EP3660398B1 - Feuerungsverfahren in einem kraftwerk - Google Patents

Feuerungsverfahren in einem kraftwerk Download PDF

Info

Publication number
EP3660398B1
EP3660398B1 EP19211050.0A EP19211050A EP3660398B1 EP 3660398 B1 EP3660398 B1 EP 3660398B1 EP 19211050 A EP19211050 A EP 19211050A EP 3660398 B1 EP3660398 B1 EP 3660398B1
Authority
EP
European Patent Office
Prior art keywords
flue gas
fed
combustion chamber
weight
thin slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19211050.0A
Other languages
English (en)
French (fr)
Other versions
EP3660398A1 (de
Inventor
Silvia Trümper
Elke Hensel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cll Chemnitzer Laborleistungs GmbH
Eins Energie In Sachsen & Co KG GmbH
Original Assignee
Cll Chemnitzer Laborleistungs GmbH
Eins Energie In Sachsen & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cll Chemnitzer Laborleistungs GmbH, Eins Energie In Sachsen & Co KG GmbH filed Critical Cll Chemnitzer Laborleistungs GmbH
Priority to PL19211050T priority Critical patent/PL3660398T3/pl
Publication of EP3660398A1 publication Critical patent/EP3660398A1/de
Application granted granted Critical
Publication of EP3660398B1 publication Critical patent/EP3660398B1/de
Priority to HRP20210939TT priority patent/HRP20210939T1/hr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K1/00Preparation of lump or pulverulent fuel in readiness for delivery to combustion apparatus
    • F23K1/02Mixing solid fuel with a liquid, e.g. preparing slurries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B70/00Combustion apparatus characterised by means returning solid combustion residues to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/10Pulverizing
    • F23K2201/1006Mills adapted for use with furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • F23K2201/501Blending with other fuels or combustible waste
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • F23K2201/503Blending with non-combustible liquids to prepare slurries
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2201/00Pretreatment of solid fuel
    • F23K2201/50Blending
    • F23K2201/505Blending with additives

Definitions

  • the present invention relates to a firing method in a power plant, which has at least one mill, at least one steam generator connected to the at least one mill with a combustion chamber and a flue gas cleaning system connected downstream of the steam generator, which has at least one filter device and at least one flue gas desulphurisation system connected downstream of the filter device, wherein in the at least one mill raw coal is ground to coal dust, the coal dust is burned in the combustion chamber, through the resulting heat steam, i.e.
  • raw coal is preferably raw lignite, but it can also be raw hard coal.
  • combustion of the raw coal is simply referred to as coal combustion.
  • Raw coal is a natural product. The percentages by weight cited in the course of the description of the invention always relate to this raw coal which, in addition to pure carbon, also contains other constituents, such as water, surface water and hygroscopic water.
  • the firing process according to the invention also includes the steps of pretreatment and supply of the fuels to the combustion boiler and the steps of processing the combustion waste products.
  • the firing method according to the invention is a special embodiment of the coal combustion known in the prior art as dust firing.
  • filter ash is one of the residues.
  • Filter ash is also known as fly ash.
  • the filter ash is in the flue gas emerging from the boiler and, as it is very fine, is literally carried away with the flue gas.
  • This filter ash is separated from the flue gas produced during coal combustion, for example via an electrostatic precipitator, transported to a silo and, after loading, taken for recycling or disposal.
  • wet ash is produced, which typically falls from the combustion chamber into a funnel slope, is extinguished in a water bath and discharged via a scraper belt.
  • filter ash can be recycled, whereby the filter ash can be used, for example, as an aggregate in soil preparation or when backfilling underground facilities. If it is not possible to use the fly ash, it is disposed of in landfills.
  • the filter ash is examined according to various criteria before it can be recycled or disposed of. If the fly ash is disposed of in a landfill, the provisions of the landfill operator's acceptance criteria or the legal provisions such as the Landfill Ordinance or the requirements for the recycling of mineral waste (LAGA) apply. The procedure is based on landfill classes, the LAGA approval criteria and the definition of key parameters.
  • a limit value according to the Landfill Ordinance and a key parameter is the barium content of the filter ash eluate.
  • the combustion residues of power stations, such as filter ash contain easily soluble barium salts which, due to their solubility products, dissolve very easily to easily through an eluting agent such as water. If the specified limit value for barium in a filter ash eluate is exceeded, the permission to dispose of the respective filter ash, for example on a landfill according to landfill class 2, is withdrawn. This means that the respective filter ash can then only be disposed of in a different landfill, for example according to landfill class 3, with considerable additional expense. In addition, there is a risk that the filter ash with an increased elutable barium content will have to be classified from "harmless" to "dangerous" with regard to the waste code number.
  • the pamphlet WO 89/07 974 A1 discloses a method for the purification of flue gases that arise when coal is burned in a pulverized coal-fired thermal power station.
  • the aim of the process is to increase the sulfur dioxide absorption capacity of the fly ash in the flue gas by means of its modification.
  • the flue gas resulting from the combustion of coal dust is first fed to a preheater, which returns the heat from the flue gas to the coal combustion.
  • the flue gas then passes through an electrostatic filter in which the fly ash is filtered out of the flue gas and discharged into a vessel in which the fly ash is mixed with water.
  • the resulting aqueous suspension is then fed to a mill and ground therein.
  • the ground, aqueous fly ash suspension is then fed to a further vessel in which the ground, aqueous fly ash suspension is mixed with quicklime or slaked lime and thus reacts to form calcium silicates on the surface of the fly ash particles.
  • the resulting mixture is fed to a drying unit, which leaves the mixture in powder form.
  • This powder is blown into a container by means of compressed air, from which the powder is fed to a diverging part of the vessel, in which it is mixed with the flue gas.
  • This is followed in a reaction part by a reaction between the powder and the acidic gases, in particular sulfur dioxide, in the flue gas, which means that sulfur or sulfur compounds are separated from the flue gas.
  • the pamphlet US 2017/0113085 A1 _ deals with the treatment of fly ash that is produced when coal is burned in a coal-fired power plant.
  • Fly ash containing sodium is first generated by injecting a sorbent containing sodium into the flue gas flow. Then the sodium-containing fly ash is mixed with anhydrite and with an additive, such as. B. strontium hydroxide and / or dolomite limestone and / or iron sulfate, added.
  • the fly ash treated in this way is then dried.
  • the method described is intended to reduce the sodium content in the fly ash, the alkalinity of the fly ash can be reduced and / or the elution of heavy metal (s) such as selenium or arsenic from the fly ash can be reduced.
  • a firing process in a power plant such as a thermal power plant, an industrial power plant, a condensing power plant or a coal-fired power plant, which has at least one mill, at least one steam generator connected to the at least one mill with a combustion chamber and a flue gas cleaning system connected downstream of the steam generator, which has at least has a filter device and at least one flue gas desulphurisation system (FGD) downstream of the filter device, with raw coal being ground to coal dust in the at least one mill, the coal dust being burned in the combustion chamber, the resulting heat generating steam in the steam generator and the in
  • the flue gas produced in the combustion chamber is passed into the flue gas cleaning system, where the flue gas is filtered in the filter device, whereby filter ash is produced as a waste product, and from the filtered flue gas in the flue gas desulfurization system (FGD) sulfur u nd / or at least one sulfur compound is deposited, and wherein a pumpable, sulphate-containing s
  • the easily soluble, environmentally harmful barium content in the eluate of the filter ash can be reduced by adding the thin sludge to such an extent that the filter ash can be classified as harmless when it is recycled or disposed of.
  • the sulphate in the thin sludge for example calcium sulphate, forms a chemical bond with the barium in the raw coal during the combustion process, with the content of easily soluble barium compounds in the filter ash being reduced.
  • This process produces barium sulfate, which is difficult to dissolve, instead.
  • barium is less soluble from the filter ash and therefore cannot be eluted from the filter ash in water and is therefore also undetectable.
  • the barium sulphate does not go to the analytical stage during elution Verification still in reality after the power plant waste has been deposited in a landfill as a result of rain events in solution. This means that barium cannot penetrate the groundwater.
  • the thin sludge Due to its pumpability, the thin sludge can simply be fed to the at least one mill and from there to the combustion cycle, for example via pipes and the use of pumps.
  • the thin sludge is easy to dose and can therefore be added to the raw coal to be burned at a certain, advantageous percentage.
  • the thin sludge is ground with the raw coal.
  • the resulting grist is blown into the combustion chamber of a boiler and burned in a suspension.
  • one or more wet fan mill (s) can be used as the mill (s).
  • the raw coal can also be pre-comminuted in a pre-comminution, such as an impact hammer mill.
  • the flue gas desulfurization system of the power plant used in this process execution sulfur dioxide components are released from the flue gas during a washing process in a quencher and absorber with a limestone powder suspension.
  • the above-mentioned drainage suspension is created, which is a suspension containing sulfate.
  • ARA wastewater treatment plant
  • the drainage suspension is then treated by removing the thin sludge precipitated from the dewatering suspension with at least one precipitant and separated as thin sludge in the compact clarifier, with clear water being produced as waste water.
  • a first part of this thin sludge is fed back to the absorber. However, a second part of the thin sludge is discharged. This second part of the thin sludge used to be fed either to a wet ash removal system in the power plant or to a vacuum belt filter in the power plant, which was used to remove gypsum.
  • this second part of the thin sludge is pumped via at least one metering line by means of at least one pump to the at least one mill, that is to say to the at least one coal mill.
  • the as yet unmilled raw coal is wetted with the thin sludge either in the metering line, preferably just before the mill, or in the mill.
  • the raw coal is ground to dust with the thin sludge in the mill and then blown into the combustion chamber or combustion chamber for combustion.
  • the filter ash produced during the combustion process absorbs the sulphate and binds barium. A strong reduction in the soluble barium content can then be detected in the filter ash eluate.
  • the thin sludge that arises during the flue gas scrubbing i.e. in the flue gas desulphurization system used here, can be immediately and advantageously further recycled and fed directly from a waste outlet of the wastewater treatment plant to the at least one mill and used in the coal combustion to reduce barium in the resulting filter ash.
  • the thin sludge produced by the SO 2 separation that takes place in the flue gas desulphurization system used to have to be disposed of in a suitable manner which is why, as stated above, it was placed on plaster tape, for example.
  • the thin sludge applied to the plaster of paris quickly solidified to form a layer on the plaster of paris, making the plaster of paris removed from the plaster of paris tape more difficult to drain and in some cases had higher residual moisture levels, which can be detrimental to the quality of the plaster of paris.
  • longer drying times must then be planned in the recycling process.
  • Such a procedure is no longer necessary since the thin sludge is added to the coal combustion according to the invention.
  • the gypsum quality of the gypsum produced with the aid of SO 2 separation can also be improved.
  • the treatment of the drainage suspension preferably includes adding at least one precipitant to the drainage suspension and / or passing the drainage suspension through a compact clarifier.
  • the thin sludge is also obtained directly from the flue gas scrubbing that takes place in the power station anyway, by drawing the thin sludge from the dewatering suspension resulting from the formation of gypsum, precipitating it and then clarifying it.
  • the precipitation can take place with the at least one precipitating agent, that is to say by adding one or more chemicals to the dewatering suspension.
  • the clarification can be carried out in the compact clarifier.
  • the at least one precipitant forms a bond with certain constituents of the dewatering suspension.
  • the resulting binding products have an increased specific weight and settle as thin sludge.
  • the compact clarifier can be designed, for example, in the form of a basin into which the dewatering suspension or the dewatering suspension mixed with the at least one precipitant is passed, a lamella arrangement being provided in the upper region of the basin.
  • the thin sludge is at least partially produced as a model suspension and added to the coal combustion.
  • the thin sludge can at least partially be obtained by stirring at least one powdery or dusty carrier material with at least one sulfate and water to form the thin sludge.
  • this thin sludge can be mixed with further sulphate, i.e. with sulphate-containing raw materials and / or chemicals or even pure sulphate.
  • the proportion of the thin sludge supplied to the combustion chamber relative to the raw coal supplied to the combustion chamber is preferably at least 0.1% by weight and at most 10% by weight.
  • the proportion of the thin sludge fed to the combustion chamber relative to the raw coal fed to the combustion chamber is at least 0.5% by weight and at most 2% by weight.
  • the thin sludge is fed to at least two mills connected to the combustion chamber, for example located opposite one another. This means that the thin sludge can still be dosed in the event of repairs or the unavailability of a mill.
  • the method according to the invention is also particularly efficient if the thin sludge is fed to the at least one mill together with the raw coal.
  • the raw coal can be mixed with the thin sludge at an early stage in the process, with which a particularly high barium reduction in the filter ash can be achieved.
  • FIG Figure 1 shows schematically components of a region of a power plant 1.
  • raw coal 4 such as lignite or hard coal
  • a firing process here a dust firing process
  • steam 13 such as water vapor, saturated steam or superheated steam, being generated which is used as an energy carrier becomes.
  • the power plant 1 has a combustion chamber with a combustion chamber 2.
  • several, here four, mills 3 are coupled to the combustion chamber 2.
  • the raw coal 4 which is fed to the mills 3 via conveyor belts and / or bunkers and / or distributors, is ground to form coal dust.
  • the raw coal 4 can also be pre-comminuted in a pre-comminution, not shown here, such as an impact hammer mill.
  • the mills 3 are also supplied with thin sludge 10 via pipes and / or hose lines.
  • the thin sludge 10 is a pumpable, sulfate-containing sludge and / or a pumpable, sulfate-containing solution or suspension.
  • the raw coal 4 is ground together with the thin sludge 10 with which the raw coal 4 is added on the conveying path to the mills 3 and / or in the mills 3 themselves.
  • mills 3 In other, not shown embodiments of the present invention, only one mill 3 or a different number of mills 3 can be used. Furthermore, it is basically sufficient if the thin sludge 10 is fed to at least one of the mills 3.
  • the at least one mill 3 can also contain other substances, such as sewage sludge and / or substitute fuel such as. B. garbage and / or biofuel such. B. wood are supplied, which are then co-incinerated with the raw coal 4 ground to coal dust and the thin sludge 10.
  • other substances such as sewage sludge and / or substitute fuel such as. B. garbage and / or biofuel such. B. wood are supplied, which are then co-incinerated with the raw coal 4 ground to coal dust and the thin sludge 10.
  • the sulphate-containing coal dust is blown from the mills 3 into the combustion chamber 2 and burned in suspension therein.
  • the proportion of the thin sludge 10 to the raw coal 4 during combustion is less than 1% by weight, but can also be greater in other embodiments of the invention, but is at least 0.1% by weight.
  • treated water and / or deionized water 5 is furthermore fed to a steam generator 12 coupled to the combustion chamber 2 after degassing by means of pumps 15 and heated to form steam 13 during the combustion process.
  • the steam 13 is then fed, for example, to a turbine, not shown here, which in turn can feed a district heating system with heating network water.
  • the flue gas 14a produced during the combustion process is discharged from the combustion chamber 2 and fed to a flue gas cleaning system of the power plant 1.
  • the wet ash 16, which also occurs during the combustion process, is discharged from the combustion chamber 2 downwards.
  • the flue gas cleaning system is shown in FIG Figure 1
  • the illustrated embodiment of the invention has a filter device 6 and a flue gas desulfurization system 8 connected to the filter device 6, but in other embodiments of the present invention can have significantly more components, such as HCl absorbers, activated carbon filters, nitrogen oxide removers, etc.
  • the filter device 6 is an electrostatic filter in the embodiment shown, but can also be another suitable filter device, such as a fabric filter device, with which suspended particles or dust particles contained in the flue gas 14a, the so-called filter ash 7, are filtered out of the flue gas 14a can.
  • the filter ash 7 is discharged as a waste product of the filter device 6, collected and later either disposed of in a landfill or, for example, used as concrete aggregate or in other recycling channels.
  • the filter ash 7 obtained in the process according to the invention has only a harmless proportion of easily soluble barium compounds. This is due to the sulphate-containing thin sludge 10 fed to the incineration.
  • the sulphate component of the thin sludge 10 forms barium sulphate with the barium contained in the raw coal 4, which is sparingly soluble in the filter ash 7 and so that the filter ash 7 does not pose any risk to the environment when it is stored a landfill or other recycling routes.
  • the thin sludge 10 is obtained in a wastewater treatment plant 9 connected to the flue gas desulphurization plant 8.
  • the flue gas desulfurization system 8 is a so-called SO 2 absorber in the embodiment shown, which can be designed, for example, in the form of an absorber tower.
  • SO 2 absorber the filtered flue gas 14b coming from the filter device 6 is subjected to wet scrubbing.
  • SO 2 among other things, is separated from the filtered flue gas 14b; this reacts with limestone powder or possibly with quicklime or chalk to form gypsum.
  • the resulting gypsum-containing suspension is passed, for example, to a water-permeable vacuum belt filter on which gypsum settles and is dehydrated.
  • the dewatering suspension collected under the vacuum belt filter in at least one collecting container of the wastewater treatment plant 9 contains not only water but also the sulphate-containing thin sludge 10.
  • a first part of the drainage suspension is fed back into the washing cycle of the SO 2 absorber through the waste water treatment plant 9.
  • a second part of the dewatering suspension, the thin sludge 10, is pumped to the mills 3 via corresponding feed lines 11.
  • At least one precipitant can be added to the dewatering suspension and / or the dewatering suspension can be added through a compact clarifier and the thin sludge 10 can be statically separated from wastewater.
  • the cleaned flue gas 14c is optionally also heated and then released into the atmosphere through a chimney 17 with the aid of a flue gas fan.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Feuerungsverfahren in einem Kraftwerk, das wenigstens eine Mühle, wenigstens einen mit der wenigstens einen Mühle verbundenen Dampferzeuger mit einem Brennraum und eine dem Dampferzeuger nachgeschaltete Rauchgasreinigungsanlage aufweist, welche wenigstens eine Filtereinrichtung und wenigstens eine der Filtereinrichtung nachgeschaltete Rauchgasentschwefelungsanlage aufweist, wobei in der wenigstens einen Mühle Rohkohle zu Kohlestaub gemahlen wird, der Kohlestaub in dem Brennraum verbrannt wird, durch die dabei entstehende Wärme Dampf, das heißt Wasserdampf oder Sattdampf oder Heißdampf, in dem Dampferzeuger erzeugt wird, das in dem Brennraum entstehende Rauchgas in die Rauchgasreinigungsanlage geleitet wird, wo das Rauchgas in der Filtereinrichtung gefiltert wird, wobei Filterasche als Abprodukt anfällt, und aus dem gefilterten Rauchgas in der Rauchgasentschwefelungsanlage Schwefel und/oder wenigstens eine Schwefelverbindung abgeschieden wird.
  • Rohkohle ist in der vorliegenden Erfindung vorzugsweise Rohbraunkohle, kann aber auch Rohsteinkohle sein. Die Verbrennung der Rohkohle wird vereinfacht in der vorliegenden Erfindung als Kohleverbrennung bezeichnet. Rohkohle ist ein Naturprodukt. Die im Verlauf der Erfindungsbeschreibung noch angeführten Gew.-%-Anteile beziehen sich immer auf diese Rohkohle, die neben reinem Kohlenstoff noch weitere Bestandteile, wie auch Wasser, das Oberflächenwasser und hygroskopisches Wasser aufweist, enthält.
  • Das erfindungsgemäße Feuerungsverfahren beinhaltet neben der eigentlichen Verbrennung der Rohkohle, auch die Schritte der Vorbehandlung und Zuführung der Brennstoffe zum Brennkessel und die Schritte der Aufarbeitung der Verbrennungsabprodukte. Das erfindungsgemäße Feuerungsverfahren ist eine spezielle Ausgestaltung der im Stand der Technik als Staubfeuerung bekannten Kohleverbrennung.
  • Bei der Staubfeuerung von Rohbraunkohle im Brennraum eines Dampferzeugers fällt unter anderem als Reststoff Filterasche an. Filterasche ist auch als Flugasche bekannt. Die Filterasche befindet sich im aus dem Brennkessel austretenden Rauchgas und wird, da sie sehr fein ist, regelrecht mit dem Rauchgas mitgerissen.
  • Diese Filterasche wird beispielsweise über einen Elektrofilter aus dem bei der Kohleverbrennung entstehenden Rauchgas abgeschieden, zu einem Silo transportiert und nach einer Verladung zur Verwertung oder Entsorgung gebracht.
  • Neben der Filterasche entsteht bei der Verbrennung der Rohkohle Nassasche, welche typischerweise aus dem Brennraum in eine Trichterschräge fällt, in einem Wasserbad abgelöscht und über ein Kratzerband ausgetragen wird.
  • Filterasche kann grundsätzlich verwertet werden, wobei die Filterasche beispielsweise als Zuschlagsstoff in der Bodenaufbereitung oder bei Verfüllungen von Untertageanlagen verwendet werden kann. Ist keine Verwertung der Filterasche möglich, wird die Filterasche auf Deponien entsorgt.
  • Die Filterasche wird dazu nach verschiedenen Kriterien untersucht, bevor deren Verwertung oder Entsorgung erlaubt werden kann. Wird die Filterasche über eine Deponie entsorgt, gelten die Bestimmungen der Annahmekriterien des Deponiebetreibers bzw. die Gesetzlichkeiten wie die Deponieverordnung oder die Anforderungen an die stoffliche Verwertung von mineralischen Abfällen (LAGA). Dabei wird nach Deponieklassen, den Zulassungskriterien der LAGA und der Festlegung von Schlüsselparametern vorgegangen.
  • Ein Grenzwert nach Deponieverordnung und Schlüsselparameter ist der Bariumgehalt des Filterascheeluates. So sind in den Verbrennungsrückständen von Kraftwerken, wie der Filterasche, leicht lösliche Bariumsalze enthalten, die aufgrund ihrer Löslichkeitsprodukte sehr leicht bis leicht durch ein Eluierungsmittel, wie Wasser, in Lösung gehen. Ist der jeweils vorgegebene Grenzwert für Barium in einem Filterascheeluat überschritten, wird die Erlaubnis zur Entsorgung der jeweiligen Filterasche beispielsweise auf einer Deponie nach Deponieklasse 2 entzogen. Das heißt, die jeweilige Filterasche kann dann nur auf einer anderen Deponie, beispielsweise nach Deponieklasse 3, unter erheblichem finanziellen Mehraufwand entsorgt werden. Zudem besteht die Gefahr, dass die Filterasche bei erhöhtem eluierbaren Bariumgehalt hinsichtlich der Abfallschlüsselnummer von "unbedenklich" in "gefährlich" einzustufen ist.
  • Es gibt einen Ansatz im Stand der Technik, den Bariumgehalt im Eluat in der bei Heizkraftwerken anfallenden Filterasche dadurch zu senken, dass die Filterasche unter Einwirklung von Kohlendioxid gealtert wird, wobei Bariumverbindungen in schwerlösliche Salze umgewandelt werden. Der hierfür notwendige Zeitaufwand ist jedoch aus logistischer und damit wirtschaftlicher Sicht nicht vertretbar.
  • Die Druckschrift WO 89 / 07 974 A1 offenbart ein Verfahren zur Reinigung von Rauchgasen, die bei der Kohleverbrennung in einem mit pulverisierter Kohle befeuerten Heizkraftwerk entstehen. Ziel des Verfahrens ist es, die Schwefeldioxidabsorptionskapazität der im Rauchgas befindlichen Flugasche mittels deren Modifikation zu erhöhen. Das bei der Kohlestaubverbrennung entstehende Rauchgaswird zunächst zu einem Vorheizer geführt, der Wärme aus dem Rauchgas wieder der Kohleverbrennung zuführt. Dann durchläuft das Rauchgas einen elektrostatischen Filter, in dem die Flugasche aus dem Rauchgas gefiltert und in ein Gefäß abgeleitet wird, in dem die Flugasche mit Wasser vermischt wird. Die entstehende wässrige Suspension wird daraufhin einer Mühle zugeführt und darin gemahlen. Dann wird die gemahlene, wässrige Flugaschesuspension einem weiteren Gefäß zugeführt, in dem die gemahlene, wässrige Flugaschesuspension mit Branntkalk oder Löschkalk vermischt wird und damit unter Ausbildung von Calciumsilikaten auf der Oberfläche der Flugaschepartikel reagiert.
  • Die entstehende Mischung wird nach einer Wartezeit einer Trocknungseinheit zugeführt, welche die Mischung in Pulverform verlässt. Dieses Pulver wird mittels Druckluft in einen Container geblasen, von dem aus das Pulver einem divergierenden Gefäßteil zugeführt wird, in dem es mit dem Rauchgas durchmischt wird. Danach folgt in einem Reaktionsteil eine Reaktion zwischen dem Pulver und den sauren Gasen, insbesondere Schwefeldioxid, in dem Rauchgas, womit also Schwefel bzw. Schwefelverbindungen aus dem Rauchgas abgetrennt werden.
  • Die Druckschrift US 2017/0113085 A1 _beschäftigt sich mit der Behandlung von Flugasche, die bei der Kohleverbrennung in einem kohlegefeuerten Kraftwerk anfällt. Dabei wird zunächst Natrium-haltige Flugasche erzeugt, indem in den Rauchgasstrom ein Natrium-haltiges Sorptionsmittel injiziert wird. Dann wird die Natrium-haltige Flugasche mit Anhydrit und mit einem Additiv, wie z. B. Strontiumhydroxid und/oder Dolomit-Kalkstein und/oder Eisensulfat, versetzt. Anschließend wird die so behandelte Flugasche getrocknet. Mit dem beschriebenen Verfahren soll der Natriumgehalt in der Flugasche reduziert, die Alkalinität der Flugasche reduziert und/oder ein Eluieren von Schwermetall(en), wie Selen oder Arsen, aus der Flugasche vermindert werden.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, den löslichen Bariumgehalt in der bei Kraftwerken anfallenden Filterasche auf wirtschaftliche Weise zu senken.
  • Diese Aufgabe wird durch ein Feuerungsverfahren in einem Kraftwerk, wie einem Heizkraftwerk, einem Industriekraftwerk, einem Kondensationskraftwerk oder einem Kohlekraftwerk, das wenigstens eine Mühle, wenigstens einen mit der wenigstens einen Mühle verbundenen Dampferzeuger mit einem Brennraum und eine dem Dampferzeuger nachgeschaltete Rauchgasreinigungsanlage aufweist, welche wenigstens eine Filtereinrichtung und wenigstens eine der Filtereinrichtung nachgeschaltete Rauchgasentschwefelungsanlage (REA) aufweist, gelöst, wobei in der wenigstens einen Mühle Rohkohle zu Kohlestaub gemahlen wird, der Kohlestaub in dem Brennraum verbrannt wird, durch die dabei entstehende Wärme Dampf in dem Dampferzeuger erzeugt wird und das in dem Brennraum entstehende Rauchgas in die Rauchgasreinigungsanlage geleitet wird, wo das Rauchgas in der Filtereinrichtung gefiltert wird, wobei Filterasche als Abprodukt anfällt, und aus dem gefilterten Rauchgas in der Rauchgasentschwefelungsanlage (REA) Schwefel und/oder wenigstens eine Schwefelverbindung abgeschieden wird, und wobei ein pumpfähiger, sulfathaltiger Schlamm und/oder eine pumpfähige, sulfathaltige Lösung oder Suspension, der und/oder die in der vorliegenden Erfindung unabhängig von der Art seiner/ihrer Gewinnung als Dünnschlamm bezeichnet wird, der wenigstens einen Mühle zugeführt wird, darin zusammen mit der Rohkohle gemahlen, dem Brennraum zugeführt wird und mit der Rohkohle verbrannt wird.
  • Als Ergebnis dieses Verfahrens kann der leicht lösliche, umweltschädliche Bariumgehalt im Eluat der Filterasche durch die Zuführung des Dünnschlamms so weit abgesenkt werden, dass die Filterasche bei deren Verwertung oder Entsorgung als unbedenklich eingestuft werden kann. Das in dem Dünnschlamm befindliche Sulfat, beispielsweise Kalziumsulfat, geht bei dem Verbrennungsprozess eine chemische Bindung mit dem in der Rohkohle befindlichen Barium ein, wobei der Gehalt von leicht löslichen Bariumverbindungen in der Filterasche gesenkt wird. Bei diesem Prozess entsteht stattdessen das schwerlösliche Bariumsulfat. Durch diese Verbindung ist Barium aus der Filterasche weniger löslich und damit nicht aus der Filterasche in Wasser eluierbar und dadurch auch nicht nachweisbar. Das Bariumsulfat geht weder bei der Eluierung zur analytischen Nachweisführung noch in der Realität nach Ablagerung des Kraftwerkabfalls auf einer Deponie in Folge von Regenereignissen in Lösung. Damit ist ein Eindringen von Barium ins Grundwasser nahezu ausgeschlossen.
  • Der Dünnschlamm kann aufgrund seiner Pumpfähigkeit beispielsweise über Rohre und den Einsatz von Pumpen einfach der wenigstens einen Mühle und von dort aus dem Verbrennungszyklus zugeführt werden. Zudem ist der Dünnschlamm gut dosierfähig und kann daher zu einem bestimmten, vorteilhaften Prozentsatz der zu verbrennenden Rohkohle beigefügt werden.
  • In der wenigstens einen Mühle wird der Dünnschlamm mit der Rohkohle gemahlen. Das dabei entstehende Mahlgut wird in den Brennraum eines Brennkessels geblasen und darin in einer Schwebe verbrannt. Als Mühle(n) kann/können in der vorliegenden Erfindung beispielsweise eine/mehrere Nassventilatormühle(n) genutzt werden. Die Rohkohle kann, bevor sie der wenigstens einen Mühle zugeführt wird, noch in einer Vorzerkleinerung, wie einer Prallhammermühle, vorzerkleinert werden.
  • Neben Rohkohle und Dünnschlamm können in dem Brennraum auch noch weitere Stoffe, wie beispielsweise Klärschlamm und/oder Ersatzbrennstoffe, verbrannt werden.
  • In einer besonders vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird der Dünnschlamm, der der wenigstens einen Mühle zugeführt wird, darin gemahlen wird, dem Brennraum zugeführt wird und gemeinsam mit dem Kohlestaub verbrannt wird, dadurch gewonnen, dass in der Rauchgasentschwefelungsanlage in einem Waschvorgang SO2 abgeschieden und mit einem Kalksteinprodukt zu Gips umgesetzt wird, der Gips entwässert wird und aus einer dabei entstehenden Entwässerungssuspension der Dünnschlamm gefällt und separiert wird.
  • In der bei dieser Verfahrensausführung verwendeten Rauchgasentschwefelungsanlage des Kraftwerkes werden Schwefeldioxidbestandteile aus dem Rauchgas bei einem Waschprozess in einem Quencher und Absorber mit einer Kalksteinmehlsuspension ausgelöst. Bei der damit einhergehenden Gipsproduktion, dessen Waschprozess und Gipsentwässerung, entsteht die oben erwähnte Entwässerungssuspension, die eine sulfathaltige Suspension ist. In einer Abwasseraufbereitungsanlage (ARA) des Kraftwerkes wird nachfolgend die Entwässerungssuspension aufbereitet, indem der Dünnschlamm mit wenigstens einem Fällungsmittel aus der Entwässerungssuspension gefällt und im Kompaktklärer als Dünnschlamm separiert wird, wobei als Abwasser Klarwasser entsteht.
  • Ein erster Teil dieses Dünnschlamms wird wieder dem Absorber zugeführt. Ein zweiter Teil des Dünnschlamms wird jedoch ausgeschleust. Dieser zweite Teil des Dünnschlamms wurde früher entweder einer Nassentaschung des Kraftwerkes oder einem Vakuumbandfilter des Kraftwerkes, mit dessen Hilfe Gips abgezogen wurde, zugeführt.
  • In der vorliegenden Erfindung wird dieser zweite Teil des Dünnschlamms über wenigstens eine Dosierleitung mittels wenigstens einer Pumpe zu der wenigstens einen Mühle, das heißt, zu der wenigstens einen Kohlemühle, gepumpt. Die noch ungemahlene Rohkohle wird mit dem Dünnschlamm entweder noch in der Dosierleitung, vorzugsweise kurz vor der Mühle, oder in der Mühle benetzt. Die Rohkohle wird mit dem Dünnschlamm in der Mühle zu Staub vermahlen und dann in die Brennkammer bzw. den Brennraum zur Verbrennung eingeblasen. Die beim Verbrennungsprozess entstehende Filterasche nimmt das Sulfat auf und bindet Barium ein. Im Filterascheeluat kann dann eine starke Minderung des löslichen Bariumgehalts nachgewiesen werden.
  • Diese Form der erfindungsgemäßen Verfahrensführung besitzt mehrere vorteilhafte Effekte. Zum einen kann der bei der Rauchgaswäsche, also in der hier verwendeten Rauchgasentschwefelungsanlage, sowieso anfallende Dünnschlamm gleich vorteilhaft weiterverwertet werden und direkt von einem Abproduktausgang der Abwasserreinigungsanlage zu der wenigstens einen Mühle geleitet und bei der Kohleverbrennung zur Bariumreduktion in der dabei anfallenden Filterasche genutzt werden.
  • Der bei der in der Rauchgasentschwefelungsanlage erfolgenden SO2-Abscheidung anfallende Dünnschlamm musste früher auch auf geeignete Weise entsorgt werden, weshalb er, wie oben angeführt, zum Beispiel auf ein Gipsband gegeben wurde. Der auf den Gips aufgebrachte Dünnschlamm verfestigte sich jedoch rasch zu einer Schicht auf dem Gips, wodurch sich der von dem Gipsband abgenommene Gips schwerer entwässern ließ und zum Teil höhere Restfeuchten aufwies, welche für die Qualität des Gipses nachteilig sein können. So müssen dann beispielsweise beim Verwertungsprozess längere Trockenzeiten eingeplant werden. Ein solches Vorgehen ist nun nicht mehr notwendig, da der Dünnschlamm erfindungsgemäß der Kohleverbrennung zugegeben wird. Entsprechend kann als Nebeneffekt der vorliegenden Erfindung auch die Gipsqualität des mit Hilfe der SO2-Abscheidung produzierten Gipses verbessert werden.
  • In einer anderen, ebenfalls oben bereits erwähnten Entsorgungsvariante wurde der Dünnschlamm früher auf die auch im Kohleverbrennungsprozess anfallende Nassasche aufgegeben. Dies hatte jedoch einen höheren Wasserverbrauch für die Reinigung des Schwingentwässerers, mit welchem die mit dem Dünnschlamm versetzte Nassasche entwässert wird, bevor die Nassasche transportfähig ist und zur Verwertung oder Entsorgung abtransportiert werden kann, zur Folge. Auch dieser Negativeffekt kann mit dem erfindungsgemäßen Verfahren vermieden werden.
  • Vorzugsweise beinhaltet das Behandeln der Entwässerungssuspension ein Versetzen der Entwässerungssuspension mit wenigstens einem Fällungsmittel und/oder ein Durchleiten der Entwässerungssuspension durch einen Kompaktklärer.
  • Bei dieser Ausführungsform der Erfindung wird der Dünnschlamm auch direkt aus der im Kraftwerk sowieso stattfindenden Rauchgaswäsche gewonnen, indem der Dünnschlamm aus der bei der Gipsbildung anfallenden Entwässerungssuspension abgezogen, gefällt und danach geklärt wird. Die Fällung kann mit dem wenigstens einen Fällungsmittel, das heißt, durch Zugabe von einer oder mehreren Chemikalien zu der Entwässerungssuspension, erfolgen. Zusätzlich oder alternativ dazu kann die Klärung in dem Kompaktklärer vorgenommen werden.
  • Das wenigstens eine Fällungsmittel geht eine Bindung mit bestimmten Bestandteilen der Entwässerungssuspension ein. Die dabei entstehenden Bindungsprodukte weisen ein erhöhtes spezifisches Gewicht auf und setzen sich als Dünnschlamm ab.
  • Der Kompaktklärer kann beispielsweise in Form eines Beckens ausgebildet sein, in welches die Entwässerungssuspension oder die mit dem wenigstens einen Fällungsmittel versetzte Entwässerungssuspension geleitet wird, wobei im oberen Bereich des Beckens eine Lamellenanordnung vorgesehen ist.
  • Es ist jedoch in einfachen Varianten der vorliegenden Erfindung möglich, das wenigstens eine Fällungsmittel wegzulassen und/oder den Kompaktklärer zu umgehen.
  • Es gibt jedoch auch Kraftwerke, in welchen kein S02-Abscheider verwendet wird, der das SO2 aus dem Rauchgas in einer Nasswäsche herauswäscht, sodass kein Dünnschlamm anfällt. Solche Kraftwerke nutzen beispielsweise zur Rauchgasentschwefelung eine trockene Rauschgasaufbereitung. Außerdem kann es Störungen in der Rauchgasentschwefelungsanlage geben, die dazu führen, dass Dünnschlamm - zumindest vorübergehend - nicht aus der Abwasserreinigungsanlage der Rauchgasentschwefelungsanlage gewinnbar ist. In einer weiteren Variante des erfindungsgemäßen Verfahrens ist daher vorgesehen, dass der Dünnschlamm zumindest teilweise als Modellsuspension erzeugt und der Kohleverbrennung zugegeben wird. Der Dünnschlamm kann in dieser Ausbildung der vorliegenden Erfindung zumindest teilweise dadurch gewonnen werden, dass wenigstens ein pulver- oder staubförmiges Trägermaterial mit wenigstens einem Sulfat und Wasser zu dem Dünnschlamm verrührt wird.
  • Ist der Sulfatgehalt des aus der Rauchgasentschwefelungsanlage gewonnenen und/oder chemisch hergestellten Dünnschlamms zu gering, kann in bestimmten Ausführungsformen der vorliegenden Erfindung dieser Dünnschlamm noch mit weiterem Sulfat, das heißt, mit Sulfat enthaltenden Rohstoffen und/oder Chemikalien oder auch reinem Sulfat, versetzt werden.
  • Vorzugsweise beträgt bei dem erfindungsgemäßen Verfahren der Anteil des dem Brennraum zugeführten Dünnschlamms relativ zu der dem Brennraum zugeführten Rohkohle mindestens 0,1 Gew.-% und höchstens 10 Gew.-%.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens beträgt der Anteil des dem Brennraum zugeführten Dünnschlamms relativ zu der dem Brennraum zugeführten Rohkohle mindestens 0,5 Gew.-% und höchstens 2 Gew.-%.
  • Es hat sich als besonders günstig herausgestellt, wenn der Anteil des dem Brennraum zugeführten Dünnschlamms relativ zu der dem Brennraum zugeführten Rohkohle unter 1 Gew.-% beträgt.
  • Von Vorteil ist es auch, wenn bei dem erfindungsgemäßen Verfahren der Dünnschlamm wenigstens zwei, beispielsweise einander gegenüber befindlichen, mit dem Brennraum verbundenen Mühlen zugeführt wird. Dadurch kann der Dünnschlamm bei Reparaturen oder Nichtverfügbarkeit einer Mühle weiterhin dosiert werden.
  • Das erfindungsgemäße Verfahren ist zudem besonders effizient, wenn der Dünnschlamm gemeinsam mit der Rohkohle der wenigstens einen Mühle zugeführt wird. Hierdurch kann die Rohkohle schon frühzeitig im Prozess mit dem Dünnschlamm versetzt werden, womit eine besonders hohe Bariumreduktion in der Filterasche erzielbar ist.
  • Eine vorteilhafte Ausführungsform des erfindungsgemäßen Verfahrens wird im Folgenden anhand von Figur 1 näher erläutert, wobei
    Figur 1 zeigt schematisch Komponenten eines Bereichs eines Kraftwerkes 1. In dem Kraftwerk 1 wird Rohkohle 4, wie Braunkohle oder Steinkohle, in einem Feuerungsverfahren, hier einem Staubfeuerungsverfahren, verbrannt, wobei Dampf 13, wie Wasserdampf, Sattdampf oder Heißdampf, erzeugt wird, der als Energieträger genutzt wird.
  • Das Kraftwerk 1 weist eine Brennkammer mit einem Brennraum 2 auf. Mit dem Brennraum 2 sind in dem gezeigten Ausführungsbeispiel mehrere, hier vier, Mühlen 3 gekoppelt. In den Mühlen 3 wird die Rohkohle 4, die über Förderbänder und/oder Bunker und/oder Zuteiler den Mühlen 3 zugeführt wird, zu Kohlestaub gemahlen. Die Rohkohle 4 kann, bevor sie der oder den Mühle(n) zugeführt wird, noch in einer hier nicht gezeigten Vorzerkleinerung, wie einer Prallhammermühle, vorzerkleinert werden.
  • In der vorliegenden Erfindung wird den Mühlen 3 ebenfalls über Rohre und/oder Schlauchleitungen Dünnschlamm 10 zugeführt. Der Dünnschlamm 10 ist ein pumpfähiger, sulfathaltiger Schlamm und/oder eine pumpfähige, sulfathaltige Lösung oder Suspension. In den Mühlen 3 wird die Rohkohle 4 mit dem Dünnschlamm 10, mit dem die Rohkohle 4 auf dem Förderweg zu den Mühlen 3 und/oder in den Mühlen 3 selbst versetzt wird, zusammen vermahlen.
  • In anderen, nicht gezeigten Ausführungsformen der vorliegenden Erfindung kann auch nur eine Mühle 3 oder eine andere Anzahl an Mühlen 3 zum Einsatz kommen. Ferner reicht es grundsätzlich aus, wenn wenigstens einer der Mühlen 3 der Dünnschlamm 10 zugeführt wird.
  • Neben der Rohkohle 4 und dem Dünnschlamm 10 können der wenigstens einen Mühle 3 auch noch andere Stoffe, wie beispielsweise Klärschlamm und/oder Ersatzbrennstoff wie z. B. Müll und/oder Biobrennstoff wie z. B. Holz, zugeführt werden, welche dann mit der zu Kohlestaub gemahlenen Rohkohle 4 und dem Dünnschlamm 10 mitverbrannt werden.
  • Der sulfathaltige Kohlestaub wird ausgehend von den Mühlen 3 in den Brennraum 2 geblasen und darin in einer Schwebe verbrannt.
  • In dem gezeigten Ausführungsbeispiel ist bei der Verbrennung der Anteil des Dünnschlamms 10 zu der Rohkohle 4 kleiner als 1 Gew.-%, kann jedoch in anderen Ausführungsformen der Erfindung auch größer sein, beträgt aber wenigstens 0,1 Gew.-%
  • In dem erfindungsgemäßen Feuerungsverfahren wird ferner aufbereitetes Wasser und/oder Deionat 5 nach Entgasung mittels Pumpen 15 einem mit dem Brennraum 2 gekoppelten Dampferzeuger 12 zugeführt und während des Verbrennungsprozesses zu dem Dampf 13 erhitzt.
  • Der Dampf 13 wird dann beispielsweise einer hier nicht gezeigten Turbine zugeführt welche wiederum eine Fernheizung mit Heiznetzwasser speisen kann.
  • Das bei dem Verbrennungsprozess entstehende Rauchgas 14a wird aus dem Brennraum 2 abgeführt und einer Rauchgasreinigungsanlage des Kraftwerkes 1 zugeführt. Die ebenfalls bei dem Verbrennungsprozess anfallende Nassasche 16 wird nach unten aus dem Brennraum 2 abgeführt.
  • Die Rauchgasreinigungsanlage weist in der beispielhaft anhand von Figur 1 dargestellten Ausführungsform der Erfindung eine Filtereinrichtung 6 und eine sich an die Filtereinrichtung 6 anschließende Rauchgasentschwefelungsanlage 8 auf, kann jedoch in anderen Ausführungsformen der vorliegenden Erfindung noch deutlich mehr Komponenten, wie beispielsweise HCl-Absorber, Aktivkohlefilter, Stickoxidentferner usw., aufweisen.
  • Die Filtereinrichtung 6 ist in dem gezeigten Ausführungsbeispiel ein Elektrofilter, kann jedoch auch eine andere geeignete Filtereinrichtung, wie beispielsweise eine Gewebefiltereinrichtung, sein, mit der in dem Rauchgas 14a enthaltene Schwebeteilchen bzw. Staubpartikel, die sogenannte Filterasche 7, aus dem Rauchgas 14a herausgefiltert werden kann. Die Filterasche 7 wird als Abprodukt der Filtereinrichtung 6 abgeführt, gesammelt und später entweder auf einer Deponie entsorgt oder beispielsweise als Betonzuschlagsstoff oder auf anderen Verwertungswegen verwertet.
  • Die in dem erfindungsgemäßen Verfahren anfallende Filterasche 7 weist einen nur unbedenklichen Anteil an leicht löslichen Bariumverbindungen auf. Das liegt an dem der Verbrennung zugeführten, sulfathaltigen Dünnschlamm 10. Der Sulfatbestandteil des Dünnschlamms 10 bildet mit dem in der Rohkohle 4 enthaltenen Barium schwerlösliches Bariumsulfat, welches sich in der Filterasche 7 wiederfindet und wodurch die Filterasche 7 keine Gefahr für die Umwelt bei ihrer Lagerung auf einer Deponie oder bei anderen Verwertungswegen darstellt.
  • In dem in Figur 1 gezeigten Ausführungsbeispiel wird der Dünnschlamm 10 in einer sich an die Rauchgasgasentschwefelungsanlage 8 anschließenden Abwasseraufbereitungsanlage 9 gewonnen.
  • Die Rauchgasentschwefelungsanlage 8 ist in der gezeigten Verfahrensausbildung ein sogenannter SO2-Absorber, der beispielsweise in Form eines Absorberturms ausgebildet sein kann. In dem SO2-Absorber wird das aus der Filtereinrichtung 6 kommende, gefilterte Rauchgas 14b einer Nasswäsche unterzogen. In der Nasswäsche wird aus dem gefilterten Rauchgas 14b unter anderem SO2 abgeschieden, dieses reagiert mit Kalksteinmehl oder gegebenenfalls mit Branntkalk oder Kreide zu Gips. Zur Abtrennung des Gipses wird die entstehende, gipshaltige Suspension beispielsweise auf einen wasserdurchlässigen Vakuumbandfilter geleitet, auf dem sich Gips absetzt und entwässert wird. Die unter dem Vakuumbandfilter in wenigstens einem Auffangbehälter der Abwasseraufbereitungsanlage 9 aufgefangene Entwässerungssuspension enthält neben Wasser den sulfathaltigen Dünnschlamm 10.
  • Durch die Abwasseraufbereitungsanlage 9 wird ein erster Teil der Entwässerungssuspension in den Waschkreislauf des SO2-Absorbers zurückgeführt. Ein zweiter Teil der Entwässerungssuspension, der Dünnschlamm 10, wird über entsprechende Zuleitungen 11 zu den Mühlen 3 gepumpt.
  • Zur Abtrennung des Dünnschlamms 10 kann der Entwässerungssuspension wenigstens ein Fällungsmittel zugegeben werden und/oder die Entwässerungssuspension durch einen Kompaktklärer geleitet und der Dünnschlamm 10 statisch von Abwasser abgetrennt werden.
  • Das gereinigte Rauchgas 14c wird gegebenenfalls noch aufgeheizt und dann mit Hilfe eines Rauchgasgebläses über einen Kamin 17 in die Atmosphäre abgegeben.

Claims (10)

  1. Feuerungsverfahren in einem Kraftwerk (1), das wenigstens eine Mühle (3), wenigstens einen mit der wenigstens einen Mühle (3) verbundenen Dampferzeuger (12) mit einem Brennraum (2) und eine dem Dampferzeuger (12) nachgeschaltete Rauchgasreinigungsanlage aufweist, welche wenigstens eine Filtereinrichtung (6) und wenigstens eine der Filtereinrichtung (6) nachgeschaltete Rauchgasentschwefelungsanlage (8) aufweist, wobei
    in der wenigstens einen Mühle (3) Rohkohle (4) zu Kohlestaub gemahlen wird, der Kohlestaub in dem Brennraum (2) verbrannt wird, durch die dabei entstehende Wärme Dampf (13) in dem Dampferzeuger (12) erzeugt wird und das in dem Brennraum (2) entstehende Rauchgas (14a) in die Rauchgasreinigungsanlage geleitet wird, wo das Rauchgas (14a) in der wenigstens einen Filtereinrichtung (6) gefiltert wird, wobei Filterasche (7) als Abprodukt anfällt, und aus dem gefilterten Rauchgas (14b) in der Rauchgasentschwefelungsanlage (8) Schwefel und/oder wenigstens eine Schwefelverbindung abgeschieden wird,
    dadurch gekennzeichnet,
    dass ein pumpfähiger, sulfathaltiger Schlamm und/oder eine pumpfähige, sulfathaltige Suspension oder Lösung, der und/oder die in der vorliegenden Erfindung als Dünnschlamm (10) bezeichnet wird, der wenigstens einen Mühle (3) zugeführt wird, darin zusammen mit der Rohkohle (4) gemahlen, dem Brennraum (2) zugeführt und mit dem Kohlestaub verbrannt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Dünnschlamm (10) zumindest teilweise dadurch gewonnen wird, dass in der Rauchgasentschwefelungsanlage (8) in einem Waschvorgang SO2 aus dem gefilterten Rauchgas (14b) abgeschieden und mit einem Kalksteinprodukt, Branntkalk oder Kreide zu Gips umgesetzt wird, der Gips entwässert wird und aus einer dabei entstehenden Entwässerungssuspension der Dünnschlamm (10) separiert wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass das Separieren des Dünnschlamms (10) aus der Entwässerungssuspension ein Versetzen der Entwässerungssuspension mit wenigstens einem Fällungsmittel und/oder ein Durchleiten der Entwässerungssuspension durch einen Kompaktklärer beinhaltet.
  4. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Dünnschlamm (10) zumindest teilweise unabhängig von einer Rauchgasentschwefelung als Modellsuspension und/oder -lösung erzeugt wird, wobei wenigstens ein pulver- oder staubförmiges Trägermaterial mit wenigstens einem Sulfat und Wasser zu dem Dünnschlamm verrührt wird.
  5. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Dünnschlamm (10) zusätzlich mit Sulfat versetzt wird.
  6. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil des dem Brennraum (2) zugeführten Dünnschlamms (10) relativ zu der dem Brennraum (2) zugeführten Rohkohle (4) mindestens 0,1 Gew.-% und höchstens 10 Gew.-% beträgt.
  7. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil des dem Brennraum (2) zugeführten Dünnschlamms (10) relativ zu der dem Brennraum (2) zugeführten Rohkohle (4) mindestens 0,5 Gew.-% und höchstens 2 Gew.-% beträgt.
  8. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil des dem Brennraum (2) zugeführten Dünnschlamms (10) relativ zu der dem Brennraum (2) zugeführten Rohkohle (4) unter 1 Gew.-% beträgt.
  9. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Dünnschlamm (10) gemeinsam mit der Rohkohle (4) der wenigstens einen Mühle (3) zugeführt wird.
  10. Verfahren nach wenigstens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Dünnschlamm (10) wenigstens zwei, mit dem Brennraum (2) verbundenen Mühlen (3) zugeführt wird.
EP19211050.0A 2018-11-26 2019-11-22 Feuerungsverfahren in einem kraftwerk Active EP3660398B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL19211050T PL3660398T3 (pl) 2018-11-26 2019-11-22 Sposób spalania w elektrowni
HRP20210939TT HRP20210939T1 (hr) 2018-11-26 2021-06-11 Postupak izgaranja u elektrani

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018129745.9A DE102018129745B3 (de) 2018-11-26 2018-11-26 Feuerungsverfahren in einem Kraftwerk

Publications (2)

Publication Number Publication Date
EP3660398A1 EP3660398A1 (de) 2020-06-03
EP3660398B1 true EP3660398B1 (de) 2021-03-17

Family

ID=68762424

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19211050.0A Active EP3660398B1 (de) 2018-11-26 2019-11-22 Feuerungsverfahren in einem kraftwerk

Country Status (4)

Country Link
EP (1) EP3660398B1 (de)
DE (1) DE102018129745B3 (de)
HR (1) HRP20210939T1 (de)
PL (1) PL3660398T3 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4168670A (en) * 1977-01-03 1979-09-25 Dorr-Oliver Incorporated Incineration of lime-conditioned sewage sludge with high sulfur fuel
DE3733532A1 (de) * 1987-10-03 1989-04-13 Stadtwerke Wuerzburg Ag Verfahren zur entsorgung eines bei der abwasserreinigung anfallenden klaerschlamms
SE462551B (sv) * 1988-03-03 1990-07-16 Flaekt Ab Foerfarande vid rening av vid foerbraenning av kol bildade gaser
DE19802182B4 (de) * 1998-01-16 2005-03-10 Vattenfall Europe Generation Verfahren zur Reduzierung der über die Ascheanfeuchtung zu verbringenden Menge von Schlammabzugswasser als eingedicktes Abschlämmwasser
EP3151930A4 (de) * 2014-06-04 2018-02-14 Solvay SA Verfahren zur behandlung von kohlenflugasche

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3660398A1 (de) 2020-06-03
DE102018129745B3 (de) 2020-02-27
HRP20210939T1 (hr) 2021-09-03
PL3660398T3 (pl) 2021-10-11

Similar Documents

Publication Publication Date Title
EP0515792B1 (de) Verfahren zum Behandeln von Rückständen einer Abfallverbrennungsanlage und Abfallverbrennungsanlage zur Durchführung des Verfahrens
DE3918292C2 (de) Verfahren zur Behandlung von schwermetallhaltiger Flugasche aus dem Rauchgas von Verbrennungsanlagen, insbesondere Müll- bzw. Abfallverbrennungsanlagen
WO2007082505A9 (de) Co2 nutzung, bindung, verbrauch
DE3232077C2 (de) Verfahren und Vorrichtung zur Entfernung von Schwefeldioxid und anderen Schadstoffen aus Rauchgasen
EP0543133B1 (de) Verfahren und Vorrichtung zur Behandlung eines zu einem Dickschlamm entwässerten Klärschlammes
EP0368962B1 (de) Verfahren und vorrichtung zum reinigen von schlacke aus abfallverbrennungsöfen
EP0228111B2 (de) Verfahren zur Entfernung von Schadstoffen aus Abgasen
AT405249B (de) Vorrichtung zur vereinfachten trockenentschwefelung
DE2357407C2 (de) Verfahren zur Beseitigung des Schlamms aus einem Gaswäscher
EP3660398B1 (de) Feuerungsverfahren in einem kraftwerk
DE4021362A1 (de) Verfahren und vorrichtung zur entsorgung von mit schadstoffen beladenen rueckstaenden
DE2934109A1 (de) Verfahren zur trockenen behandlung von abgasstroemen in abgasreinigungssystemen
EP1874476B1 (de) Verfahren und vorrichtung zur entsorgung von abfall
DE69931924T2 (de) Verfahren zur reinigung von abgas
AT394848B (de) Verfahren zur entsorgung eines bei der abwasserreinigung anfallenden klaerschlammes
DE3139553A1 (de) Verfahren zur so(pfeil abwaerts)2(pfeil abwaerts)-abscheidung aus abgasen
DE4002741A1 (de) Verfahren zum betrieb einer kraftwerksanlage und fuer das verfahren eingerichtete kraftwerksanlage
DE102004055624B4 (de) Verfahren zur Verminderung der Chlorid- und Feinstpartikelbelastung in Rauchgasentschwefelungsanlagen
DE69634157T2 (de) Vorrichtung und Verfahren zur Behandlung von Abgasen aus Verbrennungsanlagen
DE3119422A1 (de) "hybridverfahren mit dammbaustoff-endprodukt unter nutzung der abfallwaerme vor der rauchgasentschwefelung"
DE3645174C2 (en) Filter dust disposal
DD267620A3 (de) Waschverfahren zur reinigung von abgasen
DE2916261A1 (de) Verfahren zur verwertung von schlamm
EP0695912B1 (de) Verfahren zur Reststoffbehandlung in Müllverbrennungsanlagen
DE3322539C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200908

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F23K 1/02 20060101AFI20201023BHEP

INTG Intention to grant announced

Effective date: 20201116

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001019

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1372585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20210939T

Country of ref document: HR

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210401585

Country of ref document: GR

Effective date: 20210709

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210617

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20210939

Country of ref document: HR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210939

Country of ref document: HR

Payment date: 20211112

Year of fee payment: 3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019001019

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

26N No opposition filed

Effective date: 20211220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210939

Country of ref document: HR

Payment date: 20221116

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191122

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317

REG Reference to a national code

Ref country code: HR

Ref legal event code: ODRP

Ref document number: P20210939

Country of ref document: HR

Payment date: 20231114

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20231120

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231115

Year of fee payment: 5

Ref country code: RO

Payment date: 20231117

Year of fee payment: 5

Ref country code: HR

Payment date: 20231114

Year of fee payment: 5

Ref country code: DE

Payment date: 20231110

Year of fee payment: 5

Ref country code: CZ

Payment date: 20231110

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231109

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210317