EP3645892B1 - Roue de soufflante - Google Patents

Roue de soufflante Download PDF

Info

Publication number
EP3645892B1
EP3645892B1 EP18729653.8A EP18729653A EP3645892B1 EP 3645892 B1 EP3645892 B1 EP 3645892B1 EP 18729653 A EP18729653 A EP 18729653A EP 3645892 B1 EP3645892 B1 EP 3645892B1
Authority
EP
European Patent Office
Prior art keywords
blower wheel
disc
blades
transition geometry
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18729653.8A
Other languages
German (de)
English (en)
Other versions
EP3645892A1 (fr
Inventor
Erhard Gruber
Jens Müller
Alexander Konzal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Mulfingen GmbH and Co KG
Original Assignee
Ebm Papst Mulfingen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Mulfingen GmbH and Co KG filed Critical Ebm Papst Mulfingen GmbH and Co KG
Publication of EP3645892A1 publication Critical patent/EP3645892A1/fr
Application granted granted Critical
Publication of EP3645892B1 publication Critical patent/EP3645892B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/281Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers
    • F04D29/282Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for fans or blowers the leading edge of each vane being substantially parallel to the rotation axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/30Vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/666Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps by means of rotor construction or layout, e.g. unequal distribution of blades or vanes

Definitions

  • the invention relates to a blower wheel with improved efficiency and noise characteristics.
  • Blower wheels are used in axial, diagonal or radial fans to move air.
  • the achievable efficiency, speed and noise are important technical properties that must always be improved.
  • a critical area of the impeller is the transition between the impeller blades and the base and/or cover disk covering them, because during operation there is a considerable notch effect and turbulence in the flow.
  • the invention is therefore based on the object of providing an impeller in which the strength of the transition between the impeller blades and the disc covering them is increased and maximum stresses occurring in this area during operation are reduced in order to increase the maximum speed and thus the efficiency and to reduce noise.
  • a fan wheel is proposed with a plurality of fan wheel blades arranged in a blade ring, which are connected on at least one axial side to a disk that at least partially covers the fan wheel blades.
  • the connection between the fan wheel blades and the disk determines a transition geometry that, seen in cross-section, has a rounded course of a quadratic function on at least one side of the fan wheel blades, in particular a side pointing radially inward toward a rotation axis of the fan wheel.
  • the direction of the side pointing radially inwards to a rotation axis of the impeller only occurs with impeller blades curved in the circumferential direction, but not with impeller blades running straight radially outwards.
  • the invention includes designs of the impeller in which the impeller blades point forwards in the circumferential direction. or are curved backwards.
  • the rounded course according to a quadratic function increases the strength of the impeller in the critical transition area between the respective impeller blades and the adjacent disk, whereby the disk includes both a base disk and, additionally or alternatively, a cover disk.
  • a greater effect is achieved with the transition geometry between the impeller blades and the base disk, i.e. the disk on a side opposite the intake side.
  • the quadratic equation described above determines a curve of the transition geometry, seen in cross-section, which reduces the maximum wall shear stresses occurring during operation in the transition area between the disk and the impeller blades by over 30%.
  • the maximum operating speed can be increased by over 7% compared to conventional impellers with a contour that is not rounded accordingly in the transition area.
  • the transition geometry according to the invention leads to a more even flow at the transition between the impeller blades and the disk and thus to reduced turbulence. Among other things, this reduces the noise level generated during operation and improves efficiency.
  • the equation term X1 is represented by a unit vector which extends in the direction of the disc as an extension of an inner wall of the respective fan wheel blade pointing radially inwards to the axis of rotation and has its absolute zero point at the beginning of the transition geometry.
  • the equation term X2 is determined by a unit vector which extends in the extension of an axially inward-facing surface of the disk in the direction of the respective fan wheel blade and has its absolute zero point at the beginning of the transition geometry.
  • the two unit vectors X1 and X2 are therefore aligned towards each other and form an intersection point in their imaginary extensions.
  • a range of ⁇ 0.25 is defined in a tolerance band for the transition geometry of X1 and X2.
  • the transition geometry can be provided on one side of the impeller blades, but in an alternative design also on both sides, i.e. between the respective impeller blades and the disk both on the side of the impeller blades pointing radially inwards to the axis of rotation and on an opposite side of the impeller blades pointing radially outwards. In the case of impeller blades that run straight radially outwards, the transition geometry can also be provided on both sides.
  • the disk is designed to be axially retracted in a locally limited manner in the direction of the impeller blade in the area of the transition geometry and, viewed in cross section, defines a recess on a side opposite the impeller blade.
  • the recess in the disk preferably extends along the entire extent of the impeller blade and is formed by shaping the transition geometry on the disc.
  • the Figures 1 to 3 show an embodiment of a fan wheel 1, designed as a radial fan wheel, with a plurality of fan wheel blades 2 arranged in a blade ring, curved in the circumferential direction, which are connected on the intake side to a cover disk 4 and on the axially opposite side to a base disk 3.
  • the fan wheel 1 shown sucks in air axially via the intake opening 11 and blows it out radially via channels formed between the fan wheel blades 2.
  • the base disk 3 completely covers the lower axial end faces of the fan wheel blades 2.
  • the fan wheel blades 2 protrude radially inwards over an inner edge of the cover disk 4, so that the upper axial end faces of the fan wheel blades 2 are only partially covered.
  • the impeller 1 has a hub 17 for attachment to a drive.
  • the connection between the impeller blades 2 and the base plate 3 is determined by a specially defined transition geometry 5, which, when viewed in cross-section, has a rounded course of a quadratic function on a side pointing radially inwards towards the axis of rotation RA of the impeller 1.
  • the side pointing radially outwards away from the axis of rotation RA of the impeller 1 also has a rounded course when viewed in cross-section, but this is not identical to the transition geometry 5.
  • the transition geometry 5 extends in the impeller 1 over the entire chord length of the impeller blades 2 along the base plate 3.
  • the term X1 is determined by the unit vector that extends in the extension of an inner wall of the respective fan blade 2 pointing radially inwards to the axis of rotation RA in the direction of the base disk 3.
  • the term X2 is determined by the unit vector that extends in the extension of the axially inward-facing surface of the base disk 3 in the direction of the respective fan blade 2.
  • the zero points 0 of the two vectors lie exactly at the beginning of the transition geometry 5 with respect to the fan blades 2 and the base disk 3, respectively, as shown in the detailed view in Figure 3 shown.
  • the base plate 3 is axially retracted in the area of the transition geometry 5 in the direction of the individual fan blades 2 and is determined in cross section according to Figure 3 seen, on the underside opposite the impeller blade 2, the recess 8 is provided.
  • the recesses 8 have a substantially triangular cross-sectional shape and extend over the entire length of the respective impeller blades 2.
  • a fan wheel 100 according to the prior art is shown, which is used as a comparison fan wheel to determine the improvements measured as described above. It is fluidically identical with fan wheel blades 200, a cover disk 400, a base disk 300 and a hub 170 to the fan wheel according to Figure 1 constructed, however, the transition geometry 500 is designed as usual without a rounded course of a quadratic function, but rather in a butt-like manner.
  • FIG 5 is a diagram with characteristic curves measured with an identical test setup for the pressure curve psf [Pa] and the efficiency nse [%] at different volume flows qv [m 3 /h] of the impeller 1 according to Fig.1 and the same impeller 100 without transition geometry 5 according to Figure 4 shown, where the dotted characteristic curves represent the impeller 1 according to Figure 1 and the solid characteristic curves each represent the fan wheel 100 according to Figure 4 without transition geometry 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (9)

  1. Roue de ventilateur (1), comprenant une pluralité de pales de roue de ventilateur (2) disposées en couronne de pales et qui sont reliées, sur au moins un côté axial, à un disque recouvrant au moins par endroits les pales de roue de ventilateur (2), dans laquelle un raccordement entre les pales de roue de ventilateur (2) et le disque détermine une géométrie de transition (5),
    caractérisée en ce que la géométrie de transition présente au moins sur un côté des pales de roue de ventilateur (2), en particulier un côté orienté radialement vers l'intérieur en direction d'un axe de rotation (RA) de la roue de ventilateur (1), vue en section transversale, un tracé arrondi d'une fonction quadratique, dans laquelle la fonction quadratique est déterminée par l'équation (a·X12)+(b·X1·X2)+X22+d = 0, où les grandeurs de X1 et X2 sont déterminées par une longueur qui correspond à l'épaisseur de pale de roue de ventilateur (t) respective, et les valeurs pour a, b, d sont déterminées par 0,25 ≤ a ≤ 4, -2 ≤ b ≤ 2 et -36 ≤ d ≤ -0,25, où X1 est déterminé par un vecteur unitaire qui s'étend dans le prolongement d'une paroi intérieure, orientée radialement vers l'intérieur en direction de l'axe de rotation (RA), de la pale de roue de ventilateur (2) respective en direction du disque et présente son point zéro au début de la géométrie de transition (5), et où X2 est déterminé par un vecteur unitaire qui s'étend dans le prolongement d'une surface, orientée axialement vers l'intérieur, du disque en direction de la pale de roue de ventilateur (2) respective et présente son point zéro au début de la géométrie de transition (5).
  2. Roue de ventilateur selon la revendication 1, caractérisée en ce que les valeurs pour a, b, d sont déterminées par 0,5 ≤ a ≤ 2, -0,5 ≤ b ≤1, -16 ≤ d ≤ 0,5.
  3. Roue de ventilateur selon l'une quelconque des revendications précédentes, caractérisée en ce qu'une bande de tolérance est définie pour le tracé de la géométrie de transition (5) de X1 et X2 dans une plage de ±0,25.
  4. Roue de ventilateur selon l'une quelconque des revendications précédentes, caractérisée en ce que la géométrie de transition (5) est prévue entre les pales de roue de ventilateur (2) respectives et le disque des deux côtés des pales de roue de ventilateur (2).
  5. Roue de ventilateur selon l'une quelconque des revendications précédentes 1 à 3, caractérisée en ce que la géométrie de transition (5) est prévue entre les pales de roue de ventilateur (2) respectives et le disque à la fois sur le côté orienté radialement vers l'intérieur en direction de l'axe de rotation (RA) et sur un côté opposé, orienté radialement vers l'extérieur, des pales de roue de ventilateur (2).
  6. Roue de ventilateur selon l'une quelconque des revendications précédentes, caractérisée en ce que le disque est réalisé axialement en retrait en étant localement limité au niveau de la géométrie de transition (5) en direction de la pale de roue de ventilateur (2) respective, et vue en section transversale, détermine un évidement (8) sur un côté opposé de la pale de roue de ventilateur (5).
  7. Roue de ventilateur selon l'une quelconque des revendications précédentes, caractérisée en ce que le disque est réalisé sous forme de disque de fond (3) ou de disque de recouvrement (4).
  8. Roue de ventilateur selon l'une quelconque des revendications précédentes, caractérisée en ce que les pales de roue de ventilateur (2) sont réalisées avec un tracé courbe dans la direction circonférentielle.
  9. Roue de ventilateur selon l'une quelconque des revendications précédentes, caractérisée en ce que la géométrie de transition (5) s'étend sur une longueur de corde totale de la pale de roue de ventilateur (2) respective.
EP18729653.8A 2017-06-30 2018-06-05 Roue de soufflante Active EP3645892B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017114679.2A DE102017114679A1 (de) 2017-06-30 2017-06-30 Gebläserad
PCT/EP2018/064777 WO2019001912A1 (fr) 2017-06-30 2018-06-05 Roue de soufflante

Publications (2)

Publication Number Publication Date
EP3645892A1 EP3645892A1 (fr) 2020-05-06
EP3645892B1 true EP3645892B1 (fr) 2024-05-01

Family

ID=62533366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18729653.8A Active EP3645892B1 (fr) 2017-06-30 2018-06-05 Roue de soufflante

Country Status (5)

Country Link
US (1) US11421704B2 (fr)
EP (1) EP3645892B1 (fr)
CN (1) CN207513921U (fr)
DE (1) DE102017114679A1 (fr)
WO (1) WO2019001912A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020114387A1 (de) 2020-05-28 2021-12-02 Ebm-Papst Mulfingen Gmbh & Co. Kg Gebläserad mit dreidimensional gekrümmten Laufradschaufeln
US11754088B2 (en) * 2021-12-03 2023-09-12 Hamilton Sundstrand Corporation Fan impeller with thin blades
DE102022131248A1 (de) 2022-11-25 2024-05-29 Ebm-Papst Mulfingen Gmbh & Co. Kg Diagonallaufrad mit variierender Nabenfläche

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1063414A (fr) * 1951-10-29 1954-05-03 Roue mobile pour ventilateur radial
CH516743A (de) * 1970-12-01 1971-12-15 Gema Ag App Bau Radial-Ventilatorrad
US4335997A (en) * 1980-01-16 1982-06-22 General Motors Corporation Stress resistant hybrid radial turbine wheel
US4958987A (en) * 1989-07-20 1990-09-25 Precision Cutters, Inc. Materials handling fan impeller
US5061154A (en) * 1989-12-11 1991-10-29 Allied-Signal Inc. Radial turbine rotor with improved saddle life
DE4029331C1 (fr) * 1990-09-15 1992-01-30 Mtu Muenchen Gmbh
DE29713027U1 (de) * 1997-07-23 1998-11-19 Pahling Walter Dipl Ing Extrem-Leichtbauweise für große Ventilator-Laufräder
US6224335B1 (en) * 1999-08-27 2001-05-01 Delphi Technologies, Inc. Automotive air conditioning fan assembly
US6739835B2 (en) * 2001-08-24 2004-05-25 Lg Electronics Inc. Blade part in turbofan
JP3462870B2 (ja) * 2002-01-04 2003-11-05 三菱重工業株式会社 ラジアルタービン用羽根車
JP3876195B2 (ja) * 2002-07-05 2007-01-31 本田技研工業株式会社 遠心圧縮機のインペラ
EP1902220B1 (fr) * 2005-07-04 2012-09-12 Behr GmbH & Co. KG Turbine
WO2009105208A2 (fr) * 2008-02-22 2009-08-27 Horton, Inc. Fabrication et assemblage de ventilateur
US8475131B2 (en) * 2008-11-21 2013-07-02 Hitachi Plant Technologies, Ltd. Centrifugal compressor
JP4994421B2 (ja) * 2009-05-08 2012-08-08 三菱電機株式会社 遠心ファン及び空気調和機
US9039362B2 (en) * 2011-03-14 2015-05-26 Minebea Co., Ltd. Impeller and centrifugal fan using the same
ES2659780T3 (es) * 2013-09-10 2018-03-19 Punker Gmbh Turbina de ventilador
DE102014006756A1 (de) * 2014-05-05 2015-11-05 Ziehl-Abegg Se Laufrad für Diagonal- oder Radialventilatoren, Spritzgusswerkzeug zur Herstellung eines solchen Laufrades sowie Gerät mit einem solchen Laufrad
JP6621194B2 (ja) * 2015-06-03 2019-12-18 三星電子株式会社Samsung Electronics Co.,Ltd. ターボファン及びこのターボファンを用いた送風装置
CN105673558B (zh) * 2016-01-14 2017-12-08 浙江理工大学 一种基于载荷法设计的离心通风机叶片
DE102016111830A1 (de) * 2016-06-28 2017-12-28 Ebm-Papst Mulfingen Gmbh & Co. Kg Gebläseradscheibe und Gebläserad
JP2018017167A (ja) * 2016-07-27 2018-02-01 日本電産株式会社 インペラおよびモータ
USD903085S1 (en) * 2017-12-13 2020-11-24 Ebm-Papst Mulfingen Gmbh & Co. Kg Fan
US10962021B2 (en) * 2018-08-17 2021-03-30 Rolls-Royce Corporation Non-axisymmetric impeller hub flowpath

Also Published As

Publication number Publication date
CN207513921U (zh) 2018-06-19
WO2019001912A1 (fr) 2019-01-03
EP3645892A1 (fr) 2020-05-06
DE102017114679A1 (de) 2019-01-03
US20200040904A1 (en) 2020-02-06
US11421704B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
DE60128435T2 (de) Kühllüfter
EP3645892B1 (fr) Roue de soufflante
DE602004006323T2 (de) Verfahren zur Herstellung einer Turbine mit Turbinenschaufeln unterschiedlicher Resonanzfrequenzen samt einer solchen Turbine
EP2646695B1 (fr) Ventilateur axial
DE10313054B4 (de) Radialgebläse
CH704105B1 (de) Mehrstufige Gasturbine.
EP2275643B1 (fr) Aube de moteur dotée d'une charge de rebords avant surélevée
DE102019105355B4 (de) Lüfterrad eines Axialventilators
EP3916239B1 (fr) Roue de soufflerie pourvu de pales de rotor courbées tridimensionnelles
DE102018128792A1 (de) Kompakter Diagonalventilator mit Nachleiteinrichtung
WO2017017264A1 (fr) Roue de ventilateur et module ventilateur de refroidissement
EP2478186A1 (fr) Rotor de turbomachine
EP3571416B1 (fr) Rouet de ventilateur centrifuge caréné avec un flasque ayant une forme périodique et asymétrique
EP3034886A1 (fr) Aube et roue de ventilateur comprenant celle-ci
EP3256732B1 (fr) Roue pour un ventilateur et ventilateur
DE3835622A1 (de) Radialverdichter
EP2827003B1 (fr) Grille de guidage de compresseur à turbines à gaz
DE60120708T2 (de) Kreisellüfter
EP3380735B1 (fr) Aube d'une roue d'acheminement d'air présentant un bord d'aube en s
DE102009028125A1 (de) Eintrittsgeometrie für halbaxiale Lüfterräder
DE10307887B4 (de) Kreiselpumpe
DE102019120816B3 (de) Verdichterlaufrad mit geteilten Hauptschaufeln
CH716947A2 (de) Radialverdichterlaufrad.
DE202017103924U1 (de) Gebläserad
WO2011012351A1 (fr) Géométrie de guidage pour roues semi-axiales de ventilateur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190725

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220517

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

INTG Intention to grant announced

Effective date: 20230912

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231122

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240119

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018014551

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN