EP3637196B1 - Oscillateur mécanique - Google Patents

Oscillateur mécanique Download PDF

Info

Publication number
EP3637196B1
EP3637196B1 EP19201269.8A EP19201269A EP3637196B1 EP 3637196 B1 EP3637196 B1 EP 3637196B1 EP 19201269 A EP19201269 A EP 19201269A EP 3637196 B1 EP3637196 B1 EP 3637196B1
Authority
EP
European Patent Office
Prior art keywords
elastic
oscillator
frames
elastic system
balance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19201269.8A
Other languages
German (de)
English (en)
Other versions
EP3637196A1 (fr
Inventor
Stéphane von Gunten
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Manufacture et Fabrique de Montres et Chronometres Ulysse Nardin Le Locle SA
Original Assignee
Manufacture et Fabrique de Montres et Chronometres Ulysse Nardin Le Locle SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Manufacture et Fabrique de Montres et Chronometres Ulysse Nardin Le Locle SA filed Critical Manufacture et Fabrique de Montres et Chronometres Ulysse Nardin Le Locle SA
Publication of EP3637196A1 publication Critical patent/EP3637196A1/fr
Application granted granted Critical
Publication of EP3637196B1 publication Critical patent/EP3637196B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension
    • G04B17/045Oscillators acting by spring tension with oscillating blade springs
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/32Component parts or constructional details, e.g. collet, stud, virole or piton

Definitions

  • the present invention relates to the field of watchmaking. It relates more particularly to a mechanical oscillator without a pivot and comprising a balance suspended from the frame by means of a plurality of elastic systems.
  • the document EP 2 273 323 describes an oscillator of the aforementioned type, in which a balance is suspended from a frame element by elastic systems arranged in series. These each include a pair of blades extending in a "V" between a rigid central part and an arcuate frame, and serve to provide the return torque for the balance as well as to support the latter.
  • the frame In the upper level of this construction, the frame is arranged to be screwed onto a frame element such as a plate or a bridge, and the rigid central part is fixed to that of the adjacent level.
  • the frame of this last level is in turn fixed to the frame of the next elastic system, which is fixed by its rigid central part to the subsequent elastic system. This sequence continues up to the balance wheel, which is fixed at its center to the rigid central part of the last elastic system.
  • the aim of the invention is therefore to provide a mechanical oscillator in which the aforementioned defects are at least partially overcome.
  • the invention relates to a mechanical oscillator for a timepiece comprising a suspended balance, of any shape, arranged to oscillate about a geometric axis of rotation, that is to say an axis virtual without conventional shafts and pivots.
  • a plurality of elastic systems arranged in series connect said balance to an attachment member arranged to fix said oscillator directly or indirectly to a structural element that said timepiece comprises, such as a fixed frame element, a tourbillon cage. or carousel or the like.
  • the elastic systems have a stiffness considered parallel to the axial direction which is sufficient to suspend and to support the balance regardless of the orientation of the system with respect to the direction of the gravity vector, and an elasticity around said axis of rotation adapted to allow the balance to oscillate in rotation.
  • each elastic system comprises an even number of at least four outer frames (that is to say four, six, eight or even more) and at least two inner connecting elements.
  • Each frame carries two (or even more) elastic elements (blades elastic, combinations of rigid bars and blades or collars, or the like which ensure the elasticity of the elastic element considered as a whole) each extending between said frame and one of said inner connecting elements.
  • Each internal connecting element is connected to the two elastic elements carried by one of said frames, as well as to an adjacent elastic element of each of the other frames of the same elastic system located on either side of said frame considered.
  • each of said elastic systems is fixed to each elastic system adjacent thereto at the level of one of its two frames (these frames being not adjacent to each other), for example by means of tenons. , pins, studs, screws, welding, gluing or the like, these means being arranged to make the frames in question mutually integral.
  • each elastic system which is adjacent to only one other is fixed to this other by every other frame, and each elastic system which is located between two others is fixed on the one hand to a first of these other systems. by every other frame, and on the other hand to the other of these other systems by the other half of its frames.
  • each elastic system can be better balanced than those of the prior art and, since the elastic systems are connected in series by their frames, the force thus transmitted during the oscillations is removed from the center of rotation and consequently generates a significantly less shear in the connections between elastic systems.
  • each frame belonging to each intermediate elastic system (that is to say each elastic system which is not immediately adjacent to the balance or to the member of fastener) is connected to a frame of one or other of the elastic systems adjacent thereto, half of the frames of said elastic system considered being connected to every other frame of another elastic system located opposite a first side of the elastic system considered (that is to say to the first elastic system adjacent to it), the other frames contained in said elastic system considered being connected to every other frame of another elastic system located opposite the second side of the system elastic system considered (that is to say to the second elastic system adjacent thereto), said frames of the elastic system considered being connected alternately to one or other of said adjacent elastic systems, by their frames (i.e. -to say that the ca dres of the elastic system considered are linked, by an alternating succession, to the corresponding frames of the first or of the second adjacent elastic system).
  • each elastic system is oriented at an angle of (360 / N) ° around said axis of rotation with respect to the adjacent elastic system, N being the number of frames that each of said elastic systems considered individually. So, for four frames per elastic system, the relative orientation angle is 90 °, for six frames 60 °, for eight frames 45 °, etc.
  • each resilient element comprises a substantially rigid middle bar, a first flexible strip extending between a first end of said bar and one of said inner connecting elements, as well as a second flexible strip extending between a second end of said bar. said bar, opposite to said first end, and one of said frames.
  • the smallest dimension of the section of said blades is preferably oriented perpendicular to said axis of rotation in order to provide elasticity and rigidity in the desired directions, to obtain the operation described above.
  • This elastic element configuration gives it a stiffness (that is to say a relationship between the angular displacement deforming this elastic element and the torque associated with it) which is substantially constant as a function of the angle of rotation of the balance, in any case more constant than other configurations.
  • the elastic elements can be formed as single blades, no middle bar being present.
  • each of said internal connecting elements is connected exclusively to frames of the same elastic system by means of the corresponding elastic elements.
  • no direct connection between an internal connection element of an elastic system and an internal connection element of the adjacent elastic system is present, the only connections between the elastic systems being at the level of the frames as described below. -above.
  • the oscillator further comprises a rod extending axially from said balance in a direction opposite to said elastic systems, said rod being arranged to take place with play in an opening provided in a structural element of said timepiece, no contact. between the rod and the opening not being present during normal operation of the oscillator.
  • the rod can thus come into contact with the walls of said opening, which limits the radial movement of the balance and reduces the probability that the elastic systems are damaged. If the opening also defines an axial stop for the rod, a shock tending to move the balance away from the elastic system can also be damped by limiting the movement of the balance in this direction.
  • the oscillator further comprises a screw screwed axially into the end of said rod, the head of said screw being arranged to come into contact with a stop secured to said structural element in the event of an impact in an axial direction, in particular in the event of an impact. shock tending to bring the balance closer to the elastic systems.
  • the rod In the case of an axial conc in the other direction, the rod can also abut against a corresponding axial stop. Consequently, in the event of an impact in any direction, the oscillator is protected since the movement of the balance is limited in any direction.
  • the oscillator may include a circlip or a washer integral in translation with said rod and arranged to come into contact with a stop integral with said structural element, and this in the event of impact in an axial direction.
  • This stopper can be rigid or flexible.
  • said rod comprises a circumferential groove arranged to cooperate with a stop which said structural element carries, and this in the event of impact in an axial direction.
  • this stopper can be rigid or flexible. Said groove may be machined in the rod, or may consist of a gap between two rings fixed to the latter.
  • said balance is able to perform oscillations having an amplitude of at least 15 °.
  • the oscillator is thus compatible with conventional escapements, such as, for example, escapements with Swiss or English lever, detent, Omega-Daniels, or similar.
  • the amplitude can be at least 60 °, at least 90 °, or even more.
  • each elastic system 5 has a rotational symmetry of (720 / N) °, N being the number of frames that each elastic system has.
  • the mechanical oscillator can consist of two individual oscillators as described above, arranged head-to-tail and comprising a common balance.
  • the latter can be composed of a single balance, or of two sub-balances integral in rotation with one another, for example by means of a rod extending substantially along the axis of rotation, by pillars connecting the serges of the two sub-balances, or the like.
  • At least some of said elastic elements are made of silicon provided with a layer of silicon oxide on at least some (preferably all) of their exterior surfaces.
  • This layer makes it possible to modify the thermal coefficient of the Young's modulus of the elastic elements and thus to compensate for operating errors due to the effects of temperature variations on the materials of the elastic systems and / or of the balance.
  • the term “rigid” means that an element is not likely to deform substantially during normal operation of the oscillator, in at least one given direction. Without an indication of such a direction, a "rigid member” is considered to be rigid in any direction.
  • the term “elastic” on the other hand means that an elastic deformation of an element is desired during said operation, also in at least one given direction, this deformation having a desired effect on the operation of the oscillator. If an element is rigid in a first direction and elastic in a second direction, this will be clearly indicated in the text. Furthermore, in order not to overload the figures, the set of reference signs does not appear on each drawing. Finally, we note that, in the absence of any other explicit indication to the contrary, the spatial relations between elements are defined by default when the oscillator is at rest, and the axial direction is determined with respect to the axis of rotation 9 .
  • the figures 1 to 3 illustrate a mechanical oscillator 1 according to the invention, in assembled state.
  • This oscillator 1 comprises a balance wheel 3, which provides the inertia which, in cooperation with the elasticity of a plurality of elastic systems 5, determines the frequency of oscillation of oscillator 1 when the latter is running, that is, that is, when it is put into oscillation.
  • These elastic systems 5 are arranged in series so as to connect the balance 3 to an attachment member 7, the latter being arranged to be fixed directly or indirectly (for example by means of an intermediate piece) to a fixed element. of a timepiece such as a bridge, a plate or the like or a tourbillon cage.
  • the balance 3 is suspended and can pivot substantially around a non-physical axis of rotation 9, that is to say around a virtual, geometric axis and not around a shaft mounted between bearings. conventional.
  • Oscillator 1 is thus devoid of pivots, which reduces friction and improves its quality factor compared to a conventional balance-spring oscillator.
  • the balance 3 of the illustrated embodiment which is shown in isolation on the figure 4 , is formed of a substantially rigid frame defining a peripheral rim 3a as well as a central hub 3b, these two elements being interconnected by a plurality of arms 3c. Additional arms 3d extend cantilevered from the hub 3b in the direction of the rim 3a.
  • the rim 3a as well as the additional arms 3d carry masses 3f, determining the inertia of the balance 3.
  • the resonant frequency of the oscillator 1 can be adjusted in a known manner.
  • the rigidity of the elastic elements 5b for example by removing material by via a laser
  • the hub 3b carries a 3g chainring (see figure 3 ) fixed in the central opening of the hub 3b by means of an intermediate piece 3j (see figure 12 ) and carries a rod 3k extending axially in the direction opposite to the elastic systems 5. The operation of this rod 3k will be described below in the context of the figure 12 .
  • the 3g plate has a 3h dowel as well as a 3i anti-overturn system in accordance with those in the document EP 3,037,894 .
  • the balance 3 as well as the plate 3g can take any known shapes, adapted to cooperate with an escapement of any kind, such as for example an English or Swiss lever escapement, a detent escapement, an escapement. Omega-Daniels or similar exhaust.
  • the serge 3a the latter can be complete, split, or partial (for example by having only two sections in the form of a bar or in an arc of a circle as in the document EP 2 273 323 above).
  • the balance 3 is connected to the attachment member 7 by means of a plurality of elastic systems 5, arranged in series.
  • the oscillator 1 comprises four of these systems 5, but the number may vary, for example between two and eight or even more.
  • the figure 5 illustrates one of these elastic systems 5 in insulation.
  • the latter comprises four rigid frames 5a, each in an arc of a circle. These frames are each connected by means of a pair of elastic elements 5b to internal connecting members 5c, said elastic elements 5b fixed to each individual frame 5a forming an acute angle between them preferably between 45 ° and 75 °, more preferably between 50 ° and 70 °.
  • the four frames 5a are substantially identical and extend over the same angle, and the elastic system 5 has a rotational symmetry of 180 °. In this way, the angle formed between the elements elastics 5b of each frame 5a is also substantially identical. However, it is possible to vary these angles, for example by opposing pairs of frames.
  • the extension of each elastic element 5 preferably intersects the axis of rotation 9 when the oscillator is at rest.
  • the elastic elements 5b of the illustrated embodiment each consist of a rigid median bar 5d as well as a pair of elastic blades 5f extending on either side between the rigid bar and, on the one hand, the one of the frames 5a, on the other hand an internal connecting element 5c.
  • the elastic elements 5b are arranged to have bending elasticity in the plane of the elastic system 5, as well as to be substantially rigid in bending perpendicular to said plane.
  • the stiffness of the elastic element 5b perpendicular to said plane is at least ten times, preferably at least one hundred times, that in said plane, the smallest dimension of each blade 5f being in this plane and therefore perpendicular to the plane.
  • 'axis of rotation 9 This form of elastic element 5b has an angular stiffness which is substantially constant as a function of the angle of rotation of the balance, that is to say that its elasticity coefficient remains substantially invariant during oscillations.
  • the elastic elements 5b can each take the form of a single blade, as is the case in the document EP 2 273 323 , or can take the form of any type of equivalent bending element such as, for example, arrangements of necks located on either side of the rigid bar 5d. It is also not necessary for the elastic elements 5b to be straight: in fact, they can take a large number of ad hoc shapes according to the needs of those skilled in the art, in particular curved.
  • the internal connecting members 5c are separated from each other by a slot 5g and are each fixed to four adjacent elastic elements 5b, of which the two in the middle are associated with one of the frames 5a, and the other two belong to each to an adjacent 5a frame corresponding, these last frames 5a being located on either side of the first frame 5a mentioned.
  • a first of the internal connecting members 5c is integral with a single elastic element 5b belonging to the frame A, the two elastic elements 5b of the frame B, as well as only one of the elastic elements 5b of the frame C, according to this sequence.
  • the other internal connecting member 5c is secured to the other elastic element 5b of the frame C, to the two elastic elements 5b of the frame D, as well as to the other elastic element 5b of the frame A.
  • each elastic system 5 as illustrated comprises four frames 5a each associated with two elastic elements 5b, one can also provide six or even eight, which will increase the number of internal connecting elements 5c to three or four respectively, each remaining inner connecting element 5c associated with four adjacent elastic elements 5b as described above.
  • the rotational symmetry of each elastic system 5 is (720 / N) °, where N is the number of frames 5a per elastic system 5.
  • the elastic systems 5 are connected in series between the balance 3 and the attachment member 7, as explained in detail below.
  • the balance 3 side On the balance 3 side, the latter is fixed to two opposing frames 5a of a first elastic system 5 by means of tenons 11 (see in particular figure 6 ) which ensure not only the fixing of these components relative to each other, but also a predetermined separation between the balance 3 and the elastic system 5.
  • tenons 11 can take various forms, of which two different and non-limiting examples are illustrated on the figures 7 and 8 , but it is also possible to fix the frames 5a to each other by means of any spacers, regardless of the additional parts, or the parts integrally with the frames 5a.
  • the figure 7 illustrates a first tenon 11 which can in particular be manufactured from a plate of micromachinable material such as silicon.
  • the tenon 11 comprises two heads 11a extending in two opposite directions, and separated by a spacer 11b of rectangular section, and can be formed by etching (laser, chemical (for example DRIE), by dry process. .), electroforming (for example LIGA or other), by an additive process (3D printing), or any other similar process.
  • the heads 11a are arranged to be fixed in corresponding openings having complementary shapes provided in the elements to be connected by driving, gluing, welding, clipping or the like.
  • the spacer 11b serves to define a predetermined separation between the two elements thus fixed to one another, so that the frames 5a, the elastic elements 5b and the internal connecting elements 5c do not come into contact.
  • the figure 8 illustrates a conventional tenon 11, of circular section, which can be machined in a conventional manner and which does not need to be described in detail.
  • its heads 11a as well as its spacer 11b fulfill the same functions as those of the tenon 11 of the figure 7 .
  • Tenons 11 of this shape can also be fixed in the complementary openings by means of driving, gluing, welding, clipping or the like.
  • the tenons 11 can be integral with some of the frames 5a.
  • the figure 9 illustrates the attachment member 7, which is intended to be attached to a fixed structural element of a timepiece, such as for example a bridge or a plate, or else to a movable structural element such as a watchcage. whirlpool or carousel or the like.
  • this attachment member comprises a pair of tongues 7a provided with a plurality of openings intended to receive pins of positioning, fixing screws, screw feet or the like, as well as a rigid ring 7b.
  • other forms of attachment members are possible.
  • two of the frames 5a of the last elastic system 5 can themselves act as fastening members, by being fixed directly or indirectly to a structural element of the movement, or by being integrated into this. structural element.
  • the figure 10 illustrates oscillator 1 in exploded view in order to illustrate more clearly the series arrangement of the various elastic systems 5.
  • level of the attachment member has been indicated as "level 1", that immediately adjacent to the balance wheel as "level 4", and the sequence of intermediate levels has been numbered as indicated in the figure.
  • suffixes A, B, C, D have been used to identify specific frames, following the corresponding indications in the figure 5 .
  • the elastic system 5 of level 1 which, as a reminder, is integral with the attachment member at the level of the frames 5aB and 5aD.
  • the other two frames 5aA and 5aC which are free to move in their plane relative to the attachment member 7a, are attached to the two adjacent frames 5aB and 5aD of the next elastic system 5, via the aforementioned tenons 11.
  • This last elastic system 5 is oriented at 90 ° with respect to that integrated into the fastening member and this when the oscillator 1 is at rest, so that the slots 5g between the internal connecting members 5c of each level orientates at 90 ° to each other.
  • the other two frames 5aA and 5aC of level 2 are in turn fixed by means of tenons 11 to the two adjacent frames 5aB and 5aD of the next elastic system 5 of level 3, the other two frames 5aA and 5aC of this level being fixed in turn to frames 5aB and 5aD respectively of level 4. Finally, the other frames 5aA and 5aC of level 4 are attached to the balance 3. Note that the elastic systems 5 of levels 2 and 3 are considered to be elastic systems 5 intermediaries, since each of these elastic systems 5 is adjacent to two others located on either side in the axial direction.
  • the figure 11 illustrates more clearly the relative orientation of two adjacent levels of elastic systems 5, in particular levels 4 and 3.
  • the orientation of this view is the reverse of that of the figure 10 , and for this reason level 4 is above level 3 in this figure. It is clearly seen how the slots between the internal connecting members 5c of each adjacent level are oriented at 90 ° with respect to each other, since the two elastic systems 5 are oriented at 90 ° with respect to each other. 'other.
  • each elastic system comprises six frames 5a (and thus three internal connecting members 5c)
  • the angular relationship between each elastic system 5 and the adjacent elastic systems 5 is 60 °.
  • the angular relationship is 45 °, the same considerations also apply.
  • the angular relationship between adjacent elastic systems is at the rate of (360 / N) °, thanks to the rotational symmetry of (720 / N) ° of each elastic system 5.
  • the number of elastic systems 5 is four, but the number can vary between two and eight or even more.
  • the arrangement of four elastic systems 5 allows an amplitude of about 100 ° to 120 ° for the oscillations of the balance 3, a lower number of elastic systems 5 generating oscillations of smaller amplitude, a higher number causing oscillations of greater amplitude.
  • the figure 12 illustrates, in isometric view, the oscillator 1 described above, mounted on a bridge 11 integral with a plate 13 of a clockwork movement.
  • This plate 13 also carries a finishing gear 15 and an escapement 17 in a known manner.
  • the free end of the cylindrical rod 3k takes place in an opening 19a provided in a ring 19 fixed in the plate 13 by driving, gluing, welding or the like.
  • this opening can be formed directly in the plate 13.
  • the opening 19a can be blind or through, and in the illustrated embodiment it is through but has a shoulder 19c against which the end of the rod 3k can abut in case of axial shock tending to move the balance 3 away from the elastic systems 5.
  • the ring 19 (or the aforementioned opening formed directly in a structural element) can be provided in a bridge, an element a tourbillon or carousel cage, or any other structural element, whether fixed or mobile. This also applies for the other variants described below.
  • the figure 13 illustrates a variation of a shock-absorbing arrangement which differs from that of the figure 12 in that a screw 3p is screwed axially into the free end of the rod 3k, the screw not coming into contact with the walls of the opening 19a during normal operation of the oscillator 1.
  • the opening 19a in the ring 19 defines a shoulder 19c against which the head of the screw 3p abuts in the event of an axial impact tending to bring the balance 3 of the elastic systems 5.
  • neither the rod 3k , nor the screw 3p comes into contact with any surface of the opening 19a or of the shoulder.
  • the movement of the oscillator is thus limited in the event of an impact along any axis of translation or of rotation, with the exception of the axis of rotation 9 of oscillator 1.
  • the figure 14 further illustrates a variant of an anti-shock arrangement, in which the rod 3k is provided with a circlip 3m which is fixed at a suitable location, for example by clipping.
  • a circlip instead of a circlip, one can use a chased, glued, welded or similar washer on the rod 3k.
  • the axial movement of the balance 3 is limited on the one hand by the outer surface of the ring 19 which is opposite the balance 3, and on the other hand by a stop element 21 which is integral with a frame element and whose end 21a is superimposed on the circlip 3m.
  • This stop element can take any shape, but can be for example a rocker mounted on the frame element.
  • This rocker can for example pivot around a pin in an angular range determined by an eccentric or by other positioning means (such as for example two opposing screws), a locking device such as one or more screws or the like being able to be arranged to block the rocker in pivoting.
  • the opening 19a in the ring 19 is cylindrical in the illustrated variant, but nothing prevents the use of a ring 19 like that of the figure 12 the opening 19a of which is partially closed by a shoulder 19c.
  • the rod 3k abuts against the inner wall of the opening 19a, and during an axial impact, the circlip 3m abuts against one or the other of the surface of the ring 19 or the end 21a of the stop element 21.
  • the figure 15 illustrates yet another variant of an anti-shock arrangement, where the rod 3k has a circumferential groove 3n in which the end of a stop element 21 fixed to a frame element 13 takes place.
  • the end 21a of the stop element 21 passes through a lateral opening 19b made in the ring 19. If the stop element stopper 21 has a certain elasticity in bending, the stopper element 21 can serve as a shock absorber. In the event of a strong axial impact, which is sufficient to cause the stop element to bend, the latter comes into contact with one or the other of the walls of said opening 19b which are located opposite the stop element 21 in order to limit the movement of the balance 3.
  • the figure 16 further illustrates a variant of a shock-absorbing arrangement, which differs from that of the figure 15 in that, instead of a groove 3n machined in the body of the rod 3k, two rings 3o, 3p are driven out, glued or welded to the rod 3k. These two rings 3o, 3p are separated from one another by an annular gap, which constitutes said groove 3n in which the end 21a of the stop element 21 takes place.
  • the diameter of the end of the rod 3k is reduced, but it is also possible that it has the same diameter at each ring 3o, 3p.
  • the oscillator 1 has been illustrated attached to a fixed frame element of a clockwork movement. However, it can alternatively be fixed to a movable structural element, such as a tourbillon or carousel cage, or to a bridge fixed in turn to such a cage.
  • a movable structural element such as a tourbillon or carousel cage
  • the fixing member 7, the elastic systems 5 as well as the frame 3a of the balance 3 are particularly suitable for manufacture by micromachining, on the basis of a non-metallic material.
  • manufacturing processes by masking and etching (wet or dry) of material plates (such as the DRIE process), laser cutting of such plates and the like.
  • Microstructuring processes are also possible, by modifying the structure of material plates, for example by laser irradiation (in particular by “femtolaser”) and then removing the irradiated material by chemical etching.
  • laser irradiation in particular by “femtolaser”
  • chemical etching we could even create a one-piece oscillator by applying the latter process to a block of photostructurable material such as suitable glass.
  • Additive manufacturing processes based on 3D printing stereolithography, selective laser sintering, selective laser melting, etc.
  • 3D printing stereolithography, selective laser sintering, selective laser melting, etc.
  • LIGA Lithography, Galvanoformung, Abformung
  • sintering and the like are also possible.
  • these materials can also be coated, for example with silicon oxide, adamantine carbon (DLC), alumina or the like, in order to modify their mechanical, thermal or optical properties, in a known manner.
  • an outer layer of silicon oxide can be advantageously formed on a silicon core in order to make the operation of the oscillator 1 substantially independent of the temperature by modifying the thermal coefficient of the modulus of Young of elastic elements 5b. Indeed, by varying the thickness of this layer, said thermal coefficient of the Young's modulus of the elastic elements can be made substantially zero, or can be made the inverse of that of silicon in order to compensate for the variations in rate generated by the thermal expansion of the balance.
  • FIG 17 illustrates yet another variant of a mechanical oscillator 1 according to the invention, which comprises two oscillators 1 as described above arranged head-to-tail and comprising a common balance 3. These two sub-oscillators are thus coupled at the level of the balance 3, and the assembly can alternatively be considered as a system of oscillators.
  • this variant comprises two oscillators 1 as illustrated in the figures 1 to 11 mounted in reverse orientations, their individual balances 3 being adjacent and made integral in rotation with one another in order to form a common balance which is linked at the same time to each attachment member 7 by means of a corresponding elastic system 5.
  • the individual balances associated with each elastic system 5 are considered as “sub-balances”, their whole constituting the common balance 3.
  • each elastic system 5 is identical, and the tongues 7a of each attachment member 7 extend in the same direction.
  • the two elastic systems 5 may be different, and the tongues 7a may extend in different directions.
  • the two individual balances, or even sub-balances are made integral in rotation with one another by means of a rod 3k which extends substantially along the geometric axis of rotation 9, and is driven, glued, welded or similar to each sub-balance.
  • a rod 3k which extends substantially along the geometric axis of rotation 9
  • pillars or the like extending between the struts or among other parts of the pendulums are also foreseeable.
  • a single individual balance wheel is also possible as a common balance wheel.
  • This arrangement has greater stiffness in translation, in particular along the axis 9, as well as in torsion, in particular around any axis that is not the axis of rotation 9. The movement of the balance 3 in the event of an impact is thus reduced, regardless of a translational or rotational shock.
  • each elastic system 5 be planar, more complex shapes also being possible.
  • the various frames 5a must not be absolutely all identical in shape.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Micromachines (AREA)
  • Springs (AREA)

Description

    Domaine technique
  • La présente invention se rapporte au domaine de l'horlogerie. Elle concerne, plus particulièrement, un oscillateur mécanique dépourvu de pivot et comprenant un balancier suspendu au bâti par l'intermédiaire d'une pluralité de systèmes élastiques.
  • Etat de la technique
  • Le document EP 2 273 323 décrit un oscillateur du genre susmentionné, dans lequel un balancier est suspendu à un élément de bâti par des systèmes élastiques agencés en série. Ces derniers comprennent chacun une paire de lames s'étendant en « V » entre une partie centrale rigide et un cadre en arc de cercle, et servent à fournir le couple de rappel pour le balancier ainsi qu'à soutenir ce dernier. Dans le niveau supérieur de cette construction, le cadre est agencé pour être vissé sur un élément de bâti tel qu'une platine ou un pont, et la partie centrale rigide est fixée à celle du niveau adjacent. Le cadre de ce dernier niveau est à son tour fixé au cadre du prochain système élastique, qui est fixé par sa partie centrale rigide au système élastique subséquent. Cette séquence continue jusqu'au balancier, qui est fixé à son centre à la partie centrale rigide du dernier système élastique.
  • Dans cet agencement, plusieurs des systèmes élastiques sont liés entre eux par leurs parties centrales rigides, et le balancier est également fixé à la partie centrale rigide du dernier système élastique. Par conséquent, la rigidité angulaire de la suspension de la masse, considérée selon les deux axes perpendiculaires à l'axe de rotation de la masse, n'est pas optimale, et cette dernière peut ainsi pencher légèrement, notamment en cas de choc angulaire tendant à faire pivoter le balancier selon un axe sensiblement perpendiculaire à l'axe de rotation du balancier.
  • Par ailleurs, lors des oscillations, le cisaillement engendré dans les liaisons centrales est relativement élevé, ce qui augmente le risque de casse de ces interfaces.
  • Finalement, on note que chaque système élastique individuel est extrêmement déséquilibré autour de l'axe virtuel de rotation, ce qui donne lieu à des déplacements et des forces parasites non souhaités.
  • D'autres formes d'oscillateurs sans pivots conventionnels sont également dévoilées par les documents EP3299905 , CH710759 , EP3147725 et US2016/011566 .
  • Le but de l'invention est par conséquent de proposer un oscillateur mécanique dans lequel les défauts susmentionnés sont au moins partiellement surmontés.
  • Divulguation de l'invention
  • De façon plus précise, l'invention concerne un oscillateur mécanique pour pièce d'horlogerie comprenant un balancier suspendu, de n'importe quelle forme, agencé pour osciller autour d'un axe de rotation géométrique, c'est-à-dire un axe virtuel dépourvu d'arbre et de pivots conventionnels. Une pluralité de systèmes élastiques agencés en série relient ledit balancier à un organe d'attache agencé pour fixer ledit oscillateur directement ou indirectement à un élément structurel que comporte ladite pièce d'horlogerie, tel qu'un élément de bâti fixe, une cage de tourbillon ou de carrousel ou similaire. À cet effet, les systèmes élastiques présentent une raideur considérée parallèle à la direction axiale qui est suffisante pour suspendre et pour soutenir le balancier indépendamment de l'orientation du système par rapport à la direction du vecteur de gravité, et une élasticité autour dudit axe de rotation adaptée pour permettre au balancier d'osciller en rotation.
  • Selon l'invention, chaque système élastique comporte un nombre pair d'au moins quatre cadres extérieurs (c'est-à-dire quatre, six, huit ou même plus) et au moins deux éléments de liaison intérieurs. Chaque cadre porte deux (ou même plus) éléments élastiques (lames élastiques, combinaisons de barreaux rigides et lames ou cols, ou similaires qui assurent l'élasticité de l'élément élastique considéré dans son ensemble) s'étendant chacun entre ledit cadre et l'un desdits éléments de liaison intérieurs.
  • Chaque élément de liaison intérieur est relié aux deux éléments élastiques portés par l'un desdits cadres, ainsi qu'à un élément élastique adjacent de chacun des autres cadres du même système élastique se situant de part et d'autre dudit cadre considéré.
  • De plus, chacun desdits systèmes élastiques est fixé à chaque système élastique y adjacent au niveau d'un de ses cadres sur deux (ces cadres étant non adjacents l'un par rapport à l'autre), par exemple par l'intermédiaire de tenons, goupilles, plots, vis, soudage, collage ou similaires, ces moyens étant agencés pour rendre mutuellement solidaires les cadres en question. En d'autres mots, chaque système élastique qui est adjacent à un seul autre est fixé à cet autre par un cadre sur deux, et chaque système élastique qui se situe entre deux autres est fixé d'une part à un premier de ces autres systèmes par un cadre sur deux, et d'autre part à l'autre de ces autres systèmes par l'autre moitié de ses cadres.
  • Par ces moyens, chaque système élastique peut être mieux équilibré que ceux de l'art antérieur et, puisque les systèmes élastiques sont reliés en série par leurs cadres, la force ainsi transmise lors des oscillations est éloignée du centre de rotation et engendre par conséquent un cisaillement significativement moins important dans les liaisons entre systèmes élastiques.
  • Avantageusement:
    • ledit balancier est relié à l'un cadre sur deux du système élastique y adjacent, cesdits cadres n'étant pas directement adjacents l'un par rapport à l'autre, les autres cadres interposés entre ceux fixés au balancier étant donc libres d'osciller par rapport à ce dernier ; ledit organe d'attache est relié à l'un cadre sur deux du système élastique y adjacent, cesdits cadres n'étant pas directement adjacents l'un par rapport à l'autre, les autres cadres interposés entre ceux fixés à l'organe d'attache étant donc libres d'osciller par rapport à l'organe d'attache.
  • Dans le cas où l'oscillateur comporte au moins trois desdits systèmes élastiques, chaque cadre appartenant à chaque système élastique intermédiaire (c'est-à-dire chaque système élastique qui n'est pas immédiatement adjacent au balancier ou à l'organe d'attache) est relié à un cadre de l'un ou l'autre des systèmes élastiques y adjacents, la moitié des cadres dudit système élastique considéré étant reliés à un cadre sur deux d'un autre système élastique situé en regard d'un premier côté du système élastique considéré (c'est-à-dire au premier système élastique y adjacent), les autres cadres que comportent ledit système élastique considéré étant reliés à un cadre sur deux d'un autre système élastique situé en regard du deuxième côté du système élastique considéré (c'est-à-dire au deuxième système élastique y adjacent), lesdits cadres du système élastique considéré étant reliés par alternances à l'un ou l'autre desdits systèmes élastiques adjacents, par leurs cadres (c'est-à-dire que les cadres du système élastique considéré sont liés, par une succession alternée, aux cadres correspondants du premier ou du deuxième système élastique adjacent).
  • Avantageusement, chaque système élastique est orienté d'un angle de (360/N)° autour dudit axe de rotation par rapport au système élastique adjacent, N étant le nombre de cadres que comporte chacun desdits systèmes élastiques considérés individuellement. Donc, pour quatre cadres par système élastique, l'angle d'orientation relatif est de 90°, pour six cadres 60°, pour huit cadres 45°, etc.
  • Avantageusement, chaque élément élastique comporte une barre médiane substantiellement rigide, une première lame flexible s'étendant entre une première extrémité de ladite barre et l'un desdits éléments de liaison intérieurs ainsi qu'une deuxième lame flexible s'étendant entre une deuxième extrémité de ladite barre, opposée à ladite première extrémité, et l'un desdits cadres. Bien entendu, la plus petite dimension de la section desdites lames est, de préférence, orientée perpendiculairement audit axe de rotation afin de fournir de l'élasticité et de la rigidité dans les sens désirés, pour obtenir le fonctionnement décrit ci-dessus. Cette configuration d'élément élastique lui confère une raideur (c'est-à-dire une relation entre le déplacement angulaire déformant cet élément élastique et le couple qui y est associé) substantiellement constant en fonction de l'angle de rotation du balancier, en tout cas plus constant que d'autres configurations. Alternativement, les éléments élastiques peuvent être formés comme des lames simples, aucune barre médiane n'étant présente.
  • Avantageusement, chacun desdits éléments de liaison intérieurs est relié exclusivement à des cadres du même système élastique par l'intermédiaire des éléments élastiques correspondants. En d'autres termes, aucune liaison directe entre un élément de liaison intérieure d'un système élastique et un élément de liaison intérieure du système élastique adjacent n'est présente, les seules liaisons entre les systèmes élastiques étant au niveau des cadres comme décrit ci-dessus.
  • Avantageusement, l'oscillateur comporte en outre une tige s'étendant axialement depuis ledit balancier en direction opposée auxdits systèmes élastiques, ladite tige étant agencée pour prendre place avec jeu dans une ouverture prévue dans un élément structurel de ladite pièce d'horlogerie, aucun contact entre la tige et l'ouverture n'étant présent lors du fonctionnement normal de l'oscillateur. En cas de choc présentant une composante radiale, la tige peut ainsi entrer en contact avec les parois de ladite ouverture, ce qui limite le débattement radial du balancier et réduit la probabilité que les systèmes élastiques soient endommagés. Si l'ouverture définit également une butée axiale pour la tige, un choc tendant à éloigner le balancier du système élastique peut également être amorti en limitant le débattement du balancier dans cette direction.
  • Avantageusement, l'oscillateur comporte en outre une vis vissée axialement dans l'extrémité de ladite tige, la tête de ladite vis étant agencée pour entrer en contact avec une butée solidaire dudit élément structurel en cas de choc selon une direction axiale, notamment en cas de choc tendant à faire rapprocher le balancier des systèmes élastiques. Dans le cas d'un conc axial dans l'autre sens, la tige peut également buter contre une butée axiale correspondante. Par conséquent, en cas de choc dans n'importe quel sens, l'oscillateur est protégé puisque le débattement du balancier est limité dans toute direction.
  • Alternativement, l'oscillateur peut comporter un circlip ou une rondelle solidaire en translation de ladite tige et agencé pour entrer en contact avec une butée solidaire dudit élément structurel, et ce en cas de choc selon une direction axiale. Cette butée peut être rigide ou flexible.
  • Encore alternativement, ladite tige comporte une rainure circonférentielle agencée pour coopérer avec une butée que porte ledit élément structurel, et ce en cas de choc selon une direction axiale. À nouveau, cette butée peut être rigide ou flexible. Ladite rainure peut être usinée dans la tige, ou peut être constituée par un interstice entre deux bagues fixées sur cette dernière.
  • Avantageusement, ledit balancier est apte à effectuer des oscillations ayant une amplitude d'au moins 15°. Avec une amplitude d'au moins 30°, l'oscillateur est ainsi compatible avec des échappements conventionnels, comme par exemple des échappements à ancre suisse ou anglaise, à détente, Omega-Daniels, ou similaire. Bien entendu, l'amplitude peut s'élever à au moins 60°, au moins 90°, ou même plus.
  • Avantageusement, chaque système élastique 5 présente une symétrie en rotation de (720/N)°, N étant le nombre de cadres que comporte chaque système élastique.
  • Avantageusement, l'oscillateur mécanique peut se composer de deux oscillateurs individuels comme décrits ci-dessus, à agencés en tête-bêche et comportant un balancier commun. Ce dernier peut se composer d'un seul balancier, ou de deux sous-balanciers solidaires en rotation l'un de l'autre, par exemple par l'intermédiaire d'un tige s'étendant substantiellement le long de l'axe de rotation, par des piliers liant les serges des deux sous-balanciers, ou similaire.
  • Avantageusement, au moins certain desdits éléments élastiques sont fait en silicium muni d'une couche d'oxyde de silicium sur au moins certaines (de préférence l'ensemble) de leurs surfaces extérieures. Cette couche permet de modifier le coefficient thermique du module de Young des éléments élastiques et ainsi de compenser des erreurs de marche dues aux effets des variations de température sur les matériaux des systèmes élastiques et/ou du balancier.
  • Brève description des dessins
  • D'autres détails de l'invention apparaîtront plus clairement à la lecture de la description qui suit, faite en référence aux dessins annexés dans lesquels :
    • Fig. 1 est une vue isométrique, côté organe d'attache, d'un oscillateur mécanique selon l'invention en état assemblé ;
    • Fig. 2 est une vue isométrique latérale de l'oscillateur mécanique de la figure 1 ;
    • Fig. 3 est une vue isométrique, côté balancier, de l'oscillateur mécanique de la figure 1 ;
    • Fig. 4 est une vue isométrique du balancier de l'oscillateur de la figure 1 ;
    • Fig. 5 est une vue isométrique de l'un des systèmes élastiques de l'oscillateur de la figure 1 ;
    • Fig. 6 est une vue isométrique, côté organe d'attache, du balancier et du système élastique y adjacent de l'oscillateur de la figure 1 ;
    • Fig. 7 et 8 sont des vues isométriques de tenons utilisés pour relier les cadres de l'un des systèmes élastiques à ses voisins ;
    • Fig. 9 est une vue isométrique de l'organe d'attache et le système élastique y associé de l'oscillateur de la figure 1 ;
    • Fig. 10 est une vue isométrique explosée de l'oscillateur de la figure 1 ;
    • Fig. 11 est une vue isométrique de deux systèmes élastiques adjacents de l'oscillateur de la figure 1 ;
    • Fig. 12 est une vue isométrique coupée de l'oscillateur de la figure 1 ainsi que d'une partie du mouvement horloger dans lequel l'oscillateur est intégré ;
    • Fig. 13 est une vue similaire à celle de la figure 12 dont une partie a été agrandie, illustrant une variante de l'agencement de protection antichoc ;
    • Fig. 14 est une vue isométrique coupée agrandie d'encore une variante d'un agencement antichoc ;
    • Fig. 15 est encore une vue isométrique coupée agrandie d'encore une autre variante d'un agencement antichoc ;
    • Fig. 16 est encore une vue isométrique coupée agrandie d'encore une autre variante d'un agencement antichoc ; et
    • Fig. 17 est une vue isométrique coupée d'une autre variante d'un oscillateur selon l'invention.
    Modes de réalisation de l'invention
  • Dans la description qui suit, le terme « rigide » signifie qu'un élément n'est pas susceptible de se déformer substantiellement lors du fonctionnement normal de l'oscillateur, selon au moins une direction donnée. Sans indication d'une telle direction, un « élément rigide » est considéré comme rigide dans toute direction. Le terme « élastique » signifie par contre qu'une déformation élastique d'un élément est souhaitée lors dudit fonctionnement, également selon au moins une direction donnée, cette déformation ayant un effet recherché sur le fonctionnement de l'oscillateur. Si un élément est rigide selon une première direction et élastique selon une deuxième direction, ceci sera indiqué clairement dans le texte. Par ailleurs, afin de ne pas surcharger les figures, l'ensemble de signes de référence n'apparait pas sur chaque dessin. Finalement, on note que, en l'absence d'autre indication explicite contraire, les relations spatiales entre des éléments sont définies par défaut lorsque l'oscillateur est au repos, et la direction axiale est déterminée par rapport à l'axe de rotation 9.
  • Les figures 1 à 3 illustrent un oscillateur mécanique 1 selon l'invention, en état assemblé. Cet oscillateur 1 comporte un balancier 3, qui fournit l'inertie qui, en coopération avec l'élasticité d'une pluralité de systèmes élastiques 5, détermine la fréquence d'oscillation de l'oscillateur 1 lorsque ce dernier est en marche, c'est-à-dire lorsqu'il est mis en oscillation. Ces systèmes élastiques 5 sont agencés en série de telle sorte à relier le balancier 3 à un organe d'attache 7, ce dernier étant agencé pour être fixé directement ou indirectement (par exemple par le biais d'une pièce intermédiaire) à un élément fixe d'une pièce d'horlogerie tel qu'un pont, une platine ou similaire ou à une cage de tourbillon. De cette façon, le balancier 3 est suspendu et peut pivoter sensiblement autour d'un axe de rotation 9 non-physique, c'est-à-dire autour d'un axe virtuel, géométrique et non autour d'un arbre monté entre paliers conventionnels. L'oscillateur 1 est ainsi dépourvu de pivots, ce qui réduit les frottements et améliore son facteur de qualité par rapport à un oscillateur balancier-spiral conventionnel.
  • Le balancier 3 du mode de réalisation illustré, qui est représenté en isolation sur la figure 4, est formé d'un cadre substantiellement rigide définissant une serge 3a périphérique ainsi qu'un moyeu 3b central, ces deux éléments étant reliés entre eux par une pluralité de bras 3c. Des bras supplémentaires 3d s'étendent en cantilever depuis le moyeu 3b en direction de la serge 3a. La serge 3a ainsi que les bras supplémentaires 3d portent des masses 3f, déterminant l'inertie du balancier 3. En variant l'inertie par rapport à l'axe de rotation 9 des masses 3f portées par les bras supplémentaires 3d et/ou de celles portées par la serge 3a, la fréquence de résonance de l'oscillateur 1 peut être ajustée de façon connue. Alternativement, en variant la rigidité des éléments élastiques 5b (par exemple en enlevant de la matière par l'intermédiaire d'un laser), on peut également varier la fréquence de résonance de l'oscillateur.
  • Le moyeu 3b porte un plateau 3g (voir la figure 3) fixé dans l'ouverture centrale du moyeu 3b par le biais d'une pièce intermédiaire 3j (voir la figure 12) et porte une tige 3k s'étendant axialement en direction opposée aux systèmes élastiques 5. Le fonctionnement de cette tige 3k sera décrit ci-dessous dans le contexte de la figure 12.
  • Le plateau 3g porte une cheville 3h ainsi qu'un système anti-renversement 3i conformément à ceux du document EP 3 037 894 . Cependant, le balancier 3 ainsi que le plateau 3g, peuvent prendre n'importe quelles formes connues, adaptées pour coopérer avec un échappement de n'importe quel genre, comme par exemple un échappement à ancre anglaise ou suisse, un échappement à détente, un échappement Omega-Daniels ou similaire. En ce qui concerne la serge 3a, cette dernière peut être complète, fendue, ou partielle (par exemple en ne comportant que deux sections en forme de barre ou en arc de cercle comme dans le document EP 2 273 323 susmentionné).
  • Comme mentionné ci-dessus, le balancier 3 est relié à l'organe d'attache 7 par l'intermédiaire d'une pluralité de systèmes élastiques 5, agencés en série. Dans le mode de réalisation illustré, l'oscillateur 1 comporte quatre de ces systèmes 5, mais le nombre peut varier par exemple entre deux et huit ou même plus.
  • La figure 5 illustre l'un parmi ces systèmes élastiques 5 en isolation. Ce dernier comporte quatre cadres rigides 5a, chacun en arc de cercle. Ces cadres sont reliés chacun par l'intermédiaire d'une paire d'éléments élastiques 5b à des organes de liaison intérieurs 5c, lesdits éléments élastiques 5b fixés à chaque cadre individuel 5a faisant un angle aigu entre eux préférentiellement entre 45° et 75°, plus préférentiellement entre 50° et 70°. Dans le mode de réalisation illustré, les quatre cadres 5a sont substantiellement identiques et s'étendent sur le même angle, et le système élastique 5 présente une symétrie en rotation de 180°. De cette façon, l'angle formé entre les éléments élastiques 5b de chaque cadre 5a est également substantiellement identique. Cependant, il est possible de varier ces angles, par exemple par paires opposées de cadres. On note par ailleurs que la prolongation de chaque élément élastique 5 intersecte de préférence l'axe de rotation 9 lorsque l'oscillateur est au repos.
  • Les éléments élastiques 5b du mode de réalisation illustré se composent chacun d'un barreau rigide 5d médian ainsi que d'une paire de lames élastiques 5f s'étendant de part et d'autre entre le barreau rigide et, d'une part l'un des cadres 5a, d'autre part un élément de liaison intérieur 5c. Les éléments élastiques 5b sont agencés pour présenter une élasticité en flexion dans le plan du système élastique 5, ainsi que d'être substantiellement rigide en flexion perpendiculaire audit plan. De cette façon, la raideur de l'élément élastique 5b perpendiculaire audit plan est au moins dix fois, de préférence au moins cent fois, celle dans ledit plan, la plus petite dimension de chaque lame 5f étant dans ce plan et donc perpendiculaire à l'axe de rotation 9. Cette forme d'élément élastique 5b présente une raideur angulaire qui est substantiellement constante en fonction de l'angle de rotation du balancier, c'est-à-dire que son coefficient d'élasticité reste substantiellement invariant lors des oscillations.
  • Alternativement, les éléments élastiques 5b peuvent prendre chacun la forme d'une lame simple, comme c'est le cas dans le document EP 2 273 323 , ou peuvent prendre la forme de n'importe quel genre d'élément de flexion équivalent comme par exemple des agencements de cols situés de part et d'autre du barreau 5d rigide. Il n'est pas nécessaire non plus que les éléments élastiques 5b soient droits : en effet, ils peuvent prendre un grand nombre de formes ad hoc selon les besoins de l'homme du métier, notamment courbes.
  • Les organes de liaison intérieurs 5c sont séparés l'un de l'autre par une fente 5g et sont fixés chacun à quatre éléments élastiques 5b adjacents, dont les deux au milieu sont associés à l'un des cadres 5a, et les deux autres appartiennent chacun à un cadre 5a adjacent correspondant, ces derniers cadres 5a se situant de part et d'autre du premier cadre 5a mentionné.
  • Afin de mieux illustrer cet aspect du système élastique 5, les quatre cadres 5a et leurs lames correspondantes ont été indiqués par les lettres « A », « B », « C » et « D » sur la figure 5.
  • Par conséquent, un premier des organes de liaison intérieur 5c est solidaire d'un seul élément élastique 5b appartenant au cadre A, des deux éléments élastiques 5b du cadre B, ainsi que d'un seul des éléments élastiques 5b du cadre C, selon cette séquence. De la même façon, l'autre organe de liaison intérieur 5c est solidaire de l'autre élément élastique 5b du cadre C, des deux éléments élastiques 5b du cadre D, ainsi que de l'autre élément élastique 5b du cadre A.
  • Même si chaque système élastique 5 tel qu'illustré comporte quatre cadres 5a associés chacun à deux éléments élastiques 5b, on peut également en prévoir six ou même huit, ce qui augmentera le nombre d'éléments de liaison intérieurs 5c à trois ou quatre respectivement, chaque élément de liaison intérieur 5c restant associé à quatre éléments élastiques 5b adjacents de la manière décrite ci-dessus. À cet effet, la symétrie en rotation de chaque système élastique 5 est de (720/N)°, où N est le nombre de cadres 5a par système élastique 5.
  • Comme mentionné ci-dessus, les systèmes élastiques 5 sont reliés en série entre le balancier 3 et l'organe d'attache 7, comme expliqué en détails ci-dessous.
  • Côté balancier 3, ce dernier est fixé à deux cadres 5a opposés d'un premier système élastique 5 par l'intermédiaire de tenons 11 (voir notamment la figure 6) qui assurent non seulement la fixation de ces composants l'un par rapport à l'autre, mais aussi une séparation prédéterminée entre le balancier 3 et le système élastique 5.
  • Ces tenons 11 peuvent prendre diverses formes, dont deux exemples différents et non limitatifs sont illustrés sur les figures 7 et 8, mais il est également possible de fixer les cadres 5a les uns aux autres par des entretoises quelconques, quelles que soient les pièces supplémentaires, ou les pièces venues de matière avec les cadres 5a.
  • La figure 7 illustre un premier tenon 11 qui est notamment fabricable à partir d'une plaque de matériau micro-usinable tel que du silicium. À cet effet, le tenon 11 comporte deux têtes 11a s'étendant en deux directions opposées, et séparées par une entretoise 11b de section rectangulaire, et peut être formé par gravage (laser, chimique (par exemple DRIE), par voie sèche...), électroformage (par exemple LIGA ou autre), par un procédé additif (imprimerie 3D), ou tout autre procédé similaire. Les têtes 11a sont agencées pour être fixées dans des ouvertures correspondantes présentant des formes complémentaires prévues dans les éléments à lier par chassage, collage, soudage, clipsage ou similaire. L'entretoise 11b sert à définir une séparation prédéterminée entre les deux éléments ainsi fixés l'un à l'autre, afin que les cadres 5a, les éléments élastiques 5b et les éléments de liaison intérieurs 5c n'entrent pas en contact.
  • La figure 8 illustre un tenon 11 conventionnel, de section circulaire, qui peut être usiné de manière classique et qui ne nécessite pas d'être décrit en détail. Bien entendu, ses têtes 11a ainsi que son entretoise 11b remplissent les mêmes fonctions que ceux du tenon 11 de la figure 7. Des tenons 11 de cette forme peuvent également être fixées dans les ouvertures complémentaires par l'intermédiaire de chassage, collage, soudage, clipsage ou similaire.
  • Alternativement, les tenons 11 peuvent être venus de matière avec certains des cadres 5a.
  • Passant maintenant au côté opposé au balancier 3, la figure 9 illustre l'organe d'attache 7, qui est destiné à être fixé à un élément structurel fixe d'une pièce d'horlogerie, comme par exemple un pont ou une platine, ou bien à un élément structurel mobile telle qu'une cage de tourbillon ou de carrousel ou similaire. Dans le mode de réalisation illustré, cet organe d'attache comporte une paire de langues 7a munies d'une pluralité d'ouvertures destinées à recevoir des goupilles de positionnement, des vis de fixation, des pieds-vis ou similaire, ainsi qu'un anneau rigide 7b. Bien entendu, d'autres formes d'organes d'attache sont possibles.
  • Bien qu'il soit possible de fixer deux cadres 5a du dernier système élastique 5 à cet anneau de façon similaire à la fixation du balancier au système élastique 5 y adjacent, il est avantageux de former ledit dernier système élastique 5 de façon monobloc avec ledit organe d'attache 7. À cet effet, deux des cadres 5a sont formés intégralement avec l'anneau 7b, cesdits cadres 5a étant bien entendu opposés l'un par rapport à l'autre. Les deux autres cadres 5a qui se trouvent entre les cadres fixes 5a sont libres et peuvent ainsi se déplacer dans le plan de ce système élastique 5. Ce faisant, l'épaisseur de l'oscillateur 1 peut être réduite à un minimum, et chaque cadre 5a qui peut se déplacer se trouve entre les deux cadres 5a fixes.
  • On note par ailleurs qu'il est également possible que deux des cadres 5a du dernier système élastique 5 puissent agir eux-mêmes comme organes d'attache, en étant fixés directement ou indirectement à un élément structurel du mouvement, ou en étant intégrés à cet élément structurel.
  • La figure 10 illustre l'oscillateur 1 en vue explosée afin d'illustrer plus clairement l'agencement en série des divers systèmes élastiques 5.
  • Dans cette figure, le niveau de l'organe d'attache a été indiqué comme « niveau 1 », celui immédiatement adjacent au balancier comme « niveau 4 », et la séquence de niveaux intermédiaires a été numérotée comme indiquée sur la figure. Par ailleurs, les suffixes A, B, C, D ont été utilisés afin d'identifier les cadres spécifiques, suivant les indications correspondantes de la figure 5.
  • On commence par le système élastique 5 du niveau 1 qui, pour rappel, est venu de matière avec l'organe d'attache au niveau des cadres 5aB et 5aD. Les deux autres cadres 5aA et 5aC, qui sont libres de se déplacer dans leur plan par rapport à l'organe d'attache 7a, sont fixés aux deux cadres adjacents 5aB et 5aD du prochain système élastique 5, par l'intermédiaire des tenons 11 susmentionnés. Ce dernier système élastique 5 est orienté à 90° par rapport à celui intégré à l'organe d'attache et ce lorsque l'oscillateur 1 est au repos, de telle sorte que les fentes 5g entre les organes de liaison intérieurs 5c de chaque niveau s'oriente à 90° l'une par rapport à l'autre.
  • Les deux autres cadres 5aA et 5aC du niveau 2 sont à leur tour fixés par l'intermédiaire de tenons 11 aux deux cadres adjacents 5aB et 5aD du prochain système élastique 5 du niveau 3, les autres deux cadres 5aA et 5aC de ce niveau étant fixés à leur tour aux cadres 5aB et 5aD respectivement du niveau 4. Finalement, les autres cadres 5aA et 5aC du niveau 4 sont fixés au balancier 3. On note qu'on considère les systèmes élastiques 5 des niveaux 2 et 3 comme étant des systèmes élastiques 5 intermédiaires, puisque chacun de ces systèmes élastiques 5 est adjacent à deux autres situés de part et d'autre selon la direction axiale.
  • La figure 11 illustre plus clairement l'orientation relative de deux niveaux adjacents de systèmes élastiques 5, notamment les niveaux 4 et 3. L'orientation de cette vue est l'inverse de celle de la figure 10, et pour cette raison le niveau 4 est en dessus du niveau 3 sur cette figure. On voit clairement comment les fentes entre les organes de liaison intérieurs 5c de chaque niveau adjacent sont orientées à 90° l'une par rapport à l'autre, puisque les deux systèmes élastiques 5 sont orientés à 90° l'un par rapport à l'autre.
  • On note par ailleurs qu'il n'y a aucune liaison entre les différents niveaux au centre des systèmes élastiques 5, les organes de liaison intérieurs 5c d'un niveau donné étant libres par rapport à ceux du niveau adjacent. En effet, dans la construction proposée, les seules liaisons entre les niveaux se trouvent au niveau des cadres 5a.
  • Dans le cas où chaque système élastique comporte six cadres 5a (et ainsi trois organes de liaison intérieurs 5c), la relation angulaire entre chaque système élastique 5 et les systèmes élastiques 5 adjacents est de 60°. De la même façon, dans le cas de huit cadres par niveau, la relation angulaire est de 45°, les mêmes considérations s'y appliquant également. Plus généralement, pour N cadres, la relation angulaire entre systèmes élastiques adjacents est à raison de (360/N)°, grâce à la symétrie en rotation de (720/N)° de chaque système élastique 5.
  • Dans le mode de réalisation illustré, le nombre de systèmes élastiques 5 est quatre, mais le nombre peut varier entre deux et huit ou même plus. L'agencement de quatre systèmes élastiques 5 permet une amplitude d'environ 100° à 120° pour les oscillations du balancier 3, un nombre inférieur de systèmes élastiques 5 engendrant des oscillations de plus petites amplitude, un nombre supérieur entrainant des oscillations de plus grande amplitude.
  • La figure 12 illustre en vue isométrique coupée, l'oscillateur 1 décrit ci-dessus, monté sur un pont 11 solidaire d'une platine 13 d'un mouvement d'horlogerie. Cette platine 13 porte également un rouage de finissage 15 et un échappement 17 de manière connue. Afin de protéger l'oscillateur 1 de chocs au moins selon certaines directions, l'extrémité libre de la tige cylindrique 3k prend place dans une ouverture 19a prévue dans une bague 19 fixée dans la platine 13 par chassage, collage, soudage ou similaire. Alternativement, cette ouverture peut être formée directement dans la platine 13. L'ouverture 19a peut être borgne ou traversante, et dans le mode de réalisation illustrée elle est traversante mais comporte un épaulement 19c contre lequel l'extrémité de la tige 3k peut buter en cas de choc axial tendant à éloigner le balancier 3 des systèmes élastiques 5. Dans d'autres variantes de construction non illustrées, la bague 19 (ou l'ouverture susmentionnée formée directement dans un élément structurel) peut être prévue dans un pont, un élément d'une cage de tourbillon ou de carrousel, ou n'importe quel autre élément structurel, quel que ce soit fixe ou mobile. Ceci s'applique également pour les autres variantes décrites ci-dessous.
  • Lorsque l'oscillateur est au repos ou fonctionne normalement, un jeu existe entre la tige 3k et les parois intérieures de l'ouverture 19a, ces deux éléments n'entrant donc pas en contact. Cependant, en cas de choc radial, axial ou en rotation autour d'un axe autre que l'axe de rotation 9 de l'oscillateur 1, la tige 3k bute contre au moins l'une des parois intérieures de l'ouverture 19a, notamment contre sa paroi cylindrique ou son épaulement 19c. Ce faisant, le débattement du balancier 3 est limité, les contraintes mécaniques engendrées dans l'oscillateur sont limitées et le risque de rupture des éléments élastiques 5b est également minimisé. Cependant, cet agencement ne confère aucune protection contre un choc axial tendant à faire rapprocher le balancier 3 des systèmes élastiques 5, c'est-à-dire vers le haut selon l'orientation de cette figure.
  • La figure 13 illustre une variante d'un agencement antichoc qui diffère de celui de la figure 12 en ce qu'une vis 3p est vissée axialement dans l'extrémité libre de la tige 3k, la vis n'entrant pas en contact avec les parois de l'ouverture 19a lors du fonctionnement normal de l'oscillateur 1. L'ouverture 19a dans la bague 19 définit un épaulement 19c contre lequel la tête de la vis 3p bute en cas de choc axial tendant à faire rapprocher le balancier 3 des systèmes élastiques 5. À nouveau, lors du fonctionnement normal de l'oscillateur, ni la tige 3k, ni la vis 3p n'entre en contact avec une surface quelconque de l'ouverture 19a ou de l'épaulement. Le débattement de l'oscillateur est ainsi limité en cas de choc selon n'importe quel axe de translation ou de rotation, à l'exception de l'axe de rotation 9 de l'oscillateur 1.
  • La figure 14 illustre encore une variante d'un agencement antichoc, dans lequel la tige 3k est munie d'un circlip 3m qui est fixé à un endroit ad hoc, par exemple par clipsage. Alternativement, au lieu d'un circlip, on peut utiliser une rondelle chassée, collée, soudée ou similaire sur la tige 3k. Le débattement axial du balancier 3 est limité d'une part par la surface extérieure de la bague 19 qui est en regard du balancier 3, et d'autre part par un élément de butée 21 qui est solidaire d'un élément de bâti et dont l'extrémité 21a est en superposition du circlip 3m. Cet élément de butée peut prendre n'importe quelle forme, mais peut être par exemple une bascule montée sur l'élément de bâti. Cette bascule peut par exemple pivoter autour d'une goupille dans une plage angulaire déterminée par un excentrique ou par d'autres moyens de positionnement (comme par exemple deux vis opposées), un dispositif de verrouillage tel qu'une ou plusieurs vis ou similaires pouvant être agencé pour bloquer la bascule en pivotement. L'ouverture 19a dans la bague 19 est cylindrique dans la variante illustrée, mais rien n'empêche l'utilisation d'une bague 19 comme celle de la figure 12 dont l'ouverture 19a est partiellement fermée par un épaulement 19c.
  • Par conséquent, lors d'un choc radial ou angulaire, la tige 3k bute contre la paroi intérieure de l'ouverture 19a, et lors d'un choc axial, le circlip 3m bute contre l'une ou l'autre de la surface de la bague 19 ou l'extrémité 21a de l'élément de butée 21.
  • La figure 15 illustre encore une autre variante d'un agencement antichoc, où la tige 3k présente une rainure circonférentielle 3n dans laquelle prend place l'extrémité d'un élément de butée 21 fixé à un élément de bâti 13.
  • À nouveau, lorsque l'oscillateur 1 est au repos ou fonctionne normalement, la tige 3k n'entre en contact ni avec l'ouverture 19a, ni avec l'extrémité 21a de l'élément de butée 21, grâce au jeu qui est présent entre ces éléments.
  • En cas de choc axial, une surface de la rainure 3n entre en contact avec ladite extrémité 21a, ce qui limite le déplacement du balancier.
  • Même si une bague 19 annulaire simple comme celle de la figure 14 peut être utilisée dans cette variante, dans le mode de réalisation illustré, l'extrémité 21a de l'élément de butée 21 passe au travers d'une ouverture latérale 19b pratiquée dans la bague 19. Si l'élément de butée 21 présente une certaine élasticité en flexion, l'élément de butée 21 peut servir en tant qu'amortisseur de choc. En cas de choc axial fort, qui est suffisant pour faire fléchir l'élément de butée, ce dernier rentre en contact avec l'une ou l'autre des parois de ladite ouverture 19b qui se trouvent en regard de l'élément de butée 21 afin de limiter le déplacement du balancier 3.
  • La figure 16 illustre encore une variante d'un agencement antichoc, qui diffère de celle de la figure 15 en ce que, au lieu d'une rainure 3n usinée dans le corps de la tige 3k, deux bagues 3o, 3p sont chassées, collées ou soudées sur la tige 3k. Ces deux bagues 3o, 3p sont séparées l'une de l'autre par un interstice annulaire, qui constitue ladite rainure 3n dans laquelle l'extrémité 21a de l'élément de butée 21 prend place. Dans la variante illustrée, le diamètre de l'extrémité de la tige 3k est réduit, mais il est également possible qu'elle présente le même diamètre au niveau de chaque bague 3o, 3p.
  • Dans les figures 12-16, l'oscillateur 1 selon l'invention a été illustré fixé à un élément fixe de bâti d'un mouvement d'horlogerie. Cependant, il peut alternativement être fixé à un élément structurel mobile, telle qu'une cage de tourbillon ou de carrousel, ou à un pont fixé à son tour à une telle cage.
  • L'organe de fixation 7, les systèmes élastiques 5 ainsi que le cadre 3a du balancier 3 sont particulièrement adaptés à une fabrication par micro-usinage, sur la base d'un matériau non métallique.
  • À ce titre, on peut mentionner des procédés de fabrication par masquage et gravage (par voie humide ou sèche) de plaques de matériau (tels que le procédé DRIE), découpage laser de telles plaques et similaires. Des procédés de microstructuration sont également possibles, en modifiant la structure de plaques de matériau par exemple par irradiation laser (notamment par « femtolaser ») et puis l'élimination du matériau irradié par gravage chimique. En principe, on pourrait même créer un oscillateur monobloc en appliquant ce dernier procédé à un bloc de matériau photostructurable tel que du verre approprié.
  • Des procédés de fabrication additifs se basant sur l'impression 3D (stéréolithographie, frittage sélectif par laser, fusion sélective par laser, etc.) ou sur la formation de moules et leur remplissage de matériau tels que du LIGA (Lithographie, Galvanoformung, Abformung), frittage et similaires sont également envisageables.
  • En ce qui concerne des matériaux convenables, on peut citer de manière non limitative les suivants :
    • Des matériaux à base de silicium, c'est-à-dire le silicium lui-même, son nitrure, son carbure ou son oxyde, sous forme amorphe, polycristallin (nanocristallin, microcristallin), monocristallin selon n'importe quel orientation cristallographique ;
    • Le diamant synthétique ;
    • Des céramiques telles que de l'alumine (rubis, corindon, saphir), sous forme mono- ou polycristallin ;
    • Des verres, notamment des verres photostructurables comme mentionné ci-dessus ;
    • Des verres céramiques ;
    • Des métaux conventionnels présentant des propriétés élastiques convenables ;
    • Des verres métalliques (c'est-à-dire des métaux amorphes).
  • Ces matériaux peuvent également être revêtus, par exemple par de l'oxyde de silicium, du carbone adamantin (DLC), de l'alumine ou similaire, afin de modifier leurs propriétés mécaniques, thermiques ou optiques, de manière connue. Si les systèmes élastiques 5 sont à base de silicium, une couche extérieure en oxyde de silicium peut être avantageusement formée sur une âme de silicium afin de rendre la marche de l'oscillateur 1 substantiellement indépendant de la température en modifiant le coefficient thermique du module de Young des éléments élastiques 5b. En effet, en variant l'épaisseur de cette couche, ledit coefficient thermique du module de Young des éléments élastiques peut être rendu substantiellement nul, ou peut être rendu l'inverse de celui du silicium afin de compenser les variations de la marche engendrées par le dilatation thermique du balancier. Par ailleurs, il est également possible d'appliquer l'enseignement du document EP 2 215 531 aux éléments élastiques 5b du présent oscillateur 1. Ce faisant, le constructeur peut fabriquer un oscillateur 1 qui respecte les critères du COSC, ces derniers exigeant une précision de marche de ±0.6s/(j°C).
  • Finalement, la figure 17 illustre encore une autre variante d'un oscillateur mécanique 1 selon l'invention, qui comporte deux oscillateurs 1 tels que décrits ci-dessus agencés en tête-bêche et comprenant un balancier 3 commun. Ces deux sous-oscillateurs sont ainsi couplés au niveau du balancier 3, et l'ensemble peut alternativement être considéré comme un système d'oscillateurs.
  • En d'autres termes, cette variante comporte deux oscillateurs 1 comme illustrés dans les figures 1 à 11 montés selon des orientations inverses, leurs balanciers individuels 3 étant adjacents et rendus solidaires en rotation l'un de l'autre afin de former un balancier commun qui est lié à la fois à chaque organe d'attache 7 par l'intermédiaire d'un système élastique correspondant 5. Dans ce cas, les balanciers individuels associés à chaque système élastique 5 sont considérés comme des « sous-balanciers », leur ensemble constituant le balancier 3 commun.
  • Dans la variante illustrée, chaque système élastique 5 est identique, et les langues 7a de chaque organe d'attache 7 s'étendent dans la même direction. Cependant, les deux systèmes élastiques 5 peuvent être différents, et les langues 7a peuvent s'étendre dans des directions différentes.
  • Afin de constituer ledit balancier commun 3, les deux balanciers individuels, voire sous-balanciers, sont rendus solidaires en rotation l'un de l'autre par l'intermédiaire d'une tige 3k qui s'étend substantiellement le long de l'axe géométrique de rotation 9, et est chassée, collée, soudée ou similaire à chaque sous-balancier. Cependant, des piliers ou similaire s'étendant entre les serges ou entre autres parties des balanciers sont également prévisibles. Par ailleurs, un seul balancier individuel est également possible en tant que balancier commun.
  • Cet agencement présente une raideur plus importante en translation, notamment le long de l'axe 9, ainsi qu'en torsion, notamment autour de tout axe n'étant pas l'axe de rotation 9. Le débattement du balancier 3 en cas de choc est ainsi réduit, quel que ce soit un choc translationnel ou rotationnel.
  • Bien que l'invention ait été décrite ci-dessus en lien avec des modes de réalisation spécifiques, des variantes supplémentaires sont également envisageables sans sortir de la portée de l'invention comme définie par les revendications.
  • Par exemple, il n'est pas obligatoire que chaque système élastique 5 soit planaire, des formes plus complexes étant également possibles. Les divers cadres 5a ne doivent pas non plus être absolument tous de forme identique.

Claims (17)

  1. Oscillateur mécanique (1) pour pièce d'horlogerie comprenant :
    • un balancier suspendu (3) agencé pour osciller autour d'un axe de rotation géométrique (9),
    • une pluralité de systèmes élastiques (5) agencés en série et reliant ledit balancier (9) à un organe d'attache (7) agencé pour fixer ledit oscillateur (1) à un élément structurel (11) que comporte ladite pièce d'horlogerie ;
    caractérisé en ce que chaque système élastique (5) comporte un nombre pair d'au moins quatre cadres extérieurs (5a) et au moins deux éléments de liaison intérieurs (5c), chaque cadre (5a) portant deux éléments élastiques (5b) s'étendant chacun entre ledit cadre (5a) et l'un desdits éléments de liaison intérieurs (5c),
    en ce que chaque élément de liaison intérieur (5c) est relié aux deux éléments élastiques (5b) portés par l'un desdits cadres (5a), ainsi qu'à un élément élastique (5b) adjacent de chacun des cadres (5a) du même système élastique (5) se situant de part et d'autre dudit l'un cadre (5a) ;
    et en ce que chacun desdits systèmes élastiques (5) est fixé à chaque système élastique (5) y adjacent par l'intermédiaire de l'un sur deux de ses cadres (5a), cesdits cadres (5a) étant non adjacents l'un de l'autre.
  2. Oscillateur (1) selon la revendication 1, dans lequel :
    • ledit balancier (3) est relié à l'un cadre (5a) sur deux du système élastique (5) y adjacent, cesdits cadres (5a) étant non adjacents l'un de l'autre ;
    • ledit organe d'attache (7) est relié à l'un cadre (5a) sur deux du système élastique (5) y adjacent, cesdits cadres (5a) étant non adjacents l'un de l'autre.
  3. Oscillateur (1) selon la revendication 2, dans lequel ledit oscillateur comprend au moins trois desdits systèmes élastiques (5), chaque cadre (5a) appartenant à chaque système élastique (5) intermédiaire étant relié à un cadre (5a) de l'un ou l'autre des systèmes élastiques (5) y adjacents, un cadre (5a) sur deux du système élastique considéré étant reliés à un cadre (5a) sur deux d'un autre système élastique (5) se situant sur un premier côté du système élastique (5) considéré, les autres cadres (5a) que comportent ledit système élastique (5) considéré étant reliés à un cadre (5a) sur deux d'un autre système élastique (5) se situant sur le deuxième côté du système élastique (5) considéré, lesdits cadres (5a) du système élastique (5) considéré étant reliés par alternance à l'un ou l'autre desdits systèmes élastiques (5) adjacents.
  4. Oscillateur (1) selon l'une des revendications précédentes, dans lequel chaque système élastique (5) est orienté par rapport au système élastique (5) y adjacent d'un angle de (360/N)° autour dudit axe de rotation (9), N étant le nombre de cadres que comporte chaque système élastique (5).
  5. Oscillateur (1) selon l'une des revendications précédentes, dans lequel chaque élément élastique (5b) comporte :
    • une barre médiane ;
    • une première lame flexible (5f) s'étendant entre une première extrémité de ladite barre et l'un desdits éléments de liaison intérieurs (5c), et
    • une deuxième lame flexible (5f) s'étendant entre une deuxième extrémité de ladite barre, opposée à ladite première extrémité, et l'un desdits cadres (5a).
  6. Oscillateur (1) selon l'une des revendications précédentes, dans lequel chacun desdits éléments de liaison intérieurs (5c) est relié exclusivement à des cadres (5a) du même système élastique par l'intermédiaire des éléments élastiques (5b) correspondants.
  7. Oscillateur (1) selon l'une des revendications précédentes, comprenant en outre une tige (3k) s'étendant axialement depuis ledit balancier (3) en direction opposée auxdits systèmes élastiques (5), ladite tige (3k) étant agencée pour prendre place avec jeu dans une ouverture (19a) prévue dans un élément structurel (13) de ladite pièce d'horlogerie.
  8. Oscillateur (1) selon la revendication 7, comprenant une vis (3p) vissée axialement dans l'extrémité de ladite tige (3k), la tête de ladite vis (3b) étant agencée pour entrer en contact avec une butée (19c) solidaire dudit élément structurel (13), et ce en cas de choc selon une direction axiale.
  9. Oscillateur (1) selon la revendication 7, comprenant un circlip (3m) ou une rondelle solidaire en translation de ladite tige (3k) et agencé pour entrer en contact avec une butée (21a, 19) solidaire dudit élément structurel (13), et ce en cas de choc selon une direction axiale.
  10. Oscillateur (1) selon la revendication 7, dans lequel ladite tige (3k) comporte une rainure circonférentielle (3n) agencée pour coopérer avec une butée (21a) solidaire dudit élément structurel (13), et ce en cas de choc selon une direction axiale.
  11. Oscillateur (1) selon la revendication 10, dans lequel ladite rainure circonférentielle (3n) est constituée par un interstice formé entre deux bagues (3o, 3p) fixées sur ladite tige (3k).
  12. Oscillateur (1) selon l'une des revendications précédentes, agencé de telle sorte que ledit balancier (3) effectue des oscillations ayant une amplitude d'au moins 15°, de préférence au moins 30°, de préférence au moins 60°, de préférence au moins 90°.
  13. Oscillateur (1) selon l'une des revendications précédentes, dans lequel chaque système élastique 5 présente une symétrie en rotation de (720/N)°, N étant le nombre de cadres que comporte chaque système élastique (5).
  14. Oscillateur mécanique (1) comprenant deux oscillateurs (1) selon l'une des revendications 1 à 6 agencés en tête-bêche et comportant un balancier commun.
  15. Oscillateur mécanique (1) selon la revendication 16, dans lequel ledit balancier commun se compose de deux sous-balanciers solidaires en rotation l'un de l'autre.
  16. Oscillateur (1) selon l'une des revendications précédentes, dans lequel au moins certain desdits éléments élastiques (5b) est fait en silicium muni d'une couche d'oxyde de silicium sur au moins certaine de leurs surfaces.
  17. Mouvement horloger comprenant un oscillateur (1) selon l'une des revendications précédentes.
EP19201269.8A 2018-10-08 2019-10-03 Oscillateur mécanique Active EP3637196B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH01228/18A CH715438A1 (fr) 2018-10-08 2018-10-08 Oscillateur mécanique et mouvement horloger le comprenant.

Publications (2)

Publication Number Publication Date
EP3637196A1 EP3637196A1 (fr) 2020-04-15
EP3637196B1 true EP3637196B1 (fr) 2021-05-19

Family

ID=64332251

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19201269.8A Active EP3637196B1 (fr) 2018-10-08 2019-10-03 Oscillateur mécanique

Country Status (2)

Country Link
EP (1) EP3637196B1 (fr)
CH (1) CH715438A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4202567A1 (fr) 2021-12-22 2023-06-28 Montres Breguet S.A. Ensemble de guidages flexibles tête-bêche pour mouvement d'horlogerie, notamment pour un dispositif d'affichage

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414185B2 (en) 2007-11-28 2013-04-09 Manufacture Et Fabrique De Montres Et Chronometres Ulysse Nardin Le Locle S.A. Mechanical oscillator having an optimized thermoelastic coefficient
CH701421B1 (fr) 2009-07-10 2014-11-28 Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle Sa Oscillateur mécanique.
EP2975469B1 (fr) * 2014-07-14 2017-07-05 Nivarox-FAR S.A. Guidage flexible horloger
EP3037894B1 (fr) 2014-12-22 2018-01-31 Manufacture et fabrique de montres et chronomètres Ulysse Nardin Le Locle SA Mécanisme et procédé de réglage d une vitesse dans un mouvement horloger
CH710759A2 (fr) * 2015-02-20 2016-08-31 Nivarox Far Sa Oscillateur pour une pièce d'horlogerie.
EP3147725B1 (fr) * 2015-09-28 2018-04-04 Nivarox-FAR S.A. Oscillateur a detente tournante
EP3299905B1 (fr) * 2016-09-27 2020-01-08 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Oscillateur mécanique pour un mouvement d'horloge

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CH715438A1 (fr) 2020-04-15
EP3637196A1 (fr) 2020-04-15

Similar Documents

Publication Publication Date Title
EP3355130B1 (fr) Mecanisme resonateur d'horlogerie
EP3293584B1 (fr) Mecanisme oscillateur d'horlogerie
EP3035127B1 (fr) Oscillateur d'horlogerie à diapason
EP3548973B1 (fr) Dispositif pour pièce d'horlogerie, mouvement horloger et pièce d'horlogerie comprenant un tel dispositif
EP2273323B1 (fr) Oscillateur mécanique
EP2596406B1 (fr) Mecanisme oscillant a pivot elastique et mobile de transmission d'energie
EP3365734B1 (fr) Oscillateur pour un mouvement horloger mécanique
EP4224257A1 (fr) Ensemble monolithique ressort spiral - virole
CH709291A2 (fr) Oscillateur de pièce d'horlogerie.
EP3435172B1 (fr) Procede de realisation d'un mecanisme de guidage flexible pour oscillateur mecanique d'horlogerie
EP3667432B1 (fr) Résonateur d'horlogerie comportant au moins un guidage flexible
EP3382472A1 (fr) Palier de guidage d'un pivot de balancier de pièce d'horlogerie
EP2206022B1 (fr) Palier amortisseur de chocs pour piece d'horlogerie
EP2690506B1 (fr) Spiral d'horlogerie anti-galop
EP2690507A1 (fr) Spiral d'horlogerie
EP2790066A2 (fr) Cassette de mécanisme d'horlogerie
EP3438762A2 (fr) Oscillateur d'horlogerie a guidages flexibles a grande course angulaire
EP2908183B1 (fr) Spiral d'horlogerie
EP3637196B1 (fr) Oscillateur mécanique
EP3792700A1 (fr) Oscillateur horloger a pivot flexible
EP3273309B1 (fr) Oscillateur hybride d'horlogerie
EP3276431B1 (fr) Oscillateur mécanique pour mouvement d'horlogerie
CH714030A2 (fr) Oscillateur d'horlogerie à guidages flexibles à grande course angulaire.
EP3839651B1 (fr) Oscillateur horloger mécanique a guidage flexible
EP3572885B1 (fr) Oscillateur mécanique d'horlogerie isochrone en toute position

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201008

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602019004709

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1394589

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1394589

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210519

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210920

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210819

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210820

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602019004709

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602019004709

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211003

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20191003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231102

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210519

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231003