EP3306746B1 - Cavity radiating element and radiating network comprising at least two radiating elements - Google Patents

Cavity radiating element and radiating network comprising at least two radiating elements Download PDF

Info

Publication number
EP3306746B1
EP3306746B1 EP17194500.9A EP17194500A EP3306746B1 EP 3306746 B1 EP3306746 B1 EP 3306746B1 EP 17194500 A EP17194500 A EP 17194500A EP 3306746 B1 EP3306746 B1 EP 3306746B1
Authority
EP
European Patent Office
Prior art keywords
radiating
elements
cavity
elliptical planar
central core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17194500.9A
Other languages
German (de)
French (fr)
Other versions
EP3306746A1 (en
Inventor
Pierre Bosshard
Jean-Baptiste Schrottenloher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP3306746A1 publication Critical patent/EP3306746A1/en
Application granted granted Critical
Publication of EP3306746B1 publication Critical patent/EP3306746B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/17Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source comprising two or more radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array

Definitions

  • the present invention relates to a new cavity radiating element architecture and a radiating network comprising at least two radiating elements. It applies in particular to the space domain and for single-beam or multi-beam applications.
  • a radiofrequency source used in an antenna consists of a radiating element coupled to an RF radiofrequency chain.
  • the radiating element often consists of a horn and the RF chain includes RF components intended to carry out the functions of transmission and reception in mono-polarization or in bipolarization. -polarization to cover user needs.
  • the link with ground stations is generally bi-polarization.
  • the mass and size of the RF radiofrequency chains constitute a critical point in the field of space antennas intended to be installed on board satellites and in particular in the field of the lowest frequencies such as the C band.
  • high for example in Ka band or in Ku band, there are very compact radiating elements whose technology can be transposed to C band, but the radio frequency sources obtained remain bulky and massive and pose a problem of installation when they must be integrated into a focal network comprising a large number of sources.
  • the object of the invention is to remedy the drawbacks of the known radiating elements and to produce a new compact radiating element having a sufficiently wide passband to allow operation in two disjoint frequency bands respectively for transmission and reception in bands of low frequencies including the C band and also allowing operation according to two orthogonal circular polarizations, respectively right and left.
  • the radiating element 10 represented on the figures 1a, 1b , 1 C comprises a cavity 11 with symmetry of revolution around an axis Z, a core central metal 12 extending axially at the center of the cavity 11 and N different metal planar elements 131, 132,..., 13N, stacked one above the other, parallel to each other and parallel to a lower metal wall 14 of the cavity 11, also called bottom of the cavity, N being an integer greater than 2, the N metal planar elements being centered in the cavity and integral with the central core 12.
  • the central core 12 comprises a lower end 15 fixed to the lower metal wall 14 of the cavity and an upper end 16 free.
  • Each metallic planar element 131, 132,..., 13N has an elliptical outline whose orientation and dimensions are defined by the orientation and dimensions of the major axis and the minor axis of the ellipse corresponding.
  • the dimensions of the major axis and of the minor axis of the same elliptical outline are different, the ratio between the length of the minor axis and the length of the major axis being preferably less than 0.99, and advantageously less than 0.9.
  • the N elliptical planar elements 131, 132,..., 13N are regularly spaced along the central core 12 and have monotonically decreasing dimensions between the lower end 15 and the upper end 16 of the central core. .
  • the monotony of the decrease is strict.
  • the dimensions of certain elliptical planar elements may be equal, the elliptical planar elements not all being able to have the same dimensions.
  • the dimensions of the N elliptical planar elements are exponentially decreasing, namely decreasing according to the exponential function.
  • the dimensions of the N elliptical planar elements are decreasing according to a polynomial function.
  • f x To not x not + To not ⁇ 1 x not ⁇ 1 + ⁇ + To 1 x 1 + To 0 x 0
  • n is a natural number and a n , a n-1 , a 1 , a 0 are real coefficients of the polynomial function f.
  • the cavity 11 is delimited by the lower metal wall 14 and by the side metal walls 17 and is filled with air.
  • the radiating element 10 further comprises at least one power source consisting of a coaxial line 18 connected to the first elliptical planar element 131 located closest to the lower end 15 of the central core 12.
  • the first elliptical planar element 131 radiates a radiofrequency wave which propagates in the cavity and generates currents on the surface of the other elliptical planar elements 132,..., 13N which are then coupled step by step by induced electromagnetic coupling.
  • the first elliptical planar element 131 is therefore an exciting planar element.
  • the major axes of the elliptical shapes corresponding to the various elliptical planar elements can all be oriented in a single common direction or in different directions.
  • the N elliptical planar elements can all be accommodated inside the cavity as illustrated in the figures 1a, 1b , 1 C , but it is not obligatory and alternatively, some elliptical planar elements corresponding to the smallest dimensions and the highest frequencies, can protrude from the cavity as represented on the figure 1d .
  • the various elliptical planar elements 131, 132,..., 13N are progressively shifted in rotation with respect to each other, around the central core 15, as represented, for example, on the figure 1b .
  • the major axes of the elliptical shapes corresponding to the various elliptical planar elements are then oriented in different directions.
  • the offset of the various elliptical planar elements in rotation makes it possible to obtain radiation from the radiating element in circular polarization.
  • the radiation axis of the radiating element corresponds to the Z axis.
  • the graph of the figure 2 shows the two curves 21, 22 of the radiation of a radiating element according to the invention, as a function of the frequency, the radiating element being fed by a single coaxial line and comprising elliptical planar elements progressively offset in rotation from each in relation to others as to figures 1a, 1b , 1c, 1d .
  • the rotational offset between the first and N th elliptical planar elements is approximately 90°.
  • the first curve 21 corresponds to the radiation from the radiating element according to a first circular polarization in the forward direction and the second curve 22 corresponds to the radiation from the radiating element according to a second circular polarization in the opposite direction.
  • the radiating element operates in two very wide different bandwidths between 3.7GHz and 6.4GHz and in each bandwidth, the polarizations are different and inverted. In each passband, the cross-polarization gain levels are less than -15dB relative to the gain levels of the corresponding operating bias.
  • This radiating element therefore allows operation in two distinct different frequency bands, for example transmission and reception, with different polarizations and a good level of gain.
  • This natural inversion of the direction of the polarization, in the band corresponding to the highest operating frequencies, for example the reception band, is a new effect which has never been encountered in conventional radiating elements and is due to a coupling between the elliptical planar exciter element 131 and the bottom of the cavity 14 formed by the lower wall of the cavity.
  • the reflection, on the bottom of the cavity 14, of the radiofrequency waves, emitted by the elliptical planar element exciter 131 and corresponding to the highest operating frequencies, has the effect of reversing the direction of the polarization.
  • the electric field corresponding to the highest frequencies is reflected by the lower wall 14 of the cavity and is re-emitted towards the top of the cavity after reversal of the direction of the polarization.
  • the electric field corresponding to the low frequencies is directly emitted towards the top of the cavity without reflection and without inversion of the direction of the polarization.
  • the radiating network is not limited to four radiating elements, but can comprise any number of radiating elements greater than two.
  • the radiating elements having an aperture reduced to a half central operating wavelength, at the bottom of the transmission frequency band, the radiating elements couple together with significant field levels which have the effect of d alter the polarization purity.
  • absorbent elements 31 made of a dielectric material have been added between the adjacent radiating elements, and fixed to the metal support plate 30.
  • the absorbent elements are volumes of dielectric which can have a any shape, and can be positioned at junction points between four adjacent radiating elements, as shown in the figures 3a and 3b .
  • the height of the absorbing elements can vary according to their position in the network and according to the frequency of the parasitic coupling to be eliminated.
  • the dielectric material may for example consist of a material such as silicon carbide SiC.
  • the adjacent radiating elements are spatially arranged so that their respective elliptical planar elements are respectively oriented parallel to two mutually orthogonal X, Y directions, i.e. i.e. the directions of the major axes of their respective elliptical planar elements are orthogonal to each other, as shown in the figure 3b . Thanks to the superposition of several orthogonal field ellipses between them, this sequential spatial arrangement of the successive radiating elements makes it possible to improve the purity of the two circular polarizations generated by the various radiating elements of the network and to clearly reduce the levels of crossed polarization in the radiation axis of the network.
  • the various elliptical planar elements of each radiating element are not offset in rotation with respect to each other, but the major axes of their respective elliptical shapes are all aligned in a common leadership.
  • each radiating element 10 comprises two coaxial supply lines 18, 28 connected to the first elliptical planar element 131 located closest to the lower end of the central soul.
  • the two coaxial supply lines 18, 28 are respectively connected to two different connection points of the first elliptical planar element 131, the two connection points being placed in two different directions of the first elliptical planar element 131, mutually perpendicular, the two directions which can correspond, for example, to the directions of the major axis and of the minor axis of the elliptical shape of the first elliptical planar element 131.
  • the radiating element 10 can only operate in a single frequency band and in bi-polarization since it is not possible in this case to select both a frequency band and a single polarization.
  • THE figures 4a and 4b illustrate an example of a network, not forming part of the claimed invention, comprising radiating elements according to this second embodiment of the invention.
  • the adjacent radiating elements are spatially arranged so that their respective elliptical planar elements are respectively oriented in two mutually orthogonal X, Y directions, that is to say that the directions of the major axes of their respective elliptical planar elements are orthogonal between them.

Description

La présente invention concerne une nouvelle architecture d'élément rayonnant en cavité et un réseau rayonnant comportant au moins deux éléments rayonnants. Elle s'applique en particulier au domaine spatial et pour des applications mono-faisceau ou multifaisceaux.The present invention relates to a new cavity radiating element architecture and a radiating network comprising at least two radiating elements. It applies in particular to the space domain and for single-beam or multi-beam applications.

Une source radiofréquence utilisée dans une antenne est constituée d'un élément rayonnant couplé à une chaîne radiofréquence RF. Dans les bandes de fréquence basse, par exemple en bande C, l'élément rayonnant est souvent constitué d'un cornet et la chaîne RF comporte des composants RF destinés à réaliser les fonctions d'émission et de réception en mono-polarisation ou en bi-polarisation pour couvrir les besoins des utilisateurs. La liaison avec des stations au sol est généralement en bi-polarisation.A radiofrequency source used in an antenna consists of a radiating element coupled to an RF radiofrequency chain. In the low frequency bands, for example in C band, the radiating element often consists of a horn and the RF chain includes RF components intended to carry out the functions of transmission and reception in mono-polarization or in bipolarization. -polarization to cover user needs. The link with ground stations is generally bi-polarization.

La masse et l'encombrement des chaînes radiofréquences RF constituent un point critique dans le domaine des antennes spatiales destinées à être implantées à bord de satellites et en particulier dans le domaine de fréquences les plus basses telles que la bande C. Dans les domaines de fréquences hautes, par exemple en bande Ka ou en bande Ku, il existe des éléments rayonnants très compacts dont la technologie peut être transposée en bande C, mais les sources radiofréquences obtenues restent encombrantes et massives et posent un problème d'implantation lorsqu'elles doivent être intégrées dans un réseau focal comportant un grand nombre de sources.The mass and size of the RF radiofrequency chains constitute a critical point in the field of space antennas intended to be installed on board satellites and in particular in the field of the lowest frequencies such as the C band. high, for example in Ka band or in Ku band, there are very compact radiating elements whose technology can be transposed to C band, but the radio frequency sources obtained remain bulky and massive and pose a problem of installation when they must be integrated into a focal network comprising a large number of sources.

Il existe des éléments rayonnants à cavité qui présentent l'avantage d'être compacts mais ces éléments rayonnants sont limités en terme de bande passante et ne peuvent être utilisés qu'en mono-polarisation et sur une seule bande de fréquence de fonctionnement ou sur deux bandes de fréquence très étroites.There are cavity radiating elements which have the advantage of being compact, but these radiating elements are limited in terms of bandwidth and can only be used in mono-polarization and on a single operating frequency band or on two. very narrow frequency bands.

Les documents suivants divulguent des éléments rayonnants de l'état de l'art :

  • US 2012/112977 A1
  • RAWAT SANYOG ET AL, "Stacked elliptical patches for circularly polarized broadband performance", 2014 INTERNATIONAL CONFERENCE ON SIGNAL PROPAGATION AND COMPUTER TECHNOLOGY (ICSPCT 2014), IEEE, (20140712), doi:10.1 109/ICSPCT.2014.6884942, pages 232 - 235
  • US 5 010 348 A
  • WEILY A R ET AL, "Circularly Polarized Ellipse-Loaded Circular Slot Array for Millimeter-Wave WPAN Applications", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, (20091001), vol. 57, no. 10, doi:10.1109/TAP.2009.2029305, ISSN 0018-926X, pages 2862 - 2870
  • KOUTSOUPIDOU MARIA ET AL, "A microwave breast imaging system using elliptical uniplanar antennas in a circular-array setup", 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), IEEE, (20150916), doi:10.1109/IST.2015.7294522, pages 1 - 4
  • US 2012/062440 A1
  • XIN ZHANG ET AL, "Design of circularly polarized stacked microstrip antennas", ANTENNAS, PROPAGATION AND EM THEORY, 2008. ISAPE 2008. 8TH INTERNATIONAL SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA, (20081102), ISBN 978-1-4244-2192-3, pages 11 - 14
    WO2017/100126 A1
The following documents disclose radiating elements of the state of the art:
  • US 2012/112977 A1
  • RAWAT SANYOG ET AL, "Stacked elliptical patches for circularly polarized broadband performance", 2014 INTERNATIONAL CONFERENCE ON SIGNAL PROPAGATION AND COMPUTER TECHNOLOGY (ICSPCT 2014), IEEE, (20140712), doi:10.1 109/ICSPCT.2014.6884942, pages 232 - 235
  • US 5,010,348 A
  • WEILY AR ET AL, "Circularly Polarized Ellipse-Loaded Circular Slot Array for Millimeter-Wave WPAN Applications", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, (20091001), vol. 57, no. 10, doi:10.1109/TAP.2009.2029305, ISSN 0018-926X, pages 2862 - 2870
  • KOUTSOUPIDOU MARIA ET AL, "A microwave breast imaging system using elliptical uniplanar antennas in a circular-array setup", 2015 IEEE INTERNATIONAL CONFERENCE ON IMAGING SYSTEMS AND TECHNIQUES (IST), IEEE, (20150916), doi:10.1109/IST.2015.7294522, page 1 - 4
  • US 2012/062440 A1
  • XIN ZHANG ET AL, "Design of circularly polarized stacked microstrip antennas", ANTENNAS, PROPAGATION AND EM THEORY, 2008. ISAPE 2008. 8TH INTERNATIONAL SYMPOSIUM ON, IEEE, PISCATAWAY, NJ, USA, (20081102), ISBN 978-1-4244 -2192-3, pages 11 - 14
    WO2017/100126 A1

Le but de l'invention est de remédier aux inconvénients des éléments rayonnants connus et de réaliser un nouvel élément rayonnant compact ayant une bande passante suffisamment large pour permettre un fonctionnement dans deux bandes de fréquences disjointes respectivement d'émission et de réception dans des bandes de fréquences basses incluant la bande C et permettant également un fonctionnement selon deux polarisations circulaires orthogonales, respectivement droite et gauche.The object of the invention is to remedy the drawbacks of the known radiating elements and to produce a new compact radiating element having a sufficiently wide passband to allow operation in two disjoint frequency bands respectively for transmission and reception in bands of low frequencies including the C band and also allowing operation according to two orthogonal circular polarizations, respectively right and left.

Cet objet est résolu par l'objet de la revendication indépendante, les modes de réalisation préférés sont définis par les revendications dépendantes.This object is solved by the object of the independent claim, preferred embodiments are defined by the dependent claims.

D'autres particularités et avantages de l'invention apparaîtront clairement dans la suite de la description donnée à titre d'exemple purement illustratif et non limitatif, en référence aux dessins schématiques annexés qui représentent :

  • figures 1a, 1b, 1c : trois schémas, respectivement en coupe axiale, en perspective, et en vue de dessus, d'un exemple d'élément rayonnant bi-polarisation, selon l'invention ;
  • figure 1d : un schéma en coupe axiale d'une variante de réalisation de l'élément rayonnant, selon l'invention ;
  • figure 2 : un graphique illustrant deux courbes du rayonnement de l'élément rayonnant de la figure 1, en fonction de la fréquence, correspondant respectivement à une première polarisation circulaire et à une deuxième polarisation circulaire, selon l'invention;
  • figures 3a et 3b : deux schémas, respectivement en perspective et en vue de dessus, d'un premier exemple de réseau rayonnant comportant quatre éléments rayonnants, selon l'invention ;
  • figures 4a et 4b : deux schémas, respectivement en perspective et en vue de dessus d'un deuxième exemple de réseau rayonnant comportant quatre éléments rayonnants, ne faisant pas partie de l'invention revendiquée.
Other particularities and advantages of the invention will appear clearly in the remainder of the description given by way of purely illustrative and non-limiting example, with reference to the appended diagrammatic drawings which represent:
  • figures 1a, 1b , 1 C : three diagrams, respectively in axial section, in perspective, and in top view, of an example of a dual-polarization radiating element, according to the invention;
  • figure 1d : a diagram in axial section of an alternative embodiment of the radiating element, according to the invention;
  • picture 2 : a graph illustrating two radiation curves of the radiating element of the figure 1 , as a function of frequency, corresponding respectively to a first circular polarization and to a second circular polarization, according to the invention;
  • figures 3a and 3b : two diagrams, respectively in perspective and in plan view, of a first example of a radiating network comprising four radiating elements, according to the invention;
  • figures 4a and 4b : two diagrams, respectively in perspective and in plan view of a second example of a radiating network comprising four radiating elements, not forming part of the claimed invention.

L'élément rayonnant 10 représenté sur les figures 1a, 1b, 1c comporte une cavité 11 à symétrie de révolution autour d'un axe Z, une âme centrale 12 métallique s'étendant axialement au centre de la cavité 11 et N éléments planaires métalliques différents 131, 132,..., 13N, empilés les uns au-dessus des autres, parallèlement entre eux et parallèlement à une paroi métallique inférieure 14 de la cavité 11, aussi appelée fond de la cavité, N étant un nombre entier supérieur à 2, les N éléments planaires métalliques étant centrés dans la cavité et solidaires de l'âme centrale 12. L'âme centrale 12 comporte une extrémité inférieure 15 fixée à la paroi métallique inférieure 14 de la cavité et une extrémité supérieure 16 libre. Chaque élément planaire métallique 131, 132,..., 13N, appelé élément planaire elliptique, a un contour elliptique dont l'orientation et les dimensions sont définies par l'orientation et les dimensions du grand axe et du petit axe de l'ellipse correspondante. Pour chacun des éléments planaires elliptiques 131, 132,..., 13N, les dimensions du grand axe et du petit axe d'un même contour elliptique sont différentes, le rapport entre la longueur du petit axe et la longueur du grand axe étant de préférence inférieur à 0,99, et avantageusement inférieur à 0,9. Les N éléments planaires elliptiques 131, 132,..., 13N sont régulièrement espacés le long de l'âme centrale 12 et ont des dimensions décroissantes de manière monotone entre l'extrémité inférieure 15 et l'extrémité supérieure 16 de l'âme centrale. De préférence, la monotonie de la décroissance est stricte. En variante, les dimensions de certains éléments planaires elliptiques peuvent être égales, les éléments planaires elliptiques ne pouvant avoir tous les mêmes dimensions. Selon un mode de réalisation, les dimensions des N éléments planaires elliptiques sont exponentiellement décroissantes, à savoir décroissantes selon la fonction exponentielle. En variante, les dimensions des N éléments planaires elliptiques sont décroissantes selon une fonction polynômiale. Par décroissance selon une fonction polynômiale, on entend que les dimensions des N éléments planaires elliptiques peuvent être déterminées par une partie monotone d'une fonction f de type : f x = a n x n + a n 1 x n 1 + + a 1 x 1 + a 0 x 0

Figure imgb0001
où n est un entier naturel et an, an-1, a1, a0 sont des coefficients réels de la fonction polynomiale f.The radiating element 10 represented on the figures 1a, 1b , 1 C comprises a cavity 11 with symmetry of revolution around an axis Z, a core central metal 12 extending axially at the center of the cavity 11 and N different metal planar elements 131, 132,..., 13N, stacked one above the other, parallel to each other and parallel to a lower metal wall 14 of the cavity 11, also called bottom of the cavity, N being an integer greater than 2, the N metal planar elements being centered in the cavity and integral with the central core 12. The central core 12 comprises a lower end 15 fixed to the lower metal wall 14 of the cavity and an upper end 16 free. Each metallic planar element 131, 132,..., 13N, called an elliptical planar element, has an elliptical outline whose orientation and dimensions are defined by the orientation and dimensions of the major axis and the minor axis of the ellipse corresponding. For each of the elliptical planar elements 131, 132,..., 13N, the dimensions of the major axis and of the minor axis of the same elliptical outline are different, the ratio between the length of the minor axis and the length of the major axis being preferably less than 0.99, and advantageously less than 0.9. The N elliptical planar elements 131, 132,..., 13N are regularly spaced along the central core 12 and have monotonically decreasing dimensions between the lower end 15 and the upper end 16 of the central core. . Preferably, the monotony of the decrease is strict. As a variant, the dimensions of certain elliptical planar elements may be equal, the elliptical planar elements not all being able to have the same dimensions. According to one embodiment, the dimensions of the N elliptical planar elements are exponentially decreasing, namely decreasing according to the exponential function. As a variant, the dimensions of the N elliptical planar elements are decreasing according to a polynomial function. By decrease according to a polynomial function, we mean that the dimensions of the N elliptical planar elements can be determined by a monotonic part of a function f of type: f x = To not x not + To not 1 x not 1 + + To 1 x 1 + To 0 x 0
Figure imgb0001
where n is a natural number and a n , a n-1 , a 1 , a 0 are real coefficients of the polynomial function f.

La cavité 11 est délimitée par la paroi métallique inférieure 14 et par des parois métalliques latérales 17 et est remplie d'air. L'élément rayonnant 10 comporte en outre au moins une source d'alimentation constituée par une ligne coaxiale 18 reliée au premier élément planaire elliptique 131 situé le plus proche de l'extrémité inférieure 15 de l'âme centrale 12. Ainsi, seul le premier élément planaire elliptique 131 est alimenté directement par la ligne coaxiale 18. Le premier élément planaire elliptique 131 rayonne une onde radiofréquence qui se propage dans la cavité et engendre des courants à la surface des autres éléments planaires elliptiques 132,..., 13N qui sont alors couplés de proche en proche par couplage électromagnétique induit. Le premier élément planaire elliptique 131 est donc un élément planaire excitateur.The cavity 11 is delimited by the lower metal wall 14 and by the side metal walls 17 and is filled with air. The radiating element 10 further comprises at least one power source consisting of a coaxial line 18 connected to the first elliptical planar element 131 located closest to the lower end 15 of the central core 12. Thus, only the first elliptical planar element 131 is powered directly by coaxial line 18. The first elliptical planar element 131 radiates a radiofrequency wave which propagates in the cavity and generates currents on the surface of the other elliptical planar elements 132,..., 13N which are then coupled step by step by induced electromagnetic coupling. The first elliptical planar element 131 is therefore an exciting planar element.

Les grands axes des formes elliptiques correspondant aux différents éléments planaires elliptiques peuvent être tous orientés dans une direction unique commune ou dans des directions différentes. Les N éléments planaires elliptiques peuvent être tous logés à l'intérieur de la cavité comme illustré sur les figures 1a, 1b, 1c, mais ce n'est pas obligatoire et alternativement, quelques éléments planaires elliptiques correspondant aux dimensions les plus petites et aux fréquences les plus hautes, peuvent dépasser de la cavité comme représenté sur la figure 1d.The major axes of the elliptical shapes corresponding to the various elliptical planar elements can all be oriented in a single common direction or in different directions. The N elliptical planar elements can all be accommodated inside the cavity as illustrated in the figures 1a, 1b , 1 C , but it is not obligatory and alternatively, some elliptical planar elements corresponding to the smallest dimensions and the highest frequencies, can protrude from the cavity as represented on the figure 1d .

Lorsque l'élément rayonnant comporte une seule ligne coaxiale 18 d'alimentation, les différents éléments planaires elliptiques 131, 132,..., 13N sont progressivement décalés en rotation les uns par rapport aux autres, autour de l'âme centrale 15, comme représenté par exemple, sur la figure 1b. Les grands axes des formes elliptiques correspondant aux différents éléments planaires elliptiques sont alors orientés dans des directions différentes. Le décalage des différents éléments planaires elliptiques en rotation permet d'obtenir un rayonnement de l'élément rayonnant en polarisation circulaire. L'axe de rayonnement de l'élément rayonnant correspond à l'axe Z.When the radiating element comprises a single coaxial supply line 18, the various elliptical planar elements 131, 132,..., 13N are progressively shifted in rotation with respect to each other, around the central core 15, as represented, for example, on the figure 1b . The major axes of the elliptical shapes corresponding to the various elliptical planar elements are then oriented in different directions. The offset of the various elliptical planar elements in rotation makes it possible to obtain radiation from the radiating element in circular polarization. The radiation axis of the radiating element corresponds to the Z axis.

Le graphique de la figure 2 montre les deux courbes 21, 22 du rayonnement d'un élément rayonnant conforme à l'invention, en fonction de la fréquence, l'élément rayonnant étant alimenté par une seule ligne coaxiale et comportant des éléments planaires elliptiques progressivement décalés en rotation les uns par rapport aux autres comme sur les figures 1a, 1b, 1c, 1d. Le décalage en rotation entre les premier et Nième éléments planaires elliptiques est d'environ 90°.The graph of the figure 2 shows the two curves 21, 22 of the radiation of a radiating element according to the invention, as a function of the frequency, the radiating element being fed by a single coaxial line and comprising elliptical planar elements progressively offset in rotation from each in relation to others as to figures 1a, 1b , 1c, 1d . The rotational offset between the first and N th elliptical planar elements is approximately 90°.

La première courbe 21 correspond au rayonnement de l'élément rayonnant selon une première polarisation circulaire de sens direct et la deuxième courbe 22 correspond au rayonnement de l'élément rayonnant selon une deuxième polarisation circulaire de sens inverse.The first curve 21 corresponds to the radiation from the radiating element according to a first circular polarization in the forward direction and the second curve 22 corresponds to the radiation from the radiating element according to a second circular polarization in the opposite direction.

Comme le montrent ces deux courbes, avec une unique ligne d'alimentation, l'élément rayonnant fonctionne dans deux bandes passantes différentes très larges comprises entre 3.7GHz et 6.4GHZ et dans chaque bande passante, les polarisations sont différentes et inversées. Dans chaque bande passante, les niveaux de gain en polarisation croisée (en anglais : cross-polarisation) sont inférieurs à -15dB par rapport aux niveaux de gain de la polarisation de fonctionnement correspondante.As these two curves show, with a single feed line, the radiating element operates in two very wide different bandwidths between 3.7GHz and 6.4GHz and in each bandwidth, the polarizations are different and inverted. In each passband, the cross-polarization gain levels are less than -15dB relative to the gain levels of the corresponding operating bias.

Cet élément rayonnant permet donc un fonctionnement dans deux bandes de fréquences différentes distinctes, par exemple d'émission et de réception, avec des polarisations différentes et un bon niveau de gain.This radiating element therefore allows operation in two distinct different frequency bands, for example transmission and reception, with different polarizations and a good level of gain.

Ces deux courbes 21, 22 montrent que l'association de la cavité avec une pluralité d'éléments planaires elliptiques de dimensions différentes permet un rayonnement de l'élément rayonnant dans une bande passante beaucoup plus large que les éléments rayonnants classiques. Ceci est dû au fait que les éléments planaires elliptiques ayant les plus grandes dimensions participent au rayonnement de l'élément rayonnant dans des fréquences basses alors que les éléments planaires elliptiques de dimensions plus faibles participent au rayonnement de l'élément rayonnant dans des fréquences plus hautes. La progressivité de la décroissance des dimensions des éléments planaires elliptiques le long de l'âme centrale 12 permet d'obtenir un rayonnement continu dans une large bande de fréquences. En outre, le fonctionnement en double polarisation circulaire est dû à un effet naturel particulièrement remarquable correspondant à une inversion naturelle du sens de la polarisation dans les bandes de fréquence les plus hautes.These two curves 21, 22 show that the association of the cavity with a plurality of elliptical planar elements of different dimensions allows radiation of the radiating element in a much wider bandwidth than conventional radiating elements. This is due to the fact that the elliptical planar elements having the largest dimensions participate in the radiation of the radiating element in low frequencies while the elliptical planar elements of smaller dimensions participate in the radiation of the radiating element in higher frequencies. . The gradual decrease in the dimensions of the elliptical planar elements along the central core 12 makes it possible to obtain continuous radiation in a wide band of frequencies. In addition, the operation in double circular polarization is due to a particularly remarkable natural effect corresponding to a natural inversion of the direction of the polarization in the highest frequency bands.

Cette inversion naturelle du sens de la polarisation, dans la bande correspondant aux fréquences de fonctionnement les plus hautes, par exemple la bande de réception, est un effet nouveau qui n'a jamais été rencontré dans les éléments rayonnants classiques et est due à un couplage entre le élément planaire elliptique excitateur 131 et le fond de la cavité 14 constitué par la paroi inférieure de la cavité. La réflexion, sur le fond de la cavité 14, des ondes radiofréquences, émises par le élément planaire elliptique excitateur 131 et correspondant aux fréquences de fonctionnement les plus hautes, a pour effet d'inverser le sens de la polarisation.This natural inversion of the direction of the polarization, in the band corresponding to the highest operating frequencies, for example the reception band, is a new effect which has never been encountered in conventional radiating elements and is due to a coupling between the elliptical planar exciter element 131 and the bottom of the cavity 14 formed by the lower wall of the cavity. The reflection, on the bottom of the cavity 14, of the radiofrequency waves, emitted by the elliptical planar element exciter 131 and corresponding to the highest operating frequencies, has the effect of reversing the direction of the polarization.

Le champ électrique correspondant aux fréquences les plus hautes est réfléchi par la paroi inférieure 14 de la cavité et est réémis vers le haut de la cavité après inversion du sens de la polarisation. Au contraire, le champ électrique correspondant aux fréquences basses est directement émis vers le haut de la cavité sans réflexion et sans inversion du sens de la polarisation.The electric field corresponding to the highest frequencies is reflected by the lower wall 14 of the cavity and is re-emitted towards the top of the cavity after reversal of the direction of the polarization. On the contrary, the electric field corresponding to the low frequencies is directly emitted towards the top of the cavity without reflection and without inversion of the direction of the polarization.

Il est possible d'assembler plusieurs éléments rayonnants 10 identiques pour former un réseau rayonnant planaire bi-dimensionnel de grandes dimensions comme illustré par exemple sur les figures 3a et 3b sur lesquelles quatre éléments rayonnants du réseau sont représentés. Dans le réseau rayonnant, les différents éléments rayonnants sont aménagés les uns à côté des autres et leurs cavités respectives sont reliées entre elles par une plaque métallique de support 30 commune formant un plan de masse métallique. Bien entendu, le réseau rayonnant n'est pas limité à quatre éléments rayonnants, mais peut comporter n'importe quel nombre d'éléments rayonnants supérieur à deux. Cependant, les éléments rayonnants ayant une ouverture réduite à une demi-longueur d'onde centrale de fonctionnement, en bas de la bande de fréquence d'émission, les éléments rayonnants se couplent entre eux avec des niveaux de champ importants qui ont pour effet d'altérer la pureté de polarisation. Pour résoudre ce problème, selon l'invention, des éléments absorbants 31 réalisés dans un matériau diélectrique, ont été ajoutés entre les éléments rayonnants adjacents, et fixés sur la plaque métallique de support 30. Les éléments absorbants sont des volumes de diélectrique pouvant avoir une forme quelconque, et peuvent être positionnés en des points de jonction entre quatre éléments rayonnants adjacents, comme représenté sur les figures 3a et 3b. La hauteur des éléments absorbants peut varier selon leur position dans le réseau et selon la fréquence du couplage parasite à éliminer. Le matériau diélectrique peut par exemple être constitué d'un matériau tel que le carbure de silicium SiC.It is possible to assemble several identical radiating elements 10 to form a two-dimensional planar radiating network of large dimensions as illustrated for example in the figures 3a and 3b on which four radiating elements of the network are represented. In the radiating network, the different radiating elements are arranged side by side and their respective cavities are interconnected by a common metal support plate 30 forming a metal ground plane. Of course, the radiating network is not limited to four radiating elements, but can comprise any number of radiating elements greater than two. However, the radiating elements having an aperture reduced to a half central operating wavelength, at the bottom of the transmission frequency band, the radiating elements couple together with significant field levels which have the effect of d alter the polarization purity. To solve this problem, according to the invention, absorbent elements 31 made of a dielectric material have been added between the adjacent radiating elements, and fixed to the metal support plate 30. The absorbent elements are volumes of dielectric which can have a any shape, and can be positioned at junction points between four adjacent radiating elements, as shown in the figures 3a and 3b . The height of the absorbing elements can vary according to their position in the network and according to the frequency of the parasitic coupling to be eliminated. The dielectric material may for example consist of a material such as silicon carbide SiC.

En outre, comme la mise en réseau peut engendrer une augmentation des niveaux de polarisation croisée, les éléments rayonnants adjacents sont agencés spatialement de façon que leurs éléments planaires elliptiques respectifs soient respectivement orientés parallèlement à deux directions X, Y orthogonales entre elles, c'est-à-dire que les directions des grands axes de leurs éléments planaires elliptiques respectifs sont orthogonales entre elles, comme illustré sur la figure 3b. Grâce à la superposition de plusieurs ellipses de champ orthogonales entre elles, cet agencement spatial séquentiel des éléments rayonnants successifs permet d'améliorer la pureté des deux polarisations circulaires engendrées par les différents éléments rayonnants du réseau et de nettement réduire les niveaux de polarisation croisée dans l'axe de rayonnement du réseau .Furthermore, since networking can cause increased cross-polarization levels, the adjacent radiating elements are spatially arranged so that their respective elliptical planar elements are respectively oriented parallel to two mutually orthogonal X, Y directions, i.e. i.e. the directions of the major axes of their respective elliptical planar elements are orthogonal to each other, as shown in the figure 3b . Thanks to the superposition of several orthogonal field ellipses between them, this sequential spatial arrangement of the successive radiating elements makes it possible to improve the purity of the two circular polarizations generated by the various radiating elements of the network and to clearly reduce the levels of crossed polarization in the radiation axis of the network.

Selon un exemple, ne faisant pas partie de l'invention revendiquée, les différents éléments planaires elliptiques de chaque élément rayonnant ne sont pas décalés en rotation les uns par rapport aux autres, mais les grands axes de leurs formes elliptiques respectives sont tous alignés dans une direction commune.According to one example, not forming part of the claimed invention, the various elliptical planar elements of each radiating element are not offset in rotation with respect to each other, but the major axes of their respective elliptical shapes are all aligned in a common leadership.

Dans ce cas, pour un fonctionnement de l'élément rayonnant dans deux polarisations orthogonales entre elles, chaque élément rayonnant 10 comporte deux lignes coaxiales d'alimentation 18, 28 reliées au premier élément planaire elliptique 131 situé le plus proche de l'extrémité inférieure de l'âme centrale. Les deux lignes coaxiales d'alimentation 18, 28 sont respectivement connectées en deux points de connexion différents du premier élément planaire elliptique 131, les deux points de connexion étant placés selon deux directions différentes du premier élément planaire elliptique 131, perpendiculaires entre elles, les deux directions pouvant correspondre par exemple, aux directions du grand axe et du petit axe de la forme elliptique du premier élément planaire elliptique 131. Ainsi, seul le premier élément planaire elliptique est alimenté directement par les deux lignes coaxiales selon deux polarisations orthogonales. Dans ce cas, l'élément rayonnant 10 ne peut fonctionner que dans une seule bande de fréquence et en bi-polarisation car il n'est dans ce cas, pas possible de sélectionner à la fois une bande de fréquence et une seule polarisation. Selon ce deuxième mode de réalisation, pour un fonctionnement à l'émission et à la réception, il est alors nécessaire de réaliser des éléments rayonnants de dimensions différentes adaptées respectivement soit à une bande de fréquence de fonctionnement dédiée à l'émission, soit à une bande de fréquence de fonctionnement dédiée à la réception. Les figures 4a et 4b illustrent un exemple de réseau, ne faisant pas partie de l'invention revendiquée, comportant des éléments rayonnants selon ce deuxième mode de réalisation de l'invention. Comme le montre la figure 4b, les éléments rayonnants adjacents sont agencés spatialement de façon que leurs éléments planaires elliptiques respectifs soient respectivement orientés dans deux directions X, Y orthogonales entre elles, c'est-à-dire que les directions des grands axes de leurs éléments planaires elliptiques respectifs sont orthogonales entre elles.In this case, for operation of the radiating element in two mutually orthogonal polarizations, each radiating element 10 comprises two coaxial supply lines 18, 28 connected to the first elliptical planar element 131 located closest to the lower end of the central soul. The two coaxial supply lines 18, 28 are respectively connected to two different connection points of the first elliptical planar element 131, the two connection points being placed in two different directions of the first elliptical planar element 131, mutually perpendicular, the two directions which can correspond, for example, to the directions of the major axis and of the minor axis of the elliptical shape of the first elliptical planar element 131. Thus, only the first elliptical planar element is supplied directly by the two coaxial lines according to two orthogonal polarizations. In this case, the radiating element 10 can only operate in a single frequency band and in bi-polarization since it is not possible in this case to select both a frequency band and a single polarization. According to this second embodiment, for transmission and reception operation, it is then necessary to produce radiating elements of different dimensions adapted respectively either to an operating frequency band dedicated to transmission, or to an operating frequency band dedicated to reception. THE figures 4a and 4b illustrate an example of a network, not forming part of the claimed invention, comprising radiating elements according to this second embodiment of the invention. As shown in figure 4b , the adjacent radiating elements are spatially arranged so that their respective elliptical planar elements are respectively oriented in two mutually orthogonal X, Y directions, that is to say that the directions of the major axes of their respective elliptical planar elements are orthogonal between them.

Claims (7)

  1. A use of a dual circular polarisation radiating element (10), said radiating element (10) having a cavity (11) that is axially symmetric about an axis Z and a power source, the cavity (11) being bounded by lateral metal walls (17) and a lower metal wall (14), said radiating element (10) further having a metal central core (12) that extends axially at the center of the cavity (11) and N different successive metal elliptical planar elements (131, 132, ..., 13N) that are stacked on top of one another parallel to the lower wall (14) of the cavity, the central core (12) having a lower end (15) that is fastened to the lower metal wall (14) of the cavity and an upper end (16) that is free, each elliptical planar element (131, 132, ..., 13N) being centered in the cavity (11) and secured to the central core (12), the N elliptical planar elements being non-circular, regularly spaced apart and having dimensions that decrease monotonically between the lower end (15) and the upper end (16) of the central core (12), where N is an integer higher than 2, the power source consisting of a coaxial line (18) connected to the first elliptical planar element (131) located closest to the lower end (15) of the central core (12) and the N successive elliptical planar elements (131, 132, ..., 13N) being progressively offset rotationally with respect to one another, about the central core (12).
  2. The use of a dual circular polarisation radiating element (10) according to claim 1, wherein the N elliptical planar elements have dimensions that decrease exponentially.
  3. The use of a dual circular polarisation radiating element (10) according to claim 1, wherein the N elliptical planar elements have dimensions that decrease according to a polynomial function.
  4. A use of a dual circular polarisation radiating array, said radiating array having at least two radiating elements (10) as defined according to one of claims 1 to 3.
  5. The use of a dual circular polarisation radiating array according to claim 4, wherein the radiating elements (10) are arranged beside one another on a common carrier plate (30).
  6. The use of a dual circular polarisation radiating array according to claim 5, wherein the radiating elements that are adjacent to one another are spatially arranged so that their respective elliptical planar elements (131, 132, ..., 13N) are respectively oriented in two directions that are orthogonal to each other.
  7. The use of a dual circular polarisation radiating array according to claim 6, wherein the radiating array further has absorbent dielectric elements (31) placed between two adjacent radiating elements (10).
EP17194500.9A 2016-10-04 2017-10-03 Cavity radiating element and radiating network comprising at least two radiating elements Active EP3306746B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1601432A FR3057109B1 (en) 2016-10-04 2016-10-04 RADIATION ELEMENT IN A CAVITY AND RADIANT ARRAY COMPRISING AT LEAST TWO RADIANT ELEMENTS

Publications (2)

Publication Number Publication Date
EP3306746A1 EP3306746A1 (en) 2018-04-11
EP3306746B1 true EP3306746B1 (en) 2023-04-05

Family

ID=57860918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17194500.9A Active EP3306746B1 (en) 2016-10-04 2017-10-03 Cavity radiating element and radiating network comprising at least two radiating elements

Country Status (5)

Country Link
US (1) US10573973B2 (en)
EP (1) EP3306746B1 (en)
CA (1) CA2981333A1 (en)
ES (1) ES2943121T3 (en)
FR (1) FR3057109B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2623020B1 (en) * 1987-11-05 1990-02-16 Alcatel Espace DEVICE FOR EXCITTING A CIRCULAR POLARIZATION WAVEGUIDE BY A PLANE ANTENNA
US6856300B2 (en) * 2002-11-08 2005-02-15 Kvh Industries, Inc. Feed network and method for an offset stacked patch antenna array
JP2012065014A (en) * 2010-09-14 2012-03-29 Hitachi Cable Ltd Base station antenna for mobile communication
KR101392499B1 (en) * 2010-11-09 2014-05-07 한국전자통신연구원 Simple-to-manufacture Antenna According to Frequency Characteristics
US11303026B2 (en) 2015-12-09 2022-04-12 Viasat, Inc. Stacked self-diplexed dual-band patch antenna

Also Published As

Publication number Publication date
US20180097292A1 (en) 2018-04-05
EP3306746A1 (en) 2018-04-11
ES2943121T3 (en) 2023-06-09
US10573973B2 (en) 2020-02-25
FR3057109A1 (en) 2018-04-06
CA2981333A1 (en) 2018-04-04
FR3057109B1 (en) 2018-11-16

Similar Documents

Publication Publication Date Title
EP3547450B1 (en) Radiating element with circular polarisation implementing a resonance in a fabry-perot cavity
EP2564466B1 (en) Compact radiating element having resonant cavities
EP2202839B1 (en) Compact feed system for the generation of circular polarisation in an antenna and method of producing such system
EP2047564B1 (en) Compact orthomode transduction device optimized in the mesh plane, for an antenna
EP2869400B1 (en) Bi-polarisation compact power distributor, network of a plurality of distributors, compact radiating element and planar antenna having such a distributor
EP2869396B1 (en) Power divider including a T-coupler in the E-plane, radiating network and antenna including such a radiating network
EP3179551B1 (en) Compact bipolarisation drive assembly for a radiating antenna element and compact network comprising at least four compact drive assemblies
FR2810164A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS FOR SATELLITE TELECOMMUNICATIONS SYSTEMS
FR2640431A1 (en) RADIANT MULTI-FREQUENCY DEVICE
EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
EP0098192B1 (en) Multiplexing device for combining two frequency bands
EP3664214B1 (en) Multiple access radiant elements
EP3435480A1 (en) Antenna incorporating delay lenses inside a divider based distributor with a parallel plate waveguide
EP3306746B1 (en) Cavity radiating element and radiating network comprising at least two radiating elements
EP1188202B1 (en) Device for transmitting and/or receiving signals
FR2613140A1 (en) PARALLELEPIPEDIC CORNET ANTENNA WITH DISTRIBUTION OF THE LINEARIZED OPENING FIELD IN TWO POLARIZATIONS
EP1152483B1 (en) Dual-band microwave radiating element
EP3249823B1 (en) Compact bi-polarity, multi-frequency radiofrequency exciter for a primary source of an antenna and primary source of an antenna provided with such a radiofrequency exciter
FR2863408A1 (en) SOURCE WAVEGUIDE ANTENNA WITH RADIANT OPENING
FR2705167A1 (en) Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device
FR2655201A1 (en) CIRCULAR POLARIZATION ANTENNA, ESPECIALLY FOR ANTENNA NETWORK.
WO2023031543A1 (en) Multiband antenna
EP3155689A1 (en) Flat antenna for satellite communication
FR3139418A1 (en) Six-port orthomode junction
EP3075032A2 (en) Compact antenna structure for satellite telecommunications

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180730

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190905

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220706

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1558955

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602017067390

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2943121

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230609

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230405

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1558955

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230807

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230705

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230914

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230805

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230706

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230921

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602017067390

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231108

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230405

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230926

Year of fee payment: 7

Ref country code: DE

Payment date: 20230919

Year of fee payment: 7

Ref country code: CH

Payment date: 20231102

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240108