EP3664214B1 - Multiple access radiant elements - Google Patents

Multiple access radiant elements Download PDF

Info

Publication number
EP3664214B1
EP3664214B1 EP19212776.9A EP19212776A EP3664214B1 EP 3664214 B1 EP3664214 B1 EP 3664214B1 EP 19212776 A EP19212776 A EP 19212776A EP 3664214 B1 EP3664214 B1 EP 3664214B1
Authority
EP
European Patent Office
Prior art keywords
guide
excitation
horn
radiating element
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19212776.9A
Other languages
German (de)
French (fr)
Other versions
EP3664214C0 (en
EP3664214A1 (en
Inventor
Jean-Philippe Fraysse
Charalampos STOUMPOS
Hervé Legay
Ségolène TUBAU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3664214A1 publication Critical patent/EP3664214A1/en
Application granted granted Critical
Publication of EP3664214C0 publication Critical patent/EP3664214C0/en
Publication of EP3664214B1 publication Critical patent/EP3664214B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/0208Corrugated horns
    • H01Q13/0225Corrugated horns of non-circular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials

Definitions

  • the invention relates to the general field of antennas, in particular satellite antennas, in particular active antennas, array antennas or multibeam antennas.
  • antennas comprise several radiating elements, the invention relates more specifically to radiating elements with compact multiple accesses and high radiation efficiency.
  • An array antenna is made up of radiating elements which must respect certain characteristics. They must in particular have a radiating surface whose maximum dimensions depend on the operating frequency and on the desired angular spacing between the main lobe generated by the antenna and its array lobes. Taking these dimensional constraints into account, they must have the maximum surface efficiency, ie close to 100%.
  • the surface efficiency characterizes the coefficient between the directivity of the radiating element and that which would be obtained by a radiating aperture occupying the space allocated to the radiating element, and on which a uniform distribution of the electric field is imposed. Maximizing the area efficiency of the radiating elements helps to optimize array antenna gain and reduce sidelobe and arraylobe levels.
  • the gain will be maximized, and it will thus be possible to minimize the power of the amplifiers of the transmitting antennas or to maximize the G/T ratio of the receiving antennas.
  • the radiating elements must also have a small size and a low mass and/or the ability to be excited in a compact manner in single or bi-polarization and a passband compatible with the intended application.
  • a general problem which the invention seeks to solve consists in designing radiating elements which make it possible to obtain at the output of the radiating aperture an electric field which is as uniform as possible while respecting the imposed sizing constraints.
  • each radiating element must be compact and have a short profile.
  • the radiating element of the figure 1 comprises a first access waveguide 101 and a second waveguide 102 in the shape of a flared horn towards the radiating opening.
  • the section of the horn is square in shape. This type of known radiating element makes it possible to ensure a smooth transition between the signal guided via the access guide 101 and the signal radiated at the output of the horn 102.
  • the radiating element 100 of the figure 1 however, has the disadvantage of low radiation efficiency because it does not make it possible to obtain an electric field uniformly distributed over its opening. Indeed, the structure of the horn 102 only favors the propagation of the fundamental mode of the wave excited at the level of the access guide 101.
  • FIG. 2 schematically represents a profile sectional view of the radiating element 100.
  • the curve 103 schematizes the distribution of the density of the electric field radiated at the opening of the horn 102. As indicated on the figure 2 , the maximum energy of the radiated electric field is reached at the center of the opening while the energy decreases progressively from the center towards the edges of the opening.
  • the profile of the horn can be modified in the way described on the example of the picture 3 .
  • the horn 302 no longer has a straight linear profile but an undulating profile or so-called “spline” profile.
  • Such a profile consists in producing undulations on the wall of the horn 302 in order to excite and control the propagation of higher modes of the wave radiated inside the horn. This example is described in publication (1).
  • FIG 4 schematizes another example of radiating element 400 as described in publication (2).
  • an array of horns each having a small aperture is used in an attempt to achieve better overall radiation efficiency for the radiating aperture of the antenna.
  • the radiating element 400 thus consists of several sub-elements each comprising an access guide 401.411 and a horn 402.412 of the type described in figure 1 .
  • a power splitter 404 ensures the uniform and phased supply of the various sub-elements of the network.
  • the distribution 403 of the density of the electric field radiated at the opening of the horn array is also not uniform. In particular, it has a minima close to 0 at the center of the distribution.
  • the solution of the figure 4 has the advantage of using radiating sub-elements with a small opening and which therefore have a length that is markedly less than that of a radiating element of the type of figure 1 .
  • This solution thus makes it possible to develop compact radiating elements.
  • it does not make it possible to obtain a uniform distribution of the electric field on the radiating opening because, as schematized by the curve 403 on the figure 4 , the tangential electric field is canceled on the metal walls of this radiating element, and minimum levels of the electric field are identified between the various horns 402,412 which penalizes the overall radiation efficiency.
  • Another disadvantage of the solution of the figure 4 is that it requires the use of a power splitter 404 connected to the radiating sub-elements to supply them in phase. The splitter 404 must respect the mesh of the antenna and be very compact so as not to penalize the overall profile of the antenna.
  • FIG. 5 diagrams yet another example of radiating element 500 as described in US patent US6211838 .
  • This solution consists of a radiating aperture network supplied by a power splitter integrated in the horn 502 as the latter flares out.
  • This solution has a radiation efficiency comparable to that of the example of the figure 4 with the same drawback of electric field level minima between the different openings as illustrated by the electric field curve 503.
  • the radiating element 600 consists of several Fabry-Pérot cavities 603,613,604 which are superimposed, the assembly being fed by several access guides 602,612.
  • Each Fabry-Pérot cavity 603,613,604 is a metal cavity closed by a gate 606,616,626 which is configured to reflect part of the signal injected at the center of the cavity towards its periphery.
  • This approach achieves better surface radiation efficiency than the solutions described previously, as illustrated by the electric field curve 605.
  • it has the disadvantage of being difficult to apply over a wide frequency band while guaranteeing a good adaptation to the accesses.
  • the invention proposes a new type of radiating element which is based on the excitation of a single radiating opening by several accesses. Unlike a known array of radiating elements, the proposed radiating element comprises a horn common to all the ports which are coupled to the common horn at an excitation interface and via excitation guides.
  • the excitation guides In order to control the excitation and combination levels of the different wave propagation modes on the radiating aperture, the excitation guides also work in several modes. The excitation and the control of these modes in the excitation guides are obtained in particular thanks to their asymmetry.
  • the subject of the invention is a radiating element comprising at least two supply guides and a horn common to the at least two supply guides and having an excitation interface, each supply guide being separate from the other supply guides.
  • each power guide consisting of an access guide and an excitation guide connected to the access guide by an access interface and connected to the common horn by the excitation interface, each guide excitation being flared in the direction of the access interface towards the excitation interface, each excitation guide having no axis of symmetry
  • the at least two supply guides being identical and arranged symmetrically 'one with respect to the other with respect to a plane of symmetry of the radiating element, and the flare profile of each excitation guide is configured so as to control, in amplitude and in phase, the modes of propagation of a radiating wave propagated from each access guide to the output of the horn, so that the electric field obtained at the output of the horn is substantially uniform.
  • the splaying profile of each excitation guide is configured in such a way as to promote the propagation of a fundamental mode of propagation and of a higher propagation mode of order two in the guide. of excitement.
  • each excitation guide is configured so as to favor the propagation, in the horn, of several modes of propagation of odd orders, from the mode of fundamental propagation and of the second order upper propagation mode propagated in each excitation guide.
  • the flare profile of each excitation guide is configured so as to control the amplitude and the phase of each mode of propagation propagated in the horn so that the electric field resulting from the combination of all the propagation modes propagated in the horn is uniform at the output of the horn.
  • the radiating element according to the invention comprises at least four supply guides, the horn being common to four supply guides, the four supply guides being arranged symmetrically with one another with respect to two planes of orthogonal symmetry.
  • each supply guide is configured so that the longitudinal axis of an access guide is off-center with respect to the center of the opening of the excitation guide connected to the interface of excitement.
  • the radiating element according to the invention further comprises a power splitter to excite the access guides in phase.
  • a cross section of the excitation guide is of square, rectangular or circular shape.
  • the radiating element operates in mono-polarization or in bi-polarization.
  • each excitation guide has a continuous or discontinuous widening profile.
  • the common horn is axisymmetric.
  • each excitation guide has a flared profile on a first plane and an invariant profile on a second plane orthogonal to the first plane.
  • the invention also relates to a radiating device comprising at least four radiating elements according to one of the preceding claims and a secondary horn common to the four radiating elements and connected via a input interface to the openings of the respective horns of each radiating element.
  • the invention also relates to an antenna comprising a plurality of radiating elements or a plurality of radiating devices according to the invention.
  • FIG. 7 shows a diagram, in side view according to a longitudinal section, of an example of an antenna element according to a first embodiment of the invention.
  • the antenna element 700 comprises two supply guides coupled to a common horn 703 via an excitation interface 704.
  • the common horn 703 is, for example, an axisymmetric horn of square or rectangular section or circular, the choice of the section being made according to the dimensioning constraints of the network of antenna elements, in particular the mesh of the network.
  • Each power guide includes an access guide 701.711 coupled to an excitation guide 702.712.
  • the access guides and the excitation guides are, for example, produced in waveguide technology.
  • Each excitation guide is flared in the direction of the access guide towards the excitation interface 704.
  • an important characteristic of the antenna element is that each excitation guide has no axis of symmetry, in particular its longitudinal section (as shown in the figure 7 ) is asymmetric.
  • the two supply guides are identical and arranged symmetrically with respect to each other with respect to a plane of symmetry 706 and coupled to the excitation interface 704 as illustrated in the figure 7 .
  • the access guides 701.711 are, for example, guides with a square or rectangular or circular section with a straight profile.
  • the excitation guides 702.712 may likewise have a square, rectangular or circular profile, but they have an asymmetric widening profile. The widening profile of an excitation guide is dimensioned so as to effectively excite and control a combination of propagation modes of the wave at the exit of the radiating aperture 705 of the common horn 703.
  • FIG 8 diagrams a side view of an 800 feed guide identical to one of the feed guides described in figure 7 .
  • the 800 feed guide has the particularity of having an asymmetrical profile. More precisely, the axis 806 of symmetry of the access guide 801 is offset with respect to the axis 805 passing through the center of the opening 804 of the excitation guide 802, the axis 805 being orthogonal to the interface of excitement. In other words, the axis 806 of symmetry of the access guide 801 intersects the surface defined by the opening 804 of the excitation guide at a point which is not the center of the surface.
  • asymmetrical profile it is also meant that the excitation guide 802 has no axis of orthogonal symmetry, unlike the horns usually used in the known solutions.
  • a longitudinal section of an excitation guide (as shown in figure 8 ) has no axis of symmetry along the length.
  • the axis 805 is not an axis of symmetry since the flare profiles on the two sides of the axis 805 are not identical.
  • the splay profile of an excitation guide can be obtained by setting increasing values for the perimeters of the cross-sections of the guide according to planes orthogonal to the view of the figure 8 and which intersect the axis 805 in an increasing direction from the access guide 801 towards the excitation interface.
  • the asymmetry of the excitation guide requires that the centers of the cross sections of the excitation guide are not aligned on the same straight line perpendicular to the sections.
  • the cross-section of the excitation guide may have a variable perimeter with globally increasing values in the direction of the aforementioned axis 805 although locally the perimeter may decrease slightly.
  • FIG. 9 schematizes a perspective view of a first embodiment of the antenna element according to the invention.
  • the excitation guides 902.912 have a widening profile along a first plane and a straight profile along a second plane orthogonal to the first plane.
  • the radiating opening of the horn 903 is rectangular in shape with length a and width b.
  • an excitation guide 902.912 has no axis of symmetry, i.e. it does not exhibit invariance by rotation through an angle of 180° although it exhibits a plane of symmetry parallel to side a.
  • a general objective of the invention is to obtain, on the radiating aperture 903 of the radiating element 900, a uniform distribution of the electric field of the radiated wave.
  • the width b of the horn is less than ⁇ /2, with ⁇ the wavelength of the signal.
  • FIG 10 schematically represents the radiating aperture of the antenna element of the figure 9 with a uniform distribution of the electric field over the entire aperture. This uniform distribution is represented by arrows of the same thickness which reflect transverse components of the electric field of the same intensity. There figure 10 represents the desired distribution of the electric field on the radiating aperture.
  • FIG 11 represents a distribution of the electric field on the same radiating aperture but this time considering that only the fundamental mode TE 10 is propagated.
  • the energy of the electric field presents a higher level in the center of the opening than on the edges as it is represented on the figure 11 by means of arrows whose thickness, which reflects the intensity of the electric field, decreases from the center towards the edges of the opening, each arrow representing a transverse component of the electric field.
  • FIG 12 schematically represents a combination of several modes making it possible to obtain a substantially uniform distribution 1200 of the electric field. It is a question of combining in phase several modes TE m0 , with m an odd integer, with an amplitude ratio equal to 1/m between the upper mode TE m0 , m being at least equal to 3, and the fundamental mode TE 10 . Ideally, to arrive at a strictly uniform electric field, it would be necessary to combine an infinity of modes TE m0 , m being odd and varying from 1 to infinity. However, each higher mode is associated with a decreasing cutoff wavelength ( ⁇ c ) mn (given by relation (Eq.1)).
  • the modes whose cut-off wavelength is greater than the wavelength of the signal cannot propagate.
  • FIG 12 illustrates, on a diagram, the distribution of the electric fields of the TE 10 , TE 30 and TE 50 modes as well as the result 1200 of the aforementioned combination. The direction of the arrows gives the orientation of the electric field.
  • the invention consists, in particular, in generating and controlling the level of the fundamental mode and of the higher modes of odd orders at the output of the common horn to obtain a substantially uniform electric field 1200 on the radiating aperture.
  • the common horn is excited via an excitation interface fed by several excitation guides which each promote the propagation of several modes.
  • the access guides 701,711 are powered in phase via an excitation source (not shown on the figure 7 ).
  • the access guides 701,711 are dimensioned so that only the fundamental modes TE 10 propagate in the access guides.
  • the access guides 701,711 are waveguides having a rectangular section and a straight profile, the section being dimensioned in such a way that only the fundamental modes can propagate.
  • There figure 13 represented schematically the electric fields corresponding to the fundamental modes TE 10.1 , TE 10.2 respectively observed at the output of the first access guide 701 and of the second access guide 711. These fundamental modes are excited in phase.
  • the gradual widening of the excitation guides 702,712 then allows the higher order two-order mode TE 20 to propagate.
  • a fundamental mode TE 10 and a higher mode of order two TE 20 are propagated in each of the excitation guides 702.712 .
  • There figure 14 schematically represents the electric fields corresponding to the two-order modes TE 20.1 , TE 20.2 generated in the excitation guides 702.712.
  • the two-order modes TE 20.1 , TE 20.2 are excited in phase opposition due to the plane of symmetry 706 between the two excitation guides 702.712.
  • the propagation of the second order modes in the excitation guides 702,712 is favored by the asymmetrical shape of the excitation guides and the misalignment between an access guide and the opening of an excitation guide (such as illustrated at figure 8 ).
  • the fundamental and second-order modes generated in the excitation guides 702,712 a suitable combination of the odd-order modes (in the present example, fundamental, third-order and fifth-order modes) is obtained.
  • the even order modes (for example of order two or four) cannot be excited in the common horn due to the excitation symmetry of the common horn which is linked to the symmetry of the antenna element with respect to the plane 706.
  • the second order modes generated in the excitation guides are in phase opposition and require an asymmetrical structure to propagate. Naturally, they cannot propagate into the common turbinate 703.
  • each of the modes TE 10.1 , TE 10.2 , TE 20.1 , TE 20.2 , generated in the excitation guides 702.712 makes it possible to generate modes TE 10, TE 30, TE 50, in the horn common 703 (due in particular to the larger section of the common horn compared to the section of an excitation guide).
  • the controlled association of the modes TE 10, TE 30, TE 50 generated on the one hand from the fundamental modes TE 10.1 , TE 10.2 and the modes TE 10, TE 30, TE 50 generated from on the other hand, from the fundamental modes TE 20.1 , TE 20.2 makes it possible to approach the desired amplitude ratios between the different modes:
  • 1/3 and
  • 1/5 and also allows correct phase alignment of these different modes.
  • the control of the amplitudes and phase of the TE 10, TE 30, TE 50 modes generated in the horn 703 from the TE 10, TE 20 modes generated in the excitation guides 702,712 is obtained by the asymmetrical widening profile of a excitement guide.
  • the flare profile can be obtained by numerical optimization by means of a software simulator making it possible to simulate the propagation of the various modes of the electric field as well as their phase and their amplitude, as a function of the flare profile.
  • the flare profile of an excitation guide can be obtained by determining, for different points on the longitudinal axis of the excitation guide, the dimension of the section of the guide at this point, this dimension increasing with the widening from the access guide to the excitation interface with the common horn.
  • the splay profile of an excitation guide can be obtained for a discrete number of sections, resulting in a discontinuous "step" shaped profile as shown in Fig. figure 7 or the figure 9 .
  • the profile can also be continuous as shown in the figure 15 which represents a variant embodiment 1500 of the antenna element described in figure 7 .
  • the antenna element has a flared and asymmetrical profile only on one plane, with an invariant straight profile on the other perpendicular plane.
  • the antenna element 1600 can also have a flared and asymmetrical profile on the two orthogonal planes in order to increase the radiation aperture.
  • the section of an excitation guide is rectangular.
  • the section of an excitation guide can also be square or circular, then allowing operation of the antenna element in bipolarization.
  • the excitation guides make it possible to propagate transverse modes TE 0n in addition to the transverse modes TE m0 described previously for the case of a guide of rectangular section.
  • the electric field can propagate with modes in the two perpendicular directions as shown in Fig. figure 17 for the case of the fundamental modes TE 10 and TE 01 and a square waveguide section.
  • the antenna element is not limited to operation with two ports as described so far. It may comprise a number greater than two of supply guides, preferably a number equal to a power of two.
  • the antenna element 1800 may comprise four feed guides 1801,1802,1803,1804, arranged symmetrically with respect to two orthogonal planes of symmetry, and a common horn 1810.
  • Each feed guide comprises an access guide and an asymmetrical excitation guide.
  • FIG 19 describes yet another embodiment of the antenna element 1900 this time comprising 16 supply guides arranged in groups of four. Each group of four feed guides is arranged as on the antenna element 1800 of the figure 19 .
  • the horn is common to the eight feed guides making it possible to further increase the radiating aperture.
  • the common horn may be composed of several levels or stages.
  • This principle is illustrated in the figure 20 by a side view of an antenna element with sixteen feed guides.
  • the antenna element 2000 of the figure 20 includes a common horn made up of five elementary horns, three of which are visible in the profile view of the figure 20 .
  • Four elementary cones 2001,2002 are positioned above the four sets of four feed guides.
  • Another elementary horn 2003 is positioned above the four horns 2001,2002 of the first level.
  • the 2003 cone of the second level combines the four cones 2001,2002 of the first level.
  • the principle described in figure 20 can easily be extended to cones arranged on more than two levels.
  • the antenna element may comprise three levels of horns, a first level with 16 horns each being common to four feed guides, a second level with 4 horns and a third level with a cornet.
  • the access guides must be excited in phase.
  • a power splitter can be coupled to the inputs of the access guides.
  • FIG 21 represents an example of an antenna element 2100 with two ports and operating in mono-polarization.
  • the in-phase excitation of the two access guides is carried out by means of a power splitter 2101 which mainly comprises an H-plane junction 2102 and matching sections 2103 to interface the H-plane junction with on the one hand the access guides of the antenna element and on the other hand the source of excitation.
  • FIG 22 represents another example of an antenna element 2200 with four ports operating in bi-polarization.
  • the four access guides are coupled to a power distributor 2201 which distributes to each access guide a signal fraction of each of the two polarizations with the same amplitude and the same phase.
  • An example of a power splitter adapted to fulfill this function is a splitter comprising four ortho-mode transducers of the type described in the Applicant's French patent application filed under the number FR1700993 .
  • the power splitter is separate from the antenna element and does not make it possible to generate higher order propagation modes.
  • the power splitter is integrated into the antenna element 2300.
  • the functions of power splitting and excitation of the propagation modes are combined and provided jointly by the same device in waveguide technology.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Photovoltaic Devices (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Escalators And Moving Walkways (AREA)

Description

L'invention concerne le domaine général des antennes, notamment les antennes satellites, en particulier les antennes actives, les antennes réseaux ou les antennes multifaisceaux. De telles antennes comprennent plusieurs éléments rayonnants, l'invention porte plus précisément sur des éléments rayonnants à accès multiples compacts et à haute efficacité de rayonnement.The invention relates to the general field of antennas, in particular satellite antennas, in particular active antennas, array antennas or multibeam antennas. Such antennas comprise several radiating elements, the invention relates more specifically to radiating elements with compact multiple accesses and high radiation efficiency.

Une antenne réseau est constituée d'éléments rayonnants qui doivent respecter certaines caractéristiques. Ils doivent notamment présenter une surface rayonnante dont les dimensions maximales dépendent de la fréquence de fonctionnement et de l'écartement angulaire souhaité entre le lobe principal généré par l'antenne et ses lobes de réseau. En tenant compte de ces contraintes dimensionnelles, ils doivent présenter l'efficacité de surface maximale, c'est à dire proche de 100%. L'efficacité de surface caractérise le coefficient entre la directivité de l'élément rayonnant et celle qui serait obtenue par une ouverture rayonnante occupant l'espace alloué à l'élément rayonnant, et sur laquelle une distribution uniforme du champ électrique est imposée. Maximiser l'efficacité de surface des éléments rayonnants permet d'optimiser le gain de l'antenne réseau et de réduire les niveaux des lobes secondaires et des lobes de réseau.An array antenna is made up of radiating elements which must respect certain characteristics. They must in particular have a radiating surface whose maximum dimensions depend on the operating frequency and on the desired angular spacing between the main lobe generated by the antenna and its array lobes. Taking these dimensional constraints into account, they must have the maximum surface efficiency, ie close to 100%. The surface efficiency characterizes the coefficient between the directivity of the radiating element and that which would be obtained by a radiating aperture occupying the space allocated to the radiating element, and on which a uniform distribution of the electric field is imposed. Maximizing the area efficiency of the radiating elements helps to optimize array antenna gain and reduce sidelobe and arraylobe levels.

En respectant ces contraintes, pour une surface d'antenne donnée le gain sera maximisé, et il sera ainsi possible de minimiser la puissance des amplificateurs des antennes d'émission ou de maximiser le rapport G/T des antennes de réception.By respecting these constraints, for a given antenna surface, the gain will be maximized, and it will thus be possible to minimize the power of the amplifiers of the transmitting antennas or to maximize the G/T ratio of the receiving antennas.

Les éléments rayonnants doivent en outre avoir un faible encombrement et une faible masse et/ou la capacité à être excité de manière compacte en simple ou bi-polarisation et une bande passante compatible avec l'application visée.The radiating elements must also have a small size and a low mass and/or the ability to be excited in a compact manner in single or bi-polarization and a passband compatible with the intended application.

Ainsi, un problème général que cherche à résoudre l'invention consiste à concevoir des éléments rayonnants qui permettent d'obtenir en sortie de l'ouverture rayonnante un champ électrique le plus uniforme possible tout en respectant les contraintes de dimensionnement imposées. En particulier, chaque élément de rayonnement doit être compact et présenter un profil court.Thus, a general problem which the invention seeks to solve consists in designing radiating elements which make it possible to obtain at the output of the radiating aperture an electric field which is as uniform as possible while respecting the imposed sizing constraints. In particular, each radiating element must be compact and have a short profile.

Différentes solutions existent dans l'état de l'art pour concevoir des éléments rayonnants pour des antennes satellite. Généralement, elles utilisent toutes des structures métalliques afin de minimiser les pertes d'insertion. On connait en particulier les solutions décrites dans les documents de brevet FR 2477785 , EP1930982 et FR2739226 .Different solutions exist in the state of the art for designing radiating elements for satellite antennas. Generally, they all use metallic structures in order to minimize insertion losses. We know in particular the solutions described in the patent documents EN 2477785 , EP1930982 And FR2739226 .

La figure 1 schématise un premier exemple d'élément rayonnant 100 selon l'art antérieur. L'élément rayonnant de la figure 1 comprend un premier guide d'onde d'accès 101 et un second guide d'onde 102 en forme de cornet évasé vers l'ouverture rayonnante. Sur l'exemple de la figure 1, la section du cornet est de forme carrée. Ce type d'élément rayonnant connu permet d'assurer une transition douce entre le signal guidé via le guide d'accès 101 et le signal rayonné en sortie du cornet 102.There figure 1 schematizes a first example of radiating element 100 according to the prior art. The radiating element of the figure 1 comprises a first access waveguide 101 and a second waveguide 102 in the shape of a flared horn towards the radiating opening. On the example of the figure 1 , the section of the horn is square in shape. This type of known radiating element makes it possible to ensure a smooth transition between the signal guided via the access guide 101 and the signal radiated at the output of the horn 102.

L'élément rayonnant 100 de la figure 1 présente cependant l'inconvénient d'une faible efficacité de rayonnement car il ne permet pas d'obtenir un champ électrique uniformément réparti sur son ouverture. En effet, la structure du cornet 102 ne favorise que la propagation du mode fondamental de l'onde excitée au niveau du guide d'accès 101.The radiating element 100 of the figure 1 however, has the disadvantage of low radiation efficiency because it does not make it possible to obtain an electric field uniformly distributed over its opening. Indeed, the structure of the horn 102 only favors the propagation of the fundamental mode of the wave excited at the level of the access guide 101.

La figure 2 représente schématiquement une vue en coupe de profil de l'élément rayonnant 100. La courbe 103 schématise la distribution de la densité du champ électrique rayonné à l'ouverture du cornet 102. Comme indiqué sur la figure 2, le maximum d'énergie du champ électrique rayonné est atteint au centre de l'ouverture tandis que l'énergie décroit progressivement du centre vers les bords de l'ouverture.There figure 2 schematically represents a profile sectional view of the radiating element 100. The curve 103 schematizes the distribution of the density of the electric field radiated at the opening of the horn 102. As indicated on the figure 2 , the maximum energy of the radiated electric field is reached at the center of the opening while the energy decreases progressively from the center towards the edges of the opening.

Afin de tenter d'obtenir une répartition du champ électrique plus homogène sur l'ouverture de l'élément rayonnant, le profil du cornet peut être modifié de la façon décrite sur l'exemple de la figure 3. Sur cet exemple, le cornet 302 n'a plus un profil linéaire droit mais un profil ondulé ou profil dit « spline ». Un tel profil consiste à réaliser des ondulations sur la paroi du cornet 302 afin d'exciter et de contrôler la propagation de modes supérieurs de l'onde rayonnée à l'intérieur du cornet. Cet exemple est décrit dans la publication (1). Grâce à ce type de profil, une combinaison adéquate des différents modes de propagation de l'onde est obtenue sur l'ouverture rayonnante du cornet 302 ce qui conduit à une répartition plus homogène du champ électrique 303 tel que schématisé sur la figure 3. Cependant, la répartition du champ électrique n'est toujours pas uniforme car l'énergie décroit, sur cet exemple imagé, vers le centre de l'ouverture. Dans d'autres variantes de réalisation de ce type de cornet, le champ électrique peut présenter plus de deux maxima d'énergie mais dans tous les cas la répartition du champ électrique n'est pas uniforme.In order to try to obtain a more homogeneous distribution of the electric field on the opening of the radiating element, the profile of the horn can be modified in the way described on the example of the picture 3 . In this example, the horn 302 no longer has a straight linear profile but an undulating profile or so-called “spline” profile. Such a profile consists in producing undulations on the wall of the horn 302 in order to excite and control the propagation of higher modes of the wave radiated inside the horn. This example is described in publication (1). Thanks to this type of profile, an adequate combination of the different propagation modes of the wave is obtained on the radiating aperture of the horn 302 which leads to a distribution more homogeneous of the electric field 303 as schematized on the picture 3 . However, the distribution of the electric field is still not uniform because the energy decreases, in this imaged example, towards the center of the opening. In other variant embodiments of this type of horn, the electric field may have more than two energy maxima but in all cases the distribution of the electric field is not uniform.

La figure 4 schématise un autre exemple d'élément rayonnant 400 tel que décrit dans la publication (2). Dans cet exemple, on utilise un réseau de cornets ayant chacun une petite ouverture dans le but d'obtenir une meilleure efficacité de rayonnement globale pour l'ouverture rayonnante de l'antenne. L'élément rayonnant 400 est ainsi constitué de plusieurs sous-éléments comprenant chacun un guide d'accès 401,411 et un cornet 402,412 du type décrit à la figure 1. Un répartiteur de puissance 404 assure l'alimentation uniforme et en phase des différents sous-éléments du réseau. La distribution 403 de la densité du champ électrique rayonné à l'ouverture du réseau de cornets n'est pas non plus uniforme. Elle présente notamment un minima proche de 0 au centre de la répartition.There figure 4 schematizes another example of radiating element 400 as described in publication (2). In this example, an array of horns each having a small aperture is used in an attempt to achieve better overall radiation efficiency for the radiating aperture of the antenna. The radiating element 400 thus consists of several sub-elements each comprising an access guide 401.411 and a horn 402.412 of the type described in figure 1 . A power splitter 404 ensures the uniform and phased supply of the various sub-elements of the network. The distribution 403 of the density of the electric field radiated at the opening of the horn array is also not uniform. In particular, it has a minima close to 0 at the center of the distribution.

La solution de la figure 4 présente l'avantage d'utiliser des sous-éléments rayonnants de petite ouverture et qui présentent donc une longueur nettement inférieure à celle d'un élément rayonnant du type de la figure 1. Cette solution permet ainsi de développer des éléments rayonnants compacts. Toutefois, elle ne permet pas d'obtenir une répartition uniforme du champ électrique sur l'ouverture rayonnante car, comme schématisé par la courbe 403 sur la figure 4, le champ électrique tangentiel s'annule sur les parois métalliques de cet élément rayonnant, et des minimums de niveau du champ électrique sont identifiés entre les différents cornets 402,412 ce qui pénalise l'efficacité de rayonnement globale. Un autre inconvénient de la solution de la figure 4 est qu'elle nécessite l'utilisation d'un répartiteur de puissance 404 connecté aux sous-éléments rayonnants pour les alimenter en phase. Le répartiteur 404 doit respecter la maille de l'antenne et être très compact afin de ne pas pénaliser le profil global de l'antenne.The solution of the figure 4 has the advantage of using radiating sub-elements with a small opening and which therefore have a length that is markedly less than that of a radiating element of the type of figure 1 . This solution thus makes it possible to develop compact radiating elements. However, it does not make it possible to obtain a uniform distribution of the electric field on the radiating opening because, as schematized by the curve 403 on the figure 4 , the tangential electric field is canceled on the metal walls of this radiating element, and minimum levels of the electric field are identified between the various horns 402,412 which penalizes the overall radiation efficiency. Another disadvantage of the solution of the figure 4 is that it requires the use of a power splitter 404 connected to the radiating sub-elements to supply them in phase. The splitter 404 must respect the mesh of the antenna and be very compact so as not to penalize the overall profile of the antenna.

La figure 5 schématise encore un autre exemple d'élément rayonnant 500 tel que décrit dans le brevet américain US6211838 . Cette solution consiste en un réseau d'ouverture rayonnante alimenté par un répartiteur de puissance intégré dans le cornet 502 au fur et à mesure que celui-ci s'évase. Cette solution présente une efficacité de rayonnement comparable à celle de l'exemple de la figure 4 avec le même inconvénient de minima de niveau du champ électrique entre les différentes ouvertures tel qu'illustré par la courbe de champ électrique 503.There figure 5 diagrams yet another example of radiating element 500 as described in US patent US6211838 . This solution consists of a radiating aperture network supplied by a power splitter integrated in the horn 502 as the latter flares out. This solution has a radiation efficiency comparable to that of the example of the figure 4 with the same drawback of electric field level minima between the different openings as illustrated by the electric field curve 503.

La figure 6 schématise encore un autre exemple d'élément rayonnant 600 décrit dans la demande de brevet français FR3012917 . Dans cet exemple, l'élément rayonnant 600 est constitué de plusieurs cavités Fabry-Pérot 603,613,604 qui sont superposées, l'ensemble étant alimenté par plusieurs guides d'accès 602,612. Chaque cavité Fabry-Pérot 603,613,604 est une cavité métallique refermée par une grille 606,616,626 qui est configurée pour réfléchir une partie du signal injecté au centre de la cavité vers sa périphérie. Cette approche permet d'obtenir une meilleure efficacité de rayonnement en surface que les solutions décrites précédemment, comme illustré par la courbe de champ électrique 605. Toutefois, elle présente l'inconvénient d'être difficile à appliquer sur une large bande de fréquence tout en garantissant une bonne adaptation aux accès.There figure 6 schematizes yet another example of radiating element 600 described in the application for French patent FR3012917 . In this example, the radiating element 600 consists of several Fabry-Pérot cavities 603,613,604 which are superimposed, the assembly being fed by several access guides 602,612. Each Fabry-Pérot cavity 603,613,604 is a metal cavity closed by a gate 606,616,626 which is configured to reflect part of the signal injected at the center of the cavity towards its periphery. This approach achieves better surface radiation efficiency than the solutions described previously, as illustrated by the electric field curve 605. However, it has the disadvantage of being difficult to apply over a wide frequency band while guaranteeing a good adaptation to the accesses.

Aucune des solutions de l'état de l'art ne permet d'obtenir une densité de champ électrique réellement uniforme en sortie de cornet tout en conservant une compacité nécessaire pour des applications d'antennes actives.None of the solutions of the state of the art makes it possible to obtain a truly uniform electric field density at the horn output while retaining the compactness necessary for active antenna applications.

L'invention propose un nouveau type d'élément rayonnant qui s'appuie sur l'excitation d'une seule ouverture rayonnante par plusieurs accès. Contrairement à un réseau d'éléments rayonnants connu, l'élément rayonnant proposé comprend un cornet commun à tous les accès qui sont couplés au cornet commun au niveau d'une interface d'excitation et par l'intermédiaire de guides d'excitation.The invention proposes a new type of radiating element which is based on the excitation of a single radiating opening by several accesses. Unlike a known array of radiating elements, the proposed radiating element comprises a horn common to all the ports which are coupled to the common horn at an excitation interface and via excitation guides.

L'utilisation d'un cornet commun à plusieurs accès permet de favoriser l'excitation des modes supérieurs de l'onde sur la surface rayonnante contrairement à un réseau d'élément rayonnant classique. Afin de contrôler, les niveaux d'excitation et de combinaison des différents modes de propagation de l'onde sur l'ouverture rayonnante, les guides d'excitations fonctionnent également sur plusieurs modes. L'excitation et le contrôle de ces modes dans les guides d'excitation sont obtenus notamment grâce à leur dissymétrie.The use of a common horn with several accesses makes it possible to promote the excitation of the higher modes of the wave on the radiating surface, unlike a network of conventional radiating elements. In order to control the excitation and combination levels of the different wave propagation modes on the radiating aperture, the excitation guides also work in several modes. The excitation and the control of these modes in the excitation guides are obtained in particular thanks to their asymmetry.

L'association de l'excitation en plusieurs points d'un élément rayonnant (permettant naturellement une répartition plus homogène du champ électrique) aux nombreux paramètres d'optimisation apportés par la solution proposée permet de contrôler plus efficacement la combinaison des différents modes de propagation en sortie de l'ouverture rayonnante sur une distance plus réduite dans l'axe de propagation du signal que les solutions connues. Il s'ensuit que la solution proposée permet de développer des éléments rayonnants qui sont à la fois très efficaces et très compacts.The association of the excitation at several points of a radiating element (naturally allowing a more homogeneous distribution of the electric field) with the numerous optimization parameters provided by the proposed solution makes it possible to more effectively control the combination of the different modes of propagation in exit from the radiating aperture over a shorter distance in the signal propagation axis than the known solutions. It follows that the proposed solution makes it possible to develop radiating elements which are both very efficient and very compact.

L'invention a pour objet un élément rayonnant comprenant au moins deux guides d'alimentation et un cornet commun aux au moins deux guides d'alimentation et ayant une interface d'excitation, chaque guide d'alimentation étant distinct des autres guides d'alimentation, chaque guide d'alimentation étant constitué d'un guide d'accès et d' un guide d'excitation connecté au guide d'accès par une interface d'accès et connecté au cornet commun par l'interface d'excitation, chaque guide d'excitation étant évasé dans le sens de l'interface d'accès vers l'interface d'excitation, chaque guide d'excitation étant dépourvu d'axe de symétrie, les au moins deux guides d'alimentation étant identiques et disposés symétriquement l'un par rapport à l'autre par rapport à un plan de symétrie de l'élément rayonnant, et le profil d'évasement de chaque guide d'excitation est configuré de manière à contrôler, en amplitude et en phase, les modes de propagation d'une onde rayonnante propagée depuis chaque guide d'accès jusqu'à la sortie du cornet, pour que le champ électrique obtenu en sortie du cornet soit sensiblement uniforme.The subject of the invention is a radiating element comprising at least two supply guides and a horn common to the at least two supply guides and having an excitation interface, each supply guide being separate from the other supply guides. , each power guide consisting of an access guide and an excitation guide connected to the access guide by an access interface and connected to the common horn by the excitation interface, each guide excitation being flared in the direction of the access interface towards the excitation interface, each excitation guide having no axis of symmetry, the at least two supply guides being identical and arranged symmetrically 'one with respect to the other with respect to a plane of symmetry of the radiating element, and the flare profile of each excitation guide is configured so as to control, in amplitude and in phase, the modes of propagation of a radiating wave propagated from each access guide to the output of the horn, so that the electric field obtained at the output of the horn is substantially uniform.

Selon un aspect particulier de l'invention, le profil d'évasement de chaque guide d'excitation est configuré de manière à favoriser la propagation d'un mode de propagation fondamental et d'un mode de propagation supérieur d'ordre deux dans le guide d'excitation.According to a particular aspect of the invention, the splaying profile of each excitation guide is configured in such a way as to promote the propagation of a fundamental mode of propagation and of a higher propagation mode of order two in the guide. of excitement.

Selon un aspect particulier de l'invention, le profil d'évasement de chaque guide d'excitation est configuré de manière à favoriser la propagation, dans le cornet, de plusieurs modes de propagation d'ordres impairs, à partir du mode de propagation fondamental et du mode de propagation supérieur d'ordre deux propagés dans chaque guide d'excitation.According to a particular aspect of the invention, the widening profile of each excitation guide is configured so as to favor the propagation, in the horn, of several modes of propagation of odd orders, from the mode of fundamental propagation and of the second order upper propagation mode propagated in each excitation guide.

Selon un aspect particulier de l'invention, le profil d'évasement de chaque guide d'excitation est configuré de manière à contrôler l'amplitude et la phase de chaque mode de propagation propagé dans le cornet pour que le champ électrique résultant de la combinaison de l'ensemble des modes de propagation propagés dans le cornet soit uniforme en sortie du cornet.According to a particular aspect of the invention, the flare profile of each excitation guide is configured so as to control the amplitude and the phase of each mode of propagation propagated in the horn so that the electric field resulting from the combination of all the propagation modes propagated in the horn is uniform at the output of the horn.

Selon une variante particulière, l'élément rayonnant selon l'invention comprend au moins quatre guides d'alimentation, le cornet étant commun à quatre guides d'alimentation, les quatre guides d'alimentation étant disposés symétriquement entre eux par rapport à deux plans de symétrie orthogonaux.According to a particular variant, the radiating element according to the invention comprises at least four supply guides, the horn being common to four supply guides, the four supply guides being arranged symmetrically with one another with respect to two planes of orthogonal symmetry.

Selon un aspect particulier de l'invention, chaque guide d'alimentation est configuré de sorte que l'axe longitudinal d'un guide d'accès soit décentré par rapport au centre de l'ouverture du guide d'excitation connectée à l'interface d'excitation.According to a particular aspect of the invention, each supply guide is configured so that the longitudinal axis of an access guide is off-center with respect to the center of the opening of the excitation guide connected to the interface of excitement.

Selon une variante particulière, l'élément rayonnant selon l'invention comprend en outre un répartiteur de puissance pour exciter en phase les guides d'accès.According to a particular variant, the radiating element according to the invention further comprises a power splitter to excite the access guides in phase.

Selon un aspect particulier de l'invention, une section transversale du guide d'excitation est de forme carrée, rectangulaire ou circulaire.According to a particular aspect of the invention, a cross section of the excitation guide is of square, rectangular or circular shape.

Selon un aspect particulier de l'invention, l'élément rayonnant présente un fonctionnement en mono-polarisation ou en bi-polarisation.According to a particular aspect of the invention, the radiating element operates in mono-polarization or in bi-polarization.

Selon un aspect particulier de l'invention, chaque guide d'excitation présente un profil d'évasement continu ou discontinu.According to a particular aspect of the invention, each excitation guide has a continuous or discontinuous widening profile.

Selon un aspect particulier de l'invention, le cornet commun est axisymétrique.According to a particular aspect of the invention, the common horn is axisymmetric.

Selon un aspect particulier de l'invention, chaque guide d'excitation présente un profil évasé sur un premier plan et un profil invariant sur un second plan orthogonal au premier plan.According to a particular aspect of the invention, each excitation guide has a flared profile on a first plane and an invariant profile on a second plane orthogonal to the first plane.

L'invention a aussi pour objet un dispositif rayonnant comprenant au moins quatre éléments rayonnants selon l'une des revendications précédentes et un cornet secondaire commun aux quatre éléments rayonnants et connecté via une interface d'entrée aux ouvertures des cornets respectifs de chaque élément rayonnant.The invention also relates to a radiating device comprising at least four radiating elements according to one of the preceding claims and a secondary horn common to the four radiating elements and connected via a input interface to the openings of the respective horns of each radiating element.

L'invention a aussi pour objet une antenne comprenant une pluralité d'éléments rayonnants ou une pluralité de dispositifs rayonnants selon l'invention.The invention also relates to an antenna comprising a plurality of radiating elements or a plurality of radiating devices according to the invention.

Les dessins annexés illustrent l'invention :

  • [Fig.1] la figure 1 représente un premier exemple d'élément rayonnant selon l'art antérieur,
  • [Fig.2] la figure 2 représente un deuxième exemple d'élément rayonnant selon l'art antérieur,
  • [Fig.3] la figure 3 représente un troisième exemple d'élément rayonnant selon l'art antérieur,
  • [Fig.4] la figure 4 représente un quatrième exemple d'élément rayonnant selon l'art antérieur,
  • [Fig.5] la figure 5 représente un cinquième exemple d'élément rayonnant selon l'art antérieur,
  • [Fig.6] la figure 6 représente un sixième exemple d'élément rayonnant selon l'art antérieur,
  • [Fig.7] la figure 7 représente une vue de profil schématique d'un exemple d'un élément antennaire selon un mode de réalisation de l'invention,
  • [Fig.8] la figure 8 représente une vue de profil schématique d'un guide d'alimentation d'un élément antennaire selon un mode de réalisation de l'invention,
  • [Fig.9] la figure 9 représente une vue en perspective d'un élément antennaire selon un mode de réalisation de l'invention,
  • [Fig.10] la figure 10 représente une vue schématique d'un champ électrique uniforme sur l'ouverture rayonnante de l'élément antennaire de la figure 9,
  • [Fig.11] la figure 11 représente une vue schématique d'un champ électrique résultant uniquement de la propagation d'un mode fondamental TE10,
  • [Fig.12] la figure 12 représente une vue schématique d'une combinaison souhaitée des composantes des modes TE10, TE30 et TE50 pour obtenir un champ électrique sensiblement uniforme,
  • [Fig.13] la figure 13 représente une vue schématique des composantes d'un mode fondamental du champ électrique générés dans les guides d'accès de l'élément antennaire,
  • [Fig. 14] la figure 14 représente une vue schématique des composantes d'un mode d'ordre deux du champ électrique générés dans les guides d'excitation de l'élément antennaire,
  • [Fig. 15] la figure 15 représente une variante de réalisation de l'élément antennaire décrit à la figure 7,
  • [Fig. 16] la figure 16 représente une vue en perspective d'une autre variante de réalisation de l'élément antennaire décrit aux figures 7 et 9,
  • [Fig. 17] la figure 17 représente une vue schématique des composantes d'un mode fondamental du champ électrique générés dans un guide d'accès de section carrée,
  • [Fig. 18] la figure 18 représente une vue en perspective d'encore une autre variante de réalisation de l'invention,
  • [Fig. 19] la figure 19 représente une vue en perspective d'encore une autre variante de réalisation de l'invention,
  • [Fig. 20] la figure 20 représente une vue de profil de la variante de réalisation de la figure 19,
  • [Fig. 21] la figure 21 représente un autre mode de réalisation de l'invention intégrant un répartiteur de puissance,
  • [Fig. 22] la figure 22 représente une variante de réalisation de l'élément antennaire de la figure 21,
  • [Fig. 23] la figure 23 représente encore une autre variante de réalisation de l'élément antennaire de la figure 22.
The accompanying drawings illustrate the invention:
  • [ Fig.1 ] there figure 1 represents a first example of a radiating element according to the prior art,
  • [ Fig.2 ] there picture 2 represents a second example of a radiating element according to the prior art,
  • [ Fig.3 ] there picture 3 represents a third example of a radiating element according to the prior art,
  • [ Fig.4 ] there figure 4 represents a fourth example of a radiating element according to the prior art,
  • [ Fig.5 ] there figure 5 represents a fifth example of a radiating element according to the prior art,
  • [ Fig.6 ] there figure 6 represents a sixth example of a radiating element according to the prior art,
  • [ Fig.7 ] there figure 7 represents a schematic profile view of an example of an antenna element according to one embodiment of the invention,
  • [ Fig.8 ] there figure 8 represents a schematic profile view of a feed guide of an antenna element according to one embodiment of the invention,
  • [ Fig.9 ] there figure 9 represents a perspective view of an antenna element according to one embodiment of the invention,
  • [ Fig.10 ] there figure 10 shows a schematic view of a uniform electric field on the radiating aperture of the antenna element of the figure 9 ,
  • [ Fig.11 ] there figure 11 represents a schematic view of an electric field resulting solely from the propagation of a fundamental mode TE 10 ,
  • [ Fig.12 ] there figure 12 represents a schematic view of a desired combination of the components of the TE 10 , TE 30 and TE 50 modes to obtain a substantially uniform electric field,
  • [ Fig.13 ] there figure 13 represents a schematic view of the components of a fundamental mode of the electric field generated in the access guides of the antenna element,
  • [ Fig. 14 ] there figure 14 represents a schematic view of the components of a second order mode of the electric field generated in the excitation guides of the antenna element,
  • [ Fig. 15 ] there figure 15 represents a variant embodiment of the antenna element described in figure 7 ,
  • [ Fig. 16 ] there figure 16 shows a perspective view of another alternative embodiment of the antenna element described in figure 7 And 9 ,
  • [ Fig. 17 ] there figure 17 represents a schematic view of the components of a fundamental mode of the electric field generated in a square section access guide,
  • [ Fig. 18 ] there figure 18 shows a perspective view of yet another alternative embodiment of the invention,
  • [ Fig. 19 ] there figure 19 shows a perspective view of yet another alternative embodiment of the invention,
  • [ Fig. 20 ] there figure 20 shows a side view of the variant embodiment of the figure 19 ,
  • [ Fig. 21 ] there figure 21 represents another embodiment of the invention integrating a power splitter,
  • [ Fig. 22 ] there figure 22 represents a variant embodiment of the antenna element of the figure 21 ,
  • [ Fig. 23 ] there figure 23 represents yet another alternative embodiment of the antenna element of the figure 22 .

La figure 7 représente un schéma, en vue de profil selon une coupe longitudinale, d'un exemple d'élément antennaire selon un premier mode de réalisation de l'invention.There figure 7 shows a diagram, in side view according to a longitudinal section, of an example of an antenna element according to a first embodiment of the invention.

Dans ce premier mode de réalisation, l'élément antennaire 700 comprend deux guides d'alimentation couplés à un cornet commun 703 via une interface d'excitation 704. Le cornet commun 703 est, par exemple, un cornet axisymétrique de section carrée ou rectangulaire ou circulaire, le choix de la section étant fait en fonction des contraintes de dimensionnement du réseau d'éléments antennaires, en particulier la maille du réseau. Chaque guide d'alimentation comprend un guide d'accès 701,711 couplé à un guide d'excitation 702,712. Les guides d'accès et les guides d'excitation sont, par exemple, réalisés en technologie guide d'ondes. Chaque guide d'excitation est évasé dans le sens du guide d'accès vers l'interface d'excitation 704. Comme cela sera explicité plus en détail par la suite, une caractéristique importante de l'élément antennaire est que chaque guide d'excitation est dépourvu d'axe de symétrie, en particulier sa section longitudinale (telle que représentée sur la figure 7) est asymétrique. Par ailleurs, les deux guides d'alimentation sont identiques et disposés symétriquement l'un par rapport à l'autre par rapport à un plan de symétrie 706 et couplés à l'interface d'excitation 704 tel qu'illustré sur la figure 7. Les guides d'accès 701,711 sont, par exemple, des guides de section carrée ou rectangulaire ou circulaire avec un profil droit. Les guides d'excitation 702,712 peuvent comporter, de même, un profil carré, rectangulaire ou circulaire mais ils présentent un profil d'évasement asymétrique. Le profil d'évasement d'un guide d'excitation est dimensionné de manière à exciter et contrôler efficacement une combinaison des modes de propagation de l'onde en sortie de l'ouverture rayonnante 705 du cornet commun 703.In this first embodiment, the antenna element 700 comprises two supply guides coupled to a common horn 703 via an excitation interface 704. The common horn 703 is, for example, an axisymmetric horn of square or rectangular section or circular, the choice of the section being made according to the dimensioning constraints of the network of antenna elements, in particular the mesh of the network. Each power guide includes an access guide 701.711 coupled to an excitation guide 702.712. The access guides and the excitation guides are, for example, produced in waveguide technology. Each excitation guide is flared in the direction of the access guide towards the excitation interface 704. As will be explained in more detail later, an important characteristic of the antenna element is that each excitation guide has no axis of symmetry, in particular its longitudinal section (as shown in the figure 7 ) is asymmetric. Furthermore, the two supply guides are identical and arranged symmetrically with respect to each other with respect to a plane of symmetry 706 and coupled to the excitation interface 704 as illustrated in the figure 7 . The access guides 701.711 are, for example, guides with a square or rectangular or circular section with a straight profile. The excitation guides 702.712 may likewise have a square, rectangular or circular profile, but they have an asymmetric widening profile. The widening profile of an excitation guide is dimensioned so as to effectively excite and control a combination of propagation modes of the wave at the exit of the radiating aperture 705 of the common horn 703.

La figure 8 schématise une vue de profil d'un guide d'alimentation 800 identique à l'un des guides d'alimentation décrits à la figure 7. Le guide d'alimentation 800 présente la particularité d'avoir un profil dissymétrique. Plus précisément, l'axe 806 de symétrie du guide d'accès 801 est décentré par rapport à l'axe 805 passant par le centre de l'ouverture 804 du guide d'excitation 802, l'axe 805 étant orthogonal à l'interface d'excitation. Autrement dit, l'axe 806 de symétrie du guide d'accès 801 coupe la surface définie par l'ouverture 804 du guide d'excitation en un point qui n'est pas le centre de la surface. Par profil dissymétrique, on entend également que le guide d'excitation 802 ne présente aucun axe de symétrie orthogonale, à la différence des cornets habituellement utilisés dans les solutions connues. Autrement dit, une section longitudinale d'un guide d'excitation (telle que représentée à la figure 8) ne présente aucun axe de symétrie dans le sens de la longueur. En particulier l'axe 805 n'est pas un axe de symétrie puisque les profils d'évasement des deux côtés de l'axe 805 ne sont pas identiques. Le profil d'évasement d'un guide d'excitation peut être obtenu en fixant des valeurs croissantes pour les périmètres des sections transversales du guide selon des plans orthogonaux à la vue de la figure 8 et qui coupent l'axe 805 dans un sens croissant depuis le guide d'accès 801 vers l'interface d'excitation. La dissymétrie du guide d'excitation impose que les centres des sections transversales du guide d'excitation ne sont pas alignés sur une même droite perpendiculaire aux sections. Dans certaines variantes de réalisation, la section transversale du guide d'excitation peut présenter un périmètre variant avec des valeurs globalement croissantes dans le sens de l'axe 805 précité bien que localement le périmètre peut décroitre légèrement.There figure 8 diagrams a side view of an 800 feed guide identical to one of the feed guides described in figure 7 . The 800 feed guide has the particularity of having an asymmetrical profile. More precisely, the axis 806 of symmetry of the access guide 801 is offset with respect to the axis 805 passing through the center of the opening 804 of the excitation guide 802, the axis 805 being orthogonal to the interface of excitement. In other words, the axis 806 of symmetry of the access guide 801 intersects the surface defined by the opening 804 of the excitation guide at a point which is not the center of the surface. By asymmetrical profile, it is also meant that the excitation guide 802 has no axis of orthogonal symmetry, unlike the horns usually used in the known solutions. In other words, a longitudinal section of an excitation guide (as shown in figure 8 ) has no axis of symmetry along the length. In particular the axis 805 is not an axis of symmetry since the flare profiles on the two sides of the axis 805 are not identical. The splay profile of an excitation guide can be obtained by setting increasing values for the perimeters of the cross-sections of the guide according to planes orthogonal to the view of the figure 8 and which intersect the axis 805 in an increasing direction from the access guide 801 towards the excitation interface. The asymmetry of the excitation guide requires that the centers of the cross sections of the excitation guide are not aligned on the same straight line perpendicular to the sections. In certain variant embodiments, the cross-section of the excitation guide may have a variable perimeter with globally increasing values in the direction of the aforementioned axis 805 although locally the perimeter may decrease slightly.

La figure 9 schématise une vue en perspective d'un premier exemple de réalisation de l'élément antennaire selon l'invention. Cet exemple est donné à titre illustratif et non limitatif afin d'expliquer la façon dont est déterminé le profil d'évasement d'un guide d'excitation. Dans cet exemple, les guides d'excitations 902,912 présentent un profil d'évasement selon un premier plan et un profil droit selon un second plan orthogonal au premier plan. Ainsi, l'ouverture rayonnante du cornet 903 est de forme rectangulaire de longueur a et de largeur b. Dans cet exemple, un guide d'excitation 902,912 est dépourvu d'axe de symétrie, c'est-à-dire qu'il ne présente pas d'invariance par rotation d'un angle de 180° bien qu'il présente un plan de symétrie parallèle au côté a.There figure 9 schematizes a perspective view of a first embodiment of the antenna element according to the invention. This example is given by way of non-limiting illustration in order to explain the way in which the flare profile of an excitation guide is determined. In this example, the excitation guides 902.912 have a widening profile along a first plane and a straight profile along a second plane orthogonal to the first plane. Thus, the radiating opening of the horn 903 is rectangular in shape with length a and width b. In this example, an excitation guide 902.912 has no axis of symmetry, i.e. it does not exhibit invariance by rotation through an angle of 180° although it exhibits a plane of symmetry parallel to side a.

Comme explicité en préambule, un objectif général de l'invention est d'obtenir, sur l'ouverture rayonnante 903 de l'élément rayonnant 900, une répartition uniforme du champ électrique de l'onde rayonnée.As explained in the preamble, a general objective of the invention is to obtain, on the radiating aperture 903 of the radiating element 900, a uniform distribution of the electric field of the radiated wave.

On développe à présent, pour l'exemple particulier de la figure 9, comment l'agencement particulier de l'élément rayonnant, et en particulier la forme des guides d'excitation 902,912, permet de tendre vers une répartition uniforme du champ électrique sur l'ouverture rayonnante 903.We now develop, for the particular example of the figure 9 , how the particular arrangement of the radiating element, and in particular the shape of the 902,912 excitation guides, makes it possible to tend towards a uniform distribution of the electric field on the radiating opening 903.

Dans l'exemple de la figure 9, la largeur b du cornet est inférieure à λ/2, avec λ la longueur d'onde du signal. Avec cette configuration, seuls les modes de propagation transverses électrique TEm0 sont propagés dans le cornet, c'est-à-dire les composantes du champ électrique qui sont parallèles au côté du cornet de largeur b. En effet, les modes de propagation TE0n correspondant à des composantes du champ électrique parallèles au côté de longueur a ne peuvent se propager.In the example of the figure 9 , the width b of the horn is less than λ/2, with λ the wavelength of the signal. With this configuration, only the transverse electric propagation modes TE m0 are propagated in the horn, that is to say the components of the electric field which are parallel to the side of the horn of width b. Indeed, the propagation modes TE 0n corresponding to components of the electric field parallel to the side of length a cannot propagate.

On rappelle que la longueur d'onde de coupure d'un mode de propagation TEmn est donnée par la relation :
[Math. 1] λ c mn = 2 m a 2 + n b 2

Figure imgb0001
It is recalled that the cut-off wavelength of a propagation mode TE mn is given by the relationship:
[Math. 1] λ vs min = 2 m To 2 + not b 2
Figure imgb0001

La figure 10 représente, de façon schématique, l'ouverture rayonnante de l'élément antennaire de la figure 9 avec une répartition uniforme du champ électrique sur toute l'ouverture. Cette répartition uniforme est représentée par des flèches de même épaisseur qui traduisent des composantes transverses du champ électrique de même intensité. La figure 10 représente la répartition du champ électrique souhaitée sur l'ouverture rayonnante.There figure 10 schematically represents the radiating aperture of the antenna element of the figure 9 with a uniform distribution of the electric field over the entire aperture. This uniform distribution is represented by arrows of the same thickness which reflect transverse components of the electric field of the same intensity. There figure 10 represents the desired distribution of the electric field on the radiating aperture.

La figure 11 représente une répartition du champ électrique sur la même ouverture rayonnante mais cette fois en considérant que seul le mode fondamental TE10 est propagé. Dans ce cas de figure, l'énergie du champ électrique présente un niveau plus important au centre de l'ouverture que sur les bords comme cela est représenté sur la figure 11 par le biais de flèches dont l'épaisseur, qui traduit l'intensité du champ électrique, décroit du centre vers les bords de l'ouverture, chaque flèche représentant une composante transverse du champ électrique. Ainsi, on voit qu'il n'est pas possible d'obtenir une répartition uniforme du champ électrique si seul le mode TE10 se propage.There figure 11 represents a distribution of the electric field on the same radiating aperture but this time considering that only the fundamental mode TE 10 is propagated. In this case, the energy of the electric field presents a higher level in the center of the opening than on the edges as it is represented on the figure 11 by means of arrows whose thickness, which reflects the intensity of the electric field, decreases from the center towards the edges of the opening, each arrow representing a transverse component of the electric field. Thus, it is seen that it is not possible to obtain a uniform distribution of the electric field if only the TE 10 mode is propagated.

La figure 12 représente schématiquement une combinaison de plusieurs modes permettant d'obtenir une répartition sensiblement uniforme 1200 du champ électrique. Il s'agit de combiner en phase plusieurs modes TEm0, avec m un entier impair, avec un ratio d'amplitude égal à 1/m entre le mode supérieur TEm0, m étant au moins égal à 3, et le mode fondamental TE10. Idéalement, pour arriver à un champ électrique strictement uniforme, il faudrait combiner une infinité de modes TEm0, m étant impair et variant de 1 à l'infini. Cependant, chaque mode supérieur est associé à une longueur d'onde de coupure (λc)mn décroissante (donnée par la relation (Eq.1)). Ainsi, les modes dont la longueur d'onde de coupure est supérieure à la longueur d'onde du signal ne peuvent se propager. Aussi, le nombre de modes pouvant se propager est limité par les dimensions (a,b) du cornet. Par exemple, pour une ouverture rectangulaire de longueur a= 2.6λ (avec λ la longueur d'onde du signal), seuls les modes impairs avec m inférieur ou égal à 5 peuvent se propager. Ainsi, dans l'exemple de la figure 12, il faut combiner en phase les modes TE10, TE30 et TE50 avec un ratio d'amplitude égal à 1/3 entre le mode supérieur d'ordre 3 et le mode fondamental et un ratio d'amplitude égal à 1/5 entre le mode supérieur d'ordre 5 et le mode fondamental. La figure 12 illustre, sur un schéma, la répartition des champs électriques des modes TE10,TE30 et TE50 ainsi que le résultat 1200 de la combinaison précitée. Le sens des flèches donne l'orientation du champ électrique.There figure 12 schematically represents a combination of several modes making it possible to obtain a substantially uniform distribution 1200 of the electric field. It is a question of combining in phase several modes TE m0 , with m an odd integer, with an amplitude ratio equal to 1/m between the upper mode TE m0 , m being at least equal to 3, and the fundamental mode TE 10 . Ideally, to arrive at a strictly uniform electric field, it would be necessary to combine an infinity of modes TE m0 , m being odd and varying from 1 to infinity. However, each higher mode is associated with a decreasing cutoff wavelength (λ c ) mn (given by relation (Eq.1)). Thus, the modes whose cut-off wavelength is greater than the wavelength of the signal cannot propagate. Also, the number of modes that can be propagated is limited by the dimensions (a,b) of the horn. For example, for a rectangular opening of length a=2.6λ (with λ the wavelength of the signal), only the odd modes with m less than or equal to 5 can propagate. So, in the example of the figure 12 , it is necessary to combine in phase the modes TE 10 , TE 30 and TE 50 with an amplitude ratio equal to 1/3 between the higher mode of order 3 and the fundamental mode and an amplitude ratio equal to 1/5 between the higher mode of order 5 and the fundamental mode. There figure 12 illustrates, on a diagram, the distribution of the electric fields of the TE 10 , TE 30 and TE 50 modes as well as the result 1200 of the aforementioned combination. The direction of the arrows gives the orientation of the electric field.

L'invention consiste, notamment, à générer et contrôler le niveau du mode fondamental et des modes supérieurs d'ordres impairs en sortie du cornet commun pour obtenir un champ électrique sensiblement uniforme 1200 sur l'ouverture rayonnante. Pour arriver à ce résultat, le cornet commun est excité par l'intermédiaire d'une interface d'excitation alimentée par plusieurs guides d'excitation qui favorisent chacun la propagation de plusieurs modes.The invention consists, in particular, in generating and controlling the level of the fundamental mode and of the higher modes of odd orders at the output of the common horn to obtain a substantially uniform electric field 1200 on the radiating aperture. To achieve this result, the common horn is excited via an excitation interface fed by several excitation guides which each promote the propagation of several modes.

En reprenant l'exemple de la figure 7, on décrit à présent plus en détail le fonctionnement de la propagation des différents modes de propagation du champ électrique dans l'élément antennaire. Les guides d'accès 701,711 sont alimentés en phase via une source d'excitation (non représentée sur la figure 7). Les guides d'accès 701,711 sont dimensionnés de sorte que seuls les modes fondamentaux TE10 se propagent dans les guides d'accès. Par exemple, les guides d'accès 701,711 sont des guides d'onde présentant une section rectangulaire et un profil droit, la section étant dimensionnée de telle manière que seuls les modes fondamentaux peuvent se propager. La figure 13 représente schématiquement les champs électriques correspondant aux modes fondamentaux TE10,1,TE10,2 respectivement observés en sortie du premier guide d'accès 701 et du second guide d'accès 711. Ces modes fondamentaux sont excités en phase.Returning to the example of the figure 7 , the operation of the propagation of the various modes of propagation of the electric field in the antenna element is now described in more detail. The access guides 701,711 are powered in phase via an excitation source (not shown on the figure 7 ). The access guides 701,711 are dimensioned so that only the fundamental modes TE 10 propagate in the access guides. For example, the access guides 701,711 are waveguides having a rectangular section and a straight profile, the section being dimensioned in such a way that only the fundamental modes can propagate. There figure 13 represented schematically the electric fields corresponding to the fundamental modes TE 10.1 , TE 10.2 respectively observed at the output of the first access guide 701 and of the second access guide 711. These fundamental modes are excited in phase.

L'évasement progressif des guides d'excitation 702,712 permet ensuite au mode supérieur d'ordre deux TE20 de se propager. Ainsi, à partir des modes fondamentaux TE10,1,TE10,2 issus des guides d'accès 701,711, un mode fondamental TE10 et un mode supérieur d'ordre deux TE20, sont propagés dans chacun des guides d'excitation 702,712. La figure 14 représente schématiquement les champs électriques correspondant aux modes d'ordre deux TE20,1,TE20,2 générés dans les guides d'excitation 702,712. Les modes d'ordre deux TE20,1,TE20,2 sont excités en opposition de phase du fait du plan de symétrie 706 entre les deux guides d'excitation 702,712. La propagation des modes d'ordre deux dans les guides d'excitation 702,712 est favorisée par la forme dissymétrique des guides d'excitation et le désaxage entre un guide d'accès et l'ouverture d'un guide d'excitation (tel qu'illustré à la figure 8).The gradual widening of the excitation guides 702,712 then allows the higher order two-order mode TE 20 to propagate. Thus, from the fundamental modes TE 10.1 , TE 10.2 from the access guides 701.711, a fundamental mode TE 10 and a higher mode of order two TE 20 are propagated in each of the excitation guides 702.712 . There figure 14 schematically represents the electric fields corresponding to the two-order modes TE 20.1 , TE 20.2 generated in the excitation guides 702.712. The two-order modes TE 20.1 , TE 20.2 are excited in phase opposition due to the plane of symmetry 706 between the two excitation guides 702.712. The propagation of the second order modes in the excitation guides 702,712 is favored by the asymmetrical shape of the excitation guides and the misalignment between an access guide and the opening of an excitation guide (such as illustrated at figure 8 ).

A partir des modes fondamentaux et d'ordre deux générés dans les guides d'excitation 702,712, une combinaison adéquate des modes d'ordre impair (dans le présent exemple, des modes fondamentaux, d'ordre trois et d'ordre cinq) est obtenue dans le cornet commun 703. En effet, les modes d'ordre pair (par exemple d'ordre deux ou quatre) ne peuvent pas être excités dans le cornet commun du fait de la symétrique d'excitation du cornet commun qui est liée à la symétrie de l'élément antennaire par rapport au plan 706. En effet, les modes d'ordre deux générés dans les guides d'excitation sont en opposition de phase et nécessitent une structure dissymétrique pour se propager. Naturellement, ils ne peuvent pas se propager dans le cornet commun 703.From the fundamental and second-order modes generated in the excitation guides 702,712, a suitable combination of the odd-order modes (in the present example, fundamental, third-order and fifth-order modes) is obtained. in the common horn 703. Indeed, the even order modes (for example of order two or four) cannot be excited in the common horn due to the excitation symmetry of the common horn which is linked to the symmetry of the antenna element with respect to the plane 706. Indeed, the second order modes generated in the excitation guides are in phase opposition and require an asymmetrical structure to propagate. Naturally, they cannot propagate into the common turbinate 703.

Ainsi, chacun des modes TE10,1, TE10,2, TE20,1, TE20,2, générés dans les guides d'excitation 702,712 permet de générer des modes TE10, TE30, TE50, dans le cornet commun 703 (du fait notamment de la section plus grande du cornet commun par rapport à la section d'un guide d'excitation).Thus, each of the modes TE 10.1 , TE 10.2 , TE 20.1 , TE 20.2 , generated in the excitation guides 702.712 makes it possible to generate modes TE 10, TE 30, TE 50, in the horn common 703 (due in particular to the larger section of the common horn compared to the section of an excitation guide).

Les niveaux des modes TE10, TE30, TE50 générés dans le cornet 703 à partir uniquement des modes fondamentaux TE10,1, TE10,2 générés dans les guides d'excitation 702,712 ne permettent pas à eux seuls de respecter les rapports 1/3 et 1/5 entre ces différents modes pour obtenir un champ électrique uniforme.The levels of the TE 10, TE 30, TE 50 modes generated in the horn 703 from only the fundamental modes TE 10.1 , TE 10.2 generated in the guides of excitation 702,712 alone do not make it possible to respect the ratios 1/3 and 1/5 between these different modes to obtain a uniform electric field.

Par contre, l'association contrôlée des modes TE10, TE30, TE50 générés d'une part à partir des modes fondamentaux TE10,1, TE10,2 et des modes TE10, TE30, TE50 générés d'autre part à partir des modes fondamentaux TE20,1, TE20,2, permet d'approcher les rapports d'amplitude souhaités entre les différents modes : |TE30 | / | TE10 | = 1/3 et |TE50 | / | TE10 | = 1/5 et permet aussi un alignement en phase correct de ces différents modes.On the other hand, the controlled association of the modes TE 10, TE 30, TE 50 generated on the one hand from the fundamental modes TE 10.1 , TE 10.2 and the modes TE 10, TE 30, TE 50 generated from on the other hand, from the fundamental modes TE 20.1 , TE 20.2 , makes it possible to approach the desired amplitude ratios between the different modes: |TE 30 | / | TE 10 | = 1/3 and |TE 50 | / | TE 10 | = 1/5 and also allows correct phase alignment of these different modes.

Le contrôle des amplitudes et phase des modes TE10, TE30, TE50 générés dans le cornet 703 à partir des modes TE10, TE20 générés dans les guides d'excitation 702,712 est obtenu par le profil d'évasement dissymétrique d'un guide d'excitation. Plus précisément, le profil d'évasement peut être obtenu par optimisation numérique au moyen d'un simulateur logiciel permettant de simuler la propagation des différents modes du champ électrique ainsi que leur phase et leur amplitude, en fonction du profil d'évasement. Ainsi, il est possible par optimisation de déterminer le profil d'évasement qui permet d'appliquer les combinaisons de modes décrites ci-dessus.The control of the amplitudes and phase of the TE 10, TE 30, TE 50 modes generated in the horn 703 from the TE 10, TE 20 modes generated in the excitation guides 702,712 is obtained by the asymmetrical widening profile of a excitement guide. More precisely, the flare profile can be obtained by numerical optimization by means of a software simulator making it possible to simulate the propagation of the various modes of the electric field as well as their phase and their amplitude, as a function of the flare profile. Thus, it is possible by optimization to determine the widening profile which makes it possible to apply the combinations of modes described above.

Le profil d'évasement d'un guide d'excitation peut être obtenu en déterminant, pour différents points de l'axe longitudinal du guide d'excitation, la dimension de la section du guide en ce point, cette dimension étant croissante avec l'évasement depuis le guide d'accès vers l'interface d'excitation avec le cornet commun.The flare profile of an excitation guide can be obtained by determining, for different points on the longitudinal axis of the excitation guide, the dimension of the section of the guide at this point, this dimension increasing with the widening from the access guide to the excitation interface with the common horn.

Le profil d'évasement d'un guide d'excitation peut être obtenu pour un nombre discret de sections, résultant en un profil discontinu en forme de « marches » comme illustré sur la figure 7 ou la figure 9. Mais le profil peut aussi être continu comme illustré sur la figure 15 qui représente une variante de réalisation 1500 de l'élément antennaire décrit à la figure 7.The splay profile of an excitation guide can be obtained for a discrete number of sections, resulting in a discontinuous "step" shaped profile as shown in Fig. figure 7 or the figure 9 . But the profile can also be continuous as shown in the figure 15 which represents a variant embodiment 1500 of the antenna element described in figure 7 .

Dans l'exemple décrit à la figure 9 qui a servi de base aux explications ci-dessus, l'élément antennaire présente un profil évasé et dissymétrique uniquement sur un plan, avec un profil droit invariant sur l'autre plan perpendiculaire. Dans un autre mode de réalisation illustré à la figure 16, l'élément antennaire 1600 peut aussi présenter un profil évasé et dissymétrique sur les deux plans orthogonaux afin d'augmenter l'ouverture de rayonnement.In the example described in figure 9 which served as the basis for the explanations above, the antenna element has a flared and asymmetrical profile only on one plane, with an invariant straight profile on the other perpendicular plane. In another embodiment illustrated in figure 16 , the antenna element 1600 can also have a flared and asymmetrical profile on the two orthogonal planes in order to increase the radiation aperture.

Dans l'exemple de la figure 9, la section d'un guide d'excitation est rectangulaire. Cependant, la section d'un guide d'excitation peut aussi être carrée ou circulaire permettant alors un fonctionnement de l'élément antennaire en bipolarisation. Dans ce cas, les guides d'excitation permettent de propager des modes transverses TE0n en plus des modes transverses TEm0 décrits précédemment pour le cas d'un guide de section rectangulaire. Autrement dit, le champ électrique peut se propager avec des modes dans les deux directions perpendiculaires comme cela est illustré à la figure 17 pour le cas des modes fondamentaux TE10 et TE01 et une section de guide d'onde carrée.In the example of the figure 9 , the section of an excitation guide is rectangular. However, the section of an excitation guide can also be square or circular, then allowing operation of the antenna element in bipolarization. In this case, the excitation guides make it possible to propagate transverse modes TE 0n in addition to the transverse modes TE m0 described previously for the case of a guide of rectangular section. In other words, the electric field can propagate with modes in the two perpendicular directions as shown in Fig. figure 17 for the case of the fundamental modes TE 10 and TE 01 and a square waveguide section.

Selon une variante de l'invention, l'élément antennaire n'est pas limité à un fonctionnement à deux accès comme décrit jusqu'à présent. Il peut comprendre un nombre supérieur à deux de guides d'alimentation, préférentiellement un nombre égal à une puissance de deux.According to a variant of the invention, the antenna element is not limited to operation with two ports as described so far. It may comprise a number greater than two of supply guides, preferably a number equal to a power of two.

Selon un mode de réalisation de l'invention décrit à la figure 18, l'élément antennaire 1800 peut comporter quatre guides d'alimentation 1801,1802,1803,1804, agencés symétriquement par rapport à deux plans de symétrie orthogonaux, et un cornet commun 1810. Chaque guide d'alimentation comprend un guide d'accès et un guide d'excitation dissymétrique. Un avantage à ce mode de réalisation est qu'il permet d'obtenir une ouverture rayonnante plus large.According to an embodiment of the invention described in figure 18 , the antenna element 1800 may comprise four feed guides 1801,1802,1803,1804, arranged symmetrically with respect to two orthogonal planes of symmetry, and a common horn 1810. Each feed guide comprises an access guide and an asymmetrical excitation guide. An advantage to this embodiment is that it makes it possible to obtain a wider radiating aperture.

La figure 19 décrit encore un autre mode de réalisation de l'élément antennaire 1900 comportant cette fois 16 guides d'alimentation disposés par groupes de quatre. Chaque groupe de quatre guides d'alimentation est agencé comme sur l'élément antennaire 1800 de la figure 19. Le cornet est commun aux huit guides d'alimentation permettant encore d'augmenter l'ouverture rayonnante.There figure 19 describes yet another embodiment of the antenna element 1900 this time comprising 16 supply guides arranged in groups of four. Each group of four feed guides is arranged as on the antenna element 1800 of the figure 19 . The horn is common to the eight feed guides making it possible to further increase the radiating aperture.

Dans une variante de l'exemple de la figure 19, avantageuse pour un nombre important de guides d'alimentation, typiquement un nombre au moins égal à 16, le cornet commun peut être composé de plusieurs niveaux ou étages. Ce principe est illustré sur la figure 20 par une vue de profil d'un élément antennaire à seize guides d'alimentation. L'élément antennaire 2000 de la figure 20 comprend un cornet commun composé de cinq cornets élémentaires dont trois sont visibles sur la vue de profil de la figure 20. Quatre cornets élémentaires 2001,2002 sont positionnés au- dessus des quatre ensembles de quatre guides d'alimentation. Un autre cornet élémentaire 2003 est positionné au-dessus des quatre cornets 2001,2002 du premier niveau. Ainsi, le cornet 2003 du second niveau combine les quatre cornets 2001,2002 du premier niveau. Le principe décrit à la figure 20 peut être aisément étendu à des cornets agencés sur plus de deux niveaux. Par exemple, si l'élément antennaire comprend 16x4=64 guides d'alimentation, il peut comprendre trois niveaux de cornets, un premier niveau avec 16 cornets chacun étant commun à quatre guides d'alimentation, un second niveau avec 4 cornets et un troisième niveau avec un cornet.In a variant of the example of the figure 19 , advantageous for a large number of feed guides, typically a number at least equal to 16, the common horn may be composed of several levels or stages. This principle is illustrated in the figure 20 by a side view of an antenna element with sixteen feed guides. The antenna element 2000 of the figure 20 includes a common horn made up of five elementary horns, three of which are visible in the profile view of the figure 20 . Four elementary cones 2001,2002 are positioned above the four sets of four feed guides. Another elementary horn 2003 is positioned above the four horns 2001,2002 of the first level. Thus, the 2003 cone of the second level combines the four cones 2001,2002 of the first level. The principle described in figure 20 can easily be extended to cones arranged on more than two levels. For example, if the antenna element comprises 16x4=64 feed guides, it may comprise three levels of horns, a first level with 16 horns each being common to four feed guides, a second level with 4 horns and a third level with a cornet.

Sans sortir du cadre de l'invention, d'autres agencements sont possibles, notamment concernant le nombre de guides d'alimentation ou d'accès par élément antennaire.Without departing from the scope of the invention, other arrangements are possible, in particular concerning the number of supply or access guides per antenna element.

Comme explicité précédemment, pour obtenir un fonctionnement optimal de l'élément rayonnant à accès multiples selon l'invention, les guides d'accès doivent être excités en phase. Pour cela, un répartiteur de puissance peut être couplé aux entrées des guides d'accès.As explained previously, to obtain optimum operation of the multiple-access radiating element according to the invention, the access guides must be excited in phase. For this, a power splitter can be coupled to the inputs of the access guides.

La figure 21 représente un exemple d'élément antennaire 2100 à deux accès et fonctionnant en mono-polarisation. Pour cet exemple, l'excitation en phase des deux guides d'accès est réalisée au moyen d'un répartiteur de puissance 2101 qui comprend principalement une jonction plan H 2102 et des sections d'adaptation 2103 pour interfacer la jonction plan H avec d'une part les guides d'accès de l'élément antennaire et d'autre part la source d'excitation.There figure 21 represents an example of an antenna element 2100 with two ports and operating in mono-polarization. For this example, the in-phase excitation of the two access guides is carried out by means of a power splitter 2101 which mainly comprises an H-plane junction 2102 and matching sections 2103 to interface the H-plane junction with on the one hand the access guides of the antenna element and on the other hand the source of excitation.

La figure 22 représente un autre exemple d'élément antennaire 2200 à quatre accès fonctionnant en bi-polarisation. Pour cet exemple, les quatre guides d'accès sont couplés à un répartiteur de puissance 2201 qui distribue à chaque guide d'accès une fraction de signal de chacune des deux polarisations avec la même amplitude et la même phase. Un exemple d'un répartiteur de puissance adapté pour remplir cette fonction est un répartiteur comprenant quatre transducteurs ortho-modes du type décrit dans la demande de brevet français du Demandeur déposée sous le numéro FR1700993 .There figure 22 represents another example of an antenna element 2200 with four ports operating in bi-polarization. For this example, the four access guides are coupled to a power distributor 2201 which distributes to each access guide a signal fraction of each of the two polarizations with the same amplitude and the same phase. An example of a power splitter adapted to fulfill this function is a splitter comprising four ortho-mode transducers of the type described in the Applicant's French patent application filed under the number FR1700993 .

Dans les exemples décrits aux figures 21 et 22, le répartiteur de puissance est séparé de l'élément antennaire et ne permet pas de générer des modes de propagation d'ordre supérieur.In the examples described in figure 21 And 22 , the power splitter is separate from the antenna element and does not make it possible to generate higher order propagation modes.

Dans un autre mode de réalisation décrit à la figure 23, le répartiteur de puissance est intégré à l'élément antennaire 2300. Autrement dit, les fonctions de répartition de puissance et d'excitation des modes de propagation sont réunies et assurées conjointement par un même dispositif en technologie guide d'ondes. Un avantage de ce mode de réalisation est qu'il permet d'ajouter encore des paramètres d'optimisation aux simulations permettant l'ajustement précis du profil de l'élément antennaire en vue d'obtenir un champ électrique uniforme sur l'ouverture rayonnante.In another embodiment described in figure 23 , the power splitter is integrated into the antenna element 2300. In other words, the functions of power splitting and excitation of the propagation modes are combined and provided jointly by the same device in waveguide technology. An advantage of this embodiment is that it makes it possible to add further optimization parameters to the simulations allowing precise adjustment of the profile of the antenna element with a view to obtaining a uniform electric field on the radiating aperture.

RéférencesReferences

  1. (1) Design, manufacturing and test of a spline-profile square horn for focal array applications Isabelle Albert ; Maxime Romier ; Daniel Belot ; Jean-Pierre Adam; Pierrick Hamel, 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics, Year: 2012 (1) Design, manufacturing and testing of a spline-profile square horn for focal array applications Isabelle Albert; Maxime Romier; Daniel Belot; Jean-Pierre Adam; Pierrick Hamel, 2012 15 International Symposium on Antenna Technology and Applied Electromagnetics, Year: 2012
  2. (2) Multibeam antennas based on phased arrays: An overview on recent ESA developments; Giovanni Toso ; Piero Angeletti ; Cyril Mangenot; The 8th European Conférence on Antennas and Propagation (EuCAP 2014); Year: 2014 (2) Multibeam antennas based on phased arrays: An overview on recent ESA developments; Giovanni Toso; Piero Angeletti; Cyril Mangenot; The 8th European Conference on Antennas and Propagation (EuCAP 2014); Year: 2014

Claims (15)

  1. Radiating element (700, 800) comprising at least two feeding guides and one horn common (703) to the at least two feeding guides and having an excitation interface (704), each feeding guide being distinct from the other feeding guides, each feeding guide consisting of a port guide (701, 711, 801) and an excitation guide (702, 712, 802) connected to the port guide (701, 711, 801) by a port interface and connected to the common horn (703) by the excitation interface (704), each excitation guide (702, 712, 802) being flared in the direction from the port interface to the excitation interface (704), each excitation guide (702, 712, 802) not having an axis of symmetry, the at least two feeding guides being identical and disposed symmetrically relative to one another relative to a plane of symmetry of the radiating element.
  2. Radiating element (700, 800) according to claim 1, wherein the flaring profile of each excitation guide (702, 712, 802) is configured so as to control, in amplitude and in phase, the propagation modes of a radiating wave propagated from each port guide (701, 711, 801) to the output of the horn (703), so that the electrical field obtained at the output of the horn (703) is substantially uniform.
  3. Radiating element (700, 800) according to any one of the preceding claims, wherein the flaring profile of each excitation guide (702, 712, 802) is configured so as to favour the propagation of a fundamental propagation mode (TE10) and of a second order higher propagation mode (TE20) in the excitation guide (702, 712, 802).
  4. Radiating element (700, 800) according to any one of the preceding claims, wherein the flaring profile of each excitation guide (702, 712, 802) is configured so as to favour the propagation, in the horn (703), of several odd order propagation modes (TE10, TE30, TE50), from the fundamental propagation mode (TE10) and from the second order higher propagation mode (TE20) propagated in each excitation guide (702, 712, 802).
  5. Radiating element (700, 800) according to claim 3, wherein the flaring profile of each excitation guide (702, 712, 802) is configured so as to control the amplitude and the phase of each propagation mode (TE10, TE30, TE50) propagated in the horn (703) so that the electrical field resulting from the combination of all of the propagation modes (TE10, TE30, TE50) propagated in the horn is uniform at the output of the horn (703).
  6. Radiating element (1800, 1900, 2000) according to any one of the preceding claims, comprising at least four feeding guides, the horn (1804) being common to four feeding guides, the four feeding guides being disposed symmetrically to one another relative to two orthogonal planes of symmetry.
  7. Radiating element (800) according to any one of the preceding claims, wherein each feeding guide is configured so that the longitudinal axis (806) of a port guide (801) is off-centre relative to the centre of the aperture (804) of the excitation guide (802) connected to the excitation interface.
  8. Radiating element (2100, 2200, 2300) according to any one of the preceding claims, further comprising a power splitter (2101, 2201) for exciting the port guides in phase.
  9. Radiating element according to any one of the preceding claims, wherein a transverse section of the excitation guide is of square, rectangular or circular shape.
  10. Radiating element according to any one of the preceding claims, wherein the radiating element offers operation in single-polarisation or bi-polarisation mode.
  11. Radiating element according to any one of the preceding claims, wherein each excitation guide has a continuous or discontinuous flaring profile.
  12. Radiating element according to any one of the preceding claims, wherein the common horn is axisymmetrical.
  13. Radiating element according to any one of the preceding claims, wherein each excitation guide has a flared profile on a first plane and an unchanging profile on a second plane orthogonal to the first plane.
  14. Radiating device (2000) comprising at least four radiating elements according to any one of the preceding claims and a secondary horn (2003) common to the four radiating elements and connected via an input interface to the apertures of the respective horns (2001, 2002) of each radiating element.
  15. Antenna comprising a plurality of radiating elements according to any of claims 1 to 13 or a plurality of radiating devices according to claim 14.
EP19212776.9A 2018-12-03 2019-12-02 Multiple access radiant elements Active EP3664214B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1872213A FR3089358B1 (en) 2018-12-03 2018-12-03 Radiating element with multiple accesses

Publications (3)

Publication Number Publication Date
EP3664214A1 EP3664214A1 (en) 2020-06-10
EP3664214C0 EP3664214C0 (en) 2023-06-07
EP3664214B1 true EP3664214B1 (en) 2023-06-07

Family

ID=66867208

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19212776.9A Active EP3664214B1 (en) 2018-12-03 2019-12-02 Multiple access radiant elements

Country Status (5)

Country Link
US (1) US11444384B2 (en)
EP (1) EP3664214B1 (en)
CA (1) CA3063463A1 (en)
ES (1) ES2952243T3 (en)
FR (1) FR3089358B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020180220A1 (en) * 2019-03-04 2020-09-10 Saab Ab Dual-band multimode antenna feed
WO2022123708A1 (en) * 2020-12-10 2022-06-16 三菱電機株式会社 Array antenna device
CN115411473B (en) * 2022-08-12 2023-11-07 深圳大学 TE based on E-plane Y-shaped branched waveguide n0 Mode exciter

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2477785A1 (en) * 1980-03-07 1981-09-11 Thomson Csf MULTIMODE HYPERFREQUENCY SOURCE AND ANTENNA COMPRISING SUCH A SOURCE
FR2739226A1 (en) * 1985-01-18 1997-03-28 Thomson Csf Directive multimode microwave frequency source esp. for mono-pulse radar antenna
US6211838B1 (en) 2000-02-02 2001-04-03 Space Systems/Loral, Inc. High efficiency dual polarized horn antenna
WO2008069358A1 (en) * 2006-12-08 2008-06-12 Idoit Co., Ltd. Horn array type antenna for dual linear polarization
FR3012917B1 (en) 2013-11-04 2018-03-02 Thales COMPACT POWER DISTRIBUTION BIPOLARIZATION, NETWORK OF SEVERAL DISTRIBUTORS, COMPACT RADIATION ELEMENT AND FLAT ANTENNA HAVING SUCH A DISTRIBUTOR
FR3071672B1 (en) 2017-09-28 2019-10-11 Thales POWER DISTRIBUTION FOR ANTENNA COMPRISING FOUR IDENTICAL ORTHOMOD TRANSDUCERS

Also Published As

Publication number Publication date
US11444384B2 (en) 2022-09-13
ES2952243T3 (en) 2023-10-30
FR3089358A1 (en) 2020-06-05
FR3089358B1 (en) 2022-01-21
US20200176878A1 (en) 2020-06-04
EP3664214C0 (en) 2023-06-07
CA3063463A1 (en) 2020-06-03
EP3664214A1 (en) 2020-06-10

Similar Documents

Publication Publication Date Title
EP3664214B1 (en) Multiple access radiant elements
EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
EP2869396B1 (en) Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network
EP2202839B1 (en) Compact feed system for the generation of circular polarisation in an antenna and method of producing such system
EP2194602B1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
EP3073569B1 (en) Compact butler matrix , planar bi-dimensional beam-former, and planar antenna with such a butler matrix
EP0598656B1 (en) Radiating element for an antenna array and sub-set with such elements
EP3179551B1 (en) Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies
WO2020194270A1 (en) Radiofrequency component having a plurality of waveguide devices provided with ridges
EP2688142B1 (en) Multi-beam transmission and reception antenna with a plurality of sources per beam, antenna system and satellite telecommunication system comprising such an antenna
FR2655204A1 (en) WAVEGUIDE SUPPLY NETWORK ANTENNA.
WO2008012369A1 (en) Compact orthomode transduction device optimized in the mesh plane, for an antenna
EP4078728B1 (en) Dual-polarization antenna
EP3113286B1 (en) Quasi-optical lens beam former and planar antenna comprising such a beam former
EP3462532B1 (en) Power divider for antenna comprising four identical orthomode transducers
EP3843202A1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP3435480A1 (en) Antenna incorporating delay lenses inside a divider based distributor with a parallel plate waveguide
FR3044832A1 (en) ACTIVE ANTENNA ARCHITECTURE WITH RECONFIGURABLE HYBRID BEAM FORMATION
EP0407258B1 (en) Ultrahigh frequency energy distributor radiating directly
EP3306746B1 (en) Cavity radiating element and radiating network comprising at least two radiating elements
EP4391232A1 (en) Wide-angle impedance matching device for an array antenna with radiating elements and method for designing such a device
FR2890790A1 (en) Double beam radar antenna for e.g. microwave frequency energy transmission, has conducting blades radiated directionally in space with various radiation field patterns, and tongues propagating radiation directionally to guide cavity opening

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201013

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210922

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221118

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1577669

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230615

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019029949

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230621

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230721

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2952243

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20231030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230907

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230908

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20231129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231116

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231007

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019029949

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240112

Year of fee payment: 5

26N No opposition filed

Effective date: 20240308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230607

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231202