EP2869396B1 - Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network - Google Patents

Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network Download PDF

Info

Publication number
EP2869396B1
EP2869396B1 EP14191286.5A EP14191286A EP2869396B1 EP 2869396 B1 EP2869396 B1 EP 2869396B1 EP 14191286 A EP14191286 A EP 14191286A EP 2869396 B1 EP2869396 B1 EP 2869396B1
Authority
EP
European Patent Office
Prior art keywords
plane
power
waveguide
ports
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14191286.5A
Other languages
German (de)
French (fr)
Other versions
EP2869396A1 (en
Inventor
Hervé Legay
Adrien Cottin
Ronan Sauleau
Patrick Potier
Pierre Bosshard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP2869396A1 publication Critical patent/EP2869396A1/en
Application granted granted Critical
Publication of EP2869396B1 publication Critical patent/EP2869396B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/28Adaptation for use in or on aircraft, missiles, satellites, or balloons
    • H01Q1/288Satellite antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • H01Q25/007Antennas or antenna systems providing at least two radiating patterns using two or more primary active elements in the focal region of a focusing device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/20Magic-T junctions

Definitions

  • the present invention relates to a power distributor comprising a T-coupler in the E plane, a radiating network and an antenna comprising such a radiating network. It applies to the field of multi-beam focal array antennas operating in low frequency bands and more particularly to the field of C-band, L-band or S-band telecommunications. It also applies to radiating elements for array antennas, in particular in X band or Ka band, as well as for a spatial antenna with global coverage, in particular in C band.
  • US 2540839 describes an example of a power distributor
  • GB 1310534 describes an example of a junction between waveguides
  • FR 890388 describes an assembly of waveguides of different polarizations
  • EP 2290744 and US 3247512 also represent state of the art documents.
  • a T-coupler is a junction between three waveguides arranged in a T-shape, the three waveguides each having one end forming an input or output port of the coupler.
  • the T-junction can be of two different types, called junction in the E plane or in the H plane depending on the arrangement of the waveguides forming the three arms 10, 20, 30 of the T with respect to the electric field E and the magnetic field H propagating in the waveguides.
  • the electric field E extends in a direction perpendicular to the long sides of the waveguide and the magnetic field H extends in a parallel direction to the long sides of the waveguide.
  • the most commonly used T-coupler for power distributors in waveguide technology is the T-junction in the H-plane shown schematically on the diagram. figure 1a .
  • the waveguides are rectangular in section, each waveguide being delimited by a wall peripheral metal consisting of two long sides, two short sides and having an entry or exit access.
  • the three input and output waveguides 10, 20 and 30 are mounted flat on their long side and extend in the same XY plane, the input waveguide 30 being perpendicular to the two guides d 'output side waves 10 and 20.
  • the junction is said to be in the H plane because the outlet ports 11, 21 of the two Lateral waveguides 10 and 20, which form the horizontal bar of a T, are oriented in the same XY plane as the H field established in the input port 31 of the input waveguide 30.
  • the T-junction in the H plane is frequently used in a waveguide distribution network to connect the two outlet ports 11, 21 to two radiating elements 12, 22, such as for example compact cones, the assembly forming a radiating array that can be used in a flat antenna.
  • the radiating network represented on the figure 1b comprises a T junction in the H plane mounted parallel to the XZ plane and two radiating horns oriented along the Z axis and connected to the two outlet ports of the T junction.
  • the distribution network may be located in the XY plane, which makes it possible to reduce the thickness of the distribution network in the Z direction.
  • the radiating elements can be supplied by the distribution network via an electromagnetic coupling slot 13, 23 as shown in figure 1c .
  • This coupling technique is sensitive to the direction of propagation of the incident electromagnetic wave. If the two radiating elements 12, 22 are excited by electromagnetic waves propagating in opposite directions, then they radiate in phase opposition. The distribution network must then compensate for this difference in excitation phase. If this distribution network consists of a T-junction in the H plane, so that the radiating elements are excited in phase by the same power source and radiate coherently, it is necessary to add a stub 14, formed by a waveguide section, having a length equal to half a guided wavelength, on one of the two outlet ports 11 or 21.
  • This waveguide section 14 performs a phase inversion 180 ° which compensates for the phase difference due to the excitation by an electromagnetic slit.
  • This additional waveguide section increases the distance between two radiating elements, as shown in the example of figure 1c in which the radiating network comprises a T junction in the H plane oriented parallel to the XY plane and two horn-type radiating elements oriented in the Z direction.
  • the power distributor thus formed is asymmetrical, which is detrimental to the bandwidth performance of the radiating network.
  • the T-coupler in the E plane shown schematically on the figure 2a allows two radiating elements to be excited in phase, without requiring an additional waveguide section.
  • the two lateral waveguides 10 and 20 are mounted flat on their long side and in the extension of one another in the same direction X of the XY plane and the guide input waveform 30 is coupled perpendicularly to the two lateral waveguides 10 and 20 and extends in a Z direction perpendicular to the XY plane.
  • the junction is said to be in the E plane because the two outlet ports 11, 21 at the ends of the two lateral waveguides 10, 20 which form the crossbar of a T, are in the same XY plane as the established field E in the input port of the input waveguide 30.
  • this known T-junction is characterized by an inlet port 31 arranged in a direction normal Z to the XY plane formed by the long sides of the rectangular guides Release. This arrangement increases the overall height of the coupler and the size of a power distributor and a planar antenna comprising such a T-coupler in the E plane and radiating elements 12, 22 coupled to this power distributor by through the respective coupling slots 13, 23.
  • the two lateral output waveguides are replaced by a single waveguide 40 connecting the two output ports 11, 21. If the input waveguide 30 is arranged on the lower floor and the output waveguide 40 is located on the upper floor, the coupling in the plane E takes place by providing a slot 35 at the end of the input waveguide 30, in the upper wall, and a corresponding slot in the center of the bottom wall of the output waveguide 40 connecting the two output ports.
  • the two output ports 11, 21 can be connected to two radiating elements so that they radiate in phase coherence. It is thus not necessary to add a waveguide section on one of the output ports, which improves the compactness of the power distributor obtained.
  • the coupling slots in order to excite the lateral waveguides symmetrically, it is necessary for the coupling slots to be arranged in the input waveguide asymmetrically.
  • the coupling slot is located at the edge of the input waveguide and not in the center. As in the case of a tee coupler in the H plane, this therefore results in an asymmetry of the power distributor. This asymmetry results in an unbalanced coupling between the output ports and also alters the bandwidth of the antenna obtained. It also affects the compactness of the radiating network.
  • the aim of the invention is to solve the problems of existing power distributors and to propose a new power distributor in waveguide technology comprising a T-coupler in the plane E which is perfectly symmetrical and more compact in height, making it possible to supply radiating elements in phase without adding a stub, and thus being able to contribute to a reduction in the size of the power distributors used in arrays of low frequency band radiating elements, such as C, L, or S bands.
  • the invention relates to a power distributor according to claim 1 comprising, among other things, at least two lateral waveguides with rectangular cross-section parallel to each other and a transverse waveguide with rectangular cross-section comprising two opposite ends respectively connected to the two lateral waveguides.
  • the two lateral waveguides are oriented in a Y direction and mounted flat with their long side parallel to an XY plane
  • the transverse waveguide is oriented in an X direction perpendicular to the Y direction and mounted on the wafer with its small side parallel to the XY plane.
  • Each side waveguide is coupled to the transverse waveguide by a flush-junction E-plane tee coupler, both ends of the transverse waveguide being respectively embedded in each lateral waveguide, in the center of said respective lateral waveguide.
  • the two lateral waveguides each have two opposite ends constituting four input / output ports and the transverse waveguide has a central supply port.
  • the transverse waveguide waveguide may comprise an external cavity provided with an absorbent film and a coupling slot opening into the external cavity.
  • the invention also relates to a radiating network comprising at least one power distributor and four radiating elements respectively coupled to the four ports of the power distributor.
  • the invention also relates to a beam-forming antenna comprising at least one radiating network.
  • the beam-forming antenna comprises at least two power distributors arranged parallel to one another and linked together in the Y direction of the lateral waveguides of the two power distributors by orthomode OMT transducers and radiating elements respectively coupled to the output ports of the respective orthomode transducers.
  • the beam-forming antenna comprises at least two power distributors arranged perpendicular to each other and connected to each other by orthomode OMT transducers, and radiating elements respectively coupled to the output ports of the respective orthomode transducers.
  • the beam-forming antenna can further comprise at least one reflector and at least two adjacent identical radiating networks mounted in front of the reflector, the two adjacent radiating networks being dedicated to two different polarizations orthogonal to each other.
  • the beam-forming antenna comprises at least four power distributors and power combining / dividing means connected between the ports of the power distributors and the input ports of each OMT, the power distributors being connected between both of them in two orthogonal directions X, Y of an XY plane.
  • the power combination / division means comprise T-couplers in the E plane with a flush-mounted junction with four ports, the four ports being made up of two inlet ports oriented in the X direction and two outlet ports oriented along the Y direction, three ports connecting, in the Y direction, the lateral waveguides to the transverse waveguide of a first power distributor, the fourth port connecting, in the X direction, the transverse waveguide of the first power splitter to a transverse waveguide of an adjacent second power splitter.
  • the figure 4a represents an example of a T-coupler in the E plane which is used in the invention.
  • the T-coupler has a flush-mounted junction and can have three or four I / O ports.
  • the T-coupler 24 comprises three waveguides 10, 20, 30, each waveguide being delimited by a peripheral metal wall consisting of two long sides, two short sides and having an entry or exit access 11, 21, 31.
  • Two lateral waveguides 10 and 20 are mounted flat on their long side and a central waveguide 30 is mounted on the edge on its short side, and embedded between the two side waveguides 10, 20.
  • the side waveguides 10, 20 have their walls in addition large width parallel to the XY plane, while the central waveguide 30 has its walls of greater width perpendicular to the XY plane. All the waveguides and all the input and output accesses are therefore parallel to the XY plane, but the longitudinal axis of the central waveguide 30 is oriented in the X direction perpendicular to the longitudinal axes of the two waveguides.
  • lateral wave 10, 20 which are oriented in the Y direction.
  • the embedding of the central waveguide 30 between the two lateral waveguides 10, 20 makes it possible to limit the thickness of the coupler to the width L of a large side of the central waveguide 30.
  • the ends of the lateral waveguides 10, 20 form two lateral accesses 11, 21 of exit, or entry, oriented in the Y direction and one of the ends of the guide.
  • central wave 30 forms an entry or exit port 31 oriented in the X direction perpendicular to the Y direction.
  • the three waveguides being arranged in the same XY plane.
  • the structure of the coupler is then perfectly symmetrical, the input / output ports of the lateral waveguides are arranged symmetrically with respect to the input / output port of the central waveguide, and the couplings of the access 31 from the central waveguide to the two accesses 11, 21 of the two lateral waveguides are perfectly balanced.
  • this T-coupler has the advantage of being perfectly symmetrical, easier to produce and allows a symmetrical power distributor to be made more compact than all known power distributors. .
  • the T-coupler in the plane E with recessed junction 24 forms a symmetrical power distributor between an input / output port 31 of the central waveguide and two ports 11, 21 for output / input of the lateral waveguides and can be used to supply in phase two different radiating elements of a radiating network 50 as shown for example on the figure 5 .
  • Two radiating elements 51, 52 for example cones or radiating cavities such as Fabry-Perot cavities, can be coupled to the two ports 11, 21 of the lateral waveguides 10, 20 of the coupler in the plane E with recessed junction and be supplied in phase by a power source 53 connected to the port 31 of the waveguide central 30.
  • the connection between each lateral access 11, 21 and the two corresponding radiating elements can be produced by an angled waveguide.
  • the two radiating elements 51, 52 connected in a network by the T-coupler in the plane E form a radiating network 50 which can be used, alone or in combination with other radiating elements in a network, in a plane antenna operating in transmission or in reception
  • the three port flush-junction T-coupler 24 shown in figure 4a is sensitive in adaptation to the phase coherence of the signals incident on the two ports 21 and 11 of the lateral waveguides when the power distributor is operating in reception. If the incident signals are no longer in phase opposition, as is the case for example for the signals received by the radiating elements for an incident wave with a direction not normal to the network surface, then the signals are slightly unbalanced in phase. This may result in a mismatch of the three-port T-coupler, which is harmful to the radiation pattern of the radiating network.
  • the three-port recessed junction T-coupler 24 may comprise a cavity 25 at the bottom of which is deposited an absorbent film 26.
  • the cavity provided with the absorbent film may for example be arranged under the lower wall 27 of the central waveguide 30 of the coupler 24 and is fed by a longitudinal slot 28 formed in said lower wall 27.
  • the cavity 25 provided with the absorbent film 26 makes it possible to absorb the electromagnetic waves which propagate in the power distributor and which do not comply with the conditions of phase necessary for the operation of the T-coupler in the E plane.
  • the figure 6a represents an example of a power distribution network with four output ports comprising two T-couplers in the E plane with a flush-mounted junction, according to the invention.
  • the power splitter comprises two lateral waveguides 61, 62 parallel to each other and a transverse waveguide 63 coupled perpendicularly to the two lateral waveguides, the coupling between each lateral waveguide and the waveguide transverse being produced by a T-coupler in the E plane with junction recessed according to the invention.
  • Each lateral waveguide 61, 62 is mounted flat with its long sides parallel to the XY plane and the transverse waveguide 63 is mounted on the wafer with its long sides perpendicular to the XY plane.
  • the transverse waveguide has two ends 63a, 63b respectively embedded in each lateral waveguide.
  • the power distributor 60 is perfectly symmetrical, the two T-junctions in the plane E being embedded in the center of each lateral waveguide at the level of the two ends 63a, 63b of the transverse waveguide 63.
  • Each waveguide side has two opposite ends constituting two output / input ports 64, 65, 66, 67, respectively, of the power distributor 60, to which can be coupled four radiating elements, each output / input port 64, 65, 66, 67 of the power distributor 60 then constituting an input / output port of a radiating element.
  • the power distributor 60 also includes a power supply access 68 arranged in the center of the transverse waveguide, in one of the upper or lower walls.
  • the power supply port 68 can be connected to a power source, not shown, the power of which will be distributed by the power distributor 60 to the four output / input ports 64, 65, 66, 67 to supply power. phase the four entry / exit ports of the corresponding radiating elements.
  • the transverse waveguide 63 comprises a coupling slot 28 formed in a peripheral wall and opening into the external cavity 25.
  • the assembly consisting of the power distributor 60 and of the radiating elements 69 constitutes a radiating network which can be used as a plane antenna operating in mono-polarization.
  • the four radiating elements 69 connected in a network by the power distribution network 60 radiate in phase and participate in the formation of the same beam 1. It is possible to combine several identical radiating networks to obtain the formation of several contiguous beams. Radiant arrays can be used alone as a direct radiating antenna or be used in combination with one or more reflectors.
  • each beam 1, 2 is formed by four respective radiating elements 69, 79, of which two radiating elements are visible in the sectional view of the figure 6b .
  • each beam 1, 2 is respectively connected to the four output / input ports of a dedicated power distributor 60, 70 and supplied in phase and in an identical polarization by a central power source connected to the respective power supply access 68, 78 of the corresponding power distributor 60, 70.
  • the figures 7a and 7c represent an example of a power distribution network comprising three power distributors 60, 70, 80 each having four output / input ports, according to the invention.
  • the three power distributors 60, 70, 80 are arranged side by side parallel to each other and coupled to polarization diplexers or orthomode transducers OMT 71, 72, 73, 74 (in English: Orthogonal Mode Transducer) to feed elements radiating 69 in two orthogonal polarizations P1, P2.
  • Each power distributor is identical to that of the figure 6a but two adjacent power distributors are dedicated to two different polarizations and orthogonal to each other.
  • the OMTs 71, 72, 73, 74 constitute the input / output ports of the radiating elements 69.
  • This distribution network can be used alone as a direct radiating antenna or, as shown in the diagram. figure 7b , this distribution network can be used as a network of primary sources placed in the focal plane of a reflector 89 of a multibeam antenna. Each primary source then consists of four radiating elements coupled in phase and supplied in an identical polarization by one of the power distributors and makes it possible to form a beam. Two adjacent power distributors are supplied by two different polarizations orthogonal to each other, which makes it possible to form two adjacent orthogonally polarized and spatially offset beams.
  • two adjacent distribution networks can be arranged perpendicular to each other.
  • the adjacent distribution networks are coupled to OMTs comprising two orthogonal ports between them.
  • two adjacent power distributors 60, 70 correspond respectively to two different orthogonal polarizations and make it possible to produce two adjacent beams orthogonally polarized and spatially offset.
  • the power distributors 60, 70, 80 are arranged one beside the other and connected to each other two by two by orthomode OMT transducers 71, 72, 73, 74 with two input ports and one output capable of delivering two linear or circular orthogonal polarizations.
  • an OMT making it possible to diplex input signals into two circular polarization signals can for example be of the septum polarizer type.
  • the figure 8 illustrates a longitudinal view of an exemplary orthomode septum polarizer-type transducer which may be used in the invention.
  • the OMT of the septum polarizer type consists of a waveguide comprising two input ports 83, 84 operating in phase opposition, an output port 85 operating according to two orthogonal polarizations and a longitudinal internal plate 86, called a septum, separating the two inlet ports and extending in the Z direction over part of the length of the OMT waveguide.
  • the internal plate 86 of the septum comprises different stages making it possible to transform an electromagnetic field of linear polarization at the input of the septum into an electromagnetic field of right or left circular polarization, at the output of the septum, depending on the excited input port.
  • the septum polarizer type OMT operates in circular polarization, but it is also possible to use an OMT operating in linear polarization to develop beams of orthogonal linear polarizations.
  • the two power distributors can be connected to each other by means of two OMTs 71, 72, the output port 85 of each OMT being intended to be connected to a radiating element 69.
  • the two input ports 83, 84 of each OMT 71, 72 are respectively connected to two output ports 65, 75, respectively 67, 77, belonging to each of the two distribution frames. power.
  • all the power distributors can be linked together by means of several OMT 71, 72, 73, 74, each OMT being coupled to two output ports of two distributors adjacent power sources 60, 70 or 70, 80.
  • each power splitter has an input port 68, 78, 88 which can be powered by a dedicated power source.
  • the input ports 68, 78, 88 of three two-by-two adjacent power distributors 60, 70, 80 can be supplied with a TE10 mode.
  • Each OMT connected to two adjacent distributors 60, 70, 80 will produce two signals in orthogonal circular polarizations. Depending on the input port of the OMT, the circular polarization produced at the output of the OMT will be right or left.
  • the OMTs connected to a first power distributor can be oriented so as to develop signals in phase and having the same first polarization P1 and the OMTs connected to a second power distributor can be oriented so as to develop signals in phase and having the same second polarization P2 orthogonal to P1.
  • the output ports 85 of each OMT 71, 72, 73, 74 can then be respectively coupled to respective radiating elements, for example cones or Fabry-Perot cavities, in order to obtain radiating networks capable of forming beams in the first polarization P1 or in the second polarization P2.
  • the radiating networks obtained can be used as the primary source of a parabolic reflector 89 to form adjacent beams 1, 2 having two different colors, the two colors corresponding respectively to the polarizations P1 and P2.
  • the distribution networks are connected to each other in a single direction Y which makes it possible to produce interlaced beams extending in a single direction.
  • a distribution network comprising several power distributors 60, 70, 80, 90 interconnected two by two in two directions of an XY plane as shown in the example of the distribution network of the figure 9 , and by supplying the radiating elements of the adjacent distributors in four different colors, it is possible to form interlaced beams in two directions of a plane, the adjacent beams having different colors.
  • the four different colors correspond to four pairs of different frequency and polarization values (F1, P1), (F2, P1), (F1, P2), (F2, P2). For this, it is necessary that each radiating element can be supplied by four different colors coming from four different power distributors.
  • each radiating element 69 can be supplied with four different colors by using, on transmission, a power combining means connected between each output port of a power distributor and each input port 83 , 84 of an OMT 71, 72.
  • the power combining means functions as a power dividing means, the output ports of the power distributor become input ports and vice versa, the ports of. entry 83, 84 of OMT 71, 72 become egress ports.
  • the operation of an antenna on reception being the opposite of that on transmission, in the remainder of the description, the qualification of the different accesses corresponds to operation in transmission.
  • the power combining / dividing means 92, 93 can be implemented in various ways.
  • two power combining / dividing means 92, 93 are shown, each power combining / dividing means being implemented by a directional coupler in waveguides with two output ports.
  • the directional coupler comprises two input waveguides coupled together at one end by holes 94 made in the internal metal wall separating the two waveguides, but many other variants exist and can be used.
  • This hole coupler has an isolated access 95 connected to a resistive load and an output port 96 connected to an input of the OMT 71.
  • such a power combiner / divider attenuates the signals received when it operates in reception. These attenuations can be compensated by adding low noise amplifiers between the power distributors and the OMTs.
  • the combiner / divider can be transformed into a circulator 97, for example by inserting a ferrite washer 98 into the combiner / divider as shown in the example of figure 10b .
  • the power combining / dividing means can be constituted by a T-coupler in the E plane with a recessed junction with four ports.
  • the T-coupler in the plane E with recessed junction 99 comprises two lateral waveguides 10 and 20 mounted flat on their large side and a central waveguide 30 mounted on the edge on its small side, the central waveguide 30 being recessed between the two lateral waveguides 10, 20 like the structure of the recessed junction T-coupler shown in FIG. figure 4 .
  • This T-coupler in the plane E with recessed junction also has two output ports 11, 21 located at both ends of the two lateral waveguides and a first input port 31 located at a first end of the central waveguide. 30.
  • this T-coupler in the plane E with recessed junction has an additional second input port 91 located at the second end of the central waveguide 30, opposite to the first input port 31.
  • the two inlet ports 31, 91 are oriented in the X direction perpendicular to the Y direction of the two outlet ports 11, 21. In this case, when the two ports 11, 21 of the lateral waveguides 10, 20 of the Four-port flush-mounted junction coupler are fed in phase opposition, then the signals separate equally to the two ports 31, 91 of the central waveguide 30.
  • each coupler 99 located at one end of the central waveguide of a power splitter is available and can be directly connected to the central waveguide of an adjacent power splitter.
  • two adjacent distributors in the X direction parallel to the longitudinal axis of the central waveguide of each power distributor, connected together by a four-port coupler 99 share a lateral waveguide, which allows the corresponding radiating openings to be interlaced in the X direction. It is then possible to form interlaced beams in two directions of a plane, the adjacent beams having different colors.
  • the four different colors correspond to four pairs of different frequency and polarization values (F1, P1), (F2, P1), (F1, P2), (F2, P2).
  • the flush-mounted four port junction 99 divides the signals received by the radiating elements, and routes them to the output ports 78, 78b when it is operating in reception. These attenuations can be compensated by adding low noise amplifiers between the power distributors and the OMTs.
  • the couplings between the two input ports 31, 91 of the T-coupler in the plane E with recessed junction are important and result in large couplings at the power input ports 68, 78 , 88 of the power distributor which requires the use of insulators at this level.
  • the four port flush-junction T-coupler 99 shown in figure 11 is sensitive in adaptation to the phase coherence of the incident signals on the ports 21 and 11 when the distributor is operating on reception, or on the ports 31 and 91 when the distributor is operating on transmission. If the incident signals are no longer in phase opposition, as is the case for example for the signals received by the radiating elements for an incident wave with a direction not normal to the network surface, then the signals are slightly unbalanced in phase. This may result in a mismatch of the four-port T-coupler 99, which is harmful to the radiation pattern of the radiating network.
  • the four-port recessed junction T-coupler 99 may include a cavity 100 at the bottom of which is deposited an absorbent film 101.
  • the absorbent cavity may be arranged, for example, under the bottom wall 104 of the central waveguide 30 of the coupler 99 and is supplied by two longitudinal slots 102, 103 formed in said lower wall 104.

Description

La présente invention concerne un répartiteur de puissance comportant un coupleur en Té dans le plan E, un réseau rayonnant et une antenne comportant un tel réseau rayonnant. Elle s'applique au domaine des antennes multifaisceaux à réseau focal fonctionnant dans des bandes de fréquences basses et plus particulièrement au domaine des télécommunications en bande C, en bande L ou en bande S. Elle s'applique aussi aux éléments rayonnants pour antennes réseaux, notamment en bande X ou en bande Ka, ainsi que pour une antenne spatiale de couverture globale, notamment en bande C.The present invention relates to a power distributor comprising a T-coupler in the E plane, a radiating network and an antenna comprising such a radiating network. It applies to the field of multi-beam focal array antennas operating in low frequency bands and more particularly to the field of C-band, L-band or S-band telecommunications. It also applies to radiating elements for array antennas, in particular in X band or Ka band, as well as for a spatial antenna with global coverage, in particular in C band.

US 2540839 décrit un exemple de répartiteur de puissance, GB 1310534 décrit un exemple de jonction entre des guides d'onde, FR 890388 décrit un assemblage de guides d'onde de polarisations différentes, le document STEFFE W ED-Institute of electrical and electronics engineers-« A novel compact OMJ for Ku band Intelsat applications », IEEE Antennas and propagation society international symposium digest. Newport Beach, June 18-23, 1995, décrit un transducteur orthomode. EP 2290744 et US 3247512 représentent aussi des documents d'état de la technique. US 2540839 describes an example of a power distributor, GB 1310534 describes an example of a junction between waveguides, FR 890388 describes an assembly of waveguides of different polarizations, the document STEFFE W ED-Institute of electrical and electronics engineers- “A novel compact OMJ for Ku band Intelsat applications”, IEEE Antennas and propagation society international symposium digest. Newport Beach, June 18-23, 1995, describes an orthomode transducer. EP 2290744 and US 3247512 also represent state of the art documents.

Un coupleur en Té est une jonction entre trois guides d'onde agencés en forme de T, les trois guides d'onde comportant chacun une extrémité formant un accès d'entrée ou de sortie du coupleur. La jonction en Té peut être de deux types différents, appelés jonction dans le plan E ou dans le plan H selon l'agencement des guides d'onde formant les trois bras 10, 20, 30 du T par rapport au champ électrique E et au champ magnétique H se propageant dans les guides d'onde. De manière connue, lorsqu'une onde électromagnétique se propage dans un guide d'onde rectangulaire, le champ électrique E s'étend selon une direction perpendiculaire aux grands côtés du guide d'onde et le champ magnétique H s'étend selon une direction parallèle aux grands côtés du guide d'onde.A T-coupler is a junction between three waveguides arranged in a T-shape, the three waveguides each having one end forming an input or output port of the coupler. The T-junction can be of two different types, called junction in the E plane or in the H plane depending on the arrangement of the waveguides forming the three arms 10, 20, 30 of the T with respect to the electric field E and the magnetic field H propagating in the waveguides. In known manner, when an electromagnetic wave propagates in a rectangular waveguide, the electric field E extends in a direction perpendicular to the long sides of the waveguide and the magnetic field H extends in a parallel direction to the long sides of the waveguide.

Le coupleur en Té le plus couramment utilisé pour les répartiteurs de puissance en technologie guide d'onde est la jonction en Té dans le plan H représentée schématiquement sur la figure 1a. Les guides d'onde sont à section rectangulaire, chaque guide d'onde étant délimité par une paroi métallique périphérique constituée de deux grands côtés, de deux petits côtés et comportant un accès d'entrée ou de sortie. Les trois guides d'onde d'entrée et de sortie 10, 20 et 30 sont montés à plat sur leur grand côté et s'étendent dans un même plan XY, le guide d'onde d'entrée 30 étant perpendiculaire aux deux guides d'onde latéraux de sortie 10 et 20. La jonction est dite dans le plan H car les accès de sortie 11, 21 des deux guides d'onde latéraux 10 et 20, qui forment la barre horizontale d'un T, sont orientés dans le même plan XY que le champ H établi dans l'accès d'entrée 31 du guide d'onde d'entrée 30.The most commonly used T-coupler for power distributors in waveguide technology is the T-junction in the H-plane shown schematically on the diagram. figure 1a . The waveguides are rectangular in section, each waveguide being delimited by a wall peripheral metal consisting of two long sides, two short sides and having an entry or exit access. The three input and output waveguides 10, 20 and 30 are mounted flat on their long side and extend in the same XY plane, the input waveguide 30 being perpendicular to the two guides d 'output side waves 10 and 20. The junction is said to be in the H plane because the outlet ports 11, 21 of the two Lateral waveguides 10 and 20, which form the horizontal bar of a T, are oriented in the same XY plane as the H field established in the input port 31 of the input waveguide 30.

La jonction en Té dans le plan H est fréquemment utilisée dans un réseau de répartition en guides d'onde pour connecter les deux accès de sortie 11, 21 à deux éléments rayonnants 12, 22, comme par exemple des cornets compacts, l'ensemble formant un réseau rayonnant qui peut être utilisé dans une antenne plane. Le réseau rayonnant représenté sur la figure 1b, comporte une jonction en Té dans le plan H montée parallèlement au plan XZ et deux cornets rayonnants orientés selon l'axe Z et connectés aux deux accès de sortie de la jonction en Té. Pour des raisons d'encombrement, en particulier pour les bandes de fréquence basses, il peut être souhaité que le réseau de répartition soit situé dans le plan XY ce qui permet de réduire l'épaisseur du réseau de répartition selon la direction Z. Dans ce cas, les éléments rayonnants peuvent être alimentés par le réseau de répartition par l'intermédiaire d'une fente de couplage électromagnétique 13, 23 comme le montre la figure 1c. Cette technique de couplage est sensible à la direction de propagation de l'onde électromagnétique incidente. Si les deux éléments rayonnants 12, 22 sont excités par des ondes électromagnétiques se propageant dans des directions opposées, alors ils rayonnent en opposition de phase. Le réseau de répartition doit alors compenser cette différence de phase d'excitation. Si ce réseau de répartition est constitué d'une jonction en Té dans le plan H, pour que les éléments rayonnants soient excités en phase par une même source d'alimentation et rayonnent de façon cohérente, il est nécessaire d'ajouter un stub 14, constitué par un tronçon de guide d'onde, ayant une longueur égale à une demi-longueur d'onde guidée, sur l'un des deux accès de sortie 11 ou 21. Ce tronçon de guide d'onde 14 réalise une inversion de phase de 180° qui compense la différence de phase due à l'excitation par une fente électromagnétique. Ce tronçon de guide d'onde supplémentaire augmente la distance entre deux éléments rayonnants, comme le montre l'exemple de la figure 1c dans lequel le réseau rayonnant comporte une jonction en Té dans le plan H orientée parallèlement au plan XY et deux éléments rayonnants de type cornet orientés selon la direction Z. De plus, le répartiteur de puissance ainsi formé est dissymétrique, ce qui est préjudiciable aux performances en bande passante du réseau rayonnant.The T-junction in the H plane is frequently used in a waveguide distribution network to connect the two outlet ports 11, 21 to two radiating elements 12, 22, such as for example compact cones, the assembly forming a radiating array that can be used in a flat antenna. The radiating network represented on the figure 1b , comprises a T junction in the H plane mounted parallel to the XZ plane and two radiating horns oriented along the Z axis and connected to the two outlet ports of the T junction. For reasons of space, in particular for low frequency bands, it may be desirable for the distribution network to be located in the XY plane, which makes it possible to reduce the thickness of the distribution network in the Z direction. In this case, the radiating elements can be supplied by the distribution network via an electromagnetic coupling slot 13, 23 as shown in figure 1c . This coupling technique is sensitive to the direction of propagation of the incident electromagnetic wave. If the two radiating elements 12, 22 are excited by electromagnetic waves propagating in opposite directions, then they radiate in phase opposition. The distribution network must then compensate for this difference in excitation phase. If this distribution network consists of a T-junction in the H plane, so that the radiating elements are excited in phase by the same power source and radiate coherently, it is necessary to add a stub 14, formed by a waveguide section, having a length equal to half a guided wavelength, on one of the two outlet ports 11 or 21. This waveguide section 14 performs a phase inversion 180 ° which compensates for the phase difference due to the excitation by an electromagnetic slit. This additional waveguide section increases the distance between two radiating elements, as shown in the example of figure 1c in which the radiating network comprises a T junction in the H plane oriented parallel to the XY plane and two horn-type radiating elements oriented in the Z direction. In addition, the power distributor thus formed is asymmetrical, which is detrimental to the bandwidth performance of the radiating network.

Pour exciter les éléments rayonnants en phase avec un réseau de répartition symétrique et compact, il est alors nécessaire de disposer d'un coupleur en Té dans le plan E, comme le montrent les figures 2a et 2b. Le coupleur en Té dans le plan E représenté schématiquement sur la figure 2a permet d'exciter deux éléments rayonnants en phase, sans nécessiter de tronçon de guide d'onde supplémentaire. Dans cette jonction en Té dans le plan E, les deux guides d'onde latéraux 10 et 20 sont montés à plat sur leur grand côté et dans le prolongement l'un de l'autre selon une même direction X du plan XY et le guide d'onde d'entrée 30 est couplé perpendiculairement aux deux guides d'onde latéraux 10 et 20 et s'étend selon une direction Z perpendiculaire au plan XY. La jonction est dite dans le plan E car les deux accès de sortie 11, 21 aux extrémités des deux guides d'onde latéraux 10, 20 qui forment la barre transversale d'un T, sont dans le même plan XY que le champ E établi dans l'accès d'entrée du guide d'onde d'entrée 30. Toutefois, cette jonction en Té connue est caractérisée par un accès d'entrée 31 disposé selon une direction normale Z au plan XY formé par les grands côtés des guides rectangulaires de sortie. Cette disposition augmente l'encombrement en hauteur du coupleur et l'encombrement d'un répartiteur de puissance et d'une antenne plane comportant un tel coupleur en Té dans le plan E et des éléments rayonnants 12, 22 couplés à ce répartiteur de puissance par l'intermédiaire des fentes de couplage 13, 23 respectives.To excite the radiating elements in phase with a symmetrical and compact distribution network, it is then necessary to have a T-coupler in the E plane, as shown in the figures 2a and 2b . The T-coupler in the E plane shown schematically on the figure 2a allows two radiating elements to be excited in phase, without requiring an additional waveguide section. In this T-junction in the E plane, the two lateral waveguides 10 and 20 are mounted flat on their long side and in the extension of one another in the same direction X of the XY plane and the guide input waveform 30 is coupled perpendicularly to the two lateral waveguides 10 and 20 and extends in a Z direction perpendicular to the XY plane. The junction is said to be in the E plane because the two outlet ports 11, 21 at the ends of the two lateral waveguides 10, 20 which form the crossbar of a T, are in the same XY plane as the established field E in the input port of the input waveguide 30. However, this known T-junction is characterized by an inlet port 31 arranged in a direction normal Z to the XY plane formed by the long sides of the rectangular guides Release. This arrangement increases the overall height of the coupler and the size of a power distributor and a planar antenna comprising such a T-coupler in the E plane and radiating elements 12, 22 coupled to this power distributor by through the respective coupling slots 13, 23.

Comme représenté sur la figure 3, il est également possible de réaliser un coupleur en Té dans le plan E en montant le guide d'onde d'entrée 30 et les deux guides d'onde latéraux 10, 20 de sortie à plat sur deux étages distincts superposés l'un au-dessus de l'autre, les grands côtés de tous les guides d'onde 10, 20, 30 étant parallèles au plan XY. Dans ce cas, les deux guides d'onde latéraux de sortie sont remplacés par un guide d'onde unique 40 reliant les deux accès de sortie 11, 21. Si le guide d'onde d'entrée 30 est disposé à l'étage inférieur et le guide d'onde de sortie 40 est situé à l'étage supérieur, le couplage dans le plan E s'opère en aménageant une fente 35 à l'extrémité du guide d'onde d'entrée 30, dans la paroi supérieure, et une fente correspondante au centre de la paroi inférieure du guide d'onde 40 de sortie reliant les deux accès de sortie. Le couplage entre l'accès d'entrée 31 et les accès de sortie 11, 21 étant dans le plan E, les deux accès de sortie 11, 21 peuvent être connectés à deux éléments rayonnants de sorte qu'ils rayonnent en cohérence de phase. Il n'est ainsi pas nécessaire d'ajouter un tronçon de guide d'onde sur l'un des accès de sortie, ce qui améliore la compacité du répartiteur de puissance obtenu. Cependant pour exciter les guides d'onde latéraux de façon symétrique, il est nécessaire que les fentes de couplage soient aménagées dans le guide d'onde d'entrée de façon dissymétrique. En particulier, sur la figure 3, la fente de couplage est disposée au bord du guide d'onde d'entrée et non pas au centre. Il en résulte donc, comme dans le cas d'un coupleur en té dans le plan H, une dissymétrie du répartiteur de puissance. Cette dissymétrie résulte en un couplage déséquilibré entre les accès de sortie et altère aussi la bande passante de l'antenne obtenue. Elle nuit aussi à la compacité du réseau rayonnant.As shown on the figure 3 , it is also possible to produce a T-coupler in the E plane by mounting the input waveguide 30 and the two lateral output waveguides 10, 20 flat on two distinct stages superimposed one on top of the other. above the other, the long sides of all the waveguides 10, 20, 30 being parallel to the XY plane. In this case, the two lateral output waveguides are replaced by a single waveguide 40 connecting the two output ports 11, 21. If the input waveguide 30 is arranged on the lower floor and the output waveguide 40 is located on the upper floor, the coupling in the plane E takes place by providing a slot 35 at the end of the input waveguide 30, in the upper wall, and a corresponding slot in the center of the bottom wall of the output waveguide 40 connecting the two output ports. The coupling between the input port 31 and the output ports 11, 21 being in the plane E, the two output ports 11, 21 can be connected to two radiating elements so that they radiate in phase coherence. It is thus not necessary to add a waveguide section on one of the output ports, which improves the compactness of the power distributor obtained. However, in order to excite the lateral waveguides symmetrically, it is necessary for the coupling slots to be arranged in the input waveguide asymmetrically. In particular, on the figure 3 , the coupling slot is located at the edge of the input waveguide and not in the center. As in the case of a tee coupler in the H plane, this therefore results in an asymmetry of the power distributor. This asymmetry results in an unbalanced coupling between the output ports and also alters the bandwidth of the antenna obtained. It also affects the compactness of the radiating network.

A titre d'art antérieur connu, on peut citer le dispositif objet du brevet US 3,247,512 qui divulgue une antenne comprenant un premier et un second réseaux plans disposés orthogonalement l'un par rapport à l'autre. Les éléments rayonnants formant le faisceau du premier réseau sont de préférence disposés parallèlement les unes aux autres et espacés les uns des autres pour permettre aux fentes rayonnantes des éléments rayonnants du second réseau d'être disposées entre les éléments rayonnants du premier réseau. Le dispositif divulgué dans ce document présente cependant une structure globale déterminée, destinée à former deux faisceaux orthogonaux, qui ne constitue pas une solution au problème technique dont il est question ans la présente demande.As known prior art, mention may be made of the device which is the subject of the patent US 3,247,512 which discloses an antenna comprising a first and a second planar arrays arranged orthogonally with respect to one another. The radiating elements forming the beam of the first array are preferably arranged parallel to each other and spaced apart from each other to allow the radiating slots of the radiating elements of the second array to be arranged between the radiating elements of the first array. The device disclosed in this document however has a specific overall structure, intended to form two orthogonal beams, which does not constitute a solution to the technical problem which is in question in the present application.

Le but de l'invention est de résoudre les problèmes des répartiteurs de puissance existants et de proposer un nouveau répartiteur de puissance en technologie guide d'onde comportant un coupleur en Té dans le plan E parfaitement symétrique et plus compact en hauteur, permettant d'alimenter des éléments rayonnants en phase sans ajouter un stub, et pouvant ainsi contribuer à une réduction de l'encombrement des répartiteurs de puissance utilisés dans des réseaux d'éléments rayonnants en bande de fréquence basse, comme dans les bandes C, L, ou S.The aim of the invention is to solve the problems of existing power distributors and to propose a new power distributor in waveguide technology comprising a T-coupler in the plane E which is perfectly symmetrical and more compact in height, making it possible to supply radiating elements in phase without adding a stub, and thus being able to contribute to a reduction in the size of the power distributors used in arrays of low frequency band radiating elements, such as C, L, or S bands.

Pour cela, l'invention concerne un répartiteur de puissance selon la revendication 1 comportant entre autres au moins deux guides d'onde latéraux à section rectangulaire parallèles entre eux et un guide d'onde transversal à section rectangulaire comportant deux extrémités opposées respectivement connectées aux deux guides d'onde latéraux. Les deux guides d'onde latéraux sont orientés selon une direction Y et montés à plat avec leur grand côté parallèle à un plan XY, le guide d'onde transversal est orienté selon une direction X perpendiculaire à la direction Y et monté sur la tranche avec son petit côté parallèle au plan XY. Chaque guide d'onde latéral est couplé au guide d'onde transversal par un coupleur en té dans le plan E à jonction encastrée, les deux extrémités du guide d'onde transversal étant respectivement encastrées dans chaque guide d'onde latéral, au centre dudit guide d'onde latéral respectif.For this, the invention relates to a power distributor according to claim 1 comprising, among other things, at least two lateral waveguides with rectangular cross-section parallel to each other and a transverse waveguide with rectangular cross-section comprising two opposite ends respectively connected to the two lateral waveguides. The two lateral waveguides are oriented in a Y direction and mounted flat with their long side parallel to an XY plane, the transverse waveguide is oriented in an X direction perpendicular to the Y direction and mounted on the wafer with its small side parallel to the XY plane. Each side waveguide is coupled to the transverse waveguide by a flush-junction E-plane tee coupler, both ends of the transverse waveguide being respectively embedded in each lateral waveguide, in the center of said respective lateral waveguide.

Les deux guides d'onde latéraux comportent chacun deux extrémités opposées constituant quatre accès d'entrée/sortie et le guide d'onde transversal comporte un accès d'alimentation central.The two lateral waveguides each have two opposite ends constituting four input / output ports and the transverse waveguide has a central supply port.

Selon un mode de réalisation, au niveau de chaque jonction encastrée, le guide d'onde guide d'onde transversal peut comporter une cavité externe munie d'un film absorbant et une fente de couplage débouchant dans la cavité externe.According to one embodiment, at each embedded junction, the transverse waveguide waveguide may comprise an external cavity provided with an absorbent film and a coupling slot opening into the external cavity.

L'invention concerne aussi un réseau rayonnant comportant au moins un répartiteur de puissance et quatre éléments rayonnants respectivement couplés aux quatre accès du répartiteur de puissance.The invention also relates to a radiating network comprising at least one power distributor and four radiating elements respectively coupled to the four ports of the power distributor.

L'invention concerne aussi une antenne à formation de faisceaux comportant au moins un réseau rayonnant.The invention also relates to a beam-forming antenna comprising at least one radiating network.

Selon un mode de réalisation, l'antenne à formation de faisceaux comporte au moins deux répartiteurs de puissance disposés parallèlement entre eux et reliés entre eux selon la direction Y des guides d'onde latéraux des deux répartiteurs de puissance par des transducteurs orthomodes OMT et des éléments rayonnants respectivement couplés aux accès de sortie des transducteurs orthomodes respectifs.According to one embodiment, the beam-forming antenna comprises at least two power distributors arranged parallel to one another and linked together in the Y direction of the lateral waveguides of the two power distributors by orthomode OMT transducers and radiating elements respectively coupled to the output ports of the respective orthomode transducers.

Selon un autre mode de réalisation, l'antenne à formation de faisceaux comporte au moins deux répartiteurs de puissance disposés perpendiculairement entre eux et reliés entre eux par des transducteurs orthomodes OMT, et des éléments rayonnants respectivement couplés aux accès de sortie des transducteurs orthomodes respectifs.According to another embodiment, the beam-forming antenna comprises at least two power distributors arranged perpendicular to each other and connected to each other by orthomode OMT transducers, and radiating elements respectively coupled to the output ports of the respective orthomode transducers.

Avantageusement, l'antenne à formation de faisceaux peut comporter en outre au moins un réflecteur et au moins deux réseaux rayonnants identiques adjacents montés devant le réflecteur, les deux réseaux rayonnants adjacents étant dédiés à deux polarisations différentes orthogonales entre elles.Advantageously, the beam-forming antenna can further comprise at least one reflector and at least two adjacent identical radiating networks mounted in front of the reflector, the two adjacent radiating networks being dedicated to two different polarizations orthogonal to each other.

Avantageusement, l'antenne à formation de faisceaux comporte au moins quatre répartiteurs de puissance et des moyens de combinaison/division de puissance connectés entre les accès des répartiteurs de puissance et des accès d'entrée de chaque OMT, les répartiteurs de puissance étant reliés entre eux deux à deux selon deux directions orthogonales X, Y d'un plan XY.Advantageously, the beam-forming antenna comprises at least four power distributors and power combining / dividing means connected between the ports of the power distributors and the input ports of each OMT, the power distributors being connected between both of them in two orthogonal directions X, Y of an XY plane.

Avantageusement, les moyens de combinaison/division de puissance comportent des coupleurs en Té dans le plan E à jonction encastrée à quatre accès, les quatre accès étant constitués de deux accès d'entrée orientés selon la direction X et de deux accès de sortie orientés selon la direction Y, trois accès reliant, selon la direction Y, les guides d'onde latéraux au guide d'onde transversal d'un premier répartiteur de puissance, le quatrième accès reliant, selon la direction X, le guide d'onde transversal du premier répartiteur de puissance à un guide d'onde transversal d'un deuxième répartiteur de puissance adjacent.Advantageously, the power combination / division means comprise T-couplers in the E plane with a flush-mounted junction with four ports, the four ports being made up of two inlet ports oriented in the X direction and two outlet ports oriented along the Y direction, three ports connecting, in the Y direction, the lateral waveguides to the transverse waveguide of a first power distributor, the fourth port connecting, in the X direction, the transverse waveguide of the first power splitter to a transverse waveguide of an adjacent second power splitter.

D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :

  • figure 1a : un schéma en perspective d'un exemple de coupleur en Té dans le plan H, selon l'art antérieur ;
  • figure 1b : un schéma en coupe d'un exemple de réseau rayonnant comportant le coupleur en Té dans le plan H de la figure 1a monté parallèlement au plan XZ du réseau rayonnant, selon l'art antérieur ;
  • figure 1c : un schéma en coupe d'un exemple de réseau rayonnant comportant le coupleur en Té dans le plan H de la figure 1a monté parallèlement au plan XY du réseau rayonnant, selon l'art antérieur ;
  • figure 2a : un schéma en perspective d'un premier exemple de coupleur en Té dans le plan E, selon l'art antérieur ;
  • figure 2b : un schéma en coupe d'un exemple de réseau rayonnant comportant le coupleur en Té dans le plan E de la figure 2a orienté selon le plan XY, selon l'art antérieur ;
  • figure 3 : un schéma en perspective d'un deuxième exemple de coupleur en Té dans le plan E, selon l'art antérieur ;
  • figure 4a : un schéma en perspective d'un exemple de coupleur en Té dans le plan E à jonction encastrée à trois accès, qui est utilisé dans l'invention ;
  • figure 4b : un schéma en perspective d'un coupleur en Té dans le plan E à jonction encastrée à trois accès comportant une cavité absorbante, qui est utilisé dans l'invention ;
  • figure 5 : un schéma en coupe selon le plan YZ, d'un exemple de réseau rayonnant utilisant un coupleur en Té dans le plan E, selon un example ;
  • figure 6a : une vue schématique de dessus d'un exemple de réseau de répartition de puissance à quatre accès comportant deux coupleurs en Té dans le plan E, selon l'invention ;
  • figure 6b : une vue schématique en coupe d'une antenne comportant deux répartiteurs de puissance identiques alimentés par des sources d'alimentation dédiées et connectés à des éléments rayonnants, selon l'invention ;
  • figure 7a : une vue schématique de dessus d'un exemple de réseau de répartition de puissance comportant trois répartiteurs à quatre accès, identiques à ceux de la figure 6a, disposés parallèlement entre eux et reliés entre eux par des OMT, selon l'invention ;
  • figure 7b : une vue schématique en coupe d'un exemple d'antenne multifaisceaux comportant le réseau de répartition de puissance de la figure 7a couplé à des éléments rayonnants et formant des sources primaires placées dans le plan focal d'un réflecteur de l'antenne multifaisceaux, selon l'invention ;
  • figure 7c : un exemple de connexion de deux répartiteurs de puissance par des OMT selon l'invention ;
  • figure 7d : une vue schématique de dessus d'un exemple de réseau de répartition de puissance comportant trois répartiteurs à quatre accès, identiques à ceux de la figure 6a, disposés perpendiculairement entre eux et reliés entre eux par des OMT, selon l'invention ;
  • figure 8 : une vue schématique longitudinale d'un exemple de transducteur orthomode septum, qui peut être utilisé dans l'invention.
  • figure 9 : un schéma de dessus d'un premier exemple de réseau de répartition comportant plusieurs répartiteurs de puissance reliés entre eux deux à deux selon deux directions d'un plan, selon l'invention ;
  • figure 10a : un schéma en coupe longitudinale d'un exemple de coupleur directionnel couplé à un élément rayonnant par l'intermédiaire d'un OMT, selon l'invention ;
  • figure 10b : un schéma en coupe longitudinale d'un exemple de circulateur à ferrite couplé à un élément rayonnant par l'intermédiaire d'un OMT, qui peut être utilisé dans l'nvention ;
  • figure 11 : un schéma en perspective d'un coupleur en Té dans le plan E à jonction encastrée à quatre accès, qui est utilisé dans l'invention ;
  • figure 12 : un schéma de dessus d'un deuxième exemple de réseau de répartition comportant plusieurs répartiteurs de puissance reliés entre eux deux à deux selon deux directions d'un plan, selon l'invention ;
  • figure 13 : un schéma en perspective d'un coupleur en Té dans le plan E à jonction encastrée à quatre accès comportant une cavité absorbante, qui est utilisé dans l'invention.
Other features and advantages of the invention will emerge clearly in the remainder of the description given by way of purely illustrative and non-limiting example, with reference to the appended schematic drawings which represent:
  • figure 1a : a perspective diagram of an example of a T coupler in the H plane, according to the prior art;
  • figure 1b : a sectional diagram of an example of a radiating network comprising the T-coupler in the H plane of the figure 1a mounted parallel to the XZ plane of the radiating network, according to the prior art;
  • figure 1c : a sectional diagram of an example of a radiating network comprising the T-coupler in the H plane of the figure 1a mounted parallel to the XY plane of the radiating network, according to the prior art;
  • figure 2a : a perspective diagram of a first example of a T-coupler in the E plane, according to the prior art;
  • figure 2b : a sectional diagram of an example of a radiating network comprising the T-coupler in the E plane of the figure 2a oriented along the XY plane, according to the prior art;
  • figure 3 : a perspective diagram of a second example of a T-coupler in the E plane, according to the prior art;
  • figure 4a : a perspective diagram of an exemplary T-coupler in the E-plane with a three-port recessed junction, which is used in the invention;
  • figure 4b : a perspective diagram of a three port recessed junction E-plane T coupler with an absorbent cavity, which is used in the invention;
  • figure 5 : a sectional diagram along the YZ plane, of an example of a radiating network using a T-coupler in the E plane, according to an example;
  • figure 6a : a schematic top view of an example of a four-port power distribution network comprising two T-couplers in the E plane, according to the invention;
  • figure 6b : a schematic sectional view of an antenna comprising two identical power distributors supplied by dedicated power sources and connected to radiating elements, according to the invention;
  • figure 7a : a schematic view from above of an example of a power distribution network comprising three distributors with four ports, identical to those of the figure 6a , arranged parallel to each other and interconnected by OMTs, according to the invention;
  • figure 7b : a schematic sectional view of an example of a multibeam antenna comprising the power distribution network of the figure 7a coupled to radiating elements and forming primary sources placed in the focal plane of a reflector of the multibeam antenna, according to the invention;
  • figure 7c : an example of connection of two power distributors by OMTs according to the invention;
  • figure 7d : a schematic view from above of an example of a power distribution network comprising three distributors with four ports, identical to those of the figure 6a , arranged perpendicular to each other and interconnected by OMTs, according to the invention;
  • figure 8 : a longitudinal schematic view of an example of an orthomode septum transducer, which can be used in the invention.
  • figure 9 : a top diagram of a first example of a distribution network comprising several power distributors connected to one another in pairs in two directions of a plane, according to the invention;
  • figure 10a : a diagram in longitudinal section of an example of a directional coupler coupled to a radiating element via an OMT, according to the invention;
  • figure 10b : a longitudinal sectional diagram of an example of a ferrite circulator coupled to a radiating element via an OMT, which can be used in the invention;
  • figure 11 : a perspective diagram of a T-coupler in the plane E with a flush-mounted junction with four ports, which is used in the invention;
  • figure 12 : a top diagram of a second example of a distribution network comprising several power distributors interconnected in pairs in two directions of a plane, according to the invention;
  • figure 13 : a perspective diagram of a four port recessed junction E-plane T coupler with an absorbent cavity, which is used in the invention.

La figure 4a représente un exemple de coupleur en Té dans le plan E qui est utilisé dans l'invention. Le coupleur en Té comporte une jonction encastrée et peut comporter trois ou quatre accès d'entrée/sortie. Sur la figure 4a, le coupleur en Té 24 comporte trois guides d'onde 10, 20, 30, chaque guide d'onde étant délimité par une paroi métallique périphérique constituée de deux grands côtés, de deux petits côtés et comportant un accès d'entrée ou de sortie 11, 21, 31. Deux guides d'onde latéraux 10 et 20 sont montés à plat sur leur grand côté et un guide d'onde central 30 est monté sur la tranche sur son petit côté, et encastré entre les deux guides d'onde latéraux 10, 20. Ainsi, les guides d'onde latéraux 10, 20 ont leurs parois de plus grande largeur parallèles au plan XY, alors que le guide d'onde central 30 a ses parois de plus grande largeur perpendiculaires au plan XY. Tous les guides d'onde et tous les accès d'entrée et de sortie sont donc parallèles au plan XY, mais l'axe longitudinal du guide d'onde central 30 est orienté selon la direction X perpendiculairement aux axes longitudinaux des deux guides d'onde latéraux 10, 20 qui sont orientés selon la direction Y. L'encastrement du guide d'onde central 30 entre les deux guides d'onde latéraux 10, 20 permet de limiter l'épaisseur du coupleur à la largeur L d'un grand côté du guide d'onde central 30. Les extrémités des guides d'onde latéraux 10, 20 forment deux accès latéraux 11, 21 de sortie, ou d'entrée, orientés selon la direction Y et l'une des extrémités du guide d'onde central 30 forme un accès d'entrée, ou de sortie, 31 orienté selon la direction X perpendiculaire à la direction Y. Les trois guides d'onde étant disposés dans un même plan XY. La structure du coupleur est alors parfaitement symétrique, les accès d'entrée/sortie des guides d'onde latéraux sont disposés symétriquement par rapport à l'accès d'entrée/sortie du guide d'onde central, et les couplages de l'accès 31 du guide d'onde central vers les deux accès 11, 21 des deux guides d'onde latéraux sont parfaitement équilibrés. La jonction de ce coupleur en Té dans le plan E étant encastrée, ce coupleur en Té présente l'avantage d'être parfaitement symétrique, plus simple à réaliser et permet de réaliser un répartiteur de puissance symétrique plus compact que tous les répartiteurs de puissance connus. Pour adapter les deux accès 11, 21 des deux guides d'onde latéraux, il est nécessaire que les sections des guides d'onde latéraux 10, 20 soient moins larges que la section du guide d'onde central 30.The figure 4a represents an example of a T-coupler in the E plane which is used in the invention. The T-coupler has a flush-mounted junction and can have three or four I / O ports. On the figure 4a , the T-coupler 24 comprises three waveguides 10, 20, 30, each waveguide being delimited by a peripheral metal wall consisting of two long sides, two short sides and having an entry or exit access 11, 21, 31. Two lateral waveguides 10 and 20 are mounted flat on their long side and a central waveguide 30 is mounted on the edge on its short side, and embedded between the two side waveguides 10, 20. Thus, the side waveguides 10, 20 have their walls in addition large width parallel to the XY plane, while the central waveguide 30 has its walls of greater width perpendicular to the XY plane. All the waveguides and all the input and output accesses are therefore parallel to the XY plane, but the longitudinal axis of the central waveguide 30 is oriented in the X direction perpendicular to the longitudinal axes of the two waveguides. lateral wave 10, 20 which are oriented in the Y direction. The embedding of the central waveguide 30 between the two lateral waveguides 10, 20 makes it possible to limit the thickness of the coupler to the width L of a large side of the central waveguide 30. The ends of the lateral waveguides 10, 20 form two lateral accesses 11, 21 of exit, or entry, oriented in the Y direction and one of the ends of the guide. central wave 30 forms an entry or exit port 31 oriented in the X direction perpendicular to the Y direction. The three waveguides being arranged in the same XY plane. The structure of the coupler is then perfectly symmetrical, the input / output ports of the lateral waveguides are arranged symmetrically with respect to the input / output port of the central waveguide, and the couplings of the access 31 from the central waveguide to the two accesses 11, 21 of the two lateral waveguides are perfectly balanced. The junction of this T-coupler in the E-plane being flush-mounted, this T-coupler has the advantage of being perfectly symmetrical, easier to produce and allows a symmetrical power distributor to be made more compact than all known power distributors. . To adapt the two accesses 11, 21 of the two lateral waveguides, it is necessary for the sections of the lateral waveguides 10, 20 to be less wide than the section of the central waveguide 30.

Le coupleur en Té dans le plan E à jonction encastrée 24 forme un répartiteur de puissance symétrique entre un accès 31 d'entrée/sortie du guide d'onde central et deux accès 11, 21 de sortie/entrée des guides d'onde latéraux et peut être utilisé pour alimenter en phase deux éléments rayonnants différents d'un réseau rayonnant 50 comme représenté par exemple sur la figure 5. Deux éléments rayonnants 51, 52, par exemple des cornets ou des cavités rayonnantes telles que des cavités Fabry-Perot, peuvent être couplés aux deux accès 11, 21 des guides d'onde latéraux 10, 20 du coupleur dans le plan E à jonction encastrée et être alimentés en phase par une source d'alimentation 53 connectée à l'accès 31 du guide d'onde central 30. La liaison entre chaque accès latéral 11, 21 et les deux éléments rayonnants correspondants, peut être réalisée par un guide d'onde coudé. Les deux éléments rayonnants 51, 52 connectés en réseau par le coupleur en Té dans le plan E forment un réseau rayonnant 50 qui peut être utilisé, seul ou en combinaison avec d'autres éléments rayonnants en réseau, dans une antenne plane fonctionnant en émission ou en réception.The T-coupler in the plane E with recessed junction 24 forms a symmetrical power distributor between an input / output port 31 of the central waveguide and two ports 11, 21 for output / input of the lateral waveguides and can be used to supply in phase two different radiating elements of a radiating network 50 as shown for example on the figure 5 . Two radiating elements 51, 52, for example cones or radiating cavities such as Fabry-Perot cavities, can be coupled to the two ports 11, 21 of the lateral waveguides 10, 20 of the coupler in the plane E with recessed junction and be supplied in phase by a power source 53 connected to the port 31 of the waveguide central 30. The connection between each lateral access 11, 21 and the two corresponding radiating elements can be produced by an angled waveguide. The two radiating elements 51, 52 connected in a network by the T-coupler in the plane E form a radiating network 50 which can be used, alone or in combination with other radiating elements in a network, in a plane antenna operating in transmission or in reception.

Le coupleur en Té 24 à jonction encastrée à trois accès représenté sur la figure 4a est sensible en adaptation à la cohérence de phase des signaux incidents sur les deux accès 21 et 11 des guides d'onde latéraux lorsque le répartiteur de puissance fonctionne en réception. Si les signaux incidents ne sont plus en opposition de phase, comme c'est le cas par exemple pour les signaux reçus par les éléments rayonnants pour une onde incidente avec une direction non normale à la surface du réseau, alors les signaux sont légèrement déséquilibrés en phase. Il peut en résulter une désadaptation du coupleur en Té à trois accès, néfastes au diagramme de rayonnement du réseau rayonnant. Dans ce cas, comme représenté sur la figure 4b, le coupleur en Té à jonction encastrée à trois accès 24 peut comporter une cavité 25 au fond de laquelle est déposé un film absorbant 26. La cavité munie du film absorbant peut par exemple être aménagée sous la paroi inférieure 27 du guide d'onde central 30 du coupleur 24 et est alimentée par une fente longitudinale 28 aménagée dans ladite paroi inférieure 27. La cavité 25 munie du film absorbant 26 permet d'absorber les ondes électromagnétiques qui se propagent dans le répartiteur de puissance et qui ne respectent pas les conditions de phase nécessaires au fonctionnement du coupleur en Té dans le plan E.The three port flush-junction T-coupler 24 shown in figure 4a is sensitive in adaptation to the phase coherence of the signals incident on the two ports 21 and 11 of the lateral waveguides when the power distributor is operating in reception. If the incident signals are no longer in phase opposition, as is the case for example for the signals received by the radiating elements for an incident wave with a direction not normal to the network surface, then the signals are slightly unbalanced in phase. This may result in a mismatch of the three-port T-coupler, which is harmful to the radiation pattern of the radiating network. In this case, as shown in the figure 4b , the three-port recessed junction T-coupler 24 may comprise a cavity 25 at the bottom of which is deposited an absorbent film 26. The cavity provided with the absorbent film may for example be arranged under the lower wall 27 of the central waveguide 30 of the coupler 24 and is fed by a longitudinal slot 28 formed in said lower wall 27. The cavity 25 provided with the absorbent film 26 makes it possible to absorb the electromagnetic waves which propagate in the power distributor and which do not comply with the conditions of phase necessary for the operation of the T-coupler in the E plane.

La figure 6a représente un exemple de réseau de répartition de puissance à quatre accès de sortie comportant deux coupleurs en Té dans le plan E à jonction encastrée, selon l'invention. Le répartiteur de puissance comporte deux guides d'onde latéraux 61, 62 parallèles entre eux et un guide d'onde transversal 63 couplé perpendiculairement aux deux guides d'onde latéraux, le couplage entre chaque guide d'onde latéral et le guide d'onde transversal étant réalisé par un coupleur en Té dans le plan E à jonction encastrée selon l'invention. Chaque guide d'onde latéral 61, 62 est monté à plat avec ses grands côtés parallèles au plan XY et le guide d'onde transversal 63 est monté sur la tranche avec ses grands côtés perpendiculaires au plan XY. Le guide d'onde transversal comporte deux extrémités 63a, 63b respectivement encastrées dans chaque guide d'onde latéral. Le répartiteur de puissance 60 est parfaitement symétrique, les deux jonctions en Té dans le plan E étant encastrées au centre de chaque guide d'onde latéral au niveau des deux extrémités 63a, 63b du guide d'onde transversal 63. Chaque guide d'onde latéral comporte deux extrémités opposées constituant deux accès de sortie/d'entrée 64, 65, respectivement 66, 67, du répartiteur de puissance 60, auxquels peuvent être couplés quatre éléments rayonnants, chaque accès de sortie/entrée 64, 65, 66, 67 du répartiteur de puissance 60 constituant alors un accès d'entrée/sortie d'un élément rayonnant. Le répartiteur de puissance 60 comporte également un accès d'alimentation 68 aménagé au centre du guide d'onde transversal, dans l'une des parois supérieure ou inférieure. L'accès d'alimentation 68 peut être connecté à une source d'alimentation, non représentée, dont la puissance sera distribuée par le répartiteur de puissance 60 jusqu'aux quatre accès de sortie/entrée 64, 65, 66, 67 pour alimenter en phase les quatre accès d'entrée/sortie des éléments rayonnants correspondants. Dans le cas où le coupleur en Té dans le plan E à jonction encastrée comporte une cavité externe 25 munie d'un film absorbant 26 comme représenté sur les figures 4b et 13, au niveau de chaque jonction encastrée, le guide d'onde transversal 63 comporte une fente de couplage 28 aménagée dans une paroi périphérique et débouchant dans la cavité externe 25. L'ensemble constitué du répartiteur de puissance 60 et des éléments rayonnants 69 constitue un réseau rayonnant qui peut être utilisé comme une antenne plane fonctionnant en mono-polarisation. Les quatre éléments rayonnants 69 connectés en réseau par le réseau répartiteur de puissance 60 rayonnent en phase et participent à la formation d'un même faisceau 1. Il est possible de combiner plusieurs réseaux rayonnants identiques pour obtenir la formation de plusieurs faisceaux contigus. Les réseaux rayonnants peuvent être utilisés seuls comme antenne à rayonnement direct ou être utilisés en combinaison avec un ou plusieurs réflecteurs.The figure 6a represents an example of a power distribution network with four output ports comprising two T-couplers in the E plane with a flush-mounted junction, according to the invention. The power splitter comprises two lateral waveguides 61, 62 parallel to each other and a transverse waveguide 63 coupled perpendicularly to the two lateral waveguides, the coupling between each lateral waveguide and the waveguide transverse being produced by a T-coupler in the E plane with junction recessed according to the invention. Each lateral waveguide 61, 62 is mounted flat with its long sides parallel to the XY plane and the transverse waveguide 63 is mounted on the wafer with its long sides perpendicular to the XY plane. The transverse waveguide has two ends 63a, 63b respectively embedded in each lateral waveguide. The power distributor 60 is perfectly symmetrical, the two T-junctions in the plane E being embedded in the center of each lateral waveguide at the level of the two ends 63a, 63b of the transverse waveguide 63. Each waveguide side has two opposite ends constituting two output / input ports 64, 65, 66, 67, respectively, of the power distributor 60, to which can be coupled four radiating elements, each output / input port 64, 65, 66, 67 of the power distributor 60 then constituting an input / output port of a radiating element. The power distributor 60 also includes a power supply access 68 arranged in the center of the transverse waveguide, in one of the upper or lower walls. The power supply port 68 can be connected to a power source, not shown, the power of which will be distributed by the power distributor 60 to the four output / input ports 64, 65, 66, 67 to supply power. phase the four entry / exit ports of the corresponding radiating elements. In the case where the T-coupler in the plane E with recessed junction has an external cavity 25 provided with an absorbent film 26 as shown in the figures 4b and 13 , at each embedded junction, the transverse waveguide 63 comprises a coupling slot 28 formed in a peripheral wall and opening into the external cavity 25. The assembly consisting of the power distributor 60 and of the radiating elements 69 constitutes a radiating network which can be used as a plane antenna operating in mono-polarization. The four radiating elements 69 connected in a network by the power distribution network 60 radiate in phase and participate in the formation of the same beam 1. It is possible to combine several identical radiating networks to obtain the formation of several contiguous beams. Radiant arrays can be used alone as a direct radiating antenna or be used in combination with one or more reflectors.

Comme représenté sur l'exemple de la figure 6b, représentant une vue schématique en coupe d'une antenne comportant deux réseaux rayonnants montés dans le plan focal d'un réflecteur 89, en utilisant plusieurs répartiteurs de puissance identiques 60, 70 alimentés par des sources d'alimentation dédiées, il est possible de réaliser plusieurs antennes planes identiques, qui utilisées en tant que sources primaires positionnées dans le plan focal d'un réflecteur parabolique 89, génèrent des faisceaux contigus. Chaque faisceau 1, 2 est formé par quatre éléments rayonnants respectifs 69, 79, dont deux éléments rayonnants sont visibles sur la vue en coupe de la figure 6b. Les quatre éléments rayonnants formant chaque faisceau 1, 2 sont respectivement connectés aux quatre accès de sortie/entrée d'un répartiteur de puissance 60, 70 dédié et alimentés en phase et dans une polarisation identique par une source d'alimentation centrale connectée à l'accès d'alimentation 68, 78 respectif du répartiteur de puissance correspondant 60, 70.As shown in the example of figure 6b , showing a schematic sectional view of an antenna comprising two radiating arrays mounted in the focal plane of a reflector 89, using several identical power distributors 60, 70 supplied by dedicated power sources, it is possible to realize several identical plane antennas, which used as primary sources positioned in the focal plane of a parabolic reflector 89, generate contiguous beams. Each beam 1, 2 is formed by four respective radiating elements 69, 79, of which two radiating elements are visible in the sectional view of the figure 6b . The four radiating elements forming each beam 1, 2 are respectively connected to the four output / input ports of a dedicated power distributor 60, 70 and supplied in phase and in an identical polarization by a central power source connected to the respective power supply access 68, 78 of the corresponding power distributor 60, 70.

Les figures 7a et 7c représentent un exemple de réseau de répartition de puissance comportant trois répartiteurs de puissance 60, 70, 80 ayant chacun quatre accès de sortie/entrée, selon l'invention. Les trois répartiteurs de puissance 60, 70, 80 sont disposés côte à côte parallèlement entre eux et couplés à des diplexeurs de polarisation ou à des transducteurs orthomodes OMT 71, 72, 73, 74 (en anglais : Orthogonal Mode Transducer) pour alimenter des éléments rayonnants 69 dans deux polarisations orthogonales P1, P2. Chaque répartiteur de puissance est identique à celui de la figure 6a mais deux répartiteurs de puissance adjacents sont dédiés à deux polarisations différentes et orthogonales entre elles. Les OMT 71, 72, 73, 74 constituent les accès d'entrée/sortie des éléments rayonnants 69. Ce réseau de répartition peut être utilisé seul comme antenne à rayonnement direct ou, comme représenté sur la figure 7b, ce réseau de répartition peut être utilisé comme un réseau de sources primaires placé dans le plan focal d'un réflecteur 89 d'une antenne multifaisceaux. Chaque source primaire est alors constituée de quatre éléments rayonnants couplés en phase et alimentés dans une polarisation identique par l'un des répartiteurs de puissance et permet de former un faisceau. Deux répartiteurs de puissance adjacents sont alimentés par deux polarisations différentes orthogonales entre elles, ce qui permet de former deux faisceaux adjacents polarisés orthogonalement et décalés spatialement.The figures 7a and 7c represent an example of a power distribution network comprising three power distributors 60, 70, 80 each having four output / input ports, according to the invention. The three power distributors 60, 70, 80 are arranged side by side parallel to each other and coupled to polarization diplexers or orthomode transducers OMT 71, 72, 73, 74 (in English: Orthogonal Mode Transducer) to feed elements radiating 69 in two orthogonal polarizations P1, P2. Each power distributor is identical to that of the figure 6a but two adjacent power distributors are dedicated to two different polarizations and orthogonal to each other. The OMTs 71, 72, 73, 74 constitute the input / output ports of the radiating elements 69. This distribution network can be used alone as a direct radiating antenna or, as shown in the diagram. figure 7b , this distribution network can be used as a network of primary sources placed in the focal plane of a reflector 89 of a multibeam antenna. Each primary source then consists of four radiating elements coupled in phase and supplied in an identical polarization by one of the power distributors and makes it possible to form a beam. Two adjacent power distributors are supplied by two different polarizations orthogonal to each other, which makes it possible to form two adjacent orthogonally polarized and spatially offset beams.

Alternativement, sur l'exemple de la figure 7d, deux réseaux de répartition adjacents peuvent être disposés perpendiculairement entre eux. Dans cette seconde configuration, les réseaux de répartition adjacents sont couplés à des OMT comportant deux accès orthogonaux entre eux.Alternatively, on the example of figure 7d , two adjacent distribution networks can be arranged perpendicular to each other. In this second configuration, the adjacent distribution networks are coupled to OMTs comprising two orthogonal ports between them.

Dans ces deux exemples de réalisation, deux répartiteurs de puissance adjacents 60, 70 correspondent respectivement à deux polarisations orthogonales différentes et permettent d'élaborer deux faisceaux adjacents polarisés orthogonalement et décalés spatialement.In these two exemplary embodiments, two adjacent power distributors 60, 70 correspond respectively to two different orthogonal polarizations and make it possible to produce two adjacent beams orthogonally polarized and spatially offset.

Pour que les faisceaux 1, 2, 3 élaborés par le réflecteur 89 se recouvrent à un niveau élevé comme représenté sur la figure 7b, il est nécessaire que les ouvertures rayonnantes 4, 5, 6 des sources primaires s'entrelacent. La figure 7c illustre le cas où les ouvertures rayonnantes des sources primaires sont entrelacées selon la direction Y. Pour cela, selon l'invention, les répartiteurs de puissance 60, 70, 80 sont disposés les uns à côté des autres et reliés entre eux deux à deux par des transducteurs orthomodes OMT 71, 72, 73, 74 à deux accès d'entrée et une sortie apte à délivrer deux polarisations orthogonales linéaires ou circulaires. Ainsi, un OMT permettant de diplexer des signaux d'entrée en deux signaux de polarisation circulaire peut par exemple être de type polariseur septum.So that the beams 1, 2, 3 produced by the reflector 89 overlap at a high level as shown in the figure figure 7b , it is necessary that the radiating openings 4, 5, 6 of the primary sources intertwine. The figure 7c illustrates the case where the radiating openings of the primary sources are interlaced in the Y direction. For this, according to the invention, the power distributors 60, 70, 80 are arranged one beside the other and connected to each other two by two by orthomode OMT transducers 71, 72, 73, 74 with two input ports and one output capable of delivering two linear or circular orthogonal polarizations. Thus, an OMT making it possible to diplex input signals into two circular polarization signals can for example be of the septum polarizer type.

La figure 8 illustre une vue longitudinale d'un exemple de transducteur orthomode de type polariseur septum qui peut être utilisé dans l'invention. L'OMT de type polariseur septum est constitué d'un guide d'onde comportant deux accès d'entrée 83, 84 fonctionnant en opposition de phase, un accès de sortie 85 fonctionnant selon deux polarisations orthogonales et d'une lame interne longitudinale 86, appelée septum, séparant les deux accès d'entrée et s'étendant selon la direction Z sur une partie de la longueur du guide d'onde de l'OMT. La lame interne 86 du septum comporte différents paliers permettant de transformer un champ électromagnétique de polarisation linéaire en entrée du septum en un champ électromagnétique de polarisation circulaire droite ou gauche, en sortie du septum, selon l'accès d'entrée excité. L'OMT de type polariseur septum fonctionne en polarisation circulaire, mais il est également possible d'utiliser un OMT fonctionnant en polarisation linéaire pour élaborer des faisceaux de polarisations linéaires orthogonales.The figure 8 illustrates a longitudinal view of an exemplary orthomode septum polarizer-type transducer which may be used in the invention. The OMT of the septum polarizer type consists of a waveguide comprising two input ports 83, 84 operating in phase opposition, an output port 85 operating according to two orthogonal polarizations and a longitudinal internal plate 86, called a septum, separating the two inlet ports and extending in the Z direction over part of the length of the OMT waveguide. The internal plate 86 of the septum comprises different stages making it possible to transform an electromagnetic field of linear polarization at the input of the septum into an electromagnetic field of right or left circular polarization, at the output of the septum, depending on the excited input port. The septum polarizer type OMT operates in circular polarization, but it is also possible to use an OMT operating in linear polarization to develop beams of orthogonal linear polarizations.

Lorsque le réseau de répartition de puissance comporte deux répartiteurs de puissance 60, 70, les deux répartiteurs de puissance peuvent être reliés entre eux par l'intermédiaire de deux OMT 71, 72, l'accès de sortie 85 de chaque OMT étant destiné à être connecté à un élément rayonnant 69. Dans ce cas, les deux accès d'entrée 83, 84 de chaque OMT 71, 72 sont respectivement connectés à deux accès de sortie 65, 75, respectivement 67, 77, appartenant à chacun des deux répartiteurs de puissance. Lorsque le réseau de répartition comporte plus de deux répartiteurs de puissance, tous les répartiteurs de puissance peuvent être reliés entre eux par l'intermédiaire de plusieurs OMT 71, 72, 73, 74, chaque OMT étant couplé à deux accès de sortie de deux répartiteurs de puissance adjacents 60, 70 ou 70, 80. Le guide d'onde transversal de chaque répartiteur de puissance comporte un accès d'entrée 68, 78, 88 qui peut être alimenté par une source d'alimentation dédiée. Par exemple, les accès d'entrée 68, 78, 88 de trois répartiteurs de puissance adjacents deux à deux 60, 70, 80 peuvent être alimentés avec un mode TE10. Chaque OMT connecté à deux répartiteurs adjacents 60, 70, 80 va élaborer deux signaux en polarisations circulaires orthogonales. Selon l'accès d'entrée de l'OMT, la polarisation circulaire élaborée en sortie de l'OMT sera droite ou gauche. Ainsi, les OMT connectés à un premier répartiteur de puissance peuvent être orientés de façon à élaborer des signaux en phase et ayant une même première polarisation P1 et les OMT connectés à un second répartiteur de puissance peuvent être orientés de façon à élaborer des signaux en phase et ayant une même deuxième polarisation P2 orthogonale à P1. Les accès de sortie 85 de chaque OMT 71, 72, 73, 74 peuvent alors être respectivement couplés à des éléments rayonnants respectifs, par exemple des cornets ou des cavités Fabry-Perot, afin d'obtenir des réseaux rayonnants aptes à former des faisceaux dans la première polarisation P1 ou dans la seconde polarisation P2. Les réseaux rayonnants obtenus peuvent être utilisés en tant que source primaire d'un réflecteur parabolique 89 pour former des faisceaux adjacents 1, 2 ayant deux couleurs différentes, les deux couleurs correspondant respectivement aux polarisations P1 et P2.When the power distribution network comprises two power distributors 60, 70, the two power distributors can be connected to each other by means of two OMTs 71, 72, the output port 85 of each OMT being intended to be connected to a radiating element 69. In this case, the two input ports 83, 84 of each OMT 71, 72 are respectively connected to two output ports 65, 75, respectively 67, 77, belonging to each of the two distribution frames. power. When the distribution network has more than two power distributors, all the power distributors can be linked together by means of several OMT 71, 72, 73, 74, each OMT being coupled to two output ports of two distributors adjacent power sources 60, 70 or 70, 80. The transverse waveguide of each power splitter has an input port 68, 78, 88 which can be powered by a dedicated power source. For example, the input ports 68, 78, 88 of three two-by-two adjacent power distributors 60, 70, 80 can be supplied with a TE10 mode. Each OMT connected to two adjacent distributors 60, 70, 80 will produce two signals in orthogonal circular polarizations. Depending on the input port of the OMT, the circular polarization produced at the output of the OMT will be right or left. Thus, the OMTs connected to a first power distributor can be oriented so as to develop signals in phase and having the same first polarization P1 and the OMTs connected to a second power distributor can be oriented so as to develop signals in phase and having the same second polarization P2 orthogonal to P1. The output ports 85 of each OMT 71, 72, 73, 74 can then be respectively coupled to respective radiating elements, for example cones or Fabry-Perot cavities, in order to obtain radiating networks capable of forming beams in the first polarization P1 or in the second polarization P2. The radiating networks obtained can be used as the primary source of a parabolic reflector 89 to form adjacent beams 1, 2 having two different colors, the two colors corresponding respectively to the polarizations P1 and P2.

Dans les exemples représentés sur les figures 7a, 7c et 7d, les réseaux de répartition sont reliés les uns aux autres selon une seule direction Y ce qui permet de réaliser des faisceaux entrelacés s'étendant dans une seule direction. De même, avec un réseau de répartition comportant plusieurs répartiteurs de puissance 60, 70, 80, 90 reliés entre eux deux à deux selon deux directions d'un plan XY comme représenté sur l'exemple de réseau de répartition de la figure 9, et en alimentant les éléments rayonnants des répartiteurs adjacents en quatre couleurs différentes, il est possible de former des faisceaux entrelacés selon deux directions d'un plan, les faisceaux adjacents ayant des couleurs différentes. Les quatre couleurs différentes correspondent à quatre couples de valeurs de fréquence et de polarisation différentes (F1, P1), (F2, P1), (F1, P2), (F2, P2). Pour cela, il est nécessaire que chaque élément rayonnant puisse être alimenté par quatre couleurs différentes provenant de quatre répartiteurs de puissance différents.In the examples shown on figures 7a , 7c and 7d , the distribution networks are connected to each other in a single direction Y which makes it possible to produce interlaced beams extending in a single direction. Likewise, with a distribution network comprising several power distributors 60, 70, 80, 90 interconnected two by two in two directions of an XY plane as shown in the example of the distribution network of the figure 9 , and by supplying the radiating elements of the adjacent distributors in four different colors, it is possible to form interlaced beams in two directions of a plane, the adjacent beams having different colors. The four different colors correspond to four pairs of different frequency and polarization values (F1, P1), (F2, P1), (F1, P2), (F2, P2). For this, it is necessary that each radiating element can be supplied by four different colors coming from four different power distributors.

Selon un mode de réalisation, chaque élément rayonnant 69 peut être alimenté par quatre couleurs différentes en utilisant, à l'émission, un moyen de combinaison de puissance connecté entre chaque accès de sortie d'un répartiteur de puissance et chaque accès d'entrée 83, 84 d'un OMT 71, 72. A la réception, le moyen de combinaison de puissance fonctionne comme un moyen de division de puissance, les accès de sortie du répartiteur de puissance deviennent des accès d'entrée et inversement, les accès d'entrée 83, 84 des OMT 71, 72 deviennent des accès de sortie. Le fonctionnement d'une antenne à la réception étant inverse de celui à l'émission, dans la suite de la description, la qualification des différents accès correspond à un fonctionnement en émission.According to one embodiment, each radiating element 69 can be supplied with four different colors by using, on transmission, a power combining means connected between each output port of a power distributor and each input port 83 , 84 of an OMT 71, 72. On reception, the power combining means functions as a power dividing means, the output ports of the power distributor become input ports and vice versa, the ports of. entry 83, 84 of OMT 71, 72 become egress ports. The operation of an antenna on reception being the opposite of that on transmission, in the remainder of the description, the qualification of the different accesses corresponds to operation in transmission.

Le moyen de combinaison/division de puissance 92, 93 peut être réalisé de différentes façons. Sur l'exemple de la figure 10a, deux moyens de combinaison/division de puissance 92, 93 sont représentés, chaque moyen de combinaison/division de puissance étant réalisé par un coupleur directionnel en guides d'onde à deux accès de sortie. Sur la figure 10a, le coupleur directionnel comporte deux guides d'onde d'entrée couplés entre eux à une extrémité par des trous 94 aménagés dans la paroi métallique interne séparant les deux guides d'onde, mais beaucoup d'autres variantes existent et peuvent être utilisées. Ce coupleur à trous comporte un accès isolé 95 connecté à une charge résistive et un accès de sortie 96 connecté à une entrée de l'OMT 71. Cependant un tel combineur/diviseur de puissance atténue les signaux reçus lorsqu'il fonctionne en réception. Ces atténuations peuvent être compensées en ajoutant des amplificateurs à faible bruit entre les répartiteurs de puissance et les OMT.The power combining / dividing means 92, 93 can be implemented in various ways. On the example of figure 10a , two power combining / dividing means 92, 93 are shown, each power combining / dividing means being implemented by a directional coupler in waveguides with two output ports. On the figure 10a , the directional coupler comprises two input waveguides coupled together at one end by holes 94 made in the internal metal wall separating the two waveguides, but many other variants exist and can be used. This hole coupler has an isolated access 95 connected to a resistive load and an output port 96 connected to an input of the OMT 71. However, such a power combiner / divider attenuates the signals received when it operates in reception. These attenuations can be compensated by adding low noise amplifiers between the power distributors and the OMTs.

Alternativement, selon un autre mode de réalisation, le combineur/diviseur peut être transformé en un circulateur 97 par exemple en insérant une rondelle de ferrite 98 dans le combineur/diviseur comme représenté sur l'exemple de la figure 10b.Alternatively, according to another embodiment, the combiner / divider can be transformed into a circulator 97, for example by inserting a ferrite washer 98 into the combiner / divider as shown in the example of figure 10b .

Alternativement, selon un autre mode de réalisation de l'invention, le moyen de combinaison/division de puissance peut être constitué par un coupleur en Té dans le plan E à jonction encastrée à quatre accès. Comme représentée sur la figure 11, selon l'invention, le coupleur en Té dans le plan E à jonction encastrée 99 comporte deux guides d'onde latéraux 10 et 20 montés à plat sur leur grand côté et un guide d'onde central 30 monté sur la tranche sur son petit côté, le guide d'onde central 30 étant encastré entre les deux guides d'onde latéraux 10, 20 comme la structure du coupleur en Té à jonction encastrée représenté sur la figure 4. Ce coupleur en Té dans le plan E à jonction encastrée comporte également deux accès de sortie 11, 21 situés aux deux extrémités des deux guides d'onde latéraux et un premier accès d'entrée 31 situé à une première extrémité du guide d'onde central 30. En outre, Ce coupleur en Té dans le plan E à jonction encastrée comporte un deuxième accès d'entrée 91 supplémentaire situé à la deuxième extrémité du guide d'onde central 30, à l'opposé du premier accès d'entrée 31. Les deux accès d'entrée 31, 91 sont orientés selon la direction X perpendiculaire à la direction Y des deux accès de sortie 11, 21. Dans ce cas, lorsque les deux accès 11, 21 des guides d'onde latéraux 10, 20 du coupleur à jonction encastrée à quatre accès sont alimentés en opposition de phase, alors les signaux se séparent équitablement vers les deux accès 31, 91 du guide d'onde central 30. Cela permet alors de multiplier par deux le nombre d'accès de sortie du répartiteur de puissance correspondant et donc le nombre d'accès d'entrée d'alimentation des éléments rayonnants qui y sont connectés. Il est alors possible de réaliser une antenne à formation de faisceaux entrelacés selon deux directions d'un plan XY en réalisant un répartiteur de puissance comprenant des coupleurs en Té dans le plan E à jonction encastrée à quatre accès selon deux directions d'un plan comme représenté schématiquement sur l'exemple de la figure 12. Les coupleurs en Té dans le plan E à jonction encastrée à quatre accès 99 sont insérés dans certains répartiteurs de puissance en lieu et place des coupleurs en Té dans le plan E à jonction encastrée à trois accès 24, ce qui permet d'assurer la liaison avec un répartiteur de puissance adjacent selon la direction X parallèle à l'axe longitudinal du guide d'onde central de chaque répartiteur de puissance. Le quatrième accès de chaque coupleur 99 situé à une extrémité du guide d'onde central d'un répartiteur de puissance est disponible et peut être directement connecté au guide d'onde central d'un répartiteur de puissance adjacent. De cette façon, deux répartiteurs adjacents selon la direction X parallèle à l'axe longitudinal du guide d'onde central de chaque répartiteur de puissance, reliés entre eux par un coupleur à quatre accès 99, partagent un guide d'onde latéral, ce qui permet d'entrelacer les ouvertures rayonnantes correspondantes selon la direction X. Il est alors possible de former des faisceaux entrelacés selon deux directions d'un plan, les faisceaux adjacents ayant des couleurs différentes. Les quatre couleurs différentes correspondent à quatre couples de valeurs de fréquence et de polarisation différentes (F1, P1), (F2, P1), (F1, P2), (F2, P2). De la même façon que pour le répartiteur de la figure 9, la jonction encastrée à quatre accès 99 divise les signaux reçus par les éléments rayonnants, et les route vers les accès de sortie 78, 78b lorsqu'il fonctionne en réception. Ces atténuations peuvent être compensées en ajoutant des amplificateurs à faible bruit entre les répartiteurs de puissance et les OMT.Alternatively, according to another embodiment of the invention, the power combining / dividing means can be constituted by a T-coupler in the E plane with a recessed junction with four ports. As shown on the figure 11 , according to the invention, the T-coupler in the plane E with recessed junction 99 comprises two lateral waveguides 10 and 20 mounted flat on their large side and a central waveguide 30 mounted on the edge on its small side, the central waveguide 30 being recessed between the two lateral waveguides 10, 20 like the structure of the recessed junction T-coupler shown in FIG. figure 4 . This T-coupler in the plane E with recessed junction also has two output ports 11, 21 located at both ends of the two lateral waveguides and a first input port 31 located at a first end of the central waveguide. 30. In addition, this T-coupler in the plane E with recessed junction has an additional second input port 91 located at the second end of the central waveguide 30, opposite to the first input port 31. The two inlet ports 31, 91 are oriented in the X direction perpendicular to the Y direction of the two outlet ports 11, 21. In this case, when the two ports 11, 21 of the lateral waveguides 10, 20 of the Four-port flush-mounted junction coupler are fed in phase opposition, then the signals separate equally to the two ports 31, 91 of the central waveguide 30. This then allows the number of output ports to be doubled. corresponding power distributor and therefore the number of accesses input power to the radiating elements connected to it. It is then possible to produce an antenna with the formation of beams interlaced in two directions of an XY plane by producing a power distributor comprising T-couplers in the plane E with a junction embedded with four ports in two directions of a plane such as shown schematically on the example of figure 12 . Four-port flush-junction E-plane T-couplers 99 are inserted in some power distributors instead of three-port flush-junction E-plane T-couplers 24, which provides the link with an adjacent power distributor in the X direction parallel to the longitudinal axis of the central waveguide of each power distributor. The fourth port of each coupler 99 located at one end of the central waveguide of a power splitter is available and can be directly connected to the central waveguide of an adjacent power splitter. In this way, two adjacent distributors in the X direction parallel to the longitudinal axis of the central waveguide of each power distributor, connected together by a four-port coupler 99, share a lateral waveguide, which allows the corresponding radiating openings to be interlaced in the X direction. It is then possible to form interlaced beams in two directions of a plane, the adjacent beams having different colors. The four different colors correspond to four pairs of different frequency and polarization values (F1, P1), (F2, P1), (F1, P2), (F2, P2). In the same way as for the distributor of the figure 9 , the flush-mounted four port junction 99 divides the signals received by the radiating elements, and routes them to the output ports 78, 78b when it is operating in reception. These attenuations can be compensated by adding low noise amplifiers between the power distributors and the OMTs.

Pour une utilisation en émission, les couplages entre les deux accès d'entrée 31, 91 du coupleur en Té dans le plan E à jonction encastrée sont importants et résultent en des couplages importants au niveau des accès d'entrée d'alimentation 68, 78, 88 du répartiteur de puissance ce qui nécessite l'emploi d'isolateurs à ce niveau. En outre, pour limiter ce couplage entre accès, et diminuer les pertes en puissance dans ces isolateurs, Il est également possible d'inclure une rondelle de ferrite au centre de la jonction encastrée du coupleur. Le couplage entre les deux accès d'entrée 31 et 91 est alors significativement modifié, et les signaux émis vers les accès d'entrée 31 ou 91 du coupleur en Té sont alors intégralement routés en se séparant équitablement vers les deux accès de sortie 11 et 21.For use in transmission, the couplings between the two input ports 31, 91 of the T-coupler in the plane E with recessed junction are important and result in large couplings at the power input ports 68, 78 , 88 of the power distributor which requires the use of insulators at this level. In addition, to limit this coupling between ports, and reduce the power losses in these insulators, it is also possible to include a ferrite washer in the center of the recessed junction of the coupler. The coupling between the two input ports 31 and 91 is then significantly modified, and the signals sent to the input ports 31 or 91 of the T-coupler are then fully routed, separating equally towards the two output ports 11 and 21.

Le coupleur en Té 99 à jonction encastrée à quatre accès représenté sur la figure 11 est sensible en adaptation à la cohérence de phase des signaux incidents sur les accès 21 et 11 lorsque le répartiteur fonctionne en réception, ou sur les accès 31 et 91 lorsque le répartiteur fonctionne à l'émission. Si les signaux incidents ne sont plus en opposition de phase, comme c'est le cas par exemple pour les signaux reçus par les éléments rayonnants pour une onde incidente avec une direction non normale à la surface du réseau, alors les signaux sont légèrement déséquilibrés en phase. Il peut en résulter une désadaptation du coupleur en Té à quatre accès 99, néfastes au diagramme de rayonnement du réseau rayonnant. Dans ce cas, comme représenté sur la figure 13, le coupleur en Té à jonction encastrée à quatre accès 99 peut comporter une cavité 100 au fond de laquelle est déposé un film absorbant 101. La cavité absorbante peut être aménagée par exemple, sous la paroi inférieure 104 du guide d'onde central 30 du coupleur 99 et est alimentée par deux fentes longitudinales 102, 103 aménagées dans ladite paroi inférieure 104.The four port flush-junction T-coupler 99 shown in figure 11 is sensitive in adaptation to the phase coherence of the incident signals on the ports 21 and 11 when the distributor is operating on reception, or on the ports 31 and 91 when the distributor is operating on transmission. If the incident signals are no longer in phase opposition, as is the case for example for the signals received by the radiating elements for an incident wave with a direction not normal to the network surface, then the signals are slightly unbalanced in phase. This may result in a mismatch of the four-port T-coupler 99, which is harmful to the radiation pattern of the radiating network. In this case, as shown in the figure 13 , the four-port recessed junction T-coupler 99 may include a cavity 100 at the bottom of which is deposited an absorbent film 101. The absorbent cavity may be arranged, for example, under the bottom wall 104 of the central waveguide 30 of the coupler 99 and is supplied by two longitudinal slots 102, 103 formed in said lower wall 104.

Claims (9)

  1. Power splitter comprising at least two lateral waveguides (61, 62) with rectangular cross-section parallel to one another and a transverse waveguide (63) with rectangular cross-section comprising two opposite ends (63a, 63b) respectively connected to the two lateral waveguides, wherein the two lateral waveguides (61, 62) each comprise two opposite ends constituting four input/output ports (64, 65, 66, 67), configured to feed radiating elements and the transverse waveguide (63) comprises a central feed port (68), configured to allow the attachment of the device to an emission source, the two lateral waveguides (61, 62) being oriented along a direction Y and mounted flat with their large side parallel to a plane XY, the transverse waveguide (63) being oriented along a direction X perpendicular to the direction Y and mounted edgewise with its small side parallel to the plane XY, each lateral waveguide being coupled to the transverse waveguide by a tee coupler in the E-plane with embedded junction, the two ends (63a, 63b) of the transverse waveguide (63) being respectively embedded in each lateral waveguide (61, 62), at the centre of said respective lateral waveguide.
  2. Power splitter according to Claim 1, characterized in that, at the level of each embedded junction, the transverse waveguide (63) comprises an external cavity (25) furnished with an absorbent film (26) and a coupling slot (28) emerging into the external cavity.
  3. Radiating array, characterized in that it comprises at least one power splitter (60) according to Claim 2, and four radiating elements (69) respectively coupled to the four ports (64, 65, 66, 67) of the power splitter (60).
  4. Beamforming antenna, characterized in that it comprises at least one radiating array according to Claim 3.
  5. Beamforming antenna according to Claim 4, characterized in that it comprises at least two power splitters (60, 70) disposed parallel to one another and linked together, along the direction Y of the lateral waveguides of the two power splitters, by orthomode transducers OMT (71, 72, 73, 74), and radiating elements respectively coupled to the output ports (85) of respective orthomode transducers (71, 72, 73, 74).
  6. Beamforming antenna according to Claim 4, characterized in that it comprises at least two power splitters (60, 70) disposed perpendicular to one another and linked together by orthomode transducers OMT (71, 72, 73, 74), and radiating elements respectively coupled to the output ports (85) of respective orthomode transducers (71, 72, 73, 74).
  7. Beamforming antenna according to Claim 4, characterized in that it comprises at least one reflector (89) and at least two adjacent identical radiating arrays mounted in front of the reflector, the two adjacent radiating arrays being dedicated to two mutually orthogonal different polarizations.
  8. Beamforming antenna according to one of Claims 5 to 7, characterized in that it comprises at least four power splitters as well as power combining/dividing means (92, 93, 97, 99) connected between the ports (64, 65, 66, 67) of the power splitters and input ports (83, 84) of each OMT (71, 72, 73, 74), the power splitters being linked together pairwise along two orthogonal directions X, Y of a plane XY.
  9. Beamforming antenna according to Claim 8, characterized in that the power combining/dividing means comprise Tee couplers in the E-plane with embedded junction with four ports (99), the four ports consisting of two input ports (31, 91) oriented along the direction X and of two output ports (11, 21) oriented along the direction Y, three ports linking, along the direction Y, the lateral waveguides to the transverse waveguide of a first power splitter, the fourth port linking, along the direction X, the transverse waveguide of the first power splitter to a transverse waveguide of a second adjacent power splitter.
EP14191286.5A 2013-11-04 2014-10-31 Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network Active EP2869396B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1302549A FR3012918B1 (en) 2013-11-04 2013-11-04 TE CONNECTOR IN PLAN E, POWER DISTRIBUTOR, RADIANT ARRAY AND ANTENNA HAVING SUCH A COUPLER

Publications (2)

Publication Number Publication Date
EP2869396A1 EP2869396A1 (en) 2015-05-06
EP2869396B1 true EP2869396B1 (en) 2020-07-22

Family

ID=50288125

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14191286.5A Active EP2869396B1 (en) 2013-11-04 2014-10-31 Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network

Country Status (6)

Country Link
US (1) US9728863B2 (en)
EP (1) EP2869396B1 (en)
JP (1) JP6490397B2 (en)
CA (1) CA2869652C (en)
ES (1) ES2819208T3 (en)
FR (1) FR3012918B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10594042B2 (en) 2016-03-02 2020-03-17 Viasat, Inc. Dual-polarization rippled reflector antenna
US10096906B2 (en) * 2016-03-02 2018-10-09 Viasat, Inc. Multi-band, dual-polarization reflector antenna
CN106229597B (en) * 2016-07-13 2018-10-26 西北核技术研究所 The low reflection waveguide magic T of ultra-compact high-isolation
JP6988278B2 (en) * 2017-08-31 2022-01-05 日本電気株式会社 Array antenna
US10886590B2 (en) * 2017-10-11 2021-01-05 Texas Instruments Incorporated Interposer for connecting an antenna on an IC substrate to a dielectric waveguide through an interface waveguide located within an interposer block
WO2019226201A2 (en) 2017-12-20 2019-11-28 Optisys, LLC Integrated linearly polarized tracking antenna array
CN110277623A (en) * 2019-06-28 2019-09-24 中国航空工业集团公司雷华电子技术研究所 A kind of high isolation power synthesizer
EP3832791B1 (en) 2019-12-02 2023-11-15 Airbus Defence and Space GmbH Power divider
CN111786117A (en) * 2020-06-01 2020-10-16 四川九洲电器集团有限责任公司 Feed source and antenna device
FR3111479B1 (en) * 2020-06-11 2022-08-19 Thales Sa POWER COMBINER SYSTEM INCLUDING FOUR SOLID STATE MICROWAVE POWER AMPLIFIERS
US20230318200A1 (en) * 2022-03-30 2023-10-05 Gm Cruise Holdings Llc Phase compensated power divider for a vertical polarized three-dimensional (3d) antenna
CN114725643B (en) * 2022-06-10 2022-09-02 四川太赫兹通信有限公司 Terahertz dual-mode folding multiplexer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247512A (en) * 1964-02-17 1966-04-19 Lab For Electronics Inc Microwave antenna

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2540839A (en) * 1940-07-18 1951-02-06 Bell Telephone Labor Inc Wave guide system
FR890388A (en) * 1941-12-06 1944-02-07 Telefunken Gmbh Improvements to very shortwave electrical duplex communication systems
GB1310534A (en) * 1970-04-22 1973-03-21 Micro Metalsmiths Ltd Waveguides
JPS58119202A (en) * 1982-01-08 1983-07-15 Mitsubishi Electric Corp Waveguide type power distributor
FR2582864B1 (en) * 1985-06-04 1987-07-31 Labo Electronique Physique MICROWAVE UNIT MODULES AND MICROWAVE ANTENNA COMPRISING SUCH MODULES
US5305001A (en) * 1992-06-29 1994-04-19 Hughes Aircraft Company Horn radiator assembly with stepped septum polarizer
DE19636850A1 (en) 1996-09-11 1998-03-12 Daimler Benz Aerospace Ag Phase controlled antenna
WO2009031794A1 (en) * 2007-09-03 2009-03-12 Idoit Co., Ltd. Horn array type antenna for dual linear polarization
EP2290744B1 (en) * 2009-08-07 2014-09-03 Centre National D'etudes Spatiales Closed shape beam forming network
US9136578B2 (en) * 2011-12-06 2015-09-15 Viasat, Inc. Recombinant waveguide power combiner / divider
KR20130066906A (en) * 2011-12-13 2013-06-21 주식회사 마이크로페이스 Simple waveguide feeding network, and flat waveguide antenna thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3247512A (en) * 1964-02-17 1966-04-19 Lab For Electronics Inc Microwave antenna

Also Published As

Publication number Publication date
CA2869652A1 (en) 2015-05-04
CA2869652C (en) 2022-04-19
US9728863B2 (en) 2017-08-08
EP2869396A1 (en) 2015-05-06
JP2015092665A (en) 2015-05-14
FR3012918A1 (en) 2015-05-08
US20150123867A1 (en) 2015-05-07
JP6490397B2 (en) 2019-03-27
FR3012918B1 (en) 2018-03-23
ES2819208T3 (en) 2021-04-15

Similar Documents

Publication Publication Date Title
EP2869396B1 (en) Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network
CA2869648C (en) Compact, polarizing power distributor, network of several distributors, compact radiating element and flat antenna comprising such a distributor
EP3179551B1 (en) Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies
EP2047564B1 (en) Compact orthomode transduction device optimized in the mesh plane, for an antenna
US9666949B2 (en) Partially dielectric loaded antenna elements for dual-polarized antenna
FR2939971A1 (en) COMPACT EXCITATION ASSEMBLY FOR GENERATING CIRCULAR POLARIZATION IN AN ANTENNA AND METHOD FOR PRODUCING SUCH AN EXCITATION ASSEMBLY
FR3034262A1 (en) COMPACT BUTLER MATRIX, PLANAR BIDIMENSIONAL BEAM FORMER AND FLAT ANTENNA COMPRISING SUCH A BUTLER MATRIX
FR2623020A1 (en) DEVICE FOR EXCITATION OF A WAVEGUIDE IN CIRCULAR POLARIZATION BY A FLANE ANTENNA
EP3462532B1 (en) Power divider for antenna comprising four identical orthomode transducers
FR2993716A1 (en) MULTIFUNCTIONAL MULTI-SOURCE SENDING AND RECEIVING ANTENNA BY BEAM, ANTENNA SYSTEM AND SATELLITE TELECOMMUNICATION SYSTEM COMPRISING SUCH ANTENNA
FR3105884A1 (en) Circular polarization dual band Ka satellite antenna horn
EP3664214B1 (en) Multiple access radiant elements
FR3105611A1 (en) Dual polarized antenna
EP3910729B1 (en) Broadband orthomode transducer
EP3900113B1 (en) Elementary microstrip antenna and array antenna
EP0407258B1 (en) Ultrahigh frequency energy distributor radiating directly
EP3035445B1 (en) Orthogonal mode junction coupler and associated polarization and frequency separator
EP2281320B1 (en) Coupler for a multiband radiofrequency system
EP3306746B1 (en) Cavity radiating element and radiating network comprising at least two radiating elements
FR2890790A1 (en) Double beam radar antenna for e.g. microwave frequency energy transmission, has conducting blades radiated directionally in space with various radiation field patterns, and tongues propagating radiation directionally to guide cavity opening

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20141031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20151016

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H01P 5/20 20060101ALN20190910BHEP

Ipc: H01Q 25/00 20060101ALI20190910BHEP

Ipc: H01Q 21/00 20060101ALI20190910BHEP

Ipc: H01P 5/16 20060101ALI20190910BHEP

Ipc: H01P 1/161 20060101ALI20190910BHEP

Ipc: H01Q 1/28 20060101AFI20190910BHEP

INTG Intention to grant announced

Effective date: 20190930

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014067950

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01P0005120000

Ipc: H01Q0001280000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THALES

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 25/00 20060101ALI20200205BHEP

Ipc: H01Q 21/00 20060101ALI20200205BHEP

Ipc: H01P 1/161 20060101ALI20200205BHEP

Ipc: H01P 5/20 20060101ALN20200205BHEP

Ipc: H01Q 1/28 20060101AFI20200205BHEP

Ipc: H01P 5/16 20060101ALI20200205BHEP

INTG Intention to grant announced

Effective date: 20200218

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014067950

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1294266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1294266

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201023

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2819208

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014067950

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200722

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230914

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231109

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230919

Year of fee payment: 10