EP1188202B1 - Device for transmitting and/or receiving signals - Google Patents

Device for transmitting and/or receiving signals Download PDF

Info

Publication number
EP1188202B1
EP1188202B1 EP00951625A EP00951625A EP1188202B1 EP 1188202 B1 EP1188202 B1 EP 1188202B1 EP 00951625 A EP00951625 A EP 00951625A EP 00951625 A EP00951625 A EP 00951625A EP 1188202 B1 EP1188202 B1 EP 1188202B1
Authority
EP
European Patent Office
Prior art keywords
radiating element
radiating
network
type
printed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00951625A
Other languages
German (de)
French (fr)
Other versions
EP1188202A1 (en
Inventor
Ali Louzir
Philippe Minard
Jean-François PINTOS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Licensing SAS
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1188202A1 publication Critical patent/EP1188202A1/en
Application granted granted Critical
Publication of EP1188202B1 publication Critical patent/EP1188202B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/02Details
    • H01Q19/021Means for reducing undesirable effects
    • H01Q19/028Means for reducing undesirable effects for reducing the cross polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/067Two dimensional planar arrays using endfire radiating aerial units transverse to the plane of the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Definitions

  • the present invention relates to a transmission device and / or receiving electromagnetic waves, more particularly an antenna known as the "printed antenna”.
  • printed antenna in English “microstrip antenna” an antenna made in so-called “Microstrip” comprising a radiating element, typically a “patch”, a slot, etc., or a network of such elements, the number of elements depending on the gain sought.
  • This type of antenna is used in particular as a primary source in the focus of a lens or parabola ,.
  • printed antennas are more additionally used in many wireless communications systems (wireless local area networks, terrestrial access networks or satellite, etc ).
  • printed antennas are better suited for transmit / receive a linearly polarized wave.
  • the object of the invention is to propose a reception device and / or signal transmission comprising a high-level printed antenna Circular or linear polarization quality over a frequency band widened and over a wide corner area.
  • the present invention relates to a transmission device and / or receiving electromagnetic waves comprising at least one radiating element of printed type for radiating a circular polarization or linear of given meaning, characterized in that it comprises at least one passive radiating element sized and positioned in relation to the element radiating type of radiation so as to radiate at the frequency of the radiating element of printed type, a circular or linear polarization opposite to that of the radiating element of the printed type and whose phase is adjusted to compensate for the cross component of the element radiating type printed.
  • the radiating element passive is constituted by a radiating element of the traveling wave type such as a helix or a dielectric rod associated with polarizers.
  • FIGS. 1 to 6 relate to a printed antenna adapted for send / receive a right or left circular polarization while the embodiment of Figure 7 relates to a printed antenna whose radiating elements can receive a circular polarization or a linear polarization.
  • FIG. 1a there is shown in perspective an embodiment of a printed antenna which can receive means according to the present invention. More specifically, on a substrate 1 of given permittivity whose lower face is covered with a metal layer 2 forming a ground plane, has been realized a network of n "patches", more particularly a network comprising four parallel branches of three “Patches” 3 1 , 3 ' 1 , 3 " 1 , 3 2 , 3' 2 , 3" 2 , 3 3 , 3 ' 3 , 3 " 3 , 3 4 , 3" 4 , 3 " 4 connected in series, the assembly being connected to a feed network referenced 4, made in microstrip technology.
  • the "patches” are designed and powered to radiate and / or receive a circularly polarized wave.
  • the printed antenna thus produced radiates an imperfect circular polarization of given direction, as will be explained with reference to FIG. 2.
  • circular polarization is provided near the network of "patches” means dimensioned and positioned relative to the network of "patches” so as to radiate at the frequency of the network of "patches", a circular polarization in the opposite direction to that of the network of "Patches” to compensate for the cross-component of the radiating element.
  • compensation means will hereinafter be called compensation means.
  • radiating elements of the traveling wave type are provided, more particularly propellers 4 1 , 4 2 , 4 3 , 5 1 , 4 ' 1 , 5 2 , 4' 2 , 5 3 , 4 " 1 , 4" 2 , 4 " 3 which are planted, as shown on the AA section, in the substrate 1 and are not connected to an excitation network.
  • the set of propellers or other radiating elements of the wave type progressive circular polarization presents a diagram of radiation substantially equivalent to the radiation pattern of the network of "patches".
  • different processes can be used to calculate the radiation pattern of the propeller network used as a means of compensation. So the simplest process is to connect the network of propellers having a circular polarization inverse to that radiated by the network of "patches", to an excitation circuit and to adjust the characteristics of the propellers so as to obtain a radiation pattern identical to the radiation pattern of the network of "patches" to compensate.
  • This component cross-beam radiated by the printed antenna excites the network of propellers which radiates in turn a Rhélice field whose phase is adjusted by rotation of the propeller around its axis so that it comes to oppose in totality or in part to the cross-component of the printed antenna, thereby improving the purity of the circular polarization radiated by the printed antenna.
  • the compensation means consist of a network of four propellers 12 1 , 12 2 , 12 3 , 12 4 planted in the substrate.
  • the radiation pattern of the helices 12 1 , 12 2 , 12 3 , 12 4 has been simulated, by connecting the helices alone to an excitation network, and the propellers have been designed in a known manner, from so that their radiation pattern is equivalent to the radiation pattern of the "patch” and their polarization is opposite that of the patch network. Then, the propellers 12 1 , 12 2 , 12 3 , 12 4 have been turned around of their axis so that their radiation comes to oppose the cross component radiated by the "patch". On the other hand, in known manner, the "patch" 11 is connected by the line 13 made in microstrip technology to a known type of power supply circuit.
  • FIG. 3b shows another embodiment of the printed antenna, namely an array of four "patches” 20 1 , 20 2 , 20 3 , 4 connected to a known type of power supply circuit.
  • the "patch” 20 1 is connected to the “patch” 20 4 by a microstrip line and the “patch” 2 is connected to the “patch” 3 by another microstrip line, the two lines being connected together and at the same time.
  • the compensation means is constituted by a propeller 21 positioned in the center of the network of four "patches”. This propeller is sized and rotated around its axis using the same principles as mentioned above.
  • the printed antenna consists of four networks of four "patches” of the type described in FIG. 3b.
  • the cross component of each "patch” is compensated by propellers positioned at the four corners of the "patch". More specifically and as shown in FIG. 3d, the "patch" 11 is surrounded by the propellers 12 1 , 12 2 , 12 3 , 12 4 .
  • FIG. 3c represents another embodiment in which four networks of four "patches" of the type represented by Figure 3b.
  • the compensation means is constituted by a propeller 21 positioned as in the case of Figure 3b.
  • a propeller additional 22 is placed at point C center of the 4x4 network "Patches".
  • FIG. 3e An additional embodiment of a device according to the present invention is shown in FIG.
  • the compensation means consist of a network of propellers.
  • the propellers are positioned in the middle of the sides of each "patch".
  • the "patch” 40 is surrounded by four propellers 41 1 , 41 2 , 41 3 , 41 4 placed respectively in the middle of each of the four sides, the "patch” 40 'is also surrounded by four propellers 41 2 41 5 , 41 6 , 41 7 and so on for the other "patches”.
  • Radiation diagrams of "patches” and propellers are obtained as mentioned above.
  • FIGS. 4, 5 and 6 A particular embodiment of a device for transmitting and / or receiving electromagnetic waves comprising a compensating element, namely a means dimensioned and positioned with respect to the electromagnetic wave, will now be described with reference to FIGS. 4, 5 and 6.
  • element radiating to radiate at the frequency of the radiating element a circular polarization in the opposite direction to that of the radiating element to compensate for the cross component of the radiating element, according to the present invention.
  • a printed antenna operating at 12 GHz This printed antenna is constituted by a network of four "patches" 102 1 , 102 2 , 102 3 , 102 4 made on a substrate 100 provided on its underside with a metal layer 101 forming a ground plane.
  • the "patch” 102 1 and the “patch” 102 2 are connected together by directed supply circuit in microstrip technology. More specifically, the "patch” 102 1 is connected to the point C by a length L1 while the “patch” 102 2 is connected to the point C by a length L2. Similarly, the “patch” 102 4 is connected to the point C 'by a length L4 and the “patch” 102 3 is connected to the point C' by a length L3.
  • the points C and C ' are connected to the input A of the supply circuit respectively by a length L5 and a length L6.
  • the compensation means is constituted by a radiating element of the traveling wave type, more particularly by a propeller 103 which is planted in the substrate at the center of the network, namely symmetrically with respect to the four "patches" 102 1 , 102 2 , 102 3 , 102 4 .
  • the ellipticity rate is represented as a function of the frequency of the printed antenna of FIG. 4.
  • the frequency band of FIG. the printed antenna goes from 430 MHz, in the absence of the helix, to 628 MHz in the presence of a correctly sized helix.
  • Figures 6a and 6b show the improvement of the quality of the circular polarization as a function of the angle of observation with respect to the main direction of the beam. This is given by the radiation diagrams of the printed network in the presence of a parasitic helix, namely Figure 6b and in the absence of the parasitic helix, see Figure 6a. These radiation patterns show a clear improvement in the quality of circular polarization in a wide sector of angles.
  • the printed antenna is constituted in known manner by a network of "patches” 112 1 , 112 2 made on a substrate 110 provided with a ground plane 111.
  • This "patch” network can radiate a linear polarization (for example linear horizontal) or circular (for example circular right).
  • a radiating element of the traveling wave type constituted by a dielectric rod 114 also called polyrod in English language, mounted in a base 113.
  • the polyrod is sized to radiate a polarization orthogonal to that of the network of patches (in this case linear vertical in the case of a linear polarization or circular left in the case of a circular polarization).
  • the simulations carried out with a device of this type have shown that the unwanted cross-component radiated by the network of "patches” excites the polyrod which in turn radiates a field whose phase can be adjusted so that it comes opposing all or part of the cross-component of the printed antenna thus improving the purity of the circular polarization radiated by the antenna.
  • the invention makes it possible to obtain a printed antenna radiating a circularly polarized or linear wave on a strip of extended frequency.

Description

La présente invention concerne un dispositif d'émission et/ou de réception d'ondes électromagnétiques, plus particulièrement une antenne connue sous le terme « antenne imprimée ».The present invention relates to a transmission device and / or receiving electromagnetic waves, more particularly an antenna known as the "printed antenna".

Dans tout ce qui suit, on appellera « antenne imprimée » (en anglais « microstrip antenna ») une antenne réalisée en technologie dite « microstrip » comprenant un élément rayonnant, typiquement un « patch », une fente, etc, ou un réseau de tels éléments, le nombre d'éléments dépendant du gain recherché. Ce type d'antenne est utilisé notamment comme source primaire au foyer d'une lentille ou d'une parabole,.In what follows, we will call "printed antenna" (in English "microstrip antenna") an antenna made in so-called "Microstrip" comprising a radiating element, typically a "patch", a slot, etc., or a network of such elements, the number of elements depending on the gain sought. This type of antenna is used in particular as a primary source in the focus of a lens or parabola ,.

Grâce à leur légèreté, leur planéité, la flexibilité de conception qu'elles offrent, la facilité de leur intégration à l'intérieur de nombreux équipements électroniques, la compatibilité de leur fabrication avec des techniques éprouvées de réalisation en grand volume de circuits imprimés et finalement leur faible coût de revient, les antennes imprimées sont de plus en plus utilisées dans de nombreux systèmes de communications sans fil (réseaux locaux sans fil, réseaux d'accès qu'ils soient terrestres ou par satellite, etc...).Thanks to their lightness, flatness, design flexibility that they offer, the ease of their integration inside many electronic equipment, the compatibility of their manufacture with proven techniques for large volume production of printed circuits and finally their low cost, printed antennas are more additionally used in many wireless communications systems (wireless local area networks, terrestrial access networks or satellite, etc ...).

Or, dans de nombreuses applications, il peut être avantageux et/ou nécessaire d'utiliser la polarisation circulaire pour les antennes d'émission / réception.However, in many applications, it can be advantageous and / or necessary to use circular polarization for antennas transmission / reception.

Toutefois, les antennes imprimées sont mieux adaptées pour émettre/recevoir une onde à polarisation linéaire.However, printed antennas are better suited for transmit / receive a linearly polarized wave.

Ainsi, pour émettre/recevoir de la polarisation circulaire avec des antennes imprimées, plusieurs techniques ont été mises en oeuvre. Ces techniques sont décrites, par exemple, dans le « Handbook of Microstrip Antennas » edited by JR James & PS Hall ; published by : Peter Peregrinus Ltd., London, United Kingdom - ISBN 0 86341 150 9. En particulier, le chapitre 4 : Circular polarisation and bandwith, pp. 219 -274. Thus, to transmit / receive circular polarization with antennas printed, several techniques have been implemented. These techniques are described, for example, in the "Handbook of Microstrip Antennas »edited by JR James & PS Hall; published by: Peter Peregrinus Ltd., London, United Kingdom - ISBN 0 86341 150 9. In particular, the chapter 4: Circular polarization and bandwith, pp. 219-274.

Ces techniques consistent essentiellement à exciter simultanément deux ondes à polarisation linéaire déphasées de 90°. De ce fait, la qualité de la polarisation circulaire qui peut être quantifiée par le taux d'ellipticité (« Axial ratio » en langue anglaise) de l'onde rayonnée ou reçue par l'antenne ne peut être obtenue que sur une bande de fréquence étroite.These techniques consist essentially of exciting simultaneously two linear polarized waves out of phase by 90 °. From this fact, the quality of circular polarization that can be quantified by the rate ellipticity ("Axial ratio" in English) of the radiated or received wave antenna can only be obtained on a narrow frequency band.

Des solutions pour élargir la bande de fréquences telles que l'usage d'un coupleur hybride associé à un élément rayonnant ou l'usage de la technique de la rotation séquentielle dans le cas d'un réseau (Voir « application of sequential feeding to wide bandwith, circularly polarised microstrip patch arrays » P.S. Hall, IEE Proceedings, Vol. 136, Pt. H, N° 5, October 1989) permettent d'élargir cette bande de fréquence.Solutions to expand the band of frequencies such as the use of a hybrid coupler associated with a radiating element or the use of the technique of sequential rotation in the case of a network (See "Application of sequential feeding to wide bandwith, circularly polarized microstrip patch arrays "P.S. Hall, IEE Proceedings, Vol. 136, Pt. H, No. 5, October 1989) allow to widen this band of frequency.

Cependant, il n'est pas toujours possible de mettre en oeuvre ces solutions.However, it is not always possible to implement these solutions.

De plus :

  • pour certaines applications, les largeurs de bande obtenues avec ces techniques restent insuffisantes,
  • dans le cas de l'usage de la rotation séquentielle, la qualité de la polarisation circulaire se dégrade assez rapidement dès que l'on s'écarte de la direction principale du faisceau. Ceci pose un problème, par exemple, pour une antenne-source utilisée pour l'éclairement d'une parabole ou d'une lentille.
Moreover :
  • for certain applications, the bandwidths obtained with these techniques remain insufficient,
  • in the case of the use of the sequential rotation, the quality of the circular polarization deteriorates rather quickly as soon as one deviates from the main direction of the beam. This poses a problem, for example, for a source antenna used for illuminating a parabola or a lens.

Des solutions ont été proposées pour améliorer la qualité de la polarisation, mais dans le domaine des antennes à cornet, comme décrit dans le brevet GB-A-2 226 186.Solutions have been proposed to improve the quality of polarization, but in the field of horn antennas, as described in GB-A-2,226,186.

L'objet de l'invention est de proposer un dispositif de réception et/ou d'émission de signaux comprenant une antenne imprimée de haute qualité de polarisation circulaire ou linéaire sur une bande de fréquence élargie et sur un large secteur d'angle.The object of the invention is to propose a reception device and / or signal transmission comprising a high-level printed antenna Circular or linear polarization quality over a frequency band widened and over a wide corner area.

Ainsi, la présente invention a pour objet un dispositif d'émission et/ou réception d'ondes électromagnétiques comprenant au moins un élément rayonnant de type imprimé pour rayonner une polarisation circulaire ou linéaire de sens donné, caractérisé en ce qu'il comprend au moins un élément rayonnant passif dimensionné et positionné par rapport à l'élément rayonnant de type imprimé de manière à rayonner, à la fréquence de l'élément rayonnant de type imprimé, une polarisation circulaire ou linéaire de sens opposé à celle de l'élément rayonnant de type imprimé et dont la phase est ajustée pour compenser la composante croisée de l'élément rayonnant de type imprimé.Thus, the present invention relates to a transmission device and / or receiving electromagnetic waves comprising at least one radiating element of printed type for radiating a circular polarization or linear of given meaning, characterized in that it comprises at least one passive radiating element sized and positioned in relation to the element radiating type of radiation so as to radiate at the frequency of the radiating element of printed type, a circular or linear polarization opposite to that of the radiating element of the printed type and whose phase is adjusted to compensate for the cross component of the element radiating type printed.

Selon un mode de réalisation préférentiel, l'élément rayonnant passif est constitué par un élément rayonnant du type à ondes progressives tel qu'une hélice ou une tige diélectrique associée à des polariseurs.According to a preferred embodiment, the radiating element passive is constituted by a radiating element of the traveling wave type such as a helix or a dielectric rod associated with polarizers.

D'autres caractéristiques et avantages de la présente invention, apparaítront à la lecture de la description de différents modes de réalisation, cette description étant faite avec référence aux dessins ci-annexés dans lesquels :

  • la figure 1a et la figure 1b sont des vues schématiques en perspective d'un réseau d'une antenne imprimée constituée par un réseau de « patchs » respectivement selon l'art antérieur et selon un mode de réalisation de la présente invention,
  • la figure 2 montre schématiquement le champ rayonné total résultant du rayonnement de l'antenne imprimée et de l'hélice, ce champ total étant décomposé sur une base orthogonale constituée des polarisations circulaires droite et gauche,
  • les figures 3a à 3e sont des vues en perspective schématique de différents modes de réalisation de la présente invention,
  • la figure 4 est une vue en perspective schématique d'un mode de réalisation préférentiel de la présente invention,
  • la figure 5 est une courbe donnant le taux d'ellipticité en fonction de la fréquence dans le cas d'un réseau imprimé seul ou d'un réseau muni de moyens conformément à la présente invention,
  • les figures 6a et 6b présentent le diagramme de rayonnement des éléments rayonnants respectivement dans le cas d'un réseau seul et dans le cas d'un réseau muni de moyens conformes à la présente invention, et
  • la figure 7 est une vue en coupe schématique d'un autre mode de réalisation de la présente invention.
  • Other features and advantages of the present invention will appear on reading the description of various embodiments, this description being made with reference to the accompanying drawings in which:
  • FIG. 1a and FIG. 1b are schematic perspective views of a network of a printed antenna constituted by a network of "patches" respectively according to the prior art and according to one embodiment of the present invention,
  • FIG. 2 schematically shows the total radiated field resulting from the radiation of the printed antenna and the helix, this total field being decomposed on an orthogonal basis consisting of the right and left circular polarizations,
  • FIGS. 3a to 3e are schematic perspective views of various embodiments of the present invention,
  • FIG. 4 is a schematic perspective view of a preferred embodiment of the present invention,
  • FIG. 5 is a curve giving the ellipticity rate as a function of frequency in the case of a printed network alone or of a network provided with means according to the present invention,
  • FIGS. 6a and 6b show the radiation pattern of the radiating elements respectively in the case of a single network and in the case of a network provided with means according to the present invention, and
  • Figure 7 is a schematic sectional view of another embodiment of the present invention.
  • Dans les figures, pour simplifier la description, les mêmes éléments portent les mêmes références. D'autre part, la présente invention sera décrite en se référant à une antenne comprenant un élément rayonnant tel qu'un « patch » ou un réseau de « patchs ». Toutefois, il est évident pour l'homme de l'art que la présente invention peut s'appliquer à tous types d'antennes imprimées, à savoir des antennes dans lesquelles les éléments rayonnants peuvent être aussi constitués par une fente, un réseau de fentes, un dipole ou un réseau de dipoles, etc... D'autre part, dans la description, les figures 1 à 6 concernent une antenne imprimée adaptée pour émettre/recevoir une polarisation circulaire droite ou gauche tandis que le mode de réalisation de la figure 7 concerne une antenne imprimée dont les éléments rayonnants peuvent recevoir une polarisation circulaire ou une polarisation linéaire.In the figures, to simplify the description, the same elements bear the same references. On the other hand, the present invention will be described with reference to an antenna comprising a radiating element such as a "patch" or network of "patches". However, it is obvious for those skilled in the art that the present invention can be applied to all types antennas in which the elements radiators may also be constituted by a slot, a network of slots, a dipole or a network of dipoles, etc ... On the other hand, in the description, FIGS. 1 to 6 relate to a printed antenna adapted for send / receive a right or left circular polarization while the embodiment of Figure 7 relates to a printed antenna whose radiating elements can receive a circular polarization or a linear polarization.

    Sur la figure 1a, on a représenté en perspective un mode de réalisation d'une antenne imprimée qui peut recevoir des moyens conformes à la présente invention. De manière plus spécifique, sur un substrat 1 de permittivité donnée dont la face inférieure est recouverte d'une couche métallique 2 formant plan de masse, a été réalisé un réseau de n « patchs », plus particulièrement un réseau comportant quatre branches parallèles de trois « patchs » 31, 3'1, 3"1, 32, 3'2, 3"2, 33, 3'3, 3"3, 34, 3'4, 3"4 montés en série, l'ensemble étant connecté à un réseau d'alimentation référencé 4, réalisé en technologie microruban.In Figure 1a, there is shown in perspective an embodiment of a printed antenna which can receive means according to the present invention. More specifically, on a substrate 1 of given permittivity whose lower face is covered with a metal layer 2 forming a ground plane, has been realized a network of n "patches", more particularly a network comprising four parallel branches of three "Patches" 3 1 , 3 ' 1 , 3 " 1 , 3 2 , 3' 2 , 3" 2 , 3 3 , 3 ' 3 , 3 " 3 , 3 4 , 3" 4 , 3 " 4 connected in series, the assembly being connected to a feed network referenced 4, made in microstrip technology.

    De manière connue, les « patchs » sont conçus et alimentés pour rayonner et/ou recevoir une onde à polarisation circulaire. Toutefois, dans ce cas, l'antenne imprimée ainsi réalisée rayonne une polarisation circulaire imparfaite de sens donné, comme cela sera expliqué avec référence à la figure 2. Aussi, conformément à la présente invention et comme représenté sur la figure 1b, pour améliorer la polarisation circulaire, on prévoit près du réseau de « patchs » des moyens dimensionnés et positionnés par rapport au réseau de « patchs » de manière à rayonner à la fréquence du réseau de « patchs », une polarisation circulaire de sens opposé à celle du réseau de « patchs » pour compenser la composante croisée de l'élément rayonnant. Ces moyens seront appelés ci-après moyens de compensation. Ainsi, comme représenté sur la figure 1b, on prévoit des éléments rayonnants du type à ondes progressives, plus particulièrement des hélices 41, 42, 43, 51, 4'1, 52, 4'2, 53, 4"1, 4"2, 4"3 qui sont plantées, comme montré sur la coupe AA,dans le substrat 1 et ne sont pas connectées à un réseau d'excitation.In known manner, the "patches" are designed and powered to radiate and / or receive a circularly polarized wave. However, in this case, the printed antenna thus produced radiates an imperfect circular polarization of given direction, as will be explained with reference to FIG. 2. Also, in accordance with the present invention and as shown in FIG. circular polarization is provided near the network of "patches" means dimensioned and positioned relative to the network of "patches" so as to radiate at the frequency of the network of "patches", a circular polarization in the opposite direction to that of the network of "Patches" to compensate for the cross-component of the radiating element. These means will hereinafter be called compensation means. Thus, as shown in FIG. 1b, radiating elements of the traveling wave type are provided, more particularly propellers 4 1 , 4 2 , 4 3 , 5 1 , 4 ' 1 , 5 2 , 4' 2 , 5 3 , 4 " 1 , 4" 2 , 4 " 3 which are planted, as shown on the AA section, in the substrate 1 and are not connected to an excitation network.

    Il est connu de l'homme de l'art qu'une hélice correctement dimensionnée fonctionne en mode axial et reçoit ou émet naturellement une polarisation circulaire. Le sens de cette polarisation circulaire ( gauche ou droite ) dépend du sens d'enroulement de l'hélice.It is known to those skilled in the art that a propeller correctly dimensioned works in axial mode and receives or naturally transmits circular polarization. The direction of this circular polarization (left or right right) depends on the winding direction of the propeller.

    Dans le cadre de la présente invention, il est important que l'ensemble des hélices ou autres éléments rayonnants du type à ondes progressives donnant une polarisation circulaire présente un diagramme de rayonnement sensiblement équivalent au diagramme de rayonnement du réseau de « patchs ». En conséquence, différents procédés peuvent être utilisés pour calculer le diagramme de rayonnement du réseau d'hélices utilisé comme moyen de compensation. Ainsi, le procédé le plus simple consiste à connecter le réseau d'hélices ayant une polarisation circulaire inverse à celle rayonnée par le réseau de « patchs », à un circuit d'excitation et à régler les caractéristiques des hélices de manière à obtenir un diagramme de rayonnement identique au diagramme de rayonnement du réseau de « patchs » à compenser. Ensuite, pour que le rayonnement de l'hélice vienne s'opposer à la composante croisée rayonnée par le réseau de « patchs », il faut ajuster sa phase en tournant les hélices autour de leurs axes. La compensation obtenue en utilisant une hélice est représentée sur la figure 2. Sur cette figure, Rimprimée représente le champ rayonné par une antenne imprimée constituée du réseau de « patchs » seuls. Ce champ rayonné présente une composante croisée non désirée. Cette composante croisée rayonnée par l'antenne imprimée excite le réseau d'hélices qui rayonne à son tour un champ Rhélice dont la phase est ajustée par rotation de l'hélice autour de son axe de manière qu'il vienne s'opposer en totalité ou en partie à la composante croisée de l'antenne imprimée, améliorant ainsi la pureté de la polarisation circulaire rayonnée par l'antenne imprimée. En effet, le champ rayonné en présence de l'hélice est tel que Rtotal = Rimprimée + Rhélice comme représenté sur la figure 2.In the context of the present invention, it is important that the set of propellers or other radiating elements of the wave type progressive circular polarization presents a diagram of radiation substantially equivalent to the radiation pattern of the network of "patches". As a result, different processes can be used to calculate the radiation pattern of the propeller network used as a means of compensation. So the simplest process is to connect the network of propellers having a circular polarization inverse to that radiated by the network of "patches", to an excitation circuit and to adjust the characteristics of the propellers so as to obtain a radiation pattern identical to the radiation pattern of the network of "patches" to compensate. Then, so that the radiation of the propeller comes to oppose the cross component radiated by the network "patches", you have to adjust your phase by turning the propellers around their axes. The compensation obtained using a helix is represented on the Figure 2. In this figure, Rimprimée represents the field radiated by a printed antenna consisting of the network of "patches" alone. This field radiated has an undesired cross-component. This component cross-beam radiated by the printed antenna excites the network of propellers which radiates in turn a Rhélice field whose phase is adjusted by rotation of the propeller around its axis so that it comes to oppose in totality or in part to the cross-component of the printed antenna, thereby improving the purity of the circular polarization radiated by the printed antenna. In indeed, the field radiated in the presence of the helix is such that Rtotal = Rimpressed + Rhelice as shown in Figure 2.

    On décrira maintenant avec référence aux figures 3a à 3e différents modes de réalisation d'un dispositif conforme à la présente invention. Comme représenté sur la figure 3a, sur un substrat 10 a été réalisé un élément rayonnant d'une antenne imprimée constituée par un « patch » 11. Conformément à la présente invention, dans ce cas les moyens de compensation sont constitués par un réseau de quatre hélices 121, 122, 123, 124 plantées dans le substrat. Comme expliqué ci-dessus, le diagramme de rayonnement des hélices 121, 122, 123, 124 a été simulé, en connectant les hélices seules à un réseau d'excitation, et les hélices ont été conçues de manière connue, de telle sorte que leur diagramme de rayonnement soit équivalent au diagramme de rayonnement du « patch » et que leur polarisation soit opposée à celle du réseau de patchs.. Ensuite, les hélices 121, 122, 123, 124 ont été tournées autour de leur axe de manière à ce que leur rayonnement vienne s'opposer à la composante croisée rayonnée par le « patch ». D'autre part, de manière connue, le « patch » 11 est connecté par la ligne 13 réalisée en technologie microruban à un circuit d'alimentation de type connu.We will now describe with reference to Figures 3a to 3e different embodiments of a device according to the present invention. As shown in FIG. 3a, on a substrate 10 has been made a radiating element of a printed antenna constituted by a "patch" 11. According to the present invention, in this case the compensation means consist of a network of four propellers 12 1 , 12 2 , 12 3 , 12 4 planted in the substrate. As explained above, the radiation pattern of the helices 12 1 , 12 2 , 12 3 , 12 4 has been simulated, by connecting the helices alone to an excitation network, and the propellers have been designed in a known manner, from so that their radiation pattern is equivalent to the radiation pattern of the "patch" and their polarization is opposite that of the patch network. Then, the propellers 12 1 , 12 2 , 12 3 , 12 4 have been turned around of their axis so that their radiation comes to oppose the cross component radiated by the "patch". On the other hand, in known manner, the "patch" 11 is connected by the line 13 made in microstrip technology to a known type of power supply circuit.

    Sur la figure 3b, on a représenté un autre mode de réalisation de l'antenne imprimée, à savoir un réseau de quatre « patchs » 201, 202, 203, 204 connectés à un circuit d'alimentation de type connu. Ainsi, le « patch » 201 est connecté au « patch » 204 par une ligne microruban et le « patch » 202 est connecté au « patch » 203 par une autre ligne microruban, les deux lignes étant reliées ensemble et à la sortie du circuit d'alimentation 30. Dans ce cas, conformément à la présente invention, le moyen de compensation est constitué par une hélice 21 positionnée au centre du réseau des quatre « patchs ». Cette hélice est dimensionnée et tournée autour de son axe en utilisant les mêmes principes que mentionnés ci-dessus.FIG. 3b shows another embodiment of the printed antenna, namely an array of four "patches" 20 1 , 20 2 , 20 3 , 4 connected to a known type of power supply circuit. Thus, the "patch" 20 1 is connected to the "patch" 20 4 by a microstrip line and the "patch" 2 is connected to the "patch" 3 by another microstrip line, the two lines being connected together and at the same time. output of the supply circuit 30. In this case, according to the present invention, the compensation means is constituted by a propeller 21 positioned in the center of the network of four "patches". This propeller is sized and rotated around its axis using the same principles as mentioned above.

    Sur la figure 3d, on a représenté un autre mode de réalisation de la présente invention. Dans ce cas, l'antenne imprimée est constituée par quatre réseaux de quatre « patchs » du type de celui décrit à la figure 3b. Dans le mode de réalisation de la figure 3d, la composante croisée de chaque « patch » est compensée par des hélices positionnées aux quatre coins du « patch ». De manière plus spécifique et comme représenté sur la figure 3d, le « patch » 11 est entouré des hélices 121, 122, 123, 124. De même, le « patch » 11' est entouré des hélices 122, 125, 123, 126 et le « patch » 11" est entouré des hélices 124, 123, 127, 128, ces hélices étant positionnées comme mentionné ci-dessus, aux quatre coins de chaque « patch », avec des hélices communes pour les « patchs » adjacents. Dans ce cas aussi, les diagrammes de rayonnement du réseau de « patchs » et des hélices constituant le moyen de compensation doivent être sensiblement équivalents et sont calculés comme mentionné ci-dessus.In Figure 3d, there is shown another embodiment of the present invention. In this case, the printed antenna consists of four networks of four "patches" of the type described in FIG. 3b. In the embodiment of FIG. 3d, the cross component of each "patch" is compensated by propellers positioned at the four corners of the "patch". More specifically and as shown in FIG. 3d, the "patch" 11 is surrounded by the propellers 12 1 , 12 2 , 12 3 , 12 4 . Similarly, the "patch" 11 'is surrounded by the propellers 12 2 , 12 5 , 12 3 , 12 6 and the "patch" 11 "is surrounded by the propellers 12 4 , 12 3 , 12 7 , 12 8 , these propellers being positioned as mentioned above, at the four corners of each "patch", with common helices for adjacent "patches." In this case, too, the radiation patterns of the network of "patches" and propellers constituting the means of compensation must be substantially equivalent and are calculated as mentioned above.

    La figure 3c représente un autre mode de réalisation dans lequel on utilise quatre réseaux de quatre « patchs » du type de celui représenté à la figure 3b. Dans ce cas, le moyen de compensation est constitué par une hélice 21 positionnée comme dans le cas de la figure 3b. De plus, une hélice supplémentaire 22 est placée au point C centre du réseau de 4x4 « patchs ».FIG. 3c represents another embodiment in which four networks of four "patches" of the type represented by Figure 3b. In this case, the compensation means is constituted by a propeller 21 positioned as in the case of Figure 3b. In addition, a propeller additional 22 is placed at point C center of the 4x4 network "Patches".

    Un mode supplémentaire de réalisation d'un dispositif conforme à la présente invention est représenté sur la figure 3e. Dans ce cas, sur un substrat 10 ont été réalisés quatre réseaux de quatre « patchs » du type de celui représenté à la figure 3b. Dans le mode de réalisation de la figure 3e, les moyens de compensation sont constitués par un réseau d'hélices. Toutefois, les hélices sont positionnées au milieu des côtés de chaque « patch ». Ainsi, de manière plus spécifique, le « patch » 40 est entouré de quatre hélices 411, 412, 413, 414 placées respectivement au milieu de chacun des quatre côtés, le « patch » 40' est lui aussi entouré de quatre hélices 412 415, 416, 417 et ainsi de suite pour les autres « patchs ». Les diagrammes de rayonnement des « patchs » et des hélices sont obtenus comme mentionné ci-dessus.An additional embodiment of a device according to the present invention is shown in FIG. In this case, on a substrate 10 were made four networks of four "patches" of the type shown in Figure 3b. In the embodiment of FIG. 3e, the compensation means consist of a network of propellers. However, the propellers are positioned in the middle of the sides of each "patch". Thus, more specifically, the "patch" 40 is surrounded by four propellers 41 1 , 41 2 , 41 3 , 41 4 placed respectively in the middle of each of the four sides, the "patch" 40 'is also surrounded by four propellers 41 2 41 5 , 41 6 , 41 7 and so on for the other "patches". Radiation diagrams of "patches" and propellers are obtained as mentioned above.

    De manière plus générale, dans les circuits décrits ci-dessus, l'ajustement de l'amplitude et de la phase du champ rayonné par les moyens de compensation, peut être obtenu par l'ajustement de l'un ou de plusieurs des éléments ci-après :

    • Le niveau de couplage de ou des hélices à l'antenne imprimée.
    • La directivité de celle-ci.
    • La longueur de la tige support et/ou de la charge en bout de l'hélice.
    • La position des hélices.
    • La rotation angulaire des hélices par rapport à leur axe.
    More generally, in the circuits described above, the adjustment of the amplitude and the phase of the field radiated by the compensation means can be obtained by adjusting one or more of the elements -after:
    • The level of coupling of the propellers to the printed antenna.
    • The directivity of it.
    • The length of the support rod and / or the end load of the propeller.
    • The position of the propellers.
    • The angular rotation of the helices with respect to their axis.

    On décrira maintenant avec référence aux figures 4, 5 et 6 un mode de réalisation particulier d'un dispositif d'émission et/ou de réception d'ondes électromagnétiques comprenant un élément de compensation, à savoir un moyen dimensionné et positionné par rapport à l'élément rayonnant de manière à rayonner à la fréquence de l'élément rayonnant une polarisation circulaire de sens opposé à celle de l'élément rayonnant pour compenser la composante croisée de l'élément rayonnant, conforme à la présente invention. Sur la figure 4, on a représenté une antenne imprimée fonctionnant à 12 GHz. Cette antenne imprimée est constituée par un réseau de quatre « patchs » 1021, 1022, 1023, 1024 réalisés sur un substrat 100 muni sur sa face inférieure d'une couche métallique 101 formant plan de masse. Comme représenté sur la figure 4, le « patch » 1021 et le « patch » 1022 sont connectés ensemble au circuit d'alimentation réalisé en technologie microruban. De manière plus spécifique, le « patch » 1021 est connecté au point C par une longueur L1 tandis que le « patch » 1022 est connecté au point C par une longueur L2. De manière identique, le « patch » 1024 est connecté au point C' par une longueur L4 et le « patch » 1023 est connecté au point C' par une longueur L3. Les points C et C' sont connectés à l'entrée A du circuit d'alimentation respectivement par une longueur L5 et une longueur L6. Les quatre « patchs » 1021, 1022, 1023, 1024 formant un réseau séquentiel, les différentes longueurs L1, L2, L3, L4 ainsi que L5 et L6 ont des dimensions bien connues de l'homme de l'art de manière à obtenir les déphasages nécessaires sur les différents « patchs ». Les équations donnant ces longueurs ne seront pas redonnées ci-après.A particular embodiment of a device for transmitting and / or receiving electromagnetic waves comprising a compensating element, namely a means dimensioned and positioned with respect to the electromagnetic wave, will now be described with reference to FIGS. 4, 5 and 6. element radiating to radiate at the frequency of the radiating element a circular polarization in the opposite direction to that of the radiating element to compensate for the cross component of the radiating element, according to the present invention. In Figure 4, there is shown a printed antenna operating at 12 GHz. This printed antenna is constituted by a network of four "patches" 102 1 , 102 2 , 102 3 , 102 4 made on a substrate 100 provided on its underside with a metal layer 101 forming a ground plane. As shown in Figure 4, the "patch" 102 1 and the "patch" 102 2 are connected together by directed supply circuit in microstrip technology. More specifically, the "patch" 102 1 is connected to the point C by a length L1 while the "patch" 102 2 is connected to the point C by a length L2. Similarly, the "patch" 102 4 is connected to the point C 'by a length L4 and the "patch" 102 3 is connected to the point C' by a length L3. The points C and C 'are connected to the input A of the supply circuit respectively by a length L5 and a length L6. The four "patches" 102 1 , 102 2 , 102 3 , 102 4 forming a sequential network, the different lengths L1, L2, L3, L4 and L5 and L6 have dimensions well known to those skilled in the art. in order to obtain the necessary phase shifts on the different "patches". The equations giving these lengths will not be given again below.

    Conformément à la présente invention, le moyen de compensation est constitué par un élément rayonnant du type à ondes progressives, plus particulièrement par une hélice 103 qui est plantée dans le substrat au centre du réseau, à savoir symétriquement par rapport aux quatre « patchs » 1021, 1022, 1023, 1024. Sur la figure 5, on a représenté le taux d'ellipticité en fonction de la fréquence de l'antenne imprimée de la figure 4. Ainsi, dans ce cas, pour un taux d'ellipticité maximum fixé à 2dB, la bande de fréquences de l'antenne imprimée passe de 430 MHz, en l'absence de l'hélice, à 628 MHz en présence d'une hélice correctement dimensionnée. L'augmentation de la largeur de bande de fréquences du réseau apportée par l'hélice parasite dans le cas de cette réalisation particulière est de 46 %. D'autre part, les figures 6a et 6b montrent l'amélioration de la qualité de la polarisation circulaire en fonction de l'angle d'observation par rapport à la direction principale du faisceau. Ceci est donné par les diagrammes de rayonnement du réseau imprimé en présence d'une hélice parasite, à savoir figure 6b et en l'absence de l'hélice parasite, voir figure 6a. Ces diagrammes de rayonnement mettent en évidence une amélioration nette de la qualité de la polarisation circulaire dans un large secteur d'angles.According to the present invention, the compensation means is constituted by a radiating element of the traveling wave type, more particularly by a propeller 103 which is planted in the substrate at the center of the network, namely symmetrically with respect to the four "patches" 102 1 , 102 2 , 102 3 , 102 4 . In FIG. 5, the ellipticity rate is represented as a function of the frequency of the printed antenna of FIG. 4. Thus, in this case, for a maximum ellipticity rate set at 2 dB, the frequency band of FIG. the printed antenna goes from 430 MHz, in the absence of the helix, to 628 MHz in the presence of a correctly sized helix. The increase in the frequency bandwidth of the network provided by the parasitic propeller in the case of this particular embodiment is 46%. On the other hand, Figures 6a and 6b show the improvement of the quality of the circular polarization as a function of the angle of observation with respect to the main direction of the beam. This is given by the radiation diagrams of the printed network in the presence of a parasitic helix, namely Figure 6b and in the absence of the parasitic helix, see Figure 6a. These radiation patterns show a clear improvement in the quality of circular polarization in a wide sector of angles.

    Sur la figure 7, on a représenté un autre mode de réalisation du moyen de compensation. Dans ce cas, l'antenne imprimée est constituée de manière connue par un réseau de « patchs » 1121, 1122 réalisé sur un substrat 110 muni d'un plan de masse 111. Ce réseau de « patch » peut rayonner une polarisation linéaire (par exemple linéaire horizontale) ou circulaire (par exemple circulaire droite). Au milieu du réseau de « patchs » 1121, 1122 a été positionnée un élément rayonnant du type à ondes progressives constitué par une tige diélectrique 114 appelée aussi polyrod en langue anglaise, montée dans un culot 113. Le polyrod est dimensionné pour rayonner une polarisation orthogonale à celle du réseau de patchs ( en l'occurrence linéaire verticale dans le cas d'une polarisation linéaire ou circulaire gauche dans le cas d'une polarisation circulaire ). Les simulations réalisées avec un dispositif de ce type ont montré que la composante croisée non désirée rayonnée par le réseau de « patchs » excite le polyrod qui rayonne à son tour un champ dont la phase peut être ajustée de manière à ce qu'il vienne s'opposer en totalité ou en partie à la composante croisée de l'antenne imprimée améliorant ainsi la pureté de la polarisation circulaire rayonnée par l'antenne.In Figure 7, there is shown another embodiment of the compensation means. In this case, the printed antenna is constituted in known manner by a network of "patches" 112 1 , 112 2 made on a substrate 110 provided with a ground plane 111. This "patch" network can radiate a linear polarization (for example linear horizontal) or circular (for example circular right). In the middle of the network of "patches" 112 1 , 112 2 has been positioned a radiating element of the traveling wave type constituted by a dielectric rod 114 also called polyrod in English language, mounted in a base 113. The polyrod is sized to radiate a polarization orthogonal to that of the network of patches (in this case linear vertical in the case of a linear polarization or circular left in the case of a circular polarization). The simulations carried out with a device of this type have shown that the unwanted cross-component radiated by the network of "patches" excites the polyrod which in turn radiates a field whose phase can be adjusted so that it comes opposing all or part of the cross-component of the printed antenna thus improving the purity of the circular polarization radiated by the antenna.

    Ainsi, l'invention permet d'obtenir une antenne imprimée rayonnant une onde à polarisation circulaire ou linéaire sur une bande de fréquences élargie.Thus, the invention makes it possible to obtain a printed antenna radiating a circularly polarized or linear wave on a strip of extended frequency.

    De plus, dans le cas d'une polarisation circulaire, son utilisation avec la technique de la rotation séquentielle permet en plus de l'élargissement de la bande de fréquences, d'améliorer la qualité de la polarisation circulaire pour des angles différents de la direction principale du faisceau.Moreover, in the case of a circular polarization, its use with the technique of sequential rotation allows in addition to enlargement of the frequency band, to improve the quality of the circular polarization for angles different from the main direction of beam.

    Sa mise en oeuvre est peu coûteuse. Elle offre une grande flexibilité d'ajustement.Its implementation is inexpensive. It offers a great flexibility of adjustment.

    Claims (7)

    1. Device for transmitting and/or receiving electromagnetic waves comprising at least one radiating element of printed type (3, 11, 20, 40, 102, 112) for radiating a circular or linear polarization of given sense, characterized in that it comprises at least one passive radiating element (4, 5, 12, 21, 22, 41, 103, 114) dimensioned and positioned with respect to the radiating element of printed type in such a way as to radiate, at the frequency of the radiating element of printed type, a circular or linear polarization of opposite sense to that of the radiating element and whose phase is adjusted so as to compensate for the cross component of the radiating element of printed type.
    2. Device according to Claim 1, characterized in that the radiating element of printed type consists of a "patch", a slot, a dipole or an array of n "patches", of n dipoles or of n slots, the element being excited in such a way as to obtain a circular or linear polarization of given sense.
    3. Device according to any one of Claims 1 or 2, characterized in that the passive radiating element consists of a radiating element of the travelling wave type.
    4. Device according to Claim 3, characterized in that the radiating element of the travelling wave type is chosen from among the dielectric rods and helices associated with polarizers.
    5. Device according to Claim 3 or 4, characterized in that the radiating elements of the travelling wave type are positioned symmetrically with respect to the radiating elements of printed type.
    6. Device according to Claim 5, characterized in that the radiating elements of the travelling wave type are positioned at the four corners of the radiating element(s) of printed type constituting the transmission/reception device.
    7. Device according to Claims 5 and 6, characterized in that, when the transmission/reception device consists of an array of n radiating elements, the radiating elements of the travelling wave type are positioned at the centre of the array.
    EP00951625A 1999-06-21 2000-06-21 Device for transmitting and/or receiving signals Expired - Lifetime EP1188202B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9907827 1999-06-21
    FR9907827 1999-06-21
    PCT/FR2000/001707 WO2000079649A1 (en) 1999-06-21 2000-06-21 Device for transmitting and/or receiving signals

    Publications (2)

    Publication Number Publication Date
    EP1188202A1 EP1188202A1 (en) 2002-03-20
    EP1188202B1 true EP1188202B1 (en) 2004-02-04

    Family

    ID=9547047

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00951625A Expired - Lifetime EP1188202B1 (en) 1999-06-21 2000-06-21 Device for transmitting and/or receiving signals

    Country Status (8)

    Country Link
    US (1) US6618012B1 (en)
    EP (1) EP1188202B1 (en)
    JP (1) JP4295938B2 (en)
    CN (1) CN1202591C (en)
    AU (1) AU6450400A (en)
    DE (1) DE60008104T2 (en)
    ES (1) ES2215702T3 (en)
    WO (1) WO2000079649A1 (en)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SE517564C2 (en) * 1999-11-17 2002-06-18 Allgon Ab Antenna device for a portable radio communication device, portable radio communication device with such antenna device and method for operating said radio communication device
    JP2004056281A (en) * 2002-07-17 2004-02-19 Alps Electric Co Ltd Diversity antenna for wireless lan
    FR2854739A1 (en) * 2003-05-06 2004-11-12 France Telecom ANTENNA, SENSOR OR ELECTROMAGNETIC PROBE
    US7675471B2 (en) * 2004-03-05 2010-03-09 Delphi Technologies, Inc. Vehicular glass-mount antenna and system
    US8081135B2 (en) 2005-11-24 2011-12-20 Thomson Licensing Antenna arrays with dual circular polarization
    DE102011088438A1 (en) * 2011-12-13 2013-06-13 Robert Bosch Gmbh Hand tool device
    KR101768802B1 (en) * 2016-03-11 2017-08-16 주식회사 한신 Microstrip antenna
    DE102017200129A1 (en) * 2017-01-05 2018-07-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ndip antenna
    CN108111179B (en) * 2017-12-19 2019-07-23 温州大学瓯江学院 Signal generator with adjustable phase

    Family Cites Families (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4031537A (en) 1974-10-23 1977-06-21 Andrew Alford Collinear dipole array with reflector
    FR2627330B1 (en) * 1988-02-12 1990-11-30 Alcatel Espace MULTI-FREQUENCY ANTENNA, ESPECIALLY FOR USE IN THE FIELD OF SPATIAL TELECOMMUNICATIONS
    JPH02134001A (en) * 1988-11-15 1990-05-23 Kokusai Denshin Denwa Co Ltd <Kdd> Offset reflection mirror antenna
    FR2640431B1 (en) * 1988-12-08 1991-05-10 Alcatel Espace MULTI-FREQUENCY RADIANT DEVICE
    US5381157A (en) * 1991-05-02 1995-01-10 Sumitomo Electric Industries, Ltd. Monolithic microwave integrated circuit receiving device having a space between antenna element and substrate
    US5892483A (en) * 1996-03-15 1999-04-06 Ericsson Inc. Dual antenna arrangement for portable transceiver
    JP3580654B2 (en) * 1996-12-04 2004-10-27 京セラ株式会社 Common antenna and portable radio using the same
    SE511450C2 (en) * 1997-12-30 1999-10-04 Allgon Ab Antenna system for circularly polarized radio waves including antenna device and interface network
    US6229488B1 (en) * 2000-09-08 2001-05-08 Emtac Technology Corp. Antenna for receiving signals from GPS and GSM

    Also Published As

    Publication number Publication date
    WO2000079649A1 (en) 2000-12-28
    JP4295938B2 (en) 2009-07-15
    EP1188202A1 (en) 2002-03-20
    CN1202591C (en) 2005-05-18
    DE60008104D1 (en) 2004-03-11
    JP2003524938A (en) 2003-08-19
    ES2215702T3 (en) 2004-10-16
    CN1382314A (en) 2002-11-27
    US6618012B1 (en) 2003-09-09
    DE60008104T2 (en) 2004-08-05
    AU6450400A (en) 2001-01-09

    Similar Documents

    Publication Publication Date Title
    FR2810163A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS
    CA2004870C (en) Multifrequency radiating device
    EP2194602B1 (en) Antenna with shared sources and design process for a multi-beam antenna with shared sources
    FR2810164A1 (en) IMPROVEMENT TO ELECTROMAGNETIC WAVE EMISSION / RECEPTION SOURCE ANTENNAS FOR SATELLITE TELECOMMUNICATIONS SYSTEMS
    EP0542595A1 (en) Microstrip antenna device especially for satellite telephone transmissions
    WO2008065311A2 (en) Multi-sector antenna
    EP0890226B1 (en) Radio station with circularly polarised antennas
    EP2664030A1 (en) Printed slot-type directional antenna, and system comprising an array of a plurality of printed slot-type directional antennas
    FR2800920A1 (en) BI-BAND TRANSMISSION DEVICE AND ANTENNA FOR THIS DEVICE
    FR2709833A1 (en) Broadband and low band listening instrument for space applications.
    EP3843202B1 (en) Horn for ka dual-band satellite antenna with circular polarisation
    EP1188202B1 (en) Device for transmitting and/or receiving signals
    EP0605338A1 (en) Patch antenna with dual polarisation and corresponding device for transmission/reception
    CA2808511C (en) Flat antenna for a terminal operating in dual circular polarisation, airborne terminal and satellite telecommunication system featuring at least one antenna
    EP0585250B1 (en) Omnidirectionnal printed cylindrical antenna and marine radar transponder using such antennas
    EP0477102B1 (en) Directional network with adjacent radiator elements for radio communication system and unit with such a directional network
    FR2760133A1 (en) RESONANT ANTENNA FOR THE TRANSMISSION OR RECEPTION OF POLARIZED WAVES
    FR2724491A1 (en) MINIATURIZED, DOUBLE-POLARIZED, VERY WIDE BAND PLATED ANTENNA
    EP0617480A1 (en) Radiating structure with variable directivity
    EP2889955B1 (en) Compact antenna structure for satellite telecommunication
    EP3506429A1 (en) Quasi-optical beam former, basic antenna, antenna system, associated telecommunications platform and method
    FR3013909A1 (en) CORNET, ELEMENTARY ANTENNA, ANTENNA STRUCTURE AND TELECOMMUNICATION METHOD THEREOF
    EP3306746B1 (en) Cavity radiating element and radiating network comprising at least two radiating elements
    FR2705167A1 (en) Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device
    EP0429338A1 (en) Circularly polarised antenna particularly for antenna arrays

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20020107

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    17Q First examination report despatched

    Effective date: 20021105

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE ES FR GB IT

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: FRENCH

    REF Corresponds to:

    Ref document number: 60008104

    Country of ref document: DE

    Date of ref document: 20040311

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20040318

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20040204

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2215702

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20041105

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20070717

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20070614

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20080623

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080621

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080623

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 60008104

    Country of ref document: DE

    Owner name: THOMSON LICENSING, FR

    Free format text: FORMER OWNER: THOMSON LICENSING S.A., BOULOGNE-BILLANCOURT, FR

    Effective date: 20120202

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60008104

    Country of ref document: DE

    Representative=s name: ROSSMANITH, MANFRED, DIPL.-PHYS. DR.RER.NAT., DE

    Effective date: 20120202

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60008104

    Country of ref document: DE

    Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

    Effective date: 20120202

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60008104

    Country of ref document: DE

    Representative=s name: DEHNS, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60008104

    Country of ref document: DE

    Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    Owner name: THOMSON LICENSING DTV, FR

    Effective date: 20180830

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20180927 AND 20181005

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 60008104

    Country of ref document: DE

    Representative=s name: DEHNS, DE

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 60008104

    Country of ref document: DE

    Owner name: INTERDIGITAL MADISON PATENT HOLDINGS, FR

    Free format text: FORMER OWNER: THOMSON LICENSING, ISSY-LES-MOULINEAUX, FR

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20190521

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20190522

    Year of fee payment: 20

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20190522

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 60008104

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20200620

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20200620