EP3640356B1 - Alliage de magnésium à conductivité thermique élevée, boîtier d'onduleur, onduleur et automobile - Google Patents

Alliage de magnésium à conductivité thermique élevée, boîtier d'onduleur, onduleur et automobile Download PDF

Info

Publication number
EP3640356B1
EP3640356B1 EP18818152.3A EP18818152A EP3640356B1 EP 3640356 B1 EP3640356 B1 EP 3640356B1 EP 18818152 A EP18818152 A EP 18818152A EP 3640356 B1 EP3640356 B1 EP 3640356B1
Authority
EP
European Patent Office
Prior art keywords
magnesium alloy
thermal conductivity
high thermal
inverter
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18818152.3A
Other languages
German (de)
English (en)
Other versions
EP3640356A4 (fr
EP3640356A1 (fr
Inventor
Qiang Guo
Mengmeng Cao
Quanyu GONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BYD Co Ltd
Original Assignee
BYD Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BYD Co Ltd filed Critical BYD Co Ltd
Publication of EP3640356A4 publication Critical patent/EP3640356A4/fr
Publication of EP3640356A1 publication Critical patent/EP3640356A1/fr
Application granted granted Critical
Publication of EP3640356B1 publication Critical patent/EP3640356B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • This application relates to the field of materials technologies, and specifically, to a magnesium alloy with high thermal conductivity and application thereof, and more specifically, to a magnesium alloy with high thermal conductivity, an inverter housing of which at least a part is formed by the magnesium alloy with high thermal conductivity, an inverter including the inverter housing, and a vehicle including the inverter.
  • a conventional die casting magnesium alloy on the current market is AZ91D, including main components as follows: Al: 8.5 ⁇ 9.5%, Zn: 0.45 ⁇ 0.90%, Mn: 0.17 ⁇ 0.4%, Si: ⁇ 0.05%, Cu: 0.025%, Ni: ⁇ 0.001%, Fe: ⁇ 0.004%, and magnesium.
  • This material has good fluidity and formability, low costs, and relatively high mechanical properties.
  • the thermal conductivity of this material is relatively low, which is less than 60 W/m ⁇ K, thereby limiting broad application of magnesium alloys.
  • the US patent application US 2017 129006 A1 discloses a Mg alloy composition that has been developed to improve upon the AZ91D alloy to offer better castability, creep strength, ductility and corrosion resistance for use in automotive applications such as housings.
  • an objective of this application is to provide a die casting magnesium alloy having good thermal conductivity or having ideal mechanical properties as well.
  • this application provides a magnesium alloy with high thermal conductivity.
  • the magnesium alloy with high thermal conductivity includes: 2.0-4.0 wt% of Al, 0.1-0.3 wt% of Mn, 1.0-2.0 wt% of La, 2.0-4.0 wt% of Ce, 0.1-1.0 wt% of Nd, 0.5-2.0 wt% of Zn, 0.1-0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • the magnesium alloy including the foregoing components has extremely high thermal conductivity and ideal mechanical properties at the same time, and can be effectively applied to conditions and environments that require high thermal conductivity and a light weight, for example, being used to manufacture an inverter housing of a vehicle, thereby greatly expanding the application scope of magnesium alloys.
  • this application provides an inverter housing.
  • at least a part of the inverter housing is formed by the foregoing magnesium alloy with high thermal conductivity.
  • the inverter housing has extremely high thermal conductivity and good heat-dissipation performance, so that the safety and service life of an inverter using the inverter housing are improved significantly.
  • this application provides an inverter.
  • the inverter includes the foregoing inverter housing. It is found that the inverter has good heat-dissipation performance, so that the safety is greatly improved and the service life is significantly increased.
  • this application provides a vehicle.
  • the vehicle includes the foregoing inverter.
  • the vehicle has all the foregoing features and advantages of the inverter, which are not described herein again.
  • this application provides a magnesium alloy with high thermal conductivity.
  • the magnesium alloy with high thermal conductivity includes: 2.0-4.0 wt% of Al, 0.1-0.3 wt% of Mn, 1.0-2.0 wt% of La, 2.0-4.0 wt% of Ce, 0.1-1.0 wt% of Nd, 0.5-2.0 wt% of Zn, 0.1-0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • the magnesium alloy including the foregoing components has extremely high thermal conductivity and ideal mechanical performance at the same time, and can be effectively applied to conditions and scenarios that require high thermal conductivity and a light weight, for example, being used to manufacture an inverter housing of a vehicle, thereby greatly expanding the application scope of magnesium alloys.
  • magnesium alloy aluminum can improve the strength and anti-corrosion performance of the magnesium alloy and manganese can improve the elongation and toughness of the magnesium alloy.
  • Adding rare earth elements such as La, Ce and Nd can obviously enhance the high-temperature performance of the magnesium alloy and refine particles of the magnesium alloy during the casting process.
  • magnesium can form a solid solution with the foregoing rare earth elements, a zone rich in magnesium is a simple eutectic zone with a low melting point, and magnesium is distributed in the shape of a net at the grain boundary to prohibit the formation of micro pores, thereby improving the casting performance and thermal conductivity of the magnesium alloy.
  • Nd has relatively large impact on fine-grain strengthening of the magnesium alloy.
  • the refining effect of Ce on micro structures helps to improve the mechanical properties and anti-corrosion performance of the magnesium alloy.
  • Zinc can achieve solution strengthening and form a strengthening phase.
  • Both a small amount of Ca and a small amount of Sr can prevent the magnesium alloy from oxidation during the process of smelting.
  • These components are mixed according to the foregoing proportions to form the magnesium alloy. Due to the synergistic effect of these components, the obtained magnesium alloy has high thermal conductivity and mechanical properties at the same time, and can be effectively applied to multiple fields, especially to scenarios that require relatively high thermal conductivity.
  • the magnesium alloy may include: 0.15-0.3 wt% of Mn and 2.5-4.0 wt% of Ce. In this way, it is ensured that the magnesium alloy has ideal thermal conductivity and high mechanical properties at the same time, to better satisfy usage requirements of different operating environments and conditions.
  • the magnesium alloy may include: 3.0 wt% of Al, 0.25 wt% of Mn, 1.55 wt% of La, 3.0 wt% of Ce, 0.13 wt% of Nd, 0.6 wt% of Zn, 0.15 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • the magnesium alloy may include: 2.0 wt% of Al, 0.15 wt% of Mn, 2.0 wt% of La, 2.5 wt% of Ce, 0.1 wt% of Nd, 2.0 wt% of Zn, 0.1 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • the magnesium alloy may include: 4.0 wt% of Al, 0.1 wt% of Mn, 1.0 wt% of La, 2.0 wt% of Ce, 1.0 wt% of Nd, 0.5 wt% of Zn, 0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • the magnesium alloy may include: 2.5 wt% of Al, 0.3 wt% of Mn, 1.0 wt% of La, 4.0 wt% of Ce, 0.5 wt% of Nd, 1.5 wt% of Zn, 0.3 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • the magnesium alloy including the foregoing components has high thermal conductivity and ideal mechanical properties at the same time.
  • the magnesium alloy according to the embodiments of this application has thermal conductivity obviously higher than that of an existing magnesium alloy.
  • Experimental results show that the thermal conductivity of the magnesium alloy including the foregoing components with the corresponding proportions may be greater than 110 w/m ⁇ K.
  • the magnesium alloy can be effectively applied to scenarios that require relatively high thermal conductivity.
  • the magnesium alloy has advantages such as a low density, a high specific strength, a high specific modulus, a high property of tremble elimination, and high resistance to corrosion caused by organic matter and alkali.
  • the magnesium alloy according to the embodiments of this application may further satisfy at least one of the following conditions: a tensile strength is greater than 220 MPa; a yield strength is greater than 150 MPa; and an elongation is greater than 4%.
  • the magnesium alloy may satisfy only one of the foregoing conditions.
  • the magnesium alloy may only satisfy the condition that the tensile strength is greater than 220 MPa, or may only satisfy the condition that the yield strength is greater than 150 MPa, or may only satisfy the condition that the elongation is greater than 4%.
  • the magnesium alloy may satisfy two of the foregoing conditions.
  • the magnesium alloy may satisfy the condition that the tensile strength is greater than 220 MPa and the condition that the yield strength is greater than 150 MPa, or may satisfy the condition that the tensile strength is greater than 220 MPa and the condition that the elongation is greater than 4%, or may satisfy the condition that the yield strength is greater than 150 MPa and the condition that the elongation is greater than 4%.
  • the magnesium alloy may also satisfy the three conditions that the tensile strength is greater than 220 MPa, the yield strength is greater than 150 MPa and the elongation is greater than 4%. In this way, it is ensured that the magnesium alloy has ideal thermal conductivity and better mechanical properties at the same time, and can satisfy usage requirements in different fields as well as different operating environments and conditions.
  • this application provides an inverter housing.
  • at least a part of the inverter housing is formed by the foregoing magnesium alloy with high thermal conductivity.
  • the inverter housing has extremely high thermal conductivity and high heat-dissipation performance, so that the safety and service life of an inverter using the inverter housing are improved significantly.
  • the specific structure of the inverter housing is not particularly limited and may be any existing structure of an inverter housing in the field.
  • a person skilled in the art may choose flexibly according to an actual demand.
  • a part of the inverter housing such as a part that requires higher thermal conductivity, may be prepared by using the magnesium alloy in this application.
  • the entire inverter housing may be prepared by using the magnesium alloy in this application.
  • a person skilled in the art may also choose flexibly according to costs and usage requirements.
  • this application provides an inverter.
  • the inverter includes the foregoing inverter housing. It is found that the inverter has good heat-dissipation performance, so that the safety is greatly improved and the service life is significantly increased. Moreover, a person skilled in the art may understand that the inverter has all the features and advantages of the foregoing inverter housing, which are not described herein again.
  • the inverter apart from the inverter housing, the inverter further includes necessary structures and parts of a conventional inverter, such as an inverter bridge, control logic and a filter circuit, which are not described in further detail herein.
  • a conventional inverter such as an inverter bridge, control logic and a filter circuit
  • this application provides a vehicle.
  • the vehicle includes the foregoing inverter.
  • the inverter of the vehicle has good thermal conductivity and mechanical properties, thereby greatly improving the safety.
  • the inverter housing is prepared by using a magnesium alloy, which helps to reduce the weight of the vehicle and improve user experience.
  • the vehicle has all the features and advantages of the foregoing inverter, which are not described herein again.
  • the vehicle apart from the inverter, the vehicle has necessary structures and parts of a conventional vehicle, such as a body, an engine, wheels and interior decoration items, which are not described in further detail herein.
  • Components of the magnesium alloy 3.0 wt% of Al, 0.25 wt% of Mn, 1.55 wt% of La, 3.0 wt% of Ce, 0.13 wt% of Nd, 0.6 wt% of Zn, 0.15 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • Preparation procedure put a pure magnesium ingot and a pure aluminum ingot into a smelting furnace, where the smelting temperature is 700-750°C; add an Mg-Ca master alloy, an Mg-Mn master alloy and an Mg-Zn master alloy into the smelting furnace and completely melt down the master alloys, where the smelting temperature is 700-750°C; add an Mg-La master alloy, an Mg-Ce master alloy and an Mg-Nd master alloy into the smelting furnace, where the smelting temperature is 700-750°C, and at the same time add a covering agent onto the surface of the melt; perform a 15-minute refining treatment on the melt using an RJ-5 flux, where the refining temperature is 730-760°C, and then let the melt stand for 80-120 minutes, where the temperature is 650-730°C.
  • Sr and Cu may be introduced using impurities of the foregoing raw materials, and therefore, it is unnecessary to add Sr and Cu separately
  • Components of the magnesium alloy 2.0 wt% of Al, 0.15 wt% of Mn, 2.0 wt% of La, 2.5 wt% of Ce, 0.1 wt% of Nd, 2.0 wt% of Zn, 0.1 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • Components of the magnesium alloy 4.0 wt% of Al, 0.1 wt% of Mn, 1.0 wt% of La, 2.0 wt% of Ce, 1.0 wt% of Nd, 0.5 wt% of Zn, 0.5 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • Components of the magnesium alloy 2.5 wt% of Al, 0.3 wt% of Mn, 1.0 wt% of La, 4.0 wt% of Ce, 0.5 wt% of Nd, 0.5 wt% of Zn, 0.3 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • Components of the magnesium alloy 6 wt% of Al, 0.4 wt% of Mn, 0.48 wt% of Zn, 1.2 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • Components of the magnesium alloy 6.0 wt% of Al, 0.25 wt% of Mn, 1.55 wt% of La, 3.0 wt% of Ce, 0.013 wt% of Nd, 0.6 wt% of Zn, 0.15 wt% of Ca, less than 0.1 wt% of Sr, less than 0.1 wt% of Cu, and magnesium.
  • the mechanical properties and material molding fluidity of the magnesium alloy prepared in Embodiment 1 and an AZ91D magnesium alloy are tested.
  • the test standard for mechanical properties is ISO 6892-1.
  • a sample for testing the material molding fluidity is die-cast at atmospheric pressure by using a mosquito-repellent incense mold, where the mold temperature is 200°C and the die-casting temperature is 700°C.
  • An injection speed is 3 circles per second.
  • a second-speed starting position is 140 mm.
  • the length of the injected mosquito-repellent incense mold is recorded as an analogy of the material fluidity. Results are respectively shown in Table 2 and Table 3.
  • the magnesium alloy with high thermal conductivity in this application has extremely high thermal conductivity and heat-dissipation capability, as well as a relatively high tensile strength, yield strength and elongation, and also has high formability and recovery capability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Conductive Materials (AREA)

Claims (10)

  1. Alliage de magnésium à conductivité thermique élevée, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend : entre 2,0 et 4,0 % en poids d'Al, entre 0,1 et 0,3 % en poids de Mn, entre 1,0 et 2,0 % en poids de La, entre 2,0 et 4,0 % en poids de Ce, entre 0,1 et 1,0 % en poids de Nd, entre 0,5 et 2,0 % en poids de Zn, entre 0,1 et 0,5 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
  2. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend : entre 0,15 et 0,3 % en poids de Mn et entre 2,5 et 4,0 % en poids de Ce.
  3. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend :
    3,0 % en poids d'Al, 0,25 % en poids de Mn, 1,55 % en poids de La, 3,0 % en poids de Ce, 0,13 % en poids de Nd, 0,6 % en poids de Zn, 0,15 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
  4. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend :
    2,0 % en poids d'Al, 0,15 % en poids de Mn, 2,0 % en poids de La, 2,5 % en poids de Ce, 0,1 % en poids de Nd, 2,0 % en poids de Zn, 0,1 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
  5. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend :
    4,0 % en poids d'Al, 0,1 % en poids de Mn, 1,0 % en poids de La, 2,0 % en poids de Ce, 1,0 % en poids de Nd, 0,5 % en poids de Zn, 0,5 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
  6. Alliage de magnésium à conductivité thermique élevée selon la revendication 1, dans lequel sur la base de la masse totale de l'alliage de magnésium à conductivité thermique élevée, l'alliage de magnésium à conductivité thermique élevée comprend :
    2,5 % en poids d'Al, 0,3 % en poids de Mn, 1,0 % en poids de La, 4,0 % en poids de Ce, 0,5 % en poids de Nd, 0,5 % en poids de Zn, 0,3 % en poids de Ca, moins de 0,1 % en poids de Sr, moins de 0,1 % en poids de Cu, et des résidus contenant du magnésium.
  7. Alliage de magnésium à conductivité thermique élevée selon l'une quelconque des revendications 1 à 6, dans lequel la conductivité thermique est supérieure à 110 W/mK.
  8. Alliage de magnésium à conductivité thermique élevée selon l'une quelconque des revendications 1 à 7, dans lequel au moins l'une des conditions suivantes est satisfaite :
    une résistance à la traction est supérieure à 220 MPa ;
    une limite d'élasticité est supérieure à 150 MPa ;et
    un allongement est supérieur à 4 %.
  9. Boîtier d'onduleur, dans lequel une partie du boîtier d'onduleur est formée par l'alliage de magnésium à conductivité thermique élevée selon l'une quelconque des revendications 1 à 8.
  10. Onduleur, comprenant le boîtier d'onduleur selon la revendication 9.
EP18818152.3A 2017-06-15 2018-04-25 Alliage de magnésium à conductivité thermique élevée, boîtier d'onduleur, onduleur et automobile Active EP3640356B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710453134.2A CN109136699B (zh) 2017-06-15 2017-06-15 高导热镁合金、逆变器壳体、逆变器及汽车
PCT/CN2018/084488 WO2018228059A1 (fr) 2017-06-15 2018-04-25 Alliage de magnésium à conductivité thermique élevée, boîtier d'onduleur, onduleur et automobile

Publications (3)

Publication Number Publication Date
EP3640356A4 EP3640356A4 (fr) 2020-04-22
EP3640356A1 EP3640356A1 (fr) 2020-04-22
EP3640356B1 true EP3640356B1 (fr) 2021-03-31

Family

ID=64660843

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18818152.3A Active EP3640356B1 (fr) 2017-06-15 2018-04-25 Alliage de magnésium à conductivité thermique élevée, boîtier d'onduleur, onduleur et automobile

Country Status (4)

Country Link
US (1) US20210147963A1 (fr)
EP (1) EP3640356B1 (fr)
CN (1) CN109136699B (fr)
WO (1) WO2018228059A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109439989B (zh) * 2019-01-08 2019-10-15 苏州大学 一种镁合金及其制备方法
JPWO2021157748A1 (fr) * 2020-02-07 2021-08-12
CN115044812A (zh) * 2022-06-17 2022-09-13 北京机科国创轻量化科学研究院有限公司 一种高延伸率微合金化改性az31镁合金薄板材料及其制备方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331375A (ja) * 1994-06-06 1995-12-19 Toyota Motor Corp 鋳造用耐熱マグネシウム合金
CN1225565C (zh) * 2001-08-24 2005-11-02 三菱铝株式会社 模铸镁合金
CN1194111C (zh) * 2003-01-28 2005-03-23 东南大学 耐热稀土镁合金
WO2005108634A1 (fr) * 2004-05-10 2005-11-17 Norsk Hydro Technology B.V. Alliage de magnesium presentant des performances superieures a temperature elevee
KR100671195B1 (ko) * 2005-03-08 2007-01-25 주식회사 지알로이테크놀로지 미시메탈이 첨가된 고온 구조용 마그네슘 합금
EP1957221B1 (fr) * 2005-11-10 2011-12-28 Magontec GmbH Combinaison de processus de coulage et compositions alliées produisant des pièces coulées de combinaison supérieure de propriétés de fluage à température élevée, de ductilité et de résistance à la corrosion
CN1904106A (zh) * 2006-08-14 2007-01-31 中国铝业股份有限公司 一种含稀土y的细晶变形镁合金
JP2008229650A (ja) * 2007-03-19 2008-10-02 Mitsui Mining & Smelting Co Ltd マグネシウム合金塑性加工部材及びその製造方法
BRPI0813877A2 (pt) * 2007-06-28 2019-02-26 Sumitomo Electric Industries placa de liga de magnésio
JP2009120883A (ja) * 2007-11-13 2009-06-04 Mitsubishi Alum Co Ltd マグネシウム合金箔およびその製造方法
GB201005031D0 (en) * 2010-03-25 2010-05-12 Magnesium Elektron Ltd Magnesium alloys containing heavy rare earths
CN102776427A (zh) * 2012-08-17 2012-11-14 临江市东锋有色金属股份有限公司 一种含稀土耐热镁合金
CN103388094A (zh) * 2013-07-22 2013-11-13 天津东义镁制品股份有限公司 一种镁合金led日光灯型材及其制造方法
CN103643096A (zh) * 2013-12-13 2014-03-19 内蒙古科技大学 一种双相组织的高性能镁合金板材制备方法
CN103820661B (zh) * 2014-02-27 2016-03-02 上海交通大学 稀土镁合金的半固态浆料制备方法
CN104315369A (zh) * 2014-09-15 2015-01-28 宁波爱科电气实业有限公司 一种led灯
IL238698B (en) * 2015-05-07 2018-04-30 Dead Sea Magnesium Ltd Creep resistant, ductile magnesium alloys for die casting
CN106319311A (zh) * 2015-06-18 2017-01-11 华为技术有限公司 通信设备
CN106609331B (zh) * 2016-12-22 2019-10-29 上海交通大学 高塑性压铸镁合金及其成形方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3640356A4 (fr) 2020-04-22
EP3640356A1 (fr) 2020-04-22
CN109136699A (zh) 2019-01-04
WO2018228059A1 (fr) 2018-12-20
CN109136699B (zh) 2021-07-09
US20210147963A1 (en) 2021-05-20

Similar Documents

Publication Publication Date Title
EP3121302B1 (fr) Alliage d'aluminium pour coulée sous pression et alliage d'aluminium coulé sous pression l'utilisant
JP6376665B2 (ja) アルミニウム合金
JP5469100B2 (ja) 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物
KR100754039B1 (ko) 다이캐스팅합금
KR101133103B1 (ko) 다이캐스팅용 고강도 알루미늄 합금
EP3640356B1 (fr) Alliage de magnésium à conductivité thermique élevée, boîtier d'onduleur, onduleur et automobile
KR20130023330A (ko) 알루미늄 합금 및 알루미늄 합금의 사용방법
JP6852146B2 (ja) ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト
JP6427268B2 (ja) 耐食性が改善されたダイカスト用アルミニウム合金、周波数フィルタおよび通信機器部品の製造方法
EP3216884B1 (fr) Alliage d'aluminium pour coulée sous pression et pièce d'alliage d'aluminium moulée sous pression obtenue à partir dudit alliage
JP6229130B2 (ja) 鋳造用アルミニウム合金及びそれを用いた鋳物
JP4994734B2 (ja) 鋳造用アルミニウム合金および同アルミニウム合金鋳物
EP3196323B1 (fr) Produit en alliage d'aluminium coulé sous pression
KR101274089B1 (ko) 주조성이 우수한 다이캐스팅용 고강도 알루미늄 합금
KR20120129458A (ko) 박육 제품용 고강도 다이캐스팅 알루미늄 합금
CN113046606B (zh) 铝合金及其制备方法和铝合金结构件
KR102329620B1 (ko) 다이캐스팅용 알루미늄 합금
JP2006316341A (ja) 鋳造用アルミニウム合金および同アルミニウム合金鋳物
KR20160147922A (ko) 알루미늄 합금으로 형성된 방열핀 및 그 제조방법
KR20130012651A (ko) 반응고 성형용 고강도 및 고인성 알루미늄 합금
CN112126835B (zh) 一种压铸镁合金及其制备方法和应用
KR102197773B1 (ko) 강도와 연신율이 우수한 고압 다이캐스팅용 마그네슘 합금 및 이 합금의 제조방법
KR101269516B1 (ko) 스칸듐이 없는 다이캐스팅용 고강도 알루미늄 합금
KR102016144B1 (ko) 고방열 마그네슘 합금 제조방법
CN115838886A (zh) 一种压铸镁合金及其制备方法、应用

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200114

A4 Supplementary search report drawn up and despatched

Effective date: 20200228

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201117

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018014914

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 1377006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1377006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210802

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210425

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602018014914

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 6

Ref country code: DE

Payment date: 20230420

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210331