EP3630663B1 - Dispositif de détection d'étage pour ascenseur et procédé de production d'un signal d'étage - Google Patents

Dispositif de détection d'étage pour ascenseur et procédé de production d'un signal d'étage Download PDF

Info

Publication number
EP3630663B1
EP3630663B1 EP18705940.7A EP18705940A EP3630663B1 EP 3630663 B1 EP3630663 B1 EP 3630663B1 EP 18705940 A EP18705940 A EP 18705940A EP 3630663 B1 EP3630663 B1 EP 3630663B1
Authority
EP
European Patent Office
Prior art keywords
floor
floor position
characteristic value
position characteristic
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18705940.7A
Other languages
German (de)
English (en)
Other versions
EP3630663A1 (fr
Inventor
Eric Birrer
Thomas Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to PL18705940T priority Critical patent/PL3630663T3/pl
Publication of EP3630663A1 publication Critical patent/EP3630663A1/fr
Application granted granted Critical
Publication of EP3630663B1 publication Critical patent/EP3630663B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector

Definitions

  • the invention relates to a floor position detection device of an elevator installation according to claim 1 and a method for generating a floor signal in an elevator installation according to claim 13.
  • the EP 2516304 B1 discloses the preamble of claims 1 and 13, and describes a floor position detection device of an elevator installation with a sensor unit and an evaluation device for generating a floor signal having two states.
  • the sensor unit arranged on an elevator car has a total of five Hall sensors.
  • a permanent magnet is arranged in such a way that when the floor is approached, the Hall sensors mentioned each output a floor position parameter that is dependent on the distance of the corresponding Hall sensor from the permanent magnet.
  • Two of the Hall sensors are referred to as so-called main sensors, the floor position parameters of which are compared with one another to generate the floor signal.
  • the evaluation device changes the state of the floor signal.
  • the three other Hall sensors are required in particular to ensure that the evaluation device only reacts when the permanent magnet is in the vicinity of the sensor unit.
  • the inventive floor position detection device of an elevator installation has a sensor unit and an evaluation device for generating a two Floor signal having states.
  • the floor signal can assume the two states “in the floor area” or “outside the floor area”, with other states also being conceivable.
  • the sensor unit has a first Hall sensor for generating a first floor position parameter and a second Hall sensor for generating a second floor position parameter.
  • the evaluation device is provided to generate the floor signal based on a comparison of the first and second floor position parameters. According to the invention, the evaluation device is provided to check whether the first and / or second floor position parameter is greater than a first threshold value and to generate the floor signal based on the result of the test mentioned.
  • the combination of comparing the two floor position parameters and checking whether one or both floor position parameters are greater than a first threshold value enables an inexpensive floor position detection device with which an exact determination of the position of the elevator car in relation to a floor of the elevator system is possible at the same time.
  • By comparing the first and / or second floor position parameter with the mentioned first threshold value it can be determined in a simple manner whether the floor position detection device is located in the area of a magnetic means or not.
  • “located in the area of a magnetic means” should be understood to mean that a Hall sensor is located in a magnetic field of a magnetic means that the magnetic field leads to a significant or measurable increase in the sensor signal and thus in the floor position parameter.
  • the floor position detection device or the evaluation device transmits the floor signal via a communication link to an elevator control of the elevator installation.
  • the elevator control uses the floor signal in particular for the precise positioning of an elevator car that can be moved in an elevator shaft on a floor or on a shaft door assigned to a floor.
  • at least one magnetic means is attached in the elevator shaft at a point characterizing the position of the floor.
  • the magnetic means can, for example, be arranged on the shaft door assigned to the floor and the floor position detection device on the elevator car, in particular on a car door of the elevator car be.
  • the elevator control can position the car door and thus the car exactly opposite the landing door of the floor.
  • Said magnetic means can also be regarded as part of the floor position detection device.
  • the "in the floor area” state of the floor signal indicates that the elevator car is correctly positioned with respect to the floor. Then, in particular, the car door can be opened, which in particular also opens the shaft door assigned to the floor in a known manner.
  • the state “outside the floor area” of the floor area indicates that the elevator car is not in the immediate vicinity of a floor or at least not quite correctly positioned with respect to the floor and that in particular the car door cannot be opened.
  • a “floor position parameter” is to be understood as meaning, in particular, a sensor signal or a processed sensor signal from a Hall sensor that is generated by the magnetic field of a magnetic means.
  • an “evaluation device” is to be understood in particular as an electronics unit for processing analog and / or digital electrical signals.
  • “provided for this purpose” should be understood to mean in particular specially equipped, designed and / or programmed.
  • a “magnetic means” is to be understood in particular as a means for generating a magnetic field, in particular a permanent magnet in a cylindrical or cuboid shape.
  • the two mentioned two Hall sensors are preferably arranged at a known spatial distance from one another, as a result of which a very precise determination of the position of the floor can be achieved.
  • the evaluation device can in particular be designed as a programmable microcontroller which controls an output module, for example in the form of a so-called high-side switch or a so-called PNP transistor.
  • the output module then generates the floor signal transmitted to the elevator control. It is also conceivable that the floor signal is transmitted directly from the evaluation device to the elevator control.
  • the individual components of the floor position detection device are in particular arranged together in a housing, preferably in a plastic housing.
  • the plastic housing has, for example, a length of 60-120 mm in the direction of travel of the elevator car.
  • the sensor unit can in particular also have more than two Hall sensors, for example three or four Hall sensors.
  • the Hall sensors are arranged next to one another in such a way that they have a distance from the center of the sensor to the center of the sensor of 20-30 mm.
  • the Hall sensors are arranged in such a way that, when the floor position detection device is installed, they are arranged next to one another in the direction of travel of the elevator car.
  • the floor position detection device and the magnetic means are mounted in such a way that the Hall sensors have a distance perpendicular to the direction of travel of the elevator car of, for example, 5-25 mm from the magnetic means.
  • the first Hall sensor and the second Hall sensor are arranged in such a way that when a floor is approached, the approach can be derived from the first floor position parameter before the second floor position parameter. This means that when the floor position detection device approaches a floor and thus a magnetic means, the first floor position parameter increases before the second floor position parameter and thus indicates immersion in a magnetic field.
  • the two Hall sensors are thus arranged in such a way that the first Hall sensor is immersed in the magnetic field of the magnetic means in front of the second Hall sensor.
  • the evaluation device is also provided to assign the status "in the floor area" to the floor signal if the second floor position parameter is greater than or equal to the first floor position parameter and at the same time the first and / or second floor position parameter, in particular the second floor position parameter, is greater than the aforementioned first threshold value.
  • the first threshold value is selected in such a way that the floor position parameter is only greater than the first threshold value if the associated Hall sensor is in the area of the magnetic means, i.e. the floor position parameter has risen above the first threshold value due to the approach to the magnetic means.
  • the second floor position parameter is then equal to or greater than the first floor position parameter when the magnetic means is located between the two Hall sensors.
  • the position of the floor position detection device in relation to the magnetic means and thus in relation to a floor can thus be determined very precisely.
  • the comparison of the two floor position parameters can only provide a meaningful result if at least one of the two Hall sensors is in the area of a magnetic means. If a Hall sensor is not in the area of a magnetic means, the floor position parameter it supplies fluctuates randomly around a so-called rest level. If two floor position parameters which randomly fluctuate around the quiescent level are compared with one another, the result of the comparison is also random and cannot be used to generate the floor signal.
  • the additional condition in addition to the comparison of the two floor position parameters, that the first and / or second floor position parameter must be greater than the first threshold value, ensures that the floor signal is only assigned the status "in the floor area" if the first and / or or second Hall sensor and thus the floor position detection device is located in the area of a magnetic means.
  • the described quiescent level of the Hall sensors can in particular also be used to establish the first threshold value.
  • the first threshold value can be set, for example, to a multiple, for example three to five times, the quiescent level of the corresponding Hall sensor.
  • the mentioned rest level can be fixed for a certain type of Hall sensor during the production of the Floor position detection device measured or determined after the installation of the floor position detection device in an elevator system in a so-called learning run. For example, when the Hall sensor is supplied with 2 V, the first threshold value can be between 20 and 40 mV.
  • the above-mentioned object is also achieved by a method according to the invention for generating a floor signal in an elevator installation.
  • the floor signal can assume two states “in the floor area” or “outside the floor area”.
  • a first floor position parameter is generated by means of a first Hall sensor and a second floor position parameter is generated by means of a second Hall sensor of a sensor unit, the first Hall sensor and the second Hall sensor being arranged in such a way that when approaching a floor the approach the first floor position parameter can be derived before the second floor position parameter.
  • the floor signal is generated by an evaluation device based on a comparison of the first and the second floor position parameter.
  • the evaluation device checks whether the first and / or second floor position parameter is greater than a first threshold value and generates the floor signal based on the result of the test mentioned.
  • the evaluation device assigns the status "in the floor area" to the floor signal if the second floor position parameter is greater than or equal to the first floor position parameter and the first floor position parameter and / or second floor position parameter is greater than the first threshold value.
  • the evaluation device is provided to postprocess a first sensor signal from the first Hall sensor and / or a second sensor signal from the second Hall sensor in order to determine the first and / or second floor position parameter.
  • the post-processing can take the form of filtering, for example a low-pass filter, for example.
  • the evaluation device is provided in particular to calibrate the first and / or second sensor signal.
  • this should be understood to mean that the two sensor signals are converted into floor position parameters in such a way that both floor position parameters have the same maximum value.
  • Different Hall sensors can also output different sensor signals at the same distance from the same magnetic means and thus the same magnetic field.
  • the Hall sensors can therefore have a so-called scatter. This variation is compensated for by the post-processing described. It can thus be ensured that even with different floor position detection devices, the floor signal is always assigned the status "in the floor area" with almost exactly the same position of the floor position detection device in relation to the magnetic means and thus in relation to the floor.
  • the sensor signals are calibrated in particular in that a so-called calibration factor or gain factor assigned to a Hall sensor is stored in the evaluation device.
  • the evaluation device multiplies the value of the sensor signal by the calibration factor. This multiplication can also be implemented in an analog circuit.
  • the calibration factors can be selected, for example, so that both floor position parameters have the same predetermined maximum value. This maximum value can be, for example, 200-400 mV when the Hall sensors are fed with 2 V. Determining the calibration factors is referred to herein as "calibration".
  • the calibration described can be carried out, for example, after the floor position detection device has been installed in an elevator system during a so-called learning trip.
  • the elevator car with the floor position detection device arranged on it is moved slowly in the elevator shaft.
  • the floor position detection device moves past a magnetic means and the evaluation device detects the sensor signals from the Hall sensors. It can determine the maximum sensor signals of the individual Hall sensors and perform the calibration as described. It is also possible that the Information from a further position detection system, for example an absolute position detection system, can be evaluated.
  • the calibration can also be carried out directly during the production of the floor position detection device.
  • the same magnetic means can be arranged one after the other at the same distance from the Hall sensors, the evaluation device determining the maximum sensor signal in each case.
  • the evaluation device can then carry out the calibration as described. It is also possible for two magnetic means of the same type, which therefore generate the same magnetic field, to be arranged at the same distance in front of the Hall sensors at the same time and the evaluation device thus generates the maximum sensor signals.
  • the evaluation device is provided to reassign the floor signal to the status “outside the floor area” after a change from the status “outside the floor area” to the status “in the floor area”.
  • the floor signal thus only has an edge when the second floor position parameter is greater than or equal to the first floor position parameter and the first floor position parameter and / or the second floor position parameter is greater than the first threshold value.
  • This refinement can be advantageous, for example, when the floor position detection device is intended to replace an older floor position detection device which generates such a floor signal.
  • the period of time mentioned can have a duration between 1 and 100 ms, in particular 10 ms, for example.
  • the sensor unit has a third Hall sensor for generating a third floor position parameter, which is arranged opposite the second Hall sensor so that when a floor is removed, the removal from the second floor position parameter can be derived before the third floor position parameter.
  • a third Hall sensor for generating a third floor position parameter, which is arranged opposite the second Hall sensor so that when a floor is removed, the removal from the second floor position parameter can be derived before the third floor position parameter.
  • the evaluation device is also provided to assign the floor signal, based on the status “in the floor area”, the status “outside the floor area” if the third floor position parameter is greater than the second floor position parameter and the second and / or third floor position parameter is greater than a second threshold value.
  • the floor position detection device is therefore particularly cost-effective.
  • the second threshold value can in particular be the same size as the first threshold value.
  • the sensor unit has a third Hall sensor for generating a third floor position parameter and a fourth Hall sensor for generating a fourth floor position parameter.
  • the third Hall sensor and the fourth Hall sensor are arranged in such a way that when a floor is removed, the removal from the third floor position parameter can be derived before the fourth floor position parameter.
  • the evaluation device is provided to assign the status "outside the floor area" to the floor signal if the fourth floor position parameter is greater than the third floor position parameter and the third and / or fourth floor position parameter is greater than a third threshold value.
  • the area in which the floor signal has the state “in the floor area” when driving past a magnetic means and thus a floor can thus be set very flexibly. For example, it can be set so that the said area has a length of 20-30 mm.
  • the flexibility is achieved by assigning the status "in the floor area” as a function of the first and second floor position parameters and resetting to the status "outside the floor area” as a function of the third and fourth floor position parameters. Setting and resetting are therefore independent of each other.
  • the third threshold value can in particular be the same size as the first and / or second threshold value.
  • the third and fourth floor position parameters from the third and fourth sensor signals of the third and fourth Hall sensors, the same applies as for the generation of the first and second floor position parameters.
  • the evaluation device is provided to carry out an automated calibration when all sensor signals are greater than a fourth threshold value.
  • the evaluation device does not have to have an input interface with which a calibration can be started.
  • the evaluation device can thus be implemented simply and inexpensively.
  • four similar magnetic means that is to say magnetic means with the same magnetic field
  • the distance is chosen so that all four sensor signals are safely greater than the fourth threshold value. If this condition is met, the evaluation device automatically carries out a calibration.
  • a calibration factor is determined for each Hall sensor, with which the respective sensor signal is multiplied when generating the floor position parameter.
  • the calibration factors are determined in such a way that all floor position parameters have the same maximum value. It would also be possible that the Calibration factors are determined so that only the first and second, as well as the third and fourth floor position parameters each have the same maximum values.
  • the fourth threshold value can in particular be the same size as the first, second and / or third threshold value.
  • the floor position detection device has a voltage supply device which supplies the Hall sensors and the evaluation device with the same supply voltage.
  • a simple and inexpensive voltage supply device can thus be used.
  • the supply voltage mentioned can be between 1 and 4 V, in particular 2 V, for example.
  • the output module can be supplied with a different supply voltage, in particular a higher supply voltage of 24 V, for example.
  • the floor position detection device according to the invention and an elevator control are components of an elevator control system of an elevator installation.
  • the elevator control system includes, in particular, further sensors and actuators and is used to control the entire elevator installation.
  • an elevator system 10 has an elevator cage 14 that can be moved in an elevator shaft 12.
  • the elevator cage 14 is suspended from a suspension element 16 in the form of a rope or a belt and can be driven up and down in the elevator shaft 12 by means of a drive machine (not shown), i.e. in one direction of travel 13 become.
  • the elevator system 10 is controlled by an elevator controller 18, which is in signal connection with the drive machine, among other things, via communication connections (not shown).
  • a magnetic means 22 in the form of a permanent magnet is arranged at a point 20 characterizing a floor.
  • the magnetic means 22 is surrounded by a magnetic field 24, which is represented symbolically with the aid of some magnetic field lines.
  • the magnetic means 22 identifies the floor in the vertical direction, that is to say in the direction of travel 13 of the elevator car 14. It can be arranged, for example, on a shaft door (not shown).
  • a floor position detection device 26 which is in communication with the elevator control 18, is arranged on the elevator car 14 and their structure in Fig. 2 is shown in more detail.
  • the floor position detection device 26 is arranged on the elevator car 14 in such a way that it has a horizontal distance of between 5 and 25 mm from the magnetic means 22 when it is passing the magnetic means 22.
  • the floor position detection device 26 can be arranged, for example, on a car door (not shown).
  • the floor position detection device 26 and the elevator control 18 are components of an elevator control system of the elevator installation 10.
  • the elevator control system comprises in particular further sensors and actuators, not shown.
  • the floor position detection device 26 has a first Hall sensor 28, a second Hall sensor 30, a third Hall sensor 32 and a fourth Hall sensor 34, which are arranged side by side.
  • the four Hall sensors 28, 30, 32 and 34 form a sensor unit 35. If the floor position detection device 26 is arranged on the elevator car 14, the four Hall sensors 28, 30, 32, 34 are arranged next to one another in the direction of travel 13 so that they all have the same horizontal distance from the magnetic means 22.
  • Sensor signals from the four Hall sensors 28, 30, 32, 34 are forwarded to an evaluation device 36, which is designed as a programmable microprocessor.
  • the evaluation device 36 initially calculates four floor position parameters from the sensor signals mentioned and combines them to form a floor signal, which it forwards to an output module 38.
  • the output module 38 amplifies the floor signal and forwards it to the elevator control 18. The course of the floor position parameters and the floor signal are shown in Fig. 3 shown.
  • the evaluation device 36 calibrates the sensor signals from the four Hall sensors 28, 30, 32, 34. For this purpose, the evaluation device 36 multiplies each sensor signal by an associated calibration factor.
  • the calibration factors are determined when the floor position detection device 26 is calibrated at the end of the production of the floor position detection device 26. For this purpose, one of four identical magnetic means is placed at a fixed distance in front of the four Hall sensors 28, 30, 32, 34 arranged. The mentioned distance is chosen so that each of the four sensor signals of the four Hall sensors 28, 30, 32, 34 surely exceeds a fourth threshold value. As soon as the evaluation device 36 detects that all four sensor signals are greater than the fourth threshold value, it automatically starts a calibration.
  • the calibration factors are determined in such a way that during the calibration each floor position parameter resulting from the multiplication of the sensor signal by the associated calibration factor has the same value of, for example, 300 mV.
  • the floor position detection device 26 also has a voltage supply device 40 which supplies the four Hall sensors 28, 30, 32, 34, the evaluation device 36 and the output module 38 with a supply voltage.
  • the voltage supply device 40 supplies the four Hall sensors 28, 30, 32, 34 and the evaluation device 36 with the same supply voltage of 2 V and the output module 38 with a different supply voltage of 24 V.
  • the voltage supply device 40 and thus the floor position detection device 26 are used for this purpose supplied with an input voltage of 24 V.
  • Fig. 3 are courses of floor position parameters and a floor signal when driving past the magnetic means 22 of the elevator car 14 and thus the floor position detection device 26 from top to bottom.
  • the curve 48 shows the first floor position parameter of the first Hall sensor 28, the curve 50 the second floor position parameter of the second Hall sensor 30, the curve 52 the third floor position parameter of the third Hall sensor 32 and the curve 54 the fourth floor position parameter of the fourth Hall Sensor 34.
  • the curve 56 shows the course of the floor signal.
  • the floor signal 56 can assume the state “outside of the floor area” and “in the floor area”, wherein in the Fig. 3 the state "outside the floor area” is marked with "0" and the state "in the floor area” is marked with "1".
  • the floor position parameters 48, 50, 52 and 54 each rise from a quiescent level when the Hall sensor 28, 30, 32 and 34 in question comes into the area of the magnetic means 22, that is, when it is immersed in the magnetic field 24. They are at their maximum when the Hall sensors 28, 30, 32 and 34 in question are exactly at the height of the Magnetic means 22 is located in order to fall back to the rest level when removed from the magnetic means 22. From the size of the associated floor position parameters 48, 50, 52 and 54, conclusions can be drawn about the distance between the associated Hall sensor 28, 30, 32, 34 from the magnetic means 22 in the direction of travel 13.
  • the first Hall sensor 28 and the second Hall sensor 30 are arranged such that when the floor position detection device 26 approaches the magnetic means 22 and thus a floor, the approach can be derived from the first floor position parameter 48 before the second floor position parameter 50. This can be seen from the fact that the first floor position parameter 48 increases before the second floor position parameter 50.
  • the evaluation device 36 then assigns the floor signal 56, starting from the status “outside the floor area”, the status “in the floor area” when the second floor position parameter 50 is greater than the first floor position parameter 48 and at the same time the second floor position parameter 50 is greater than a first threshold value 58.
  • the third Hall sensor 32 and the fourth Hall sensor 34 are arranged such that when the floor position detection device 26 is removed from the magnetic means 22 and thus from a floor, the removal from the third floor position parameter 52 can be derived before the fourth floor position parameter 54. This can be seen from the fact that the third floor position parameter 52 decreases before the fourth floor position parameter 52 after reaching the maximum.
  • the evaluation device 36 then assigns the floor signal 56, starting from the status “in the floor area”, the status “outside the floor area” when the fourth floor position parameter 54 is greater than the third floor position parameter 52 and at the same time the third floor position parameter 52 is greater than a second threshold value 60, which is identical to the first threshold value 58.
  • the magnetic means 22 and the floor position detection device 26 are arranged so that the floor signal then has the status "in the floor area" when the elevator car 14 is positioned opposite a floor in such a way that the car door and thus also the shaft door can be opened at the same time.
  • the numbering used for the Hall sensors and thus the floor position parameters applies when driving past the magnetic means from top to bottom as described. When driving past from bottom to top, the numbering is reversed. It is also possible for the floor position detection device to have only three instead of four Hall sensors. In this case, the evaluation device assigns the floor signal, based on the status “in the floor area”, the status “outside the floor area” as a function of the second and third floor position parameter. The evaluation device thus evaluates the second floor position parameter in addition to the third floor position parameter and the third one in addition to the fourth floor position parameter.
  • Fig. 4 is one for the floor position detection device 26 from Fig. 2 alternative floor position detection device 126 is shown.
  • the floor position detection device 126 is constructed similarly to the floor position detection device 26, so that only the differences between the two floor position detection devices will be discussed. Similar or equivalent components are in the Fig. 4 with a reference number increased by 100 than in the Fig. 2 marked.
  • the sensor unit 135 of the floor position detection device 126 only has a first Hall sensor 128 and a second Hall sensor 130, which are also arranged next to one another.
  • An evaluation device 136 determines a floor signal from the sensor signals of the two Hall sensors 128, 130. The course of the floor position parameters and the floor signal are shown in Fig. 5 shown.
  • Fig. 5 are courses of floor position parameters and of a floor signal when driving past the magnetic means 22 of the elevator car 14 and thus the floor position detection device 126 from top to bottom.
  • Curve 148 shows the first floor position parameter of the first Hall sensor 28 and curve 50 shows the second floor position parameter of the second Hall sensor.
  • the curve 156 shows the course of the floor signal.
  • the floor signal 156 can assume the state “outside of the floor area” and “in the floor area”, in which Fig. 5 the state "outside the floor area” is marked with "0" and the state "in the floor area” is marked with "1".
  • the floor position parameters 148 and 150 each rise from a quiescent level when the Hall sensor 128, 130 in question comes into the area of the magnetic means 22, that is, when it is immersed in the magnetic field 24. They have their maximum when the Hall sensor 128, 130 in question is exactly at the level of the magnetic means 22 in order to drop back to the rest level when the magnetic means 22 is removed. The distance of the associated Hall sensor 128, 130 from the magnetic means 22 in the direction of travel 13 can thus be inferred from the size of the associated floor position parameter 148, 150.
  • the first Hall sensor 128 and the second Hall sensor 130 are arranged such that when the floor position detection device 126 approaches the magnetic means 22 and thus a floor, the approach can be derived from the first floor position parameter 148 before the second floor position parameter 150. This can be seen from the fact that the first floor position parameter 148 increases before the second floor position parameter 150.
  • the evaluation device 136 then assigns the floor signal 156, starting from the status “outside the floor area”, the status “in the floor area” when the second floor position parameter 150 is greater than the first floor position parameter 148 and at the same time the second floor position parameter 150 is greater than a first threshold value 158.
  • the evaluation device 136 sets the floor signal 156 back to the state “outside” of the floor area "back.
  • the numbering used for the Hall sensors and thus the floor position parameters applies when driving past the magnetic means from top to bottom as described. When driving past from bottom to top, the numbering is reversed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Claims (13)

  1. Dispositif de reconnaissance de position d'étage d'une installation d'ascenseur (10) comportant une unité de capteur (35, 135) et un moyen d'évaluation (36, 136) destiné à générer un signal d'étage (56, 156) présentant deux états,
    - le signal d'étage (56, 156) pouvant correspondre aux deux états « dans la zone d'étage » ou « hors de la zone d'étage »,
    - l'unité de capteur (35, 135) présentant un premier capteur à effet Hall (28, 128) destiné à générer une première grandeur caractéristique de position d'étage (48, 148) et un deuxième capteur à effet Hall (30, 130) destiné à générer une deuxième grandeur caractéristique de position d'étage (50, 150), et
    - le moyen d'évaluation (36, 136) étant prévu pour générer le signal d'étage (56, 156) sur la base d'une comparaison entre la première grandeur caractéristique de position d'étage (48, 148) et la deuxième grandeur caractéristique de position d'étage (50, 150), le premier capteur à effet Hall (28, 128) et le deuxième capteur à effet Hall (30, 130) étant disposés de telle sorte qu'à l'approche d'un étage, l'approche peut être dérivée de la première grandeur caractéristique de position d'étage (48, 148) avant la deuxième grandeur caractéristique de position d'étage (50, 150),
    caractérisé en ce que
    le moyen d'évaluation (36) est prévu pour
    - contrôler si la première grandeur caractéristique de position d'étage (48, 148) et/ou la deuxième grandeur caractéristique de position d'étage (50, 150) sont supérieures à une première valeur seuil (58, 158),
    - générer le signal d'étage (56, 156) sur la base du résultat dudit contrôle, et
    - attribuer au signal d'étage (56, 156) l'état « dans la zone d'étage » si la deuxième grandeur caractéristique de position d'étage (50, 150) est supérieure ou égale à la première grandeur caractéristique de position d'étage (48, 148) et si la première grandeur caractéristique de position d'étage (48, 148) et/ou la deuxième grandeur caractéristique de position d'étage (50, 150) sont supérieures à la première valeur seuil (58, 158).
  2. Dispositif de reconnaissance de position d'étage selon la revendication 1,
    caractérisé en ce que
    le moyen d'évaluation (36, 136) est prévu pour attribuer au signal d'étage (56, 156) l'état « dans la zone d'étage » si la deuxième grandeur caractéristique de position d'étage (50, 150) est supérieure à la première valeur seuil (58, 158).
  3. Dispositif de reconnaissance de position d'étage selon la revendication 1 ou 2,
    caractérisé en ce que
    le moyen d'évaluation (36, 136) est prévu pour post-traiter un premier signal de capteur du premier capteur à effet Hall (28, 128) et/ou un second signal de capteur du deuxième capteur à effet Hall (30, 130) afin de déterminer la première grandeur caractéristique de position d'étage (48, 148) et/ou la deuxième grandeur caractéristique de position d'étage (50, 150).
  4. Dispositif de reconnaissance de position d'étage selon la revendication 3,
    caractérisé en ce que
    le moyen d'évaluation (36, 136) est prévu pour étalonner le premier et/ou le second signal de capteur.
  5. Dispositif de reconnaissance de position d'étage selon l'une des revendications 1 à 4,
    caractérisé en ce que
    le moyen d'évaluation (136) est prévu pour attribuer au signal d'étage (156) de nouveau l'état « hors de la zone d'étage », après écoulement d'une période de temps définissable après un changement de l'état « hors de la zone d'étage » à l'état « dans la zone d'étage ».
  6. Dispositif de reconnaissance de position d'étage selon l'une des revendications 1 à 4,
    caractérisé en ce que
    l'unité de capteur (35) présente un troisième capteur à effet Hall (34) destiné à générer une troisième grandeur caractéristique de position d'étage (52), lequel troisième capteur à effet Hall est disposé en face du deuxième capteur à effet Hall (32) de telle sorte que, lors de l'éloignement d'un étage, l'éloignement peut être dérivé de la deuxième grandeur caractéristique de position d'étage (50) avant la troisième grandeur caractéristique de position d'étage (52), et le moyen d'évaluation (36) est prévu pour attribuer au signal d'étage (56) l'état « hors de la zone d'étage » si la troisième grandeur caractéristique de position d'étage (52) est supérieure à la deuxième grandeur caractéristique de position d'étage (50) et si la deuxième grandeur caractéristique de position d'étage (50) et/ou la troisième grandeur caractéristique de position d'étage (52) sont supérieures à une deuxième valeur seuil (60).
  7. Dispositif de reconnaissance de position d'étage selon l'une des revendications 1 à 4,
    caractérisé en ce que
    l'unité de capteur (35) présente un troisième capteur à effet Hall (32) destiné à générer une troisième grandeur caractéristique de position d'étage (52) et un quatrième capteur à effet Hall (34) destiné à générer une quatrième grandeur caractéristique de position d'étage (54), et le troisième capteur à effet Hall (32) et le quatrième capteur à effet Hall (34) sont disposés de telle sorte que, lors de l'éloignement d'un étage, l'éloignement peut être dérivé de la troisième grandeur caractéristique de position d'étage (52) avant la quatrième grandeur caractéristique de position d'étage (54), et le moyen d'évaluation (36) est prévu pour attribuer au signal d'étage (56) l'état « hors de la zone d'étage » si la quatrième grandeur caractéristique de position d'étage (54) est supérieure à la troisième grandeur caractéristique de position d'étage (52) et si les troisième et/ou quatrième grandeurs caractéristiques de position d'étage (52, 54) sont supérieures à une troisième valeur seuil (58).
  8. Dispositif de reconnaissance de position d'étage selon la revendication 6 ou 7,
    caractérisé en ce que
    le moyen d'évaluation (36) est prévu pour étalonner le troisième et/ou le quatrième signal de capteur.
  9. Dispositif de reconnaissance de position d'étage selon la revendication 8,
    caractérisé en ce que
    le moyen d'évaluation (36) est prévu pour effectuer automatiquement un étalonnage si tous les signaux de capteur sont supérieurs à une quatrième valeur seuil.
  10. Dispositif de reconnaissance de position d'étage selon l'une des revendications 1 à 9,
    caractérisé par
    un moyen d'alimentation en tension (40), lequel alimente les capteurs à effet Hall (28, 30, 32, 34 ; 128, 130) et le moyen d'évaluation (36, 136) avec la même tension d'alimentation.
  11. Système de commande d'ascenseur d'une installation d'ascenseur comportant un dispositif de reconnaissance de position d'étage selon l'une des revendications 1 à 10.
  12. Installation d'ascenseur comportant un système de commande d'ascenseur selon la revendication 11.
  13. Procédé permettant de générer un signal d'étage dans une installation d'ascenseur,
    - le signal d'étage (56, 156) pouvant correspondre à deux états « dans la zone d'étage » ou « hors de la zone d'étage »,
    - une première grandeur caractéristique de position d'étage (48, 148) étant générée au moyen d'un premier capteur à effet Hall (28, 128) et une deuxième grandeur caractéristique de position d'étage (50, 150) étant générée au moyen d'un deuxième capteur à effet Hall (30, 130) d'une unité de capteur (35, 135), et
    - le signal d'étage (56, 156) étant généré par un moyen d'évaluation (36, 136) sur la base d'une comparaison entre la première grandeur caractéristique de position d'étage (48, 148) et la deuxième grandeur caractéristique de position d'étage (50, 150),
    - le premier capteur à effet Hall (28, 128) et le deuxième capteur à effet Hall (30, 130) étant disposés de telle sorte qu'à l'approche d'un étage, l'approche peut être dérivée de la première grandeur caractéristique de position d'étage (48, 148) avant la deuxième grandeur caractéristique de position d'étage (50, 150),
    caractérisé en ce que
    le moyen d'évaluation (36, 136)
    - contrôle si la première grandeur caractéristique de position d'étage (48, 148) et/ou la deuxième grandeur caractéristique de position d'étage (50, 150) sont supérieures à une première valeur seuil (58, 158),
    - génère le signal d'étage (56, 156) sur la base du résultat dudit contrôle, et
    - attribue au signal d'étage (56, 156) l'état « dans la zone d'étage » si la deuxième grandeur caractéristique de position d'étage (50, 150) est supérieure ou égale à la première grandeur caractéristique de position d'étage (48, 148) et si la première grandeur caractéristique de position d'étage (48, 148) et/ou la deuxième grandeur caractéristique de position d'étage (50, 150) sont supérieures à la première valeur seuil (58, 158).
EP18705940.7A 2017-06-02 2018-02-22 Dispositif de détection d'étage pour ascenseur et procédé de production d'un signal d'étage Active EP3630663B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18705940T PL3630663T3 (pl) 2017-06-02 2018-02-22 Urządzenie do wykrywania położenia względem piętra w instalacji windy i sposób generowania sygnału piętra

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17174280 2017-06-02
PCT/EP2018/054438 WO2018219504A1 (fr) 2017-06-02 2018-02-22 Dispositif de reconnaissance de position d'étage d'une installation d'ascenseur et procédé destiné à produire un signal d'étage

Publications (2)

Publication Number Publication Date
EP3630663A1 EP3630663A1 (fr) 2020-04-08
EP3630663B1 true EP3630663B1 (fr) 2021-04-07

Family

ID=58992761

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18705940.7A Active EP3630663B1 (fr) 2017-06-02 2018-02-22 Dispositif de détection d'étage pour ascenseur et procédé de production d'un signal d'étage

Country Status (8)

Country Link
US (1) US11639283B2 (fr)
EP (1) EP3630663B1 (fr)
KR (1) KR102475213B1 (fr)
CN (1) CN110691748B (fr)
AU (1) AU2018275606B2 (fr)
CA (1) CA3058939A1 (fr)
PL (1) PL3630663T3 (fr)
WO (1) WO2018219504A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018219504A1 (fr) * 2017-06-02 2018-12-06 Inventio Ag Dispositif de reconnaissance de position d'étage d'une installation d'ascenseur et procédé destiné à produire un signal d'étage
CN111470427A (zh) * 2020-04-14 2020-07-31 安徽博昕远智能科技有限公司 一种物料提升机自动控制系统
US10906774B1 (en) * 2020-06-03 2021-02-02 Scott Akin Apparatus for elevator and landing alignment
WO2023117894A1 (fr) 2021-12-23 2023-06-29 Inventio Ag Dispositif de détection de position d'étage d'un système d'ascenseur
JPWO2023181165A1 (fr) * 2022-03-23 2023-09-28

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324416A (ja) * 1989-06-22 1991-02-01 Toshiba Corp エレベータの位置検出装置
DE19903643A1 (de) * 1999-01-29 2000-08-24 Schmersal K A Gmbh & Co Einrichtung zur Positionserfassung
US20080202862A1 (en) * 2004-07-27 2008-08-28 Frank Dudde Signal Strip And System For Determining A Movement Status Of A Moving Body
SG120250A1 (en) 2004-08-12 2006-03-28 Inventio Ag Elevator installation with a car and a device for determining a car position and method for operating such an elevator installation
ATE371624T1 (de) 2005-01-07 2007-09-15 Thyssen Krupp Aufzuege Gmbh Aufzugsanlage mit einer steuervorrichtung
JP4632795B2 (ja) * 2005-01-13 2011-02-16 三菱電機株式会社 エレベーター乗りかごの電力供給装置
JP2007112561A (ja) * 2005-10-19 2007-05-10 Mitsubishi Electric Corp エレベータの制御装置
JP4392539B2 (ja) * 2006-07-19 2010-01-06 株式会社日立製作所 エレベータ制御装置
KR100888289B1 (ko) * 2006-12-06 2009-03-11 오티스 엘리베이터 컴파니 엘리베이터 카의 위치 검출 장치
FI120449B (fi) * 2008-08-12 2009-10-30 Kone Corp Järjestely ja menetelmä hissikorin paikan määrittämiseksi
FI121663B (fi) 2009-10-09 2011-02-28 Kone Corp Mittausjärjestely, valvontajärjestely sekä hissijärjestelmä
IT1397103B1 (it) 2009-11-23 2012-12-28 Stem Srl Procedimento di rilevamento della posizione di apparecchi in movimento, quali ascensori e simili, e relativo dispositivo
CA2785115C (fr) * 2009-12-21 2017-01-10 Inventio Ag Dispositif de detection de position d'etage
EP2489621A1 (fr) 2011-02-17 2012-08-22 SafeLine Europe Procédé permettant de déterminer et d'afficher une indication de niveau de sol
US9890016B2 (en) * 2012-11-29 2018-02-13 Otis Elevator Company Position recovery via dummy landing patterns
CN105026296B (zh) * 2013-03-01 2017-03-15 三菱电机株式会社 电梯的轿厢位置检测装置
DE112014006714B4 (de) * 2014-05-30 2019-12-24 Mitsubishi Electric Corporation Aufzugspositions-erfassungsvorrichtung
CN104071665B (zh) * 2014-07-07 2017-09-15 日立电梯(中国)有限公司 电梯轿厢位置检测装置及方法
FI126734B (fi) * 2014-08-11 2017-04-28 Kone Corp Paikannuslaitteisto, hissi sekä menetelmä hissikorin paikan määrittämiseksi
WO2018219504A1 (fr) * 2017-06-02 2018-12-06 Inventio Ag Dispositif de reconnaissance de position d'étage d'une installation d'ascenseur et procédé destiné à produire un signal d'étage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN110691748A (zh) 2020-01-14
KR102475213B1 (ko) 2022-12-06
AU2018275606A1 (en) 2019-12-19
EP3630663A1 (fr) 2020-04-08
AU2018275606B2 (en) 2021-05-20
US11639283B2 (en) 2023-05-02
WO2018219504A1 (fr) 2018-12-06
CA3058939A1 (fr) 2018-12-06
CN110691748B (zh) 2021-12-03
PL3630663T3 (pl) 2021-08-09
KR20200016843A (ko) 2020-02-17
US20200109026A1 (en) 2020-04-09
BR112019022205A2 (pt) 2020-05-12

Similar Documents

Publication Publication Date Title
EP3630663B1 (fr) Dispositif de détection d'étage pour ascenseur et procédé de production d'un signal d'étage
EP2516304B1 (fr) Dispositif de reconnaissance de l'emplacement d'étage
EP3171124B2 (fr) Procédé de fonctionnement d'un système de détection capacitif d'un véhicule automobile
EP3637114B1 (fr) Système de haut voltage et procédé de surveillance des erreurs d'isolation dans un système de haut voltage
EP3601132B1 (fr) Réseau de capteurs pour une installation de transport de personnes
EP2760774B1 (fr) Dispositif et procédé destinés à la surveillance de portes palières
DE112018005238T5 (de) Schaltung und verfahren zum detektieren eines ausfalls einer led-lampe
DE112016001924T5 (de) Treibervorrichtung
DE102012101987A1 (de) Spannungsregler für einen Gleitstrommotor
WO2006097377A1 (fr) Procede et ensemble circuit pour la detection d'une rupture de ligne
EP1762852B1 (fr) Dispositif et procédé pour mesurer un courant passant dans un conducteur électrique
DE112016003306T5 (de) Antriebsvorrichtung
EP2942851A1 (fr) Procédé de surveillance de la puissance d'un consommateur électrique
EP3532421B1 (fr) Ascenseur avec circuit electrique et surveillance d`un interupteur au moyen d'une tension alternative
DE102010002504A1 (de) Verfahren und Vorrichtung zum Überprüfen einer elektronischen Einrichtung
EP2126536B1 (fr) Dispositif et procédé pour un test de fonctionnement d'un frein
EP3063505B1 (fr) Capteur de position permettant de détecter une position d'un actionneur
EP2390222B1 (fr) Procédé de préparation d'une information sur une hauteur de levée actuelle et chariot de manutention adapté
EP3521131B1 (fr) Senseur, système et procédé pour détecter des pièces métalliques
DE102016220235A1 (de) Erkennung eines Fehlers in einer Generatoreinheit
WO2023117894A1 (fr) Dispositif de détection de position d'étage d'un système d'ascenseur
DE4112625C2 (fr)
EP3788389B1 (fr) Dispositif de mesure de courant redondant comportant une détection de coupures de circuit
DE102007005827B4 (de) Vorrichtung und Verfahren für einen Funktionstest einer Bremse
DE19704867C1 (de) Antriebseinrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201113

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1379475

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018004672

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210708

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210707

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018004672

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210807

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230215

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230208

Year of fee payment: 6

Ref country code: PL

Payment date: 20230210

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210407

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 7

Ref country code: GB

Payment date: 20240220

Year of fee payment: 7

Ref country code: CH

Payment date: 20240301

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240226

Year of fee payment: 7