkammer (25), einen feststehenden Scroll (23), dessen Basisplatte (23b) die Hochdruckkammer (29) begrenzt, und einen beweglichen Scroll (21), dessen Spiralwand (21a) in die Spiralwand (23b) des feststehenden Scrolls (23) eingreift und mit dieser die Verdichterkammern (24) bildet, wobei die Basisplatte (21b) des beweglichen Scrolls (21) die Gegendruckkammer (25) begrenzt, und wobei eine mit den Verdichterkammern (24) und mit der Hochdruckkammer (29) in Verbindung stehende Druckleitung (35) zumindest teilweise im feststehenden Scroll (23) verläuft und über einen ersten Kanal (36) mit zumindest einer der Verdichterkammern (24) sowie über einen zweiten Kanal (37) mit der Hochdruckkammer (29) verbunden ist.

Description

  • Die Erfindung liegt auf dem Gebiet der Verdrängermaschinen nach dem Spiralprinzip und betrifft einen, insbesondere elektromotorischen, Scrollverdichter als Kältemittelkompressor für eine Fahrzeugklimaanlage, gemäß dem Oberbegriff des Anspruchs 1. Eine derartige Verdrängermaschiene und insbesondere ein solcher Scrollverdichter ist aus der DE 10 2017 110 913 B3 bekannt.
  • Bei Kraftfahrzeugen sind regelmäßig Klimaanlagen eingebaut, die mit Hilfe einer einen Kältemittelkreislauf bildenden Anlage den Fahrzeuginnenraum klimatisieren. Derartige Anlagen weisen grundsätzlich einen Kreislauf auf, in dem ein Kältemittel geführt ist. Das Kältemittel, beispielsweise Kohlenstoffdioxid (CO2) oder R-134a (1,1,1,2-Tetrafluorethan) oder R-744 (Kohlenstoffdioxid), wird an einem Verdampfer erwärmt und mittels eines (Kältemittel-)Verdichters beziehungsweise Kompressors verdichtet, wobei das Kältemittel anschließend über einen Wärmetauscher die aufgenommene Wärme wieder abgibt, bevor es über eine Drossel erneut zum Verdampfer geführt wird.
  • Als Kältemittelverdichter wird häufig die Scroll-Technologie eingesetzt, um ein Kältemittel-Öl-Gemisch zu verdichten. Das dabei entstehende Gas-Öl-Gemisch wird getrennt, wobei das abgetrennte Gas in den Klimakreislauf eingebracht wird, während das abgetrennte Öl gegebenenfalls innerhalb des Scrollverdichters als geeigneterweise elektromotorisch angetriebenen Kältemittelverdichter zur Schmierung von bewegten Teile an diese herangeführt werden kann.
  • Der Aufbau und die Funktionsweise eines solchen Scrollverdichters für das Kältemittels bzw. das Kältemittel-Öl-Gemisch einer Kraftfahrzeugklimaanlage ist beispielsweise in der DE 10 2012 104 045 A1 und in "A Scroll Compressor for Air Conditioners", Tojo et al., Purdue e-Pubs (Purdue University), International Compressor Engineering Conferenz, 1984, beschrieben. Eine Modellrechnung eines selbsteinstellenden Back-Preasure- oder Gegendruck-Mechanismus bei einem Scrollverdichter (Scrollkompressor) ist in "Computer Modeling of Scroll Compressor with Self Adjusting Back-Pressure Mechanism", Tojo et al., Purdue e-Pubs (Purdue University), International Compressor Engineering Conferenz, 1986, beschrieben.
  • Wesentliche Bestandteile des Scrollverdichters sind ein feststehender Scroll (fixed scroll) und ein beweglicher, orbitierender Scroll (movable, orbiting scroll). Die beiden Scrolls (Scrollteile) sind grundsätzlich gleichartig aufgebaut und weisen jeweils eine Basisplatte (base plate) und eine spiralförmige, ausgehend von der Basisplatte sich in Axialrichtung erstreckende Wandung (wrap) auf. Im zusammengesetzten Zustand liegen die Spiralwände der beiden Scrolls ineinander und bilden zwischen den sich abschnittsweise berührenden Scroll-Wandungen mehrere Verdichterkammern.
  • Wenn der bewegliche Scroll orbitiert, gelangt das angesaugte Gas-Öl-Gemisch über einen Einlass zu einer ersten, radial äußeren Verdichterkammer und von dort über weitere Verdichterkammern zur radial innersten Verdichterkammer sowie von dort über einen zentralen Auslass, beispielsweise in Form einer Bohrung, und gegebenenfalls zwei benachbarte Nebenventile in Form ebenfalls von Bohrungen in der Basisplatte des feststehenden Scrolls in eine Auslass- oder Hochdruckkammer. Das Kammervolumen in den Verdichterkammern wird von radial außen nach radial innen kleiner, und der Druck des zunehmend verdichtenden Mediums wird größer. Während des Betriebs des Scrollverdichters steigt somit der Druck in den Verdichterkammern von radial außen nach radial innen an.
  • Der zentrale Gas-Öl-Auslass (und gegebenenfalls jedes der Nebenventile bzw. - bohrungen) ist auf der Basisplattenrückseite des feststehenden Scrolls durch ein Federventil verschlossen. Das Federventil öffnet in Folge der Druckdifferenz zwischen den Verdichterkammern und der Hochdruckkammer. Gegebenenfalls strömt das verdichtete Gas-Öl-Gemisch nach Auslösen des Federventils in die Hochdruckkammer des Scrollverdichters (auf der Rückseite des feststehenden Scrolls), um dort in Öl und Gas getrennt zu werden. Anschließend, wenn der Druck in den der Hochdruckkammer gegenüberliegenden Verdichterkammern entsprechend abgesunken ist, schließt das Federventil automatisch.
  • Während des Betriebs des Scrollverdichters werden aufgrund des in den Verdichterkammern erzeugten Drucks und der dadurch bedingten Axialkraft die beiden Scrolls auseinander gedrückt, so dass ein Spalt und somit Leckagen zwischen den Verdichterkammern entstehen können. Um dies möglichst zu vermeiden, wird - gegebenenfalls zusätzlich zu einem Ölfilm zwischen den Reibflächen der beiden Scrolls - der orbitierende Scroll gegen den feststehenden Scroll gedrückt. Die entsprechende Axialkraft (Gegenkraft) wird erzeugt, indem auf der Basisplattenrückseite des orbitierenden Scrolls ein Druckraum (Gegendruckkammer, back pressure chamber) vorgesehen ist, in der ein spezifischer Druck erzeugt wird.
  • Dies kann gemäß der bereits genannten DE 10 2012 104 045 A1 dadurch erfolgen, dass in der Basisplatte des orbitierenden Scrolls an einer bestimmten Position ein Mitteldruckkanal (Durchgang, Öffnung, Backpressure-Port) eingebracht ist, der zumindest eine der von den Scrolls gebildeten Verdichterkammern mit der Gegendruckkammer (Back-Pressure-Kammer) verbindet, so dass Kältemittelgas aus dem Verdichtungsprozess zwischen den Scroll-Spiralen direkt in die Gegen- bzw. Mitteldruckkammer gelangt. Aufgrund des Mitteldruckkanals im beweglichen Scroll in Verbindung mit der Gegendruckkammer (back pressure chamber) wird somit der bewegliche Scroll selbst einstellend (automatisch) gegen den feststehenden Scroll gedrückt, sodass eine ausreichende Dichtigkeit (axiale Dichtigkeit) gegeben ist. Alternativ kann der Mitteldruckkanal im feststehenden Scroll angeordnet und um den beweglichen Scroll herum zur Gegen- bzw. Mitteldruckkammer geführt werden.
  • In Abhängigkeit von der Positionierung des Mitteldruckkanals (back pressure port) steigt bei dem bekannten Scrollverdichter der Druck in der Gegendruckkammer bei einem Druckverhältnis von beispielsweise 3 bar (Niederdruck) zu 25 bar (Hochdruck) auf beispielsweise ca. 6 bar bis ca. 9 bar an. Bei dem bekannten Kältemittelscrollverdichter für eine Kraftfahrzeugklimaanlage ist der Mitteldruckkanal, ausgehend vom Anfang der Scrollspirale (Spiralwand) des beweglichen (orbitierenden) Scrolls bei etwa 405° positioniert.
  • In "Comuter Modeling of Scroll Compressor with Self Adjusting Back-Pressure Mechanism", Tojo et al., Purdue e-Pubs (Purdue University), International Compressor Engineering Conferenz, 1986, ist eine Modellrechnung des selbsteinstellenden Back-Preasure-Mechanismus bei einem Scrollverdichter beschrieben. Im Ergebnis der Untersuchung wird in Figur 12 ein Bereich des relativen Verdichterkammervolumens angegeben, in dem der Back-Pressure-Port (bei unterschiedlichen Port-Durchmessern) offen (fluidverbunden) sein soll. Dieser Bereich befindet sich zwischen 55% und ca. 100% des (relativen) Kammervolumens.
  • In "A Scroll Compressor for Air Conditioners", Tojo et al., Purdue e-Pubs (Purdue University), International Compressor Engineering Conferenz, 1984, ist in Figur 11 das praktisch gleiche p-v-Diagramm gezeigt, wobei dort der Bereich des relativen Verdichterkammervolumens, in dem der Back-Pressure-Port offen sein soll, zwischen 55% und ca. 95% liegt.
  • In beiden p-v-Diagrammen ist in dem betrachten Volumenbereich ein (relativer) Druckabfall bzw. Druckanstieg um den Faktor 2 (von 2.0 auf 1.0 bzw. von 1.0 auf 2.0) erkennbar. Der Öffnungs-Startwert des back pressure ports liegt somit bei ca. 100% bzw. bei ca. 95% des relativen Verdichterkammervolumens.
  • In "Comuter Modeling of Scroll Compressor with Self Adjusting Back-Pressure Mechanism", Tojo et al., Purdue e-Pubs (Purdue University), International Compressor Engineering Conferenz, 1986, zeigt Figur 5 den Verlauf des relativen Verdichterkammervolumens in Abhängigkeit vom Rotationswinkel (Roll- oder Wellenwinkel Theta, θ)des orbitierenden Scrolls. Der gezeigte Verlauf ist unterteilt in den Ansaugprozess, welcher dem Niederdruckbereich entspricht, den Kompressionsprozess und den Auslassprozess. Bei dem auf das relative Volumen bezogenen Öffnungsbereich des Ports zwischen 55% und 100% bzw. 95% aus Figur 12 ergibt sich ein Winkelbereich von 0° bis 335° (bei 100% Öffnungs-Startvolumen) bzw. 0° bis 300° (bei 95% Öffnungs-Startvolumen), in welchem der Port positioniert sein soll.
  • In "Dynamics of Compliance Mechanisms in Scroll Compressors, Part I: Axial Compliance", Nieter et al., Purdue e-Pubs (Purdue University), International Compressor Engineering Conferenz, 1990, ist die Winkelposition des back pressure ports (Figuren 7 und 8) diskutiert. Aus Figur 3 und Seite 309, vorletzter Absatz, vorletzer Satz, ergibt sich ein Winkelbereich von 360°, innerhalb dessen der Gegen- oder Mitteldruckkanal (Back-Pressure-Port) positioniert sein sollte.
  • Aus der EP 2 369 182 B1 ist ein Spiralkompressor mit einem Gehäuse bekannt, in dem ein feststehender Scroll mit einer Basisplatte und daran angeformter Spirale und ein um eine Umlaufachse umlaufender beweglicher Scroll mit ebenfalls einer Basisplatte und daran angeformter Spirale angeordnet sind. Zwischen der Basisplatte des feststehenden Scrolls und einem Gehäuseabschnitt ist eine Abgabekammer (Hochdruckkammer) gebildet. Eine im Gehäuse angeordnete Lagerzwischenwand mit einem Wellenlager begrenzt eine Saug- oder Zulaufkammer und bildet mit der Basisplatte des beweglichen Scrolls einen Gegendruckkammer (Backpressure-Kammer), die über einen Lieferkanal im beweglichen Scroll mit der Verdichterkammer zwischen den Scrolls kommuniziert. Die Abgabekammer und die Gegendruckkammer stehen über einen Sekundärlieferkanal in Verbindung, der sich im Wesentlichen axial durch eine Außenwand des feststehenden Scroll erstreckt. Der Sekundärlieferkanal liefert in der Abgabekammer mittels eines Ölseparator abgetrenntes Öl oder Kühlmittelgas in die Gegendruckkammer, um den Druck in der Gegendruckkammer nach einem Druckabfall in kurzer Zeit wiederherzustellen.
  • Der Erfindung liegt die Aufgabe zugrunde, einen besonders geeigneten, insbesondere elektromotorisch angetriebenen oder antreibbaren, Scrollverdichter als Kältemittelverdichter für eine Fahrzeugklimaanlage anzugeben. Insbesondere soll durch ein geeignetes Druckkanalsystem eine möglichst flexible und effektive Anpassung des Drucks in der Gegendruckkammer (Backpressure-Kammer) an Arbeitspunkte des Scrollverdichters für eine Fahrzeugklimaanlage, vorzugsweise im Kühlungs- und Wärmepumpenmodus, erzielt werden. Auch sollen Leckagen möglichst weitgehend reduziert und Reibungsverluste zwischen dem feststehenden Scroll und dem orbitierenden Scroll vermieden oder zumindest möglichst minimal gehalten werden.
  • Diese Aufgabe wird erfindungsgemäß gelöst durch die Merkmale des Anspruchs 1. Vorteilhafte Ausgestaltungen und Weiterbildungen sind Gegenstand der Unteransprüche.
  • Der Scrollverdichter weist in einem Gehäuse mit einer Hochdruckkammer und mit Verdichterkammern sowie mit einer Gegendruckkammer einen feststehenden Scroll und einen beweglich, d. h. im angetriebenen Zustand - also im Betreib (Verdichterbetrieb) - orbitierenden (oszillierenden) Scroll auf. Die Scrolls oder Scrollteile weisen jeweils eine Basisplatte und eine Spiralwand auf, wobei zwischen den ineinandergreifenden Spiralwänden der beiden Scrolls (Scrollteile) die Verdichterkammern gebildet sind. Die Basisplatte des feststehenden Scrolls begrenzt die Hochdruckkammer, und die Basisplatte des beweglichen Scrolls begrenzt die Gegendruckkammer.
  • Die Gegendruckkammer steht über eine zumindest teilweise im feststehenden Scroll verlaufende Druckleitung mit zumindest einer der Verdichterkammern in Verbindung. Die Druckleitung steht über einen ersten Kanal mit zumindest einer der Verdichterkammern und zudem über einen zweiten Kanal mit der Hochdruckkammer in Verbindung. Auf diese Weise entsteht in der Druckleitung, über welche die Gegendruckkammer strömungstechnisch mit der Hochdruckkammer und mit der zumindest einen Verdichterkammer kommuniziert, ein auch in der Gegendruckkammer wirkender statischer Druck. Der Scrollverdichter ist insbesondere für Kältemittel einer Fahrzeugklimaanlage vorgesehene und eingerichtete. Geeigneterweise ist zumindest einer der Kanäle in der Basisplatte des feststehenden Scrolls angeordnet. Vorzugsweise sind der mit der Verdichterkammer verbundene erste Kanal und der mit der Hochdruckkammer verbundene zweite Kanal in der Basisplatte des feststehenden Scrolls angeordnet. In einer vorteilhaften Ausgestaltung ist der zweite Kanal in einem Filter (Filter-Einsatz) angeordnet, der in der Hochdruckkammer in eine Bohrungsöffnung eingesetzt ist, die in die Basisplatte auf deren Hochdruckkammer-Plattenseite eingebracht und dort von einem Positionier- und Haltekragen für den Filter-Einsatz umgeben ist.
  • Die Druckleitung weist zweckmäßigerweise mindestens einen ersten Leitungsabschnitt, der in der Basisplatte des feststehenden Scrolls angeordnet ist, und einen mit dem ersten Leitungsabschnitt verbundenen zweiten Leitungsabschnitt auf, der in einer Begrenzungswand des feststehenden Scrolls angeordnet ist. Die Begrenzungswand kann Bestandteil des feststehenden Scrolls oder des Gehäuses sein.
  • Gemäß einer ersten Alternative ist in einfacher Weise der erste Leitungsabschnitt radial in die Basisplatte und der zweiten Leitungsabschnitt axial oder schräg verlaufend in die Begrenzungswand des feststehenden Scrolls in Form jeweils einer Bohrung eingebracht werden, wobei die Bohrungen innerhalb der Basisplatte unter Bildung der Druckleitung ineinander münden bzw. ineinander übergehen.
  • Gemäß einer zweiten Alternative, bei der der zweite Kanal in einem Filter (Filter-Einsatz) angeordnet bzw. von diesem gebildet ist, sind ausgehend von der Bohrungsöffnung in der Basisplatte des feststehenden Scrolls zwei schräg verlaufende, erste Leitungsabschnitte vorgesehen. Eine dieser ersten Leitungsabschnitte verläuft zum zweiten Leitungsabschnitt in der Begrenzungswand und mündet in diese ein. Der andere dieser ersten Leitungsabschnitte verläuft zum ersten Kanal, d. h. innerhalb der Basisplatte des feststehenden Scrolls in Richtung der (gewählten) Position des ersten Kanals.
  • Die Gegendruckkammer ist mittels einer Zwischenwand von einer Niederdruckkammer abgegrenzt. In diese Zwischenwand, die geeigneterweise als Lagerschild für eine den beweglichen Scroll antreibende Welle dient, ist ein zur Gegendruckkammer führender (dritter) Leitungsabschnitt der Druckleitung angeordnet. Dieser Leitungsabschnitt kann wiederum in einfacher Weise als radiale Bohrung in der Zwischenwand ausgeführt sein. Alternativ ist dieser Leitungsabschnitt der Druckleitung als Nut in der Zwischenwand in Verbindung mit einer diese überdeckenden Platte (Wear-Plate) ausgeführt.
  • Die Querschnittsfläche der Druckleitung ist um mindestens den Faktor zwei (2) größer als die Querschnittsfläche des mit der Verdichterkammer verbundenen ersten Kanals und des mit der Hochdruckkammer verbundenen zweiten Kanals. Die Querschnittsfläche des mit der Verdichterkammer verbundenen ersten Kanals ist vorteilhafterweise wiederum größer als die Querschnittsfläche des mit der Hochdruckkammer verbundenen zweiten Kanals.
  • Geeigneterweise ist das Verhältnis zwischen der Querschnittsfläche des mit der Verdichterkammer verbundenen ersten Kanals und der Querschnittsfläche des mit der Hochdruckkammer verbundenen zweiten Kanals zwischen 3 (drei) und 5 (fünf), vorzugsweise 4 (vier). Zweckmäßigerweise sollten die Querschnittsflächen der beiden Kanäle möglichst klein sein.
  • Die Querschnittsfläche des mit der Verdichterkammer verbundenen ersten Kanals beträgt zweckmäßigerweise zwischen 0,03 mm2 und 1,5 mm2, vorzugsweise 0,2 mm2. Die Querschnittsfläche des mit der Hochdruckkammer verbundenen zweiten Kanals beträgt zweckmäßigerweise zwischen 0,008 mm2 und 0,2 mm2, vorzugsweise 0,05 mm2. Bezogen auf einen kreisrunden Kanalquerschnitt sollte der Durchmesser des ersten Kanals zwischen 0,2 mm und 1 mm, vorzugsweise 0,5 mm, und derjenige des zweiten Kanals zwischen 0,1 mm und 0,5 mm, vorzugsweise 0,25 mm, betragen.
  • In vorteilhafter Ausgestaltung sind der erste und/oder der zweite Kanal als Bohrung ausgeführt, welche in die Druckleitung mündet. Aufgrund der geringen Wanddicke (Wandstärke) der Basisplatte des feststehenden Scrolls im Bereich der beiden Kanäle wirkt die jeweilige Bohrung bzw. der jeweilige Kanal somit als Blende oder Drossel.
  • Diese strömungstechnische Regelung und eine effektive adaptive Anpassung des Drucks in der Gegendruckkammer an unterschiedliche Arbeitspunkte des Scrollverdichters (im Kühlungs- oder Wärmepumpen-Modus) wird dadurch unterstützt oder kann dadurch weiter verbessert werden, dass der mit der Verdichterkammer verbundene erste Kanal - ausgehend von einem relativen Kammervolumen von etwa 100% in der radial äußersten Verdichterkammer und einem Rotations- oder Wellenwinkel von 0° - bei einem Rotations- oder Wellenwinkel von (63,5 ± 5,5)° vollständig geöffnet ist und bis zu einem Rotations- oder Wellenwinkel von (343,5 ± 5,5)° geöffnet bleibt. Dies entspricht einer relativen Volumenänderung des Verdicherkammervolumens von (91,15 ± 0,75)° auf (23,0 ± 0,3)°.
  • Die radialen Abstände der beiden Kanäle zu einem in der feststehenden Basisplatte angeordneten und in die Hochdruckkammer führenden zentralen Auslass sind geeigneterweise unterschiedlich groß, so dass die bedien Känale bewusst nicht einander direkt (axial) gegenüberliegend angeordnet sind. Dabei kann der radiale Abstand des in die Hochdruckkammer führenden zweiten Kanals größer oder kleiner sein als der radiale Abstand des mit der Verdichterkammer verbundenen ersten Kanals zum zentralen Auslass.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die beiden strömungsregelnden Kanäle in deren Verbindung mit der Druckleitung in dem feststehenden Scroll eine effektive und selbst einstellende Anpassung des Drucks in der Gegendruckkammer an den jeweiligen Arbeitspunkt des Scrollverdichters ohne zusätzliche strömungsregelnde Bauteile zur Strömungsdrosselung, wie beispielsweise Ventile, Düsen, Drosseln oder weitere Känale, Bohrungen oder Blenden erfolgt.
  • Die adaptive Regelung des Drucks in der Gegendruckkammer erfolgt mittels der beiden Kanäle und der Druckleitung im feststehenden Scroll bei einem Druckverhältnis zwischen Saugdruck (Niederdruck) und Hochdruck von 5 (bei einem Saugdruck von 3 bar und einem Hochdruck von 15 bar) ebenso zuverlässig selbst einstellend, wie bei einem Druckverhältnis von etwa 8 (bei einem Saugdruck von 3 bar und einem Hochdruck von 25 bar) oder 10 (bei einem Saugdruck von 1,5 bar und einem Hochdruck von 15 bar) für das Kältemittel R-134A (Arbeitspunkt beim Betrieb als Wärmepumpe).
  • Zudem kann mittels dieses Zwei-Kanal-Druckleitungs-Systems im feststehenden Scroll eine hohe Prozessstabilität für Serienfertigungen erreicht werden. So unterliegen die beiden Kanäle in dem feststehenden Scroll im Zuge einer Scroll-Beschichtung, beispielsweise einer Farbbeschichtung, quasi gleichen Bedingungen, so dass sich Toleranzen, die zu Schwankungen im Gegendruck- bzw. Backpressure-Niveau führen können, gegenseitig aufheben (herauskürzen).
  • Des Weiteren kann der Scrollverdichter aufgrund der adaptiven Anpassung des Drucks in der Gegendruckkammer bei Arbeitspunkten im Kühlungs- und im Wärmepumpenmodus mit hoher Effizienz betrieben werden, weil insbesondere Leckagen reduziert und Reibungsverluste zwischen den Scrollteilen auf ein Minimum gehalten werden können. So ist die in Folge des selbst einstellenden Drucks in der Gegendruckkammer wirksame Axialkraft aufgrund der adaptiven Anpassung nicht oder stets lediglich um einen geringen Betrag größer als die Summe der Axialkräfte in den Verdichterkammern, in denen im Verdichterbetrieb typischerweise unterschiedliche Drücke herrschen.
  • Die besonders effektive strömungstechnische Regelung und adaptive Anpassung des Drucks in der Gegendruckkammer an unterschiedliche Arbeitspunkte des Scrollverdichters wird vorteilhaft bestimmt bzw. beeinflusst durch die angegebenen Querschnittsverhältnisse der Druckleitung und der beiden Kanäle sowie deren Positionierung in Bezug auf die Verdichterkammer(n). So ist die Positionierung geeigneterweise derart gewählt, dass insbesondere der erste Kanal bei einem relativen Volumen der Verdichterkammer (Verdichterkammervolumen) von ca. 90% öffnet und im Zuge einer relativen Druckänderung bis zu einem relativen Volumen der Verdichterkammer von ca. 23% geöffnet bleibt, bevor der jeweilige Kanal während der orbitierenden Bewegung des orbitierenden Scrolls von dessen Spiralwand abgedeckt bzw. übergriffen wird und mit einer radial weiter außen liegenden Verdichterkammer in Verbindung (Überdeckung) steht.
  • Wenn der orbitierende Scroll vom Kompressionsvorgang des Kältemittel-Gas-Gemisches in den Verdichterkammern bis zum Ausstoßprozess des verdichteten Kältemittel-Gas-Gemisches in die Hochdruckkammer des Scrollverdichters typischerweise 2,5 Umdrehungen - und somit zwischen 0% und 100% relativem Verdichterkammervolumen - einen Winkelbereich von 900° durchläuft, sollte der die Verdichterkammer mit der Druckleitung verbindende erste Kanal im feststehenden Scroll bei einem Winkel (Spiralwinkel ϕ) von 350° bis 390°, insbesondere 370°, positioniert sein, wobei dieser Winkel ϕ ausgehend sowohl vom Anfang als auch vom Ende der Spiralwand (Scrollspirale) des feststehenden Scrolls gemessen (angelegt) sein kann.
  • Die Position des zweiten Kanals, der die Druckleitung mit der Hochdruckkammer innerhalb des Gehäuses des Scrollverdichters verbindet, ergibt sich praktisch zwangsläufig entlang derselben Radius- oder Winkellinie, wenn die Druckleitung bzw. deren erster Leitungsabschnitt geradlinig ist. Bei der Variante mit schräg verlaufenden ersten Leitungsabschnitten können die beiden axial beabstandeten Kanäle an zueinander unterschiedlichen Radial- und/oder Azimutalposionen angerordnet sein.
  • Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Darin zeigen:
  • Fig. 1
    in einer perspektivischen Seitenansicht einen Scrollverdichter mit einem elektromotorischen Antriebsmodul und mit einem Verdichtermodul,
    Fig. 2
    in einer Schnittdarstellung schematisch vereinfacht den elektromotorisch angetrieben Scrollverdichter mit einer Hochdruckkammer und mit einer Gegendruckkamer (Back-Pressure-Kammer) sowie mit in diese führendem Druckleitungs- bzw. Kanalsystem,
    Fig. 3
    in einer Schnittdarstellung den Scrollverdichter mit in einem Verdichtergehäuse einem feststehenden und einem beweglichen Scroll sowie mit einer zur Gegendruckkammer führenden Druckleitung mit jeweils einem Verbindungskanal (erster Kanal und zweiter Kanal) in die zwischen den Scrolls gebildeten Verdichterkammern einerseits und in die Hochdruckkammer andererseits,
    Fig. 4
    in einem Blockschaltbild die Druckrückführung aus der Hochdruckkammer und aus den scrollseitigen Verdichterkammern in die Gegendruckkammer sowie mit einer Ölrückführung in eine saug- bzw. motorseitige Niederdruckkammer,
    Fig. 5
    in einer perspektivischen Darstellung den feststehenden Scroll mit einem an einer innerhalb der Scrollwand (Scrollspirale) vorbestimmten Position (Winkel-Position) in der Basisplatte angeordneten Kanal (Bohrung) zur Druckleitung,
    Fig. 6
    in einer Draufsicht den feststehenden Scroll mit zwei eingezeichneten Winkelpositionen (Spiralwinkel) des zu einer Verdichterkammer führenden ersten Verbindungskanals in der Basisplatte,
    Fig. 7
    in einer perspektivischen Darstellung den feststehenden Scroll mit Blick auf die hochdruckkammerseitige Plattenfläche (Plattenseite) dessen Basisplatte und darin angeordneter Aufnahmeöffnung für einen Filtereinsatz mit dem (zweiten) Verbindungskanal zur Hochdruckkammer,
    Fig. 8
    den feststehenden Scroll gemäß Fig. 7 in einer Draufsicht, und
    Fig. 9
    einen Schnitt IX-IX aus Fig. 8 mit von der Aufnahmeöffnung für den Filtereinsatz ausgehenden Leitungsabschnitten der Druckleitung zum ersten Verbindungskanal und zu einem Leitungsabschnitt in einer (radial äußeren) Begrenzungswand des feststehenden Scrolls.
  • Einander entsprechende Teile und Größen sind in allen Figuren stets mit den gleichen Bezugszeichen versehen.
  • Der in Fig. 1 dargestellte Kältemittelverdichter 1 ist in einem nicht näher dargestellten Kältemittelkreislauf einer Klimaanlage eines Kraftfahrzeugs verbaut. Der elektromotorische Kältemittelverdichter 1 weist ein elektrisches (elektromotorisches) Antriebsmodul 2 sowie ein mit diesem gekoppeltes Verdichtermodul in Form eines Scrollverdichter 3 auf. Über eine zwischen dem Antriebsmodul 2 und dem Scrollverdichter 3 gebildete mechanische Schnittstelle 4 ist der Scrollverdichter 3 antriebstechnisch an das Antriebsmodul 2 angebunden. Die mechanische Schnittstelle 4 dient als antriebsseitiges Lagerschild und bildet eine Zwischenwand 5 (Figuren 2 und 3). Der Scrollverdichter 3 ist mittels umfangsseitig verteilten, sich in Axialrichtung A des Kältemittelverdichters 1 erstreckenden Flanschverbindungen 6 mit dem Antriebsmodul 2 verbunden (gefügt, verschraubt).
  • Ein Gehäuseteilbereich eines Antriebsgehäuses 7 des Kältemittelverdichters 1 ist als ein Motorgehäuse 7a zur Aufnahme eines Elektromotors 13 (Fig. 2) ausgebildet und einerseits durch eine integrierte Gehäusezwischenwand 7b (Fig. 2) zu einem mit einem Gehäusedeckel 7c versehenen Elektronikgehäuse 7d mit einer den Elektromotor 13 ansteuernden Motorelektronik (Elektronik) 8 und andererseits durch die mechanische Schnittstelle 4 mit dem Lagerschild und der Zwischenwand 5 verschlossen. Das Antriebsgehäuse 7 weist im Bereich des Elektronikgehäuses 7b einen Anschlussabschnitt 9 mit zur Elektronik 8 geführten Motoranschlüssen 9a und 9b zur elektrischen Kontaktierung der Elektronik 8 an ein Bordnetz des Kraftfahrzeugs auf.
  • Das Antriebsgehäuse 7 weist einen Kältemittel-Einlass oder Kältemittel-Zulauf 10 zum Anschluss an den Kältemittelkreislauf und einen Kältemittel-Auslass 11 auf. Der Auslass 11 ist an dem Boden eines Verdichtergehäuses 12 des Scrollverdichter 3 angeformt. Im angeschlossenen Zustand bildet der Einlass 10 die Niederdruck- oder Saugseite (Sauggasseite) und der Auslass 11 die Hochdruck- oder Pumpseite (Pumpenseite) des Kältemittelverdichters 1.
  • Fig. 2 zeigt schematisch den elektromotorischen Kältemittelverdichter 1 in einer Schnittdarstellung entlang einer Rotationsachse 14 des Elektromotors 13, der hier ein bürstenloser Gleichstrommotor (BLDC) ist und einen zylindrischen Rotor 15 aufweist. Dieser ist umfangsseitig mittels eines hohlzylindrischen Stators 16 umgeben. Der Rotor 15 umfasst eine Anzahl an Permanentmagneten und ist mittels einer Welle 17 drehbar um die Rotationsachse 14 gelagert. Der Stator 16 weist eine Anzahl von elektrischen Spulen auf, die mittels der Elektronik 8 bestromt sind, welche wiederum die beispielsweise mit einem Bus-Systems und dem Bordnetz des Kraftfahrzeugs verbunden ist.
  • Die Elektronik 8 ist im Elektronikgehäuse 7d des Antriebsgehäuses 7 angeordnet, das von dem Stator 16 und dem Rotor 15 mittels der Zwischenwand 5 getrennt ist. Der Gehäusedeckel 7c, der mittels Schrauben am Elektronikgehäuse 7d lösbar befestigt ist, verschließt eine Zugangsöffnung des Elektronikgehäuses 7b. Die Motorelektronik 8 weist Leiterplatten 18, 19 auf, die in Axialrichtung A übereinander angeordnet sind. Eine Brückenschaltung der Leiterplatte 18, welche der Gehäusezwischenwand 7b nächstgelegen ist, ist über Bestromungsleitungen 19, welche durch die Gehäusezwischenwand 7b geführt sind, mit den elektrischen Spulen des Stators 16 kontaktiert. Die Brückenschaltung wird mittels des Bordnetzes gespeist und mittels einer Ansteuerschaltung der anderen Leiterplatte 19 gesteuert, die signaltechnisch mit dem Bus-System verbunden ist.
  • Wie in Verbindung mit Fig. 3 vergleichsweise deutlich ersichtlich ist, weist der Scrollverdichter 3 einen im Verdichtergehäuse 12 angeordneten beweglichen Scroll (Scrollteil) 21 auf. Dieser ist über einen exzentrischen Wellenzapfen 17a mit beispielsweise zwei Fügestiften, von denen nur ein Fügezapfen 17b sichtbar ist, an die Welle 17 des Elektromotors 13 gekoppelt, die in die mechanischen Schnittstelle 4 mit A-seitigem Lagerschild geführt ist. Der exzentrische Wellenzapfen 17a ist in einem im beweglichen Scroll 21 gehaltenen Wälz- oder Kugellager 22a gelagert. Ein weiteres, die Welle 17 lagerndes Wälz- oder Kugellager 22b ist in der als A-seitiges Lagerschild dienenden mechanischen Schnittstelle 4 und dort in der Zwischenwand 5 angeordnet. Der bewegliche Scroll (Scrollteil) 21 ist im Betrieb des Scrollverdichters 3 orbitierend angetrieben.
  • Der Scrollverdichter 3 weist zudem einen starr im Verdichtergehäuse 12 befestigten feststehenden Scroll (Scrollteil) 23 auf. Die beiden Scrolls (Scrollteile) 21, 23 greifen mit deren schnecken- oder spiralförmigen Scrollwänden (Scrollspiralen) 21a, 23a ineinander, die von einer jeweiligen Basisplatte 21b, 23b axial emporragen. Zwischen den Scrolls 21, 23, d. h. zwischen deren Scrollwänden bzw. Scrollspiralen 21a, 23a und den Basisplatten 21b, 23b sind Verdichterkammern 24 gebildet, deren Volumen bei Betrieb des Elektromotors 13 verändert wird.
  • Zwischen dem A-seitigen Lagerschild und dem beweglicher Scroll 21 befindet sich in der Zwischenwand 5 eine Gegendruckkammer (Backpressure-Kammer) 25. Diese ist im - nachfolgend einfach als Gehäuse bezeichneten - Verdichtergehäuse 12 von der Basisplatte 21b des beweglichen Scrolls 21 und/oder von einer Zwischenplatte (Wear-Plate) 5a (Fig. 3) in Form einer Stahlplatte begrenzt, welche als gute Gleiteigenschaften für den orbitierenden Scroll 21 aufweist. Die Gegendruckkammer 25 erstreckt sich bereichsweise in die Basisplatte 21b des beweglichen Scrolls 21 hinein.
  • Beim Betrieb wird das Kältemittel durch den Zulauf 10 in das Antriebsgehäuse 7 und dort in das Motorgehäuse 7a eingeleitet. Dieser Bereich des Antriebsgehäuses 7 bildet die Saug- oder Niederdruckseite 26. Mittels der Gehäusezwischenwand 7b wird ein Eindringen des Kältemittels in das Elektronikgehäuse 7d verhindert. Innerhalb des Antriebsgehäuses 7 wird das Kältemittel mit in dem Kältemittelkreislauf vorhandenem Öl vermischt und entlang des Rotors 15 und des Stators 16 durch eine Öffnung (oder mehrere Öffnungen, Fig. 3) 27 in der Zwischenwand 5 zum Scrollverdichter 3 gesaugt. Mittels des Scrollverdichters 3 wird das Gemisch aus Kältemittel und Öl verdichtet, wobei das Öl der Schmierung der beiden Scrolls 21, 23 dient, sodass eine Reibung verringert und folglich ein Wirkungsgrad erhöht ist. Auch dient das Öl der Abdichtung, um ein unkontrolliertes Entweichen von dem zwischen den beiden Scrolls (Scrollteilen) 21, 23 befindlichen Kältemittel zu vermeiden.
  • Das verdichtete Gemisch aus Kältemittel und Öl wird über einen zentralen Auslass 28 in der Basisplatte 23b des feststehenden Scrolls 23 in eine Hochdruckkammer 29 innerhalb des Verdichtergehäuses 12 geleitet. In der Hochdruckkammer 29 befindet sich ein Ölabscheider (Zyklonabscheider) 30. Innerhalb des Ölabscheiders 30 wird das Gemisch aus Kältemittel und Öl in eine Rotationsbewegung versetzt, wobei das schwerere Öl aufgrund der erhöhten Trägheit und erhöhten Masse zu den Wänden des Ölabscheiders 30 geleitet und in einem unteren Bereich des Ölabscheiders 30 gesammelt wird, während das Kältemittel nach oben oder seitlich durch den Auslass 11 abgeführt wird.
  • Wie in Fig. 3 vergleichsweise deutlich ersichtlich ist, ist die Hochdruckkammer 29 innerhalb des Gehäuses 12 mittels der Basisplatte 23b des feststehenden Scrolls 23 begrenzt. Der zentrale Auslass 28 in die Hochdruck- oder Auslasskammer 29, der sich in der radial innersten Kammerbereich 24' der Verdichterkammern 24 befindet, ist in die Basisplatte 23b des feststehenden Scrolls 23 als Bohrung eingebracht. Innerhalb der Hochdruckkammer 29 ist der zentrale Auslass 28 mit einem Federventil (Fingerfeder-Ventil) 33 verschlossen, solange der Druck in den Verdichterkammern 24 geringer ist als der Druck in der Hochdruckkammer 29. Wird der Druck des verdichteten Kältemittel-Öl-Gemisches in den Verdichterkammern 24, insbesondere im der zentralen Kammerbereich 24', größer als der Druck in der Hochdruckkammer 29, so öffnet das Federventil 33 quasi automatisch.
  • Ein Anschlagelement 34, das in der Hochdruckkammer 29 am feststehenden Scroll 23, beispielsweise an dessen Basisplatte 23b, befestigt ist, begrenzt den Hub des Federventils 33. Wenn der Druck auf unterhalb des Drucks in der Hochdruckkammer 29 abgesunken ist, verschließt das Federventil 33 den Auslass 28 erneut selbsttätig aufgrund dessen Federvorspannung. Auf diese Weise gelangt das verdichtete Kältemittel-Öl-Gemisches - je nach Drehzahl der Welle 17 bzw. in Abhängigkeit vom Arbeitspunkt des Scrollverdichters 3 - kontinuierliche (durchgängig) oder stoßweise oder pulsierend über den zentralen Auslass 28 aus den Verdichterkammer 24 in die Hochdruckkammer 29.
  • Im feststehenden Scroll 23 ist eine Druckleitung 35 vorgesehen, über welche die Verdichterkammern 24 und die Hochdruckkammer 29 strömungstechnisch mit der Gegendruckkammer 25 kommunizieren. Hierzu steht die Druckleitung 35 über einen ersten Kanal 36 mit den zwischen den Scrollwänden 21a, 23a gebildeten Verdichterkammern 24 und über einen zweiten Kanal 37 mit der Hochdruckkammer 29 in einem Bereich in Verbindung, der bei Betrieb im Wesentlichen das Kältemittel und nur eine geringe Menge Öl aufweist.
  • Fig. 4 zeigt schematisch in einem Blockschaltbild die strömungstechnische bzw. druckführende Verbindung der Gegendruckkammer 25 über die Druckleitung 35 und die beiden Kanäle 36, 37, die als Blenden bzw. als Drosseln wirksam sind, einerseits mit der Hochdruckkammer 29 und andererseits mit den Verdichterkammern 24. Der in die Basisplatte 23b des feststehenden Scrolls 23, beispielsweise als Bohrung, eingebrachte erste Kanal ist ebenso wie dessen Blenden- oder Drosselsymbol mit dem Bezugszeichen 36 versehen.
  • Ebenfalls in Fig. 4 veranschaulicht ist eine als unterbrochene (strichlinierte) Linie dargestellte Ölrückführung 38, inklusive Drosselorgan 39, aus der Hochdruckkammer 29 im Bereiche des Ölabscheiders 30 in die Niederdruckkammer (Saugaskammer) 26. Diese steht über die Sauggasöffnung 27 mit den Verdichterkammern 24 des Scrollverdichters 3 strömungstechnisch in Verbindung, wie durch die unterbrochene Pfeillinie 40 veranschaulicht.
  • Bei der Ausführungsform gemäß Fig. 3 ist die Druckleitung 35 aus einem ersten Leitungsabschnitt 35a, der in die Basisplatte 23b des feststehenden Scrolls 23 geeigneterweise als radial verlaufende Bohrung eingebracht ist, und aus einem zweiten Leitungsabschnitt 35b gebildet, der geeigneterweise als axial verlaufende Bohrung in eine topfförmige Begrenzungswand 23c des feststehenden Scrolls 23 angeordnet ist. Auch kann der zweiten Leitungsabschnitt 35b in die (axiale) Gehäusewand des Verdichtergehäuses 12 eingebracht sein. Die Bohrungen bzw. Leitungsabschnitte 35a, 35b münden innerhalb der Basisplatte 23b ineinander bzw. gehen ineinander über. Die Eintrittsöffnung der radialen Bohrung des ersten Leitungsabschnitts 35a ist am Umfang der Begrenzungswand 23c in nicht näher dargestellter Art und Weise verschlossen.
  • Die Gegendruckkammer 25 ist mittels der Zwischenwand 5 von der Saug- oder Niederdruckkammer 26 abgegrenzt. In die Zwischenwand 5, welche als Lagerschild die Lager 22a und 22b für den Wellenzapfen 17a und die Welle 17 aufnimmt, ist ein zur Gegendruckkammer 25 führender dritter Leitungsabschnitt 35c der Druckleitung 35 angeordnet. Dieser Leitungsabschnitt 35c kann analog als radial verlaufende Bohrung in der Zwischenwand 5 ausgeführt sein. Alternativ kann der dritte Leitungsabschnitt 35c in die Zwischenwand (Schnittstelle) 5 als zum orbitierenden Scroll 21 hin offene und durch die Zwischenplatte (Ware-Plate) 5a verschlossene Nut ausgeführt sein.
  • Die Querschnittsfläche der Druckleitung 35 ist um ein Vielfaches, beispielsweise um das zehnfache, kleiner als die Querschnittsfläche des zentralen Auslasses 28. Die Querschnittsfläche der Druckleitung 35 ist jedoch um ein Vielfaches größer als die Querschnittsfläche der beiden Kanäle 36 und 37. Zudem ist die Querschnittsfläche des mit den Verdichterkammern 24 verbundenen ersten Kanals 36 größer als die Querschnittsfläche des mit der Hochdruckkammer 29 verbundenen zweiten Kanals 37.
  • Der Durchmesser des zentralen Auslasses 28 beträgt zwischen 5 mm und 10 mm. Der Durchmesser der Druckleitung 35 beträgt zwischen 1 mm und 10 mm. Der Durchmesser des ersten Kanals 36 beträgt beispielsweise 0,5 mm, und der Durchmesser des zweiten Kanals 37 beträgt beispielsweise 0,25 mm, jeweils bei kreisförmigem Bohrungs- oder Kanalquerschnitt.
  • Der erste Kanal 36 und der zweite Kanal 37 sind als Bohrungen ausgeführt und (strömungstechnisch) als Blende bzw. Drossel wirksam. Mit diesem, aus der Druckleitung 35 und den beiden Kanälen 36, 37 gebildeten Kanalsystem wird eine strömungstechnisch besonders effektive Regelung des (statischen) Drucks in der Gegendruckkammer 25 erreicht. Der radiale Abstand des mit den Verdichterkammern 24 verbundenen ersten Kanals 36 zum in der Basisplatte 23b des feststehenden Scrolls 23 angeordneten und in die Hochdruckkammer 29 führenden zentralen Auslass 28 ist im Ausführungsbeispiel größer als der radiale Abstand des mit der Hochdruckkammer 29 verbundenen zweiten Kanals 37 zum zentralen Auslass 28. Jedoch kann der zweite Kanal 37 auch näher am zentralen Auslass 28 angeordnet sein als der erste Kanal 36. Wesentlich ist, dass die beiden Kanäle 36 und 37 nicht direkt axial einander gegenüberliegend angeordnet sind.
  • Aufgrund des bei Betrieb vorherrschenden statischen Drucks innerhalb der Gegendruckkammer 25 ist der bewegliche Scroll 21 druckbeaufschlagt und wird, wie durch die mit FG bezeichneten Kraftpfeile veranschaulicht, entlang der Rotationsachse 14 gegen den feststehenden Scroll 23 gepresst. Diese Kraft (Gegenkraft) FG wirkt der durch die Kraftpfeile veranschaulichten Axialkraft FV entgegen, die in Folge des in den Verdichterkammern 24 herrschenden Drucks wiederum auf den beweglichen Scroll 21 wirkt. Zusammen mit dem aus der Hochdruckkammer 29 über die Druckleitung 35 an die Gegendruckkammer 25 übertragenen (weitergegebenen) Druck stellt sich ein Kräftegleichgewicht (FG = FV) und damit die gewünschte Dichtwirkung zwischen den beiden Scrolls 21, 23 ein.
  • Die Figuren 5 und 6 zeigen in einer perspektivischen Darstellung bzw. in einer Draufsicht den feststehenden Scroll 23 mit dem ersten Kanal 36, der in der Basisplatte 23b an einer innerhalb der Scrollwand (Scrollspirale) 23a vorbestimmten Winkelposition PK1 angeordnet ist und dort zur Druckleitung 35, d. h. zu deren innerhalb der Basisplatte 23b verlaufenden ersten Leitungsabschnitt 35a führt. Die Position PK1 des ersten Kanals 36 befindet sich ausgehend von dem in Fig. 6 als Winkellinie ϕ1s eingezeichneten Spiral-Anfang der Spiralwand 23a des feststehenden Scrolls 23 vorzugsweise bei dem Spiralwinkel ϕ1 = 370°. Auch ist eine Position PK2 des ersten Kanals 36 ausgehend vom in Fig. 6 als Winkellinie ϕ2s eingezeichneten Spiral-Ende der Spiralwand 23a des feststehenden Scrolls 23 bei dem Spiralwinkel ϕ2 = 370 zweckmäßig. Erkennbar ist auch der in den dritten Leitungsabschnitt 35c mündende Kanalaustritt des zweiten Leitungsabschnitts 35b innerhalb der, vorzugsweise umlaufend geschlossenen, Begrenzungswand 23c des feststeheden Scrolls 23.
  • Die Figuren 7 und 8 zeigen in einer perspektivischen Darstellung bzw. in einer Draufsicht den feststehenden Scroll 23 mit Blick auf dessen in der Hochdruckkammer 29 befindlichen Plattenseite der Basisplatte 23b. Dort befindet sich eine Aufnahmeöffnung 41 in die Verdichterkammern 24. In diese Aufnahmeöffnung 41 ist eine Filter (Filter-Einsatz) 42 aufgenommen, der einen Filterschaft 42a und einen Blenden- oder Drosselkopf 42b aufweist, in welchem der zweite Kanal 37, beispielsweise als zentrale Bohrung, vorgesehen ist. Die Öffnung 41 ist zur Aufnahme, Positionierung und/oder Lagestabilisierung des Blenden- oder Drosselkopfes 42b des Filters (Filter-Einsatzes) 42 von einer Wandung 43 kragenartig umgeben.
  • Fig. 9 zeigt eine Schnittdarstellung des feststehenden Scrolls 23 entlang der Linien IX-IX in Fig. 8. Bei dieser Ausführungsform ist der erste Leitungsabschnitt 35a der Druckleitung 35 durch zwei Abschnitte a1, a2 in Form schräg verlaufender Bohrungen gebildet, die von der Aufnahmeöffnung 41 her in die Basisplatte 23b eingebracht sind. Der erste Abschnitt a1 verläuft in Richtung des Zentrums bzw. zum mittleren Bereich der Basisplatte 23b. Der zweite Abschnitt a2 verläuft zum zweiten Leitungsabeschnitt 35b der Druckleitung 35 in der Begrenzungswand 35c des feststehenden Scrolls 23 und mündet dort in den zweiten Leitungsabschnitt 35b der Druckleitung 35. In den ersten Abschnitt a1 des ersten Leitungsabschnitts 35a der Druckleitung 35 mündet der erste Kanal 36 unter Herstellung der (druck- und/oder strömungstechnischen) Verbindung der Verdichterkammern 24 mit der Druckleitung 35 und über diese mit der in Figur 9 nicht gezeigten Gegendruckkammer 25.
  • Durch die beiden strömungsregelnden Kanäle 36, 37 und deren Verbindung zu der in die Gegendruckkammer 25 führenden Druckleitung 35 in dem feststehenden Scroll 23 wird eine besonders effektive, selbst einstellende Anpassung des Drucks in der Gegendruckkammer 25 in praktisch allen Arbeitsbereichen oder - punkten des Scrollverdichters 3 erreicht. So erfolgt die adaptive Regelung des Drucks in der Gegendruckkammer 25 mittels der beiden Kanäle 36, 37 und der Druckleitung 35 im feststehenden Scroll 23 bei einem Saugdruck (Niederdruck) von 3 bar und einem Hochdruck von 15 bar ebenso zuverlässig und selbst einstellende, wie bei einem Saugdruck von 3 bar und einem Hochdruck von 25 bar oder einem Saugdruck von 1,5 bar und einem Hochdruck von 15 bar (Arbeitspunkt im Wärmepumpenbetrieb). Der Scrollverdichter 3 und somit der Kältemittelverdichter 1 kann daher bei Arbeitspunkten im Kühlungs- und im Wärmepumpenmodus einer Fahrzeugklimaanlage mit hoher Effizienz betrieben werden.
  • Die strömungstechnische Regelung und adaptive Anpassung des Drucks in der Gegendruckkammer 25, auch an unterschiedlichen Arbeitspunkte des Scrollverdichters 3, kann durch die Querschnittsverhältnisse der Druckleitung 35 und der beiden Kanäle 36, 37 sowie deren Positionierung in Bezug auf die Verdichterkammer(n) 24 beeinflusst werden. So ist die Position PK1, PK2 des ersten Kanals 36 derart gewählt, dass dieser bei einem relativen Volumen der Verdichterkammer 24 von ca. 90% öffnet und bis zu einem relativen Kammervolumen von ca. 25% geöffnet bleibt.
  • Der orbitierenden Scroll 21 durchläuft vom Kompressionsvorgang des Kältemittel-Gas-Gemisches in den Verdichterkammern 24 bis zum Ausstoßprozess des verdichteten Kältemittel-Gas-Gemisches über den zentralen Auslass 28 in die Hochdruckkammer 29 des Scrollverdichters 3 typischerweise einen Winkelbereich von 900°. Daher ist der die Verdichterkammern 24 mit der Druckleitung 35 verbindende erste Kanal 36 im feststehenden Scroll 23 geeigneterweise an der in Fig. 4 veranschaulichten Position PK1, PK2 bei dem entsprechenden Spralwinkel ϕ1,2 = 370° positioniert.
  • Zusammenfassend weist der, insbesondere für Kältemittel einer Fahrzeugklimaanlage vorgesehene und eingerichtete, Scrollverdichter 3 in einem Verdichtergehäuse 12 mit einer Hochdruckkammer 27 und mit Verdichterkammern 24 sowie mit einer Gegendruckkammer (Backpressure-Kammer) 25 einen feststehenden Scroll 23 und einen beweglich, im Verdichterbetrieb orbitierenden (oszillierenden, eine Rollbewegung durchführenden) Scroll 21 auf. Dabei bilden die Scrolls 21, 23, die jeweils eine Basisplatte 21a, 23a und eine mit dieser einteilige (an diese angeformte) Scroll- oder Spiralwand 21a, aufweisen, zwischen deren ineinandergreifenden Scroll- oder Spiralwänden 21a bzw. 23a die Verdichterkammer(n) 24. Die Basisplatte 23b des feststehenden Scrolls 23 begrenzt die Hochdruckkammer 27, und die Basisplatte 21b des beweglichen Scrolls 21 begrenzt die Gegendruckkammer 25.
  • Die Gegendruckkammer 25 steht über eine zumindest teilweise im feststehenden Scroll 23 verlaufende Druckleitung 35 und einen ersten Kanal 36 mit zumindest einer der Verdichterkammern 24 und über einen zweiten Kanal 37 mit der Hochdruckkammer 27 in Verbindung. Dabei entsteht bzw. herrscht betriebsbedingt in der Druckleitung 35, über welche die Gegendruckkammer 25 strömungstechnisch mit der Hochdruckkammer 27 und mit der zumindest einen der Verdichterkammern 24 kommuniziert, ein auch in der Gegendruckkammer 25 wirkender statischer Druck.
  • Die beanspruchte Erfindung ist nicht auf die vorstehend beschriebenen Ausführungsbeispiele beschränkt. Vielmehr können auch andere Varianten der Erfindung von dem Fachmann hieraus im Rahmen der offenbarten Ansprüche abgeleitet werden, ohne den Gegenstand der beanspruchten Erfindung zu verlassen. Insbesondere sind ferner alle im Zusammenhang mit den verschiedenen Ausführungsbeispielen beschriebenen Einzelmerkmale im Rahmen der offenbarten Ansprüche auch auf andere Weise kombinierbar, ohne den Gegenstand der beanspruchten Erfindung zu verlassen.
  • Bezugszeichenliste
  • 1
    Kältemittelverdichter
    2
    Antriebsmodul
    3
    Scrollverdichter/Verdichtermodul
    4
    Schnittstelle
    5
    Lagerschild/Zwischenwand
    5a
    Zwischenplatte/Ware-Plate
    6
    Flanschverbindung
    7
    Antriebsgehäuse
    7a
    Motorgehäuse
    7b
    Gehäusezwischenwand
    7c
    Gehäusedeckel
    7d
    Elektronikgehäuse
    8
    Motorelektronik
    9
    Anschlussabschnitt
    9a,b
    Motoranschluss
    10
    Einlass/Zulauf
    11
    Auslass
    12
    Verdichtergehäuse
    13
    Elektromotor
    14
    Rotorachse
    15
    Rotor
    16
    Stator
    17
    Welle
    17a
    Wellenzapfen
    17b
    Fügestift
    18,19
    Leiterplatte
    20
    Bestromungsleitung
    21
    beweglicher/orbitierender Scroll/-teil
    21a
    Scrollwand/-spirale
    21b
    Basisplatte
    22a,b
    Wälz-/Kugellager
    23
    feststehender Scroll/-teil
    23a
    Scrollwand/-spirale
    23b
    Basisplatte
    23c
    Begrenzungswand
    24
    Verdichterkammer
    24'
    Kammerbereich
    25
    Gegendruckkammer
    26
    Niederdruck-/Saugseite
    27
    Öffnung
    28
    zentraler Auslass
    29
    Hochdruck-/Auslasskammer
    30
    Ölabscheider
    31
    Bypasskanal
    32
    Drosselorgan
    33
    Federventil
    34
    Anschlagelement
    35
    Druckleitung
    35a
    erster Leitungsabschnitt
    35b
    zweiter Leitungsabschnitt
    35c
    dritter Leitungsabschnitt
    36
    erster Kanal
    37
    zweiter Kanal
    38
    Ölrückführung
    39
    Drosselorgan
    40
    (unterbrochene) Pfeillinie
    41
    Aufnahmeöffnung
    42
    Filter-/Einsatz
    42a
    Filterschaft
    42b
    Drossel-/Blendenkopf
    a1
    erster Abschnitt
    a2
    zweiter Abschnitt
    ϕ1,2
    Spiralwinkel
    ϕ1s
    Spiral-Anfang
    ϕ2s
    Spiral-Ende
    A
    Axialrichtung
    FG
    Gegenkraft
    FV
    Axial kraft
    PK1,2
    Position von 36

Claims (15)

  1. Scrollverdichter (3) für Kältemittel einer Fahrzeugklimaanlage, aufweisend
    - ein Gehäuse (12) mit einer Hochdruckkammer (29) und mit Verdichterkammern (24) sowie mit einer Gegendruckkammer (25),
    - einen feststehenden Scroll (23) mit einer Basisplatte (23b) und mit einer Spiralwand (23a), wobei die Basisplatte (23b) des feststehenden Scrolls (23) die Hochdruckkammer (29) begrenzt,
    - einen beweglichen Scroll (21) mit einer Basisplatte (21b) und mit einer Spiralwand (21a), die in die Spiralwand (23b) des feststehenden Scrolls (23) eingreift und mit dieser die Verdichterkammern (24) bildet, wobei die Basisplatte (21b) des beweglichen Scrolls (21) die Gegendruckkammer (25) begrenzt,
    dadurch gekennzeichnet,
    dass die Gegendruckkammer (25) über eine Druckleitung (35) mit den Verdichterkammern (24) und mit der Hochdruckkammer (29) in Verbindung steht, wobei die Druckleitung (35) zumindest teilweise im feststehenden Scroll (23) verläuft und über einen ersten Kanal (36) mit zumindest einer der Verdichterkammern (24) sowie über einen zweiten Kanal (37) mit der Hochdruckkammer (29) verbunden ist.
  2. Scrollverdichter (3) nach Anspruch 1,
    dadurch gekennzeichnet,
    dass der erste Kanal (36), der mit der zumindest einen der Verdichterkammern (24) verbunden ist, und/oder der mit der Hochdruckkammer (29) verbundene zweite Kanal (37) in der Basisplatte (23b) des feststehenden Scrolls (23) angeordnet sind bzw. ist.
  3. Scrollverdichter (3) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    - dass die Druckleitung (35) einen ersten Leitungsabschnitt (35a) aufweist, der in der Basisplatte (23b) des feststehenden Scrolls (23) angeordnet ist, und
    - dass die Druckleitung (35) einen mit dem ersten Leitungsabschnitt (35a) verbundenen zweiten Leitungsabschnitt (35b) aufweist, der in einer Begrenzungswand (23c) des feststehenden Scrolls (23) oder in einer Gehäusewand des Gehäuses (12) angeordnet ist.
  4. Scrollverdichter (3) nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass die Gegendruckkammer (25) von einer Niederdruckkammer (26) mittels einer Zwischenwand (5) abgegrenzt ist, in welcher ein zur Gegendruckkammer (25) führender, insbesondere als Bohrung oder Nut ausgebildeter, dritter Leitungsabschnitt (35c) der Druckleitung (35) angeordnet ist.
  5. Scrollverdichter (3) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass das Verhältnis der Querschnittsfläche der Druckleitung (35) zur Querschnittsfläche des mit der Verdichterkammer (24) verbundenen ersten Kanals (36) zwischen 10 und 100 ist, vorzugsweise zwischen 15 und 70.
  6. Scrollverdichter (3) nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass das Verhältnis der Querschnittsfläche der Druckleitung (35) zur Querschnittsfläche des mit der Hochkammer (29) verbundenen zweiten Kanals (36) zwischen 50 und 500 ist.
  7. Scrollverdichter (3) nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Querschnittsfläche des mit der Verdichterkammer (24) verbundenen ersten Kanals (36) größer ist als die Querschnittsfläche des mit der Hochdruckkammer (29) verbundenen zweiten Kanals (37).
  8. Scrollverdichter (3) nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet,
    dass die Querschnittsfläche des mit der Verdichterkammer (24) verbundenen ersten Kanals (36) zwischen 0,01 mm und 1 mm, vorzugsweise 0,25 mm, beträgt.
  9. Scrollverdichter (3) nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass die Querschnittsfläche des mit der Hochdruckkammer (29) verbundenen zweiten Kanals (37) zwischen 0,01 mm und 2 mm, vorzugsweise 0,5 mm, beträgt.
  10. Scrollverdichter (3) nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass das Verhältnis zwischen der Querschnittsfläche des mit der Verdichterkammer (24) verbundenen ersten Kanals (36) und der Querschnittsfläche des mit der Hochdruckkammer (29) verbundenen zweiten Kanals (37) zwischen 2 und 10, vorzugsweise 4, beträgt.
  11. Scrollverdichter (3) nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass der erste Kanal (36) und/oder der zweite Kanal (37) als Bohrung ausgeführt und/oder als Blende oder Drossel wirksam ist bzw. sind.
  12. Scrollverdichter (3) nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass der mit der Verdichterkammer (24) verbundene erste Kanal (36) ausgehend vom Anfang und/oder vom Ende der Spiralwand (23a) des feststehenden Scrolls (23) bei einem Spiralwinkel (ϕ1,2) von 350° bis 390°, vorzugsweise 370°, angeordnet ist.
  13. Scrollverdichter (3) nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet,
    dass der radiale Abstand des mit der Verdichterkammer (24) verbundenen ersten Kanals (36) zu einem in der Basisplatte (23b) des feststehenden Scrolls (23) angeordneten und in die Hochdruckkammer (29) führenden zentralen Auslass (28) größer oder kleiner ist als der radiale Abstand des mit der Hochdruckkammer (29) verbundenen zweiten Kanals (37) zum zentralen Auslass (28).
  14. Scrollverdichter (3) nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet,
    dass der zweite Kanal (37) in einem Filter (42) angeordnet ist, der in eine Aufnahmeöffnung (41) eingesetzt ist, die in der Basisplatte (23b) auf deren der Hochdruckkammer (29) zugewandten Plattenseite eingebracht ist.
  15. Scrollverdichter (3) nach Anspruch 14,
    dadurch gekennzeichnet,
    dass ausgehend von der Aufnahmeöffnung (41) zwei schräg verlaufende Abschnitte (a1, a2) des oder eines ersten Leitungsabschnitts (35a) der Druckleitung (35) vorgesehen sind, wobei der erste Kanal (36) in einen ersten Abschnitt (a1) mündet, und wobei der zweite Abschnitt (a2) in den oder in einen zweiten Leitungsabschnitt (35b) der Druckleitung (35) mündet.
EP18212076.6A 2018-12-12 2018-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage Active EP3667086B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19191561.0A EP3670915B1 (de) 2018-12-12 2018-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage
EP18212076.6A EP3667086B1 (de) 2018-12-12 2018-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage
PCT/EP2019/084837 WO2020120659A1 (de) 2018-12-12 2019-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage
CN201980080121.2A CN113167273B (zh) 2018-12-12 2019-12-12 根据螺旋原理的容积式机器,特别是用于车辆空调机组的涡旋式压缩机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18212076.6A EP3667086B1 (de) 2018-12-12 2018-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP19191561.0A Division EP3670915B1 (de) 2018-12-12 2018-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage
EP19191561.0A Division-Into EP3670915B1 (de) 2018-12-12 2018-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage

Publications (2)

Publication Number Publication Date
EP3667086A1 true EP3667086A1 (de) 2020-06-17
EP3667086B1 EP3667086B1 (de) 2023-03-29

Family

ID=64665193

Family Applications (2)

Application Number Title Priority Date Filing Date
EP18212076.6A Active EP3667086B1 (de) 2018-12-12 2018-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage
EP19191561.0A Active EP3670915B1 (de) 2018-12-12 2018-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP19191561.0A Active EP3670915B1 (de) 2018-12-12 2018-12-12 Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage

Country Status (3)

Country Link
EP (2) EP3667086B1 (de)
CN (1) CN113167273B (de)
WO (1) WO2020120659A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177683A (ja) * 1995-12-27 1997-07-11 Daikin Ind Ltd スクロール形流体機械
DE19720790A1 (de) * 1997-05-17 1998-12-03 Bitzer Kuehlmaschinenbau Gmbh Kompressor
DE19853240A1 (de) * 1998-11-18 2000-05-31 Bitzer Kuehlmaschinenbau Gmbh Kompressor
DE102012104045A1 (de) 2012-05-09 2013-11-14 Halla Visteon Climate Control Corporation 95 Kältemittelscrollverdichter für Kraftfahrzeugklimaanlagen
EP2369182B1 (de) 2008-12-03 2016-07-13 Kabushiki Kaisha Toyota Jidoshokki Spiralverdichter
DE102017110913B3 (de) 2017-05-19 2018-08-23 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Fahrzeugklimaanlage und Fahrzeug

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5315933B2 (ja) * 2008-06-05 2013-10-16 株式会社豊田自動織機 電動スクロール型圧縮機
JP5199951B2 (ja) * 2009-06-01 2013-05-15 日立アプライアンス株式会社 スクロール圧縮機
KR101810461B1 (ko) * 2011-03-24 2017-12-19 엘지전자 주식회사 스크롤 압축기

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177683A (ja) * 1995-12-27 1997-07-11 Daikin Ind Ltd スクロール形流体機械
JP3146963B2 (ja) * 1995-12-27 2001-03-19 ダイキン工業株式会社 スクロール形流体機械
DE19720790A1 (de) * 1997-05-17 1998-12-03 Bitzer Kuehlmaschinenbau Gmbh Kompressor
DE19853240A1 (de) * 1998-11-18 2000-05-31 Bitzer Kuehlmaschinenbau Gmbh Kompressor
EP2369182B1 (de) 2008-12-03 2016-07-13 Kabushiki Kaisha Toyota Jidoshokki Spiralverdichter
DE102012104045A1 (de) 2012-05-09 2013-11-14 Halla Visteon Climate Control Corporation 95 Kältemittelscrollverdichter für Kraftfahrzeugklimaanlagen
DE102017110913B3 (de) 2017-05-19 2018-08-23 OET GmbH Verdrängermaschine nach dem Spiralprinzip, Verfahren zum Betreiben einer Verdrängermaschine, Fahrzeugklimaanlage und Fahrzeug

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
NIETER ET AL.: "International Compressor Engineering Conferenz", 1990, PURDUE E-PUBS (PURDUE UNIVERSITY, article "Dynamics of Compliance Mechanisms in Scroll Compressors, Part I: Axial Compliance"
TOJO ET AL.: "A Scroll Compressor for Air Conditioners", 1984, PURDUE E-PUBS (PURDUE UNIVERSITY, article "International Compressor Engineering Conferenz"
TOJO ET AL.: "International Compressor Engineering Conferenz", 1984, PURDUE E-PUBS (PURDUE UNIVERSITY, article "A Scroll Compressor for Air Conditioners"
TOJO ET AL.: "International Compressor Engineering Conferenz", 1986, PURDUE E-PUBS (PURDUE UNIVERSITY, article "Computer Modeling of Scroll Compressor with Self Adjusting Back-Pressure Mechanism"
TOJO ET AL.: "International Compressor Engineering Conferenz", 1986, PURDUE E-PUBS (PURDUE UNIVERSITY, article "Comuter Modeling of Scroll Compressor with Self Adjusting Back-Pressure Mechanism"

Also Published As

Publication number Publication date
CN113167273A (zh) 2021-07-23
WO2020120659A1 (de) 2020-06-18
CN113167273B (zh) 2023-06-27
EP3670915B1 (de) 2023-02-08
EP3667086B1 (de) 2023-03-29
EP3670915A1 (de) 2020-06-24

Similar Documents

Publication Publication Date Title
EP3545195B1 (de) Verdrängermaschine nach dem spiralprinzip, verfahren zum betreiben einer verdrängermaschine, verdrängerspirale, fahrzeugklimaanlage und fahrzeug
DE102016218396B4 (de) Kältemittelverdichter
EP3404264B1 (de) Spiralverdichter und sein betriebsverfahren
DE3623825C2 (de)
DE102005001462B4 (de) Spiralkompressor
DE3445321A1 (de) Abgedichteter spiralkompressor
WO2018197458A1 (de) Verdichter
WO2020201477A1 (de) Scrollverdichter für eine fahrzeugklimaanlage
EP3667086B1 (de) Verdrängermaschine nach dem spiralprinzip, insbesondere scrollverdichter für eine fahrzeugklimaanlage
DE102019208680A1 (de) Verdrängermaschine nach dem Spiralprinzip, insbesondere Scrollverdichter für eine Fahrzeugklimaanlage
DE102011121365B4 (de) Spiralverdichter mit axial verschiebbarem Spiralblatt
DE102008008860B4 (de) Verdichter
DE3826548C2 (de) Flügelzellenverdichter mit variabler Förderleistung
DE102017102645B4 (de) Kältemittel-Scrollverdichter für die Verwendung innerhalb einer Wärmepumpe
DE102016217358A1 (de) Scrollverdichter
DE3812487C2 (de) Flügelzellenverdichter mit variabler Förderleistung
DE102020210453B4 (de) Scrollverdichter eines elektrischen Kältemittelantriebs
DE102019201477A1 (de) Motorbetriebener Kompressor
DE102020200256B4 (de) Scrollverdichter
DE10205121A1 (de) Spiralkompressor
DE3801306A1 (de) Fluegelzellenverdichter
DE19912482B4 (de) Spiralverdichter
DE4016865C2 (de) Flügelzellenverdichter mit verstellbarer Leistung
DE102019200507A1 (de) Scrollverdichter für eine Fahrzeugklimaanlage
DE112017004471B4 (de) Spiralverdichter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201217

RAV Requested validation state of the european patent: fee paid

Extension state: MA

Effective date: 20201217

Extension state: TN

Effective date: 20201217

Extension state: KH

Effective date: 20201217

Extension state: MD

Effective date: 20201217

RAX Requested extension states of the european patent have changed

Extension state: ME

Payment date: 20201217

Extension state: BA

Payment date: 20201217

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018011851

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1556842

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230731

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MD

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018011851

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231231

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240103