EP3663861B1 - Dispositif de chauffage, dispositif de fixation et appareil de formation d'images - Google Patents

Dispositif de chauffage, dispositif de fixation et appareil de formation d'images Download PDF

Info

Publication number
EP3663861B1
EP3663861B1 EP19211007.0A EP19211007A EP3663861B1 EP 3663861 B1 EP3663861 B1 EP 3663861B1 EP 19211007 A EP19211007 A EP 19211007A EP 3663861 B1 EP3663861 B1 EP 3663861B1
Authority
EP
European Patent Office
Prior art keywords
opening
reflector
fixing belt
belt
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19211007.0A
Other languages
German (de)
English (en)
Other versions
EP3663861A1 (fr
Inventor
Seiji Saitoh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019038471A external-priority patent/JP7269528B2/ja
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Publication of EP3663861A1 publication Critical patent/EP3663861A1/fr
Application granted granted Critical
Publication of EP3663861B1 publication Critical patent/EP3663861B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2053Structural details of heat elements, e.g. structure of roller or belt, eddy current, induction heating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/20Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat
    • G03G15/2003Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat
    • G03G15/2014Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat
    • G03G15/2064Apparatus for electrographic processes using a charge pattern for fixing, e.g. by using heat using heat using contact heat combined with pressure
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/20Details of the fixing device or porcess
    • G03G2215/2003Structural features of the fixing device
    • G03G2215/2016Heating belt
    • G03G2215/2035Heating belt the fixing nip having a stationary belt support member opposing a pressure member

Definitions

  • Embodiments of the present disclosure generally relate to a heating device, a fixing device, and an image forming apparatus.
  • the embodiments of the present disclosure relate to a heating device, a fixing device with the heating device for fixing a toner image on a recording medium, and an image forming apparatus with the fixing device for forming an image on a recording medium.
  • An image forming apparatus such as a copier, a printer, a facsimile machine, and a multi-functional apparatus including at least two functions of the copier, printer, facsimile machine includes a fixing device that is one of heating devices and conveys a recording medium such as a sheet on which an unfixed image is formed to a fixing nip formed between a fixing belt as a heating belt and a pressure rotator, heat the recording medium, and fix the unfixed image onto the recording medium.
  • a fixing device that is one of heating devices and conveys a recording medium such as a sheet on which an unfixed image is formed to a fixing nip formed between a fixing belt as a heating belt and a pressure rotator, heat the recording medium, and fix the unfixed image onto the recording medium.
  • One type of the fixing devices includes a heater such as a halogen heater arranged in a width direction of the fixing belt, a nip formation pad, a support to support the nip formation pad, and a reflector to reflect heat from the heater toward the nip formation pad, which are inside a loop formed by the fixing belt.
  • the support and the reflector are disposed between the fixing belt and the heater.
  • the heater does not directly heat the fixing belt.
  • the heater heats the fixing belt via the nip formation pad so that the temperature of the fixing belt reaches a fixing temperature to fix an unfixed image onto the recording medium.
  • JP2015-191189-A discloses the configuration in which heater sheets are disposed on end guides that support both ends of the fixing belt in a width direction in addition to a heater arranged along the width direction of the fixing belt.
  • the heater sheets increase the amount of heat to heat the ends of the fixing belt.
  • the fixing device having additional heaters at the ends of the heating belt in the width direction as described in JP2015-191189-A has a problem that heating efficiency is poor because the end guides draw heat.
  • EP 3 629 097 A1 , US 2015/277315 A1 , US 2011/020018 A1 , US 2017/031277 A1 and US 2014/212189 A1 disclose fixing devices.
  • US 2017/248882 A1 and JP H05 127550 A disclose heating devices.
  • the hating device includes an endless heating belt, a pressing member configured to press an outer surface of the heating belt, a nip formation pad disposed inside a loop of the heating belt and configured to contact the pressing member via the heating belt to form a nip, a heater disposed inside the loop of the heating belt and configured to heat the heating belt, a reflector disposed inside the loop of the heating belt and configured to reflect heat from the heater, and a support disposed inside the loop of the heating belt and configured to support the nip formation pad.
  • the reflector has an opening disposed opposite a first portion of the heating belt other than a second portion of the heating belt facing the nip formation pad in a circumferential direction of the heating belt.
  • the opening of the reflector is disposed at a position, in a width direction of the heating belt, corresponding to an end of a recording medium having a largest width in recording media that the heating device handles.
  • the support has an opening disposed the first portion of the heating belt.
  • the opening of the support is disposed at a position, in the width direction of the heating belt, corresponding to the end of the recording medium having the largest width in the recording media that the heating device handles.
  • each of the support and the reflector has the opening at the position corresponding to the end of the recording medium having the largest width.
  • FIG. 1 is a schematic diagram illustrating a configuration of an image forming apparatus 1 according to an embodiment of the present disclosure. Identical reference numerals are assigned to identical components or equivalents and a description of those components is simplified or omitted.
  • the image forming apparatus 1 includes an image forming device 2 disposed in a center portion of the image forming apparatus 1.
  • the image forming device 2 includes four process units 9Y, 9M, 9C, and 9K removably installed in the image forming apparatus 1.
  • the process units 9Y, 9M, 9C, and 9K have an identical structure except that the process units 9Y, 9M, 9C, and 9K contain developers (e.g., yellow, magenta, cyan, and black toners) in different colors, that is, yellow, magenta, cyan, and black corresponding to color separation components of a color image.
  • developers e.g., yellow, magenta, cyan, and black toners
  • Each process unit 9 includes a photoconductor drum 10 serving as a rotatable image bearer to bear toner as the developer on the surface of the photoconductor drum 10, a charging roller 11 to uniformly charge the surface of the photoconductor drum 10, and a developing device 12 that includes a developing roller to supply toner to the surface of the photoconductor drum 10.
  • an exposure device 3 is disposed below the process units 9Y, 9C, 9M, and 9K.
  • the exposure device 3 emits laser light beams based on image data.
  • the transfer device 4 includes, e.g., a drive roller 14, driven rollers 15 and 27, an intermediate transfer belt 16, a belt cleaning unit 280, and four primary transfer rollers 17.
  • the intermediate transfer belt 16 is an endless belt rotatably stretched around the drive roller 14, the driven roller 15, and the like.
  • Each of the four primary transfer rollers 17 is disposed opposite the corresponding photoconductor drum 10 in each of the process units 9Y, 9C, 9M, and 9K via the intermediate transfer belt 16.
  • the primary transfer rollers 17 press against an inner circumferential surface of the intermediate transfer belt 16.
  • primary transfer nips are formed at positions at which the photoconductor drums 10 contact respective pressed portions of the intermediate transfer belt 16 pressed by the primary transfer rollers 17.
  • the drive roller 14 rotates the intermediate transfer belt 16.
  • the transfer device 4 includes a secondary-transfer roller 18 disposed opposite the drive roller 14 via the intermediate transfer belt 16.
  • the secondary-transfer roller 18 is pressed against an outer circumferential surface of the intermediate transfer belt 16, and thus a secondary-transfer nip is formed between the secondary-transfer roller 18 and the intermediate transfer belt 16.
  • a sheet feeder 5 is disposed in a lower portion of the image forming apparatus 1.
  • the sheet feeder 5 includes a sheet tray 19, which contain sheets P as recording media, and a sheet feeding roller 20 to send out the sheet P from the sheet tray 19.
  • the sheets P are conveyed along a conveyance passage 6 from the sheet feeder 5 toward a sheet ejector 8.
  • Conveyance roller pairs including a registration roller pair 21 are disposed along the conveyance passage 6.
  • a fixing device 7 as a heating device is disposed downstream from a secondary transfer nip in the sheet conveyance direction.
  • the fixing device 7 includes a fixing belt 22 as a heating belt heated by a heater and a pressure roller 23 as a pressure member to press the fixing belt 22.
  • the sheet ejector 8 is disposed at an extreme downstream side of the conveyance passage 6 in the image forming apparatus 1.
  • the sheet ejector 8 includes an ejection roller pair 24 and an output tray 25.
  • the ejection roller pair 24 ejects the sheets P onto the output tray 25 disposed atop a housing of the image forming apparatus 1.
  • the sheets P lie stacked on the output tray 25.
  • removable toner bottles 29Y, 29C, 29M, and 29K are disposed.
  • the toner bottles 29Y, 29C, 29M, and 29K are filled with fresh toner of yellow, cyan, magenta, and black, respectively.
  • a toner supply tube is interposed between each of the toner bottles 29Y, 29C, 29M, and 29K and the corresponding developing device 12. The fresh toner is supplied from each of the toner bottles 29Y, 29C, 29M, and 29K to the corresponding developing device 12 through the toner supply tube.
  • the exposure device 3 emits laser light beams onto the outer circumferential surfaces of the photoconductor drums 10 of the process units 9Y, 9M, 9C, and 9K according to image data, thus forming electrostatic latent images on the photoconductor drums 10.
  • the image data used to expose the respective photoconductor drums 10 by the exposure device 3 is monochrome image data produced by decomposing a desired full color image into yellow, magenta, cyan, and black image data.
  • the drum-shaped developing rollers of the developing devices 12 supply yellow, magenta, cyan, and black toners stored in the developing devices 12 to the electrostatic latent images, rendering visible the electrostatic latent images as developed visible images, that is, yellow, magenta, cyan, and black toner images, respectively.
  • the intermediate transfer belt 16 moves along with rotation of the drive roller 14 in a direction indicated by arrow A in FIG. 1 .
  • a power supply applies a constant voltage or a constant current control voltage having a polarity opposite a polarity of the toner to each primary transfer roller 17.
  • a transfer electric field is formed at the primary transfer nip.
  • the yellow, magenta, cyan, and black toner images are primarily transferred from the photoconductor drums 10 onto the intermediate transfer belt 16 successively at the primary transfer nips such that the yellow, magenta, cyan, and black toner images are superimposed on a same position on the intermediate transfer belt 16.
  • the sheet feeding roller 20 of the sheet feeder 5 disposed in the lower portion of the image forming apparatus 1 is driven and rotated to feed a sheet P from the sheet tray 19 toward the registration roller pair 21 through the conveyance passage 6.
  • the registration roller pair 21 conveys the sheet P sent to the conveyance passage 6 by the sheet feeding roller 20 to the secondary-transfer nip formed between the secondary-transfer roller 18 and the intermediate transfer belt 16 supported by the drive roller 14, timed to coincide with the superimposed toner image on the intermediate transfer belt 16.
  • a transfer voltage having a polarity opposite the toner charge polarity of the toner image formed on the surface of the intermediate transfer belt 16 is applied to the sheet P and the transfer electric field is generated in the secondary transfer nip. Due to the transfer electric field generated in the secondary transfer nip, the toner images formed on the intermediate transfer belt 16 are collectively transferred onto the sheet P.
  • the sheet P bearing the full color toner image is conveyed to the fixing device 7 where the fixing belt 22 and the pressure roller 23 fix the full color toner image on the sheet P under heat and pressure.
  • the sheet P bearing the full color toner image is separated from the fixing belt 22 and conveyed by the conveyance roller pair to the sheet ejector 8.
  • the ejection roller pair 24 of the sheet ejector 8 ejects the sheet P onto the output tray 25.
  • the image forming apparatus 1 may form a monochrome toner image by using any one of the four process units 9Y, 9M, 9C, and 9K or may form a bicolor toner image or a tricolor toner image by using two or three of the process units 9Y, 9M, 9C, and 9K.
  • the fixing device 7 includes the fixing belt 22, the pressure roller 23, a halogen heater 31 as a heater, a nip formation pad 32, a stay 33 as a support, and a reflector 34.
  • the width direction of the fixing belt 22 is an axial direction of the pressure roller 23 and a longitudinal direction of the pressure roller 23.
  • the width direction of the fixing belt 22 is also a direction perpendicular to a sheet surface of FIG. 2 and the direction indicated by a double-headed arrow F in FIGS. 3 and 4 , which is simply referred to the width direction.
  • the halogen heater 31, the nip formation pad 32, the stay 33, and the reflector 34 are disposed in parallel to the width direction of the fixing belt 22 as illustrated in FIGS. 3 and 4 .
  • the direction parallel to the width direction of the fixing belt 22 is referred to as the longitudinal direction of these members (for example, the longitudinal direction of the reflector 34).
  • the fixing belt 22 is a cylindrical fixing member to fix an unfixed image T to the sheet P and is disposed on the side of the sheet P on which the unfixed image T is held.
  • the fixing belt 22 in the present embodiment is an endless belt or film, including a base layer formed on an inner side of the fixing belt 22 and made of a metal such as nickel and stainless steel (SUS) or a resin such as polyimide, and a release layer formed on the outer side of the fixing belt 22 and made of tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA), polytetrafluoroethylene (PTFE), or the like.
  • SUS nickel and stainless steel
  • PFA tetrafluoroethylene-perfluoroalkylvinylether copolymer
  • PTFE polytetrafluoroethylene
  • an elastic layer made of rubber such as silicone rubber, silicone rubber foam, and fluoro rubber may be interposed between the base layer and the release layer.
  • the fixing belt 22 and the pressure roller 23 press the unfixed toner image against the sheet P to fix the toner image onto the sheet P
  • the elastic layer having a thickness of about 100 micrometers elastically deforms to absorb slight surface asperities of the fixing belt 22, preventing variation in gloss of the toner image on the sheet P.
  • the fixing belt 22 is thin and has a small loop diameter to decrease the thermal capacity of the fixing belt 22.
  • the base layer of the fixing belt 22 has a thickness of from 20 ⁇ m to 50 ⁇ m and the release layer has a thickness of from 10 ⁇ m to 50 ⁇ m.
  • the fixing belt 22 has a total thickness not greater than 1 mm.
  • the thickness of the elastic layer may be set to 100 to 300 ⁇ m.
  • the fixing belt 22 may have the total thickness not greater than 0.20 mm and preferably not greater than 0.16 mm.
  • the fixing belt 22 may have a loop diameter from 20 to 40 mm and preferably 30 mm or less.
  • the pressure roller 23 is an opposed member disposed opposite an outer circumferential surface of the fixing belt 22.
  • the pressure roller 23 includes a cored bar; an elastic layer coating the cored bar and being made of silicone rubber foam, fluoro rubber, or the like; and a release layer coating the elastic layer and being made of PFA, PTFE, or the like.
  • the pressure roller 23 is a solid roller.
  • the pressure roller 23 may be a hollow roller.
  • a heater such as a halogen heater may be disposed inside the pressure roller 23.
  • the elastic layer of the pressure roller 23 may be made of solid rubber.
  • the elastic layer of the pressure roller 23 is preferably made of sponge rubber to enhance thermal insulation of the pressure roller 23.
  • Such a configuration reduces heat conduction from the fixing belt 22 to the pressure roller 23 and improves heating efficiency of the fixing belt 22.
  • a driver disposed inside the image forming apparatus 1 drives and rotates the pressure roller 23 in the direction indicated by arrow A in FIG. 2 .
  • the rotation of the pressure roller 23 drives the fixing belt 22 to rotate in a direction indicated by arrow B in FIG. 2 (hereinafter, belt rotation direction B) due to frictional force therebetween.
  • the sheet P bearing the unfixed toner image T is conveyed to a nip N (a fixing nip N) between the fixing belt 22 and the pressure roller 23.
  • the rotating fixing belt 22 and the rotating pressure roller 23 conveys the sheet P, and the sheet P passes through the nip N.
  • heat and pressure applied to the sheet P fix the unfixed toner image T to the sheet P.
  • the pressure roller 23 and the fixing belt 22 are configured to be able to contact and separate each other. If the sheet is jammed in the nip N, separating the pressure roller 23 and the fixing belt 22 from each other and opening the nip N enables the jammed sheet to be removed.
  • the pressure roller 23 and the fixing belt 22 may be configured so that one is fixed and the other is movable to be able to contact and separate from each other, or both the pressure roller 23 and the fixing belt 22 may be configured to move, thereby alternatively contacting and separating from each other.
  • the halogen heater 31 is a heater disposed inside the loop of the fixing belt 22 to emit infrared light, and radiant heat from the halogen heater 31 heats the fixing belt 22 from the inside.
  • a carbon heater, a ceramic heater or the like may be employed as the heater.
  • one halogen heater 31 is disposed in the loop of the fixing belt 22, but a plurality of halogen heaters 31 having different heat generation areas may be used according to the width of the sheet.
  • the nip formation pad 32 sandwiches the fixing belt 22 together with the pressure roller 23, to form the fixing nip N.
  • the nip formation pad 32 is disposed inside the loop of the fixing belt 22 and extends in the longitudinal direction thereof parallel to the width direction of the fixing belt 22.
  • the nip formation pad 32 has a planar nip formation portion 32a that is in contact with an inner circumferential surface of the fixing belt 22 and a pair of bent portions 32b that are bent from both end portions of the nip formation portion 32a in a belt rotation direction B to the opposite side to the pressure roller 23.
  • a pressing member such as a spring presses the pressure roller 23 against the nip formation pad 32, which causes the pressure roller 23 to contact the fixing belt 22 and form the fixing nip N between the pressure roller 23 and the fixing belt 22.
  • a nip formation surface 32c on the nip formation portion 32a facing the fixing belt 22 directly contacts the inner circumferential surface of the fixing belt 22. Therefore, when the fixing belt 22 rotates, the fixing belt 22 slides along the nip formation surface 32c.
  • the nip formation surface 32c is treated with an alumite or a fluororesin material coating. Additionally, a lubricant such as a fluorine-based grease may be applied to the nip formation surface 32c in order to ensure slidability over time.
  • the nip formation surface 32c is planar.
  • the nip formation surface 32c may define a recess or other shape.
  • the nip formation surface 32c having a concave shape recessed to the side opposite to the pressure roller 23 leads the outlet of the sheet in the fixing nip N to be closer to the pressure roller 23, which improves separation of the sheet from the fixing belt 22.
  • the nip formation pad 32 is made of a material having a thermal conductivity larger than that of the stay 33.
  • the material of the nip formation pad 32 is preferably copper (thermal conductivity: 398 W / mk) or aluminum (thermal conductivity: 236 W / mk).
  • the nip formation pad 32 made of the material having such a large thermal conductivity absorbs the radiant heat from the halogen heater 31 and effectively transmits heat to the fixing belt 22.
  • setting the thickness of the nip formation pad 32 to 1 mm or less can shorten a heat transfer time in which the heat transfers from the nip formation pad 32 to the fixing belt 22, which is advantageous in shortening a warm-up time of the fixing device 7.
  • setting the thickness of the nip formation pad 32 to be larger than 1 mm and 5 mm or less can improve a heat storage capacity of the nip formation pad 32.
  • the stay 33 is the support to support the nip formation pad 32 against pressure from the pressure roller 23. Similar to the nip formation pad 32, the stay 33 extends in a longitudinal direction thereof parallel to the width direction of the fixing belt 22 and inside the loop of the fixing belt 22.
  • the stay 33 has a U-shaped cross-section including a pair of side wall portions 33a and a bottom wall portion 33b that connects the pair of side wall portions 33a.
  • the pair of side wall portions 33a of the stay 33 supports both ends of the nip formation pad 32 in the belt rotation direction B.
  • the side wall portions 33a extending in a direction in which the pressure roller 23 presses against the nip formation pad 32 that is a vertical direction in FIG.
  • the stay 33 is preferably made of an iron-based metal such as stainless steel (SUS) or Steel Electrolytic Cold Commercial (SECC) that is electrogalvanized sheet steel to ensure rigidity.
  • SUS stainless steel
  • SECC Steel Electrolytic Cold Commercial
  • the reflector 34 is disposed opposite the halogen heater 31 inside the loop of the fixing belt 22 to reflect the radiant heat that is infrared light emitted from the halogen heater 31 to the nip formation pad 32.
  • the reflector 34 has a U-shaped cross-section including a reflector portion 34a formed as an ellipse cross-section and a pair of bent portions 34b bent from both ends of the reflector portion 34a in a direction in which the bent portions separate from each other in the belt rotation direction B.
  • Each bent portion 34b is sandwiched between each side wall portion 33a of the stay 33 and the nip formation portion 32a of the nip formation pad 32 to hold the reflector 34.
  • An opening of an ellipse concave surface of the reflector portion 34a that opens toward the nip formation pad 32 reflects the radiant heat from the halogen heater 31 toward the nip formation pad 32. That is, the halogen heater 31 directly irradiates the nip formation pad 32 with the infrared light, and, additionally, the nip formation pad 32 is also irradiated with the infrared light reflected by the reflector portion 34a. Therefore, the nip formation pad 32 is effectively heated.
  • the reflector portion 34a Since the reflector portion 34a is interposed between the halogen heater 31 and the stay 33, the reflector portion 34a functions to block the infrared light from the halogen heater 31 to the stay 33. This function eliminates wasteful energy use to heat the stay 33. Additionally, in the present embodiment, thermal insulation of the layer of air in a gap between the stay 33 and the reflector portion 34a blocks heat transfer to the stay 33.
  • the reflector 34 is provided to cover the halogen heater 31, and the radiant heat from the halogen heater 31 and the radiant heat reflected by the reflector 34 are efficiently collected to a U-shaped opening of the reflector 34, that is, to the nip formation pad 32.
  • the heated nip formation pad 32 can efficiently heat the fixing belt 22 in the fixing nip N.
  • the stay 33 is disposed to cover the outer circumferential surface of the reflector 34.
  • a fixing belt 22 is disposed outside the stay 33.
  • the fixing belt 22 faces the halogen heater 31 through the nip formation pad 32 in the fixing nip N and, in the portion other than the fixing nip N and openings 33c and 34c described below, faces the halogen heater 31 through the reflector 34 and the stay 33.
  • the surface of the reflector portion 34a of the reflector 34 facing the halogen heater 31 is treated with a mirror finish or the like to increase reflectance.
  • reflectance is measured using the spectrophotometer that is the ultraviolet visible infrared spectrophotometer UH4150 manufactured by Hitachi High-Technologies Corporation in which the incident angle is set 5°.
  • the color temperature of the halogen heater varies depending on the application.
  • the color temperature of the heater for the fixing device is about 2500 K.
  • the reflectance of the reflector 34 used in the present embodiment is preferably 70% or more with wavelengths of high emission intensity in the halogen heater 31, that is, specifically the wavelengths of 900 to 1600 nm and more preferably 70% or more with the wavelengths of 1000 to 1300 nm.
  • the stay 33 may have the function of reflection and thermal insulation of the reflector 34.
  • performing the thermal insulation treatment or the mirror finishing on the inner surface of the stay 33 in the halogen heater 31 side enables the stay 33 to function as the reflector 34.
  • the reflector 34 that is a separate part from the stay 33 can be removed.
  • the reflectance of the stay 33 subjected to the mirror finishing is preferably similar to the reflectance of the reflector 34.
  • a pair of belt holders 35 is inserted in both lateral ends of the fixing belt 22 in the axial direction of the fixing belt 22 to rotatably support the fixing belt 22.
  • the belt holders 35 inserted into the inner periphery of the fixing belt 22 support the fixing belt 22 in a state in which the fixing belt 22 is not basically applied with tension in a circumferential direction thereof while the fixing belt 22 does not rotate, that is, by a free belt system.
  • the belt holders 35 include a C-shaped supporter 35a inserted into the inner periphery of the fixing belt 22 to support the fixing belt 22 and a flange 35b that contacts an end face of the fixing belt 22 to stop a movement of the fixing belt 22 in the width direction, that is, walking of the fixing belt 22 in the width direction.
  • the supporter 35a may have a cylindrical shape which is continuous over its entire circumference.
  • each of belt holders 35 is fixed on a pair of side plates 36 that are frames of the fixing device 7.
  • the belt holders 35 define opening 35c as illustrated in FIG. 5 , and both ends of the halogen heater 31 and the stay 33 are fixed to the side plates 36 through the openings 35c.
  • the halogen heater 31 and the stay 33 may be fixed to the belt holder 35.
  • the stay 33 and the reflector 34 have openings 33c and 34c on both ends in the width direction of the fixing belt 22, respectively.
  • the openings 33c and 34c are disposed at the same position.
  • FIG. 7 in a circumferential direction of the fixing belt 22 that is a direction in which the fixing belt 22 rotates in a plane perpendicular to the longitudinal direction of the pressure roller 23, the direction indicated by arrow B in FIG. 7 and the direction opposite to the arrow B, and the direction indicated by a double-headed arrow G in FIG.
  • the openings 33c and 34c are disposed opposite a portion (a first portion) of the fixing belt 22 other than another portion (a second portion) facing the nip formation pad 32.
  • the openings 33c and 34c are arranged to overlap when the two openings are viewed from a direction perpendicular to the longitudinal direction as illustrated in FIG. 3 .
  • an inner surface of the fixing belt 22 at portions corresponding to the openings 33c and 34c in the circumferential direction of the fixing belt 22 is directly irradiated with the radiant heat from the halogen heater 31 that is not blocked by the stay 33 and the reflector 34 and passes through the openings 33c and 34c. Since the portions of the fixing belt 22 corresponding to the openings 33c and 34c are directly heated by the halogen heater 31 in addition to heat transfer through the nip formation pad 32, the fixing belt 22 is efficiently heated.
  • the openings 33c and 34c are arranged corresponding to a sheet passing area H1 of the sheet P1 having the largest width that can pass through the fixing device 7.
  • outer ends of the openings 33c and 34c in the width direction are arranged so as to substantially coincide with the ends of the sheet P1 in the width direction.
  • the ends of the sheet P1 is the outermost side in the width direction in the region of the sheet heated by the fixing belt 22, and arranging the openings 33c and 34c inside from the ends of the sheet P1 enables the heater to efficiently heat a region in which the temperature of the fixing belt 22 tends to be low that is described in detail bellow.
  • the largest width of the sheet that can pass through the fixing device 7 is, for example, when the fixing device 7 can use a postcard and sheets of A4 size and B5 size, the largest width when the sheet with A4 size is placed sideways and equals a length of the sheet with A4 size in the longitudinal direction.
  • FIG. 9 is a graph illustrating a temperature distribution in a width direction of the fixing belt 22 when the halogen heater 31 heats the fixing belt 22.
  • an X-axis represents the position of the fixing belt 22 in the width direction of the fixing belt 22
  • a Y-axis represents the surface temperature of the fixing belt 22.
  • a dotted line illustrates the temperature distribution of the fixing belt 22 when the stay 33 and the reflector 34 do not have the openings 33c and 34c
  • a solid line illustrates the temperature distribution of the fixing belt 22 in the present embodiment. Rectangles 33c and 34c illustrated in FIG. 9 and other graphs illustrating the temperature distributions below indicate positions of the openings 33c and 34c in the width direction.
  • a temperature TO is a target temperature of the fixing belt 22.
  • a temperature at each of end portions of the fixing belt 22 in the width direction tends to be lower than a temperature at the center portion of the fixing belt 22 in the width direction. This is because the belt holders 35 draw heat from end portions of the fixing belt 22 in the width direction, and the length of the halogen heater 31 tends to be insufficient to heat the end portions of the fixing belt 22 in the width direction.
  • the fixing device 7 in the present embodiment can sufficiently heat end portions of the large sheet P1 in the width direction and fix the image on the surface of the end portions of the large sheet P1 onto the sheet surface.
  • arranging the opening at the center portion of the stay 33 and the reflector 34 in the width direction that is a portion with a large amount of heating prevents a uniform increase in the temperature of the fixing belt. That is, to obtain the uniform increase in the temperature like the present embodiment, arranging the opening at the end portion of the stay and the reflector in the width direction is important. Although the outer ends of the openings 33c and 34c in the width direction are arranged so as to substantially coincide with the ends of the sheet P1 in the present embodiment, arranging the openings near the ends of the sheet P1 can give a similar effect.
  • arranging outer ends of the openings 33c and 34c in the width direction outside the outer ends of the sheet P1 effectively solves the temperature shortage at the end portion of the sheet P1 and the vicinity of the end portion of the sheet P1 and have an advantage in heating the fixing belt 22 when the heater starts to heat the fixing belt 22 to use the image forming apparatus.
  • the openings 33c and 34c faces a portion D of the fixing belt 22 upstream from the fixing nip N in a direction of rotation of the fixing belt 22, that is, in an entrance side of the nip in which the recording medium enters.
  • the rotation of the fixing belt 22 indicated by the arrow B brings the portion D of the fixing belt 22 to the fixing nip N immediately after the radiant heat of the halogen heater 31 heats the portion D as illustrated in FIG. 10B . Therefore, the end portions of the fixing belt 22 in the width direction becomes high temperature at the fixing nip N, which can efficiently heat the sheet P conveyed to the fixing nip N.
  • a temperature sensor 28 as a temperature detector is disposed opposite the end portion of the fixing belt 22 in the width direction. That is, the temperature sensor 28 as the temperature detector is disposed at a position corresponding to the openings 33c and 34c in the width direction of the fixing belt 22.
  • the temperature sensor 28 is disposed outside the loop of the fixing belt 22 as illustrated in FIG. 2 and detects a temperature of the fixing belt 22. Output of the halogen heater 31 is controlled based on the temperature of the outer circumferential surface of the fixing belt 22 detected by the temperature sensor 28. Thus, the temperature of the fixing belt 22 is adjusted to a desired fixing temperature.
  • the temperature sensor 28 may be either contact type or non-contact type.
  • the temperature sensor 28 may be a known temperature sensor type such as a thermopile, a thermostat, a thermistor, or a non-contact (NC) sensor.
  • FIG. 8 illustrates the temperature sensor 28 disposed opposite one end portion of the fixing belt 22 in the width direction, but the fixing device 7 in the present embodiment includes another temperature sensor arranged opposite the center portion of the fixing belt 22 in the width direction.
  • the halogen heater 31 has different densities of the filament coiled helically at positions in the width direction, that is, high heat portions 31b having a high density of the filament coiled helically (that is, emitting a large amount of heat) on end portions of the halogen heater in the width direction and a low heat portion 31a having a relatively low density of the filament coiled helically on a center portion of the halogen heater in the width direction.
  • setting the high heat portions 31b opposite the end portions of the fixing belt 22 in the width direction at which the temperature of the fixing belt tends to be low sufficiently heats the end portions of the fixing belt 22 in the width direction and reduces the temperature unevenness in the fixing belt 22.
  • arranging the openings 33c and 34c at positions corresponding to the high heat portions 31b of the halogen heater 31 on the stay 33 and the reflector 34 enables the halogen heater 31 to directly heat the end portions of the fixing belt 22 in the width direction.
  • the above-described configuration increases the radiant heat from the halogen heater 31 to the end portions of the fixing belt 22 in the width direction and the heat amount added to the end portions of the fixing belt 22 in the width direction. Therefore, the above-described configuration enables the end portions of the fixing belt 22 in the width direction to heat to the target temperature TO even when raising the temperature of the end portions of the fixing belt 22 in the width direction is difficult.
  • the image forming apparatus 1 includes an airflow generator 40 that generates an airflow E in the image forming apparatus 1.
  • the airflow generator 40 generates the airflow E flowing from one side in the longitudinal direction of the fixing device 7 toward the other side (hereinafter, this direction is referred to as an airflow direction).
  • the stay 33 and the reflector 34 have the openings 33c and 34c at both end portions of the stay 33 and the reflector 34 in the longitudinal direction, respectively.
  • the width of each of the openings 33c and 34c on the upstream side in the airflow direction is larger than the width of each of the openings 33c and 34c on the downstream side in the airflow direction.
  • the airflow E flowing in the longitudinal direction of the fixing device 7 according to the third embodiment transfers heat of the fixing belt 22 from the upstream side to the downstream side in the airflow direction. Therefore, as illustrated in FIG. 13A , the openings 33c and 34c having the same width and disposed at both end portions of the stay 33 and the reflector 34 as described in the above embodiments cause the temperature of the fixing belt 22 on the upstream side in the airflow direction not to reach the target temperature T0 and cause the temperature of the fixing belt 22 on the downstream side in the airflow direction to exceed the target temperature TO.
  • the openings 33c and 34c disposed at both end portions of the stay 33 and the reflector 34 have different width so that the end portion of the fixing belt 22 on the upstream side in the airflow direction directly receives a greater heat amount of the radiant heat from the heater than the end portion of the fixing belt 22 on the downstream side in the airflow direction. Therefore, as illustrated in FIG. 13B , the temperatures of the fixing belt 22 at both end portions in the longitudinal direction approach the target temperature TO. As described above, the widths of the openings 33c and 34c may not equal at both end portions of the stay 33 and the reflector 34 and may be appropriately changed according to conditions that affect temperature.
  • the openings 33c and 34c on the right side in FIG. 12 may be wider than the openings 33c and 34c on the left side. Or the widths of the openings 33c and 34c on the side opposite to the side where the driving source of the pressure roller is provided may be increased.
  • the openings 33c and 34c may be disposed at one end portion of the stay 33 and the reflector 34 in the longitudinal direction. Note that the arrangement of the airflow generator 40 illustrated in FIG. 12 is an example and may be arranged at an appropriate position in the image forming apparatus 1.
  • the fixing device 7 includes a second reflector 341 different from the reflector 34.
  • the second reflector 341 is disposed at a position corresponding to the openings 33c and 34c in the longitudinal direction.
  • the second reflector 341 is disposed opposite the openings 33c and 34c across the halogen heater 31.
  • the second reflector 341 has a reflection face 341a facing the openings 33c and 34c. Specifically, the reflection face 341a is provided at an angle such that a part of perpendicular lines to the reflection face 341a passes through the openings 33c and 34c.
  • the reflection face 341a of the second reflector 341 reflects radiant heat X' radiated from the halogen heater 31 to the side opposite to the openings 33c and 34c. This increases the heat amount of the radiant heat directly radiated from the halogen heater 31, which efficiently heats the end portion of the fixing belt 22 in the width direction.
  • the image forming apparatus 1 is applicable not only to a color image forming apparatus illustrated in FIG. 1 but also to a monochrome image forming apparatus, a copier, a printer, a facsimile machine, or a multifunction peripheral including at least two functions of the copier, printer, and facsimile machine.
  • the sheets P serving as recording media may be thick paper, postcards, envelopes, plain paper, thin paper, coated paper, art paper, tracing paper, overhead projector (OHP) transparencies, plastic film, prepreg, copper foil, and the like.
  • OHP overhead projector
  • the heating device of the present disclosure is applied to the fixing device that presses and heats the image to fix the image onto the sheet.
  • the present disclosure is not limited to this.
  • the heating device of the present disclosure may be applied to a heating device to dry an ink image formed on the recording medium.
  • the halogen heater is used as the heater.
  • the present disclosure is not limited to this.
  • a carbon heater may be used as the heater.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fixing For Electrophotography (AREA)

Claims (8)

  1. Dispositif de chauffage (7) comprenant :
    une courroie chauffante sans fin (22) ;
    un élément de pression (23) configuré pour presser une surface extérieure de la courroie chauffante (22) ;
    un tampon de formation de pincement (32) disposé à l'intérieur d'une boucle de la courroie chauffante (22) et configuré pour entrer en contact avec l'élément de pression (23) via la courroie chauffante (22) pour former un pincement ;
    un élément chauffant (31) disposé à l'intérieur de la boucle de la courroie chauffante (22) et configuré pour chauffer la courroie chauffante (22) ;
    un réflecteur (34) disposé à l'intérieur de la boucle de la courroie chauffante (22) et configuré pour réfléchir la chaleur de l'élément chauffant (31), le réflecteur (34) ayant une ouverture (34c) disposée à l'opposé d'une première partie de la courroie chauffante (22) autre qu'une seconde partie de la courroie chauffante (22) faisant face au tampon de formation de pincement (32) dans une direction circonférentielle de la courroie chauffante (22), l'ouverture (34c) du réflecteur (34) étant disposée à une position, dans une direction de la largeur de la courroie chauffante (22), correspondant à une extrémité d'un support d'enregistrement ayant une plus grande largeur dans les supports d'enregistrement que le dispositif de chauffage (7) manipule ; et
    un support (33) disposé à l'intérieur de la boucle de la courroie chauffante (22) et configuré pour supporter le tampon de formation de pincement (32), le support (33) ayant une ouverture (33c) disposée à l'opposé de la première partie de la courroie chauffante (22), l'ouverture (33c) du support (33) étant disposée à une position, dans la direction de la largeur de la courroie chauffante (22), correspondant à l'extrémité du support d'enregistrement ayant la plus grande largeur dans les supports d'enregistrement que le dispositif de chauffage (7) manipule ;
    caractérisé par un autre réflecteur (341) différent du réflecteur (34), dans lequel ledit autre réflecteur (341) a une face de réflexion (341a) qui fait face à l'ouverture (33c) du support (33) et à l'ouverture (34c) du réflecteur (34), dans lequel la face de réflexion (341a) est configurée pour réfléchir la chaleur rayonnée depuis l'élément chauffant (31) au côté opposé aux ouvertures (33c, 34c), vers les ouvertures (33c, 34c).
  2. Dispositif de chauffage (7) selon la revendication 1,
    dans lequel l'ouverture (33c) du support (33) et l'ouverture (34c) du réflecteur (34) sont dirigées vers un côté d'entrée du pincement dans lequel le support d'enregistrement entre.
  3. Dispositif de chauffage (7) selon la revendication 1 ou 2,
    dans lequel l'élément chauffant (31) a une partie à chaleur élevée (31b) configurée pour générer plus de chaleur que toute autre partie de l'élément chauffant (31) dans la direction de la largeur de la courroie chauffante (22), et
    dans lequel l'ouverture (33c) du support (33) et l'ouverture (34c) du réflecteur (34) sont disposées en correspondance avec la partie à chaleur élevée (31b) dans la direction de la largeur de la courroie chauffante (22).
  4. Dispositif de chauffage (7) selon l'une quelconque des revendications 1 à 3, comprenant en outre un détecteur de température (28) disposé à l'opposé de l'ouverture (33c) du support (33) et de l'ouverture (34c) du réflecteur (34) dans la direction de la largeur de la courroie chauffante (22).
  5. Dispositif de fixation (7) comprenant le dispositif de chauffage (7) selon l'une quelconque des revendications 1 à 4.
  6. Appareil de formation d'images (1) comprenant
    le dispositif de chauffage (22) selon l'une quelconque des revendications 1 à 4 ou le dispositif de fixation (22) selon la revendication 5.
  7. Appareil de formation d'image (1) selon la revendication 6,
    dans lequel, en plus de l'ouverture (33c) du support (33) disposée en correspondance à une extrémité du support d'enregistrement ayant la plus grande largeur, le support (33) a une autre ouverture (33c) disposée en correspondance à l'autre extrémité du support d'enregistrement ayant la plus grande largeur, et une autre ouverture (33c) a une largeur différente d'une largeur de l'ouverture (33c) disposée en correspondance à la première extrémité, et
    dans lequel, en plus de l'ouverture (34c) du réflecteur (34) disposée en correspondance à une extrémité du support d'enregistrement ayant la plus grande largeur, le réflecteur (34) a une autre ouverture (34c) disposée en correspondance à l'autre extrémité du support d'enregistrement ayant la plus grande largeur, et une autre ouverture (34c) a une largeur différente de l'ouverture (34c) disposée en correspondance à la première extrémité.
  8. Appareil de formation d'images (1) selon la revendication 7, comprenant en outre un générateur de flux d'air (40) configuré pour générer un flux d'air dans l'appareil de formation d'images (1),
    dans lequel, dans une direction du flux d'air généré par le générateur de flux d'air, une largeur d'une ouverture en amont parmi l'ouverture (33c) et ladite autre ouverture (33c) du support (33) est supérieure à une largeur d'une ouverture en aval parmi l'ouverture (33c) et ladite autre ouverture (33c) du support (33), et une largeur d'une ouverture en amont parmi l'ouverture (34c) et ladite autre ouverture (34c) du réflecteur (34) en amont est supérieure à une largeur d'une ouverture en aval parmi l'ouverture (34c) et ladite autre ouverture (34c) du réflecteur (34).
EP19211007.0A 2018-11-27 2019-11-22 Dispositif de chauffage, dispositif de fixation et appareil de formation d'images Active EP3663861B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018221282 2018-11-27
JP2019038471A JP7269528B2 (ja) 2018-11-27 2019-03-04 加熱装置、定着装置、画像形成装置

Publications (2)

Publication Number Publication Date
EP3663861A1 EP3663861A1 (fr) 2020-06-10
EP3663861B1 true EP3663861B1 (fr) 2022-03-16

Family

ID=68654422

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19211007.0A Active EP3663861B1 (fr) 2018-11-27 2019-11-22 Dispositif de chauffage, dispositif de fixation et appareil de formation d'images

Country Status (1)

Country Link
EP (1) EP3663861B1 (fr)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05127550A (ja) * 1991-10-31 1993-05-25 Canon Inc 加熱装置
JP5299847B2 (ja) * 2009-07-27 2013-09-25 株式会社リコー 定着装置および画像形成装置
JP6070225B2 (ja) * 2013-01-31 2017-02-01 ブラザー工業株式会社 定着装置
JP6417693B2 (ja) 2014-03-28 2018-11-07 ブラザー工業株式会社 定着装置および画像形成装置
JP2015197541A (ja) * 2014-03-31 2015-11-09 ブラザー工業株式会社 定着装置
JP6691674B2 (ja) * 2015-07-29 2020-05-13 ブラザー工業株式会社 定着装置および画像形成装置
JP6752589B2 (ja) * 2016-02-29 2020-09-09 キヤノン株式会社 像加熱装置
EP3629097A1 (fr) * 2018-09-27 2020-04-01 Ricoh Company, Ltd. Dispositif de fixation et appareil de formation d'images le comprenant

Also Published As

Publication number Publication date
EP3663861A1 (fr) 2020-06-10

Similar Documents

Publication Publication Date Title
US8903296B2 (en) Fixing device and image forming apparatus incorporating same
US10488798B2 (en) Fixing device with nip former longer than opposed rotator
US9052658B2 (en) Fixing device with a temperature detector adjacent an easily deformable location and image forming apparatus including same
US9329545B2 (en) Fixing device and image forming apparatus
US9405239B2 (en) Fixing device, image forming apparatus, and fixing method
US9046833B2 (en) Fixing device and image forming apparatus incorporating same
US9037008B2 (en) Fixing device and image forming apparatus including same
US10197957B2 (en) Fixing device, image forming apparatus, and fixing device control method
US10942475B2 (en) Fixing device and image forming apparatus including nip former of specific surface roughness
US9164445B2 (en) Fixing device and image forming apparatus
US9494901B2 (en) Fixing device and image forming apparatus with a rotatable light shield
US10078300B2 (en) Fixing device and image forming apparatus
JP7269528B2 (ja) 加熱装置、定着装置、画像形成装置
EP3663861B1 (fr) Dispositif de chauffage, dispositif de fixation et appareil de formation d'images
JP6213890B2 (ja) 定着装置及び画像形成装置
EP3660595B1 (fr) Dispositif de fixation et appareil de formation d'image l'incorporant
EP3660596B1 (fr) Dispositif de fixation et appareil de formation d'images l'intégrant
JP6826774B2 (ja) 定着装置及び画像形成装置
JP7292603B2 (ja) 定着装置、画像形成装置
EP3671356A2 (fr) Dispositif de fixation et appareil de formation d'image le comprenant
JP7296037B2 (ja) 定着装置、画像形成装置
JP6128368B2 (ja) 定着装置及び画像形成装置
JP7266785B2 (ja) 定着装置、画像形成装置
JP7223320B2 (ja) 定着装置、画像形成装置
JP6103262B2 (ja) 定着装置及び画像形成装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SAITOH, SEIJI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019012563

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1476324

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220616

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1476324

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220716

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019012563

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

26N No opposition filed

Effective date: 20221219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231120

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231120

Year of fee payment: 5

Ref country code: DE

Payment date: 20231121

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220316