EP3629366B1 - Vacuum system and vacuum pump - Google Patents

Vacuum system and vacuum pump Download PDF

Info

Publication number
EP3629366B1
EP3629366B1 EP20152401.4A EP20152401A EP3629366B1 EP 3629366 B1 EP3629366 B1 EP 3629366B1 EP 20152401 A EP20152401 A EP 20152401A EP 3629366 B1 EP3629366 B1 EP 3629366B1
Authority
EP
European Patent Office
Prior art keywords
pump
guided
rotor
vacuum
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20152401.4A
Other languages
German (de)
French (fr)
Other versions
EP3629366A2 (en
EP3629366A3 (en
Inventor
Michael Schweighöfer
Jan Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum Technology AG
Original Assignee
Pfeiffer Vacuum Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum Technology AG filed Critical Pfeiffer Vacuum Technology AG
Priority to EP20152401.4A priority Critical patent/EP3629366B1/en
Publication of EP3629366A2 publication Critical patent/EP3629366A2/en
Publication of EP3629366A3 publication Critical patent/EP3629366A3/en
Application granted granted Critical
Publication of EP3629366B1 publication Critical patent/EP3629366B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/06Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means
    • F04B37/08Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for evacuating by thermal means by condensing or freezing, e.g. cryogenic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/24Vacuum systems, e.g. maintaining desired pressures

Definitions

  • the present invention relates to a vacuum system, in particular a gas analysis system and/or mass spectrometry system, comprising a vacuum pump with a pump-active area in which a gas can be pumped by means of an active pump element, and a device for generating a beam of particles.
  • a vacuum system in particular a gas analysis system and/or mass spectrometry system, comprising a vacuum pump with a pump-active area in which a gas can be pumped by means of an active pump element, and a device for generating a beam of particles.
  • Such vacuum systems are in EP 1 193 497 A2 and U.S. 2007/0148020 A1 disclosed. Further prior art forms the WO 2016/142683 A1 .
  • Particle beams are often generated and used in vacuum systems, for example in mass spectrometry systems.
  • deflection devices are often used, for example, by means of which the beam can be deflected in such a way that different components of the beam are deflected differently, so that at least a first and a second partial beam can be formed.
  • these have the purpose that the particle beam is divided so that only certain components to be analyzed, which in particular form the first partial beam, are guided in a desired direction, in particular to an analyzer unit.
  • the deflection device After passing through the deflection device, other components, which in particular form the second partial beam, have a different direction than the components to be analyzed.
  • the deflection device thus acts as a filter.
  • such a deflection often by about 90°, enables a compact design of the mass spectrometry system.
  • the beam guided into the active pump area can be, for example, a partial beam after passing through a filter and/or separation device.
  • the beam has a particle stream with a specific direction and that this direction is advantageously used to capture the particles directly.
  • it can also be a type of main jet and/or an overall jet, for example.
  • the invention is aimed at increasing the probability of capture of a respective particle of the beam. This is achieved by the invention in a structurally particularly simple manner.
  • the vacuum system can preferably include a deflection device, by means of which the jet can be deflected in such a way that different components of the jet are deflected differently, so that at least a first and a second partial jet can be formed, with the second partial jet being guided into the pump-active region.
  • the jet is therefore in particular at least partially guided into the active pumping area.
  • a partial beam in particular a second partial beam, can also be meant.
  • the invention thus enables in particular a good separation of the partial beams and a high quality of the first partial beam, which can have a positive effect on an analysis of the first partial beam, for example.
  • the gas components of the second partial beam are often those components that are undesirable with regard to an analysis task, that is to say they represent undesirable molecules. These can be referred to as dirt particles.
  • second partial jets or dirt particles typically land on static components in the area of or adjacent to the deflection device.
  • a diaphragm is also often arranged downstream of the deflection device, through which the first partial beam can pass, but on the surface of which the dirt particles impinge away from the first partial beam or a passage for this. All dirt particles that land on static surfaces desorb after a certain time from the surface in question with a statistical distribution of direction. On the one hand, this means an increased probability that dirt particles will reach the analyzer unit despite all the filter devices.
  • the dirt particles can collide with the gas molecules to be analyzed in the first partial beam and thus reduce its quality. This is because the molecules of the first partial beam are thereby deflected and the number of molecules to be analyzed that reach the analyzer unit is reduced.
  • the invention now makes it possible for dirt particles to be removed directly by the pumping action of the vacuum pump.
  • the direction or kinetic energy of the dirt particles in the particle beam is advantageously used in order to actively feed them to the active pumping area of the vacuum pump.
  • the active pumping area then actively gives the dirt particles or the second partial jet a preferred direction in the pumping direction, so that the dirt particles are actively guided away from the first partial jet and in particular from an analyzer unit.
  • effective evacuation of vacuum chambers of a gas analysis system is often difficult, namely due to disadvantageous geometries and conductivity values.
  • better evacuation allows for better analysis accuracy.
  • the invention makes it possible by utilizing the direction of the beam or the kinetic energy of the particles and due to the active discharge, better evacuation and thus, in particular, improved analysis accuracy.
  • the active pumping area is generally understood to be an effective area of an active pumping element of the vacuum pump, for example a rotor or rotor element, in particular a turbo rotor disk.
  • the beam in particular the second partial beam, is guided in particular into an active rotor area.
  • this is in particular an area swept over by the rotor blades during operation.
  • a rotor core that does not itself have an active pumping effect, but only has a structural function, does not belong to the active pumping area. It is generally advantageous if the beam is not guided onto a rotor core or the beam is guided past a rotor core.
  • the deflection device deflects different components of the particle beam differently. Typically, certain components are not deflected at all, namely uncharged components in particular. It is therefore generally the case that at least one of the first and second partial beams must be deflected by the deflection device in order to split the partial beams into such. For example, the second partial beam cannot be deflected by the deflection device or can be aligned in continuation of the particle beam in front of the deflection device. Uncharged particles often form undesirable molecules or dirt particles with regard to the analysis task. If the partial jet of uncharged components is guided into the active pumping area, a particularly large proportion of dirt particles in particular will be discharged directly.
  • the molecules of the jet which is guided into the pump-active area, are in particular captured directly by at least one pump-active element of the vacuum pump in the pump-active area.
  • the pumping element designed as a turbo rotor
  • different partial beams After passing through a deflection device, different partial beams generally comprise different components and have different directions.
  • a partial beam does not necessarily have only one component or one type of particle.
  • the second partial jet can, for example, have a large number of components, all of which can form dirt particles. This applies in particular to a second partial beam, which is directed straight ahead in relation to the common beam before passing through the deflection device and/or has uncharged molecules.
  • the first partial beam can also have fundamentally different components, with the differences typically being small.
  • the deflection device typically does not split the common particle beam into just two absolutely discrete partial beams. Rather, particle beams in such systems typically have a large number of components, with mostly only a small part of the components to be analyzed, often a specific type of ion and/or molecule. Consequently, after passing through the deflection device, a large number of, in particular second, partial beams typically form in a fan-like manner.
  • at least one second partial jet can be guided into the active pumping area, but several second partial jets or partial jets with dirt particles are advantageously guided into the active pumping area in order to remove as many dirt particles as possible directly.
  • the second partial beam can in particular have uncharged particles and/or particles of a carrier gas or consist essentially of such.
  • a carrier gas often makes up a large part of the pressure in a vacuum system, particularly a mass spectrometry system. Accordingly, the invention advantageously allows a large proportion of particles that are not intended to be part of the first partial beam to be pumped off directly.
  • a carrier gas is, for example, an inert gas and/or air.
  • helium can be used as the carrier gas.
  • the second partial jet comprises, for example, oxygen and/or nitrogen, in particular uncharged particles thereof.
  • the second partial beam comprises in particular mainly one type of molecule and/or has a particle flow that is many times higher than that of the first particle beam.
  • a molecular species to be analyzed makes up only a small portion of the gas flow and/or a carrier gas makes up a vast majority.
  • gas components are deflected differently and as large a part as possible of gas components that are undesirable, especially with regard to an analysis task, is guided directly into the active pumping area using their direction.
  • these, in particular undesired, components can be actively removed, namely in particular out of the area of the first partial beam and, for example, away from an analysis area or an area of an analyzer unit.
  • the deflection device divides the particle beam into partial beams.
  • the beam before passing through the deflection device is also referred to here as a common (particle) beam, in contrast to the partial beams that form during and/or after passing through the deflection device.
  • the vacuum system can, for example, also have a plurality of deflection devices, for example each with advantageous guidance of a partial beam into a pump-active region of a vacuum pump.
  • a deflection device for example, a wide variety of other filter elements can also be used, such as an aperture and/or a quadrupole.
  • the jet is guided into the active pumping region with at least one directional component in the pumping direction. This supports the pumping action of the pump-active area and the molecules of the jet are removed particularly effectively.
  • the first partial beam is not guided into the pump-active area.
  • the first partial beam can be guided to an area outside the vacuum pump.
  • the first partial beam can be guided to an analyzer unit, for example directly or through at least one further filter element, in particular a diaphragm.
  • the first partial beam can be routed past or through a housing of the vacuum pump.
  • the vacuum pump can include a rotor which can be driven to rotate about a rotor axis.
  • An active pumping element of the vacuum pump or of the active pumping area can be coupled to the rotor, so that the rotor drives the pump element.
  • the jet can be guided into an active rotor area of the rotor or of the active pump element.
  • a pumping direction and/or a rotor axis of an active pumping element and/or the vacuum pump is aligned obliquely with respect to a direction of the jet, in particular before passing through one or the deflection device.
  • the beam and in particular a second partial beam directed straight ahead in relation to a common beam can be guided particularly advantageously with regard to the pumping effect into the active pumping region.
  • such an arrangement is particularly advantageous in terms of installation space.
  • an angle between a pumping direction and/or a rotor axis of the active pump element and/or the vacuum pump and a direction of the jet, in particular before passing through a deflection device can be in the range of 40° to 60°, preferably in the range of 50° up to 55°. These values are influenced by the particle speed, the rotor blade rotation speed in the "target area" of the jet and the rotor blade angle or angle of attack there.
  • the angle can be optimized three-dimensionally depending on the case.
  • a pumping direction and/or a rotor axis of the active pumping element and/or the vacuum pump can be aligned obliquely in relation to a direction of the first and/or the second partial jet after passage through the deflection device. This is also conducive to a compact design.
  • the vacuum pump can be designed in one or more stages, for example.
  • Multi-stage means that the vacuum pump has at least two pump stages. At least two pump stages can preferably be connected in series. The pump stages can be driven by a common rotor, for example.
  • the vacuum pump has at least two pump stages, preferably connected in series, with an intermediate stage region being arranged between the pump stages, in particular in the pumping direction.
  • the pumping stages can be spaced apart over this interstage region.
  • the beam is preferably passed through the interstage region.
  • the beam in particular a second partial beam, can be guided into a pump stage which is arranged downstream of the intermediate stage region, in particular in the pumping direction.
  • a pumping stage is defined in particular by an active pumping element, in particular in cooperation with a static and/or passive element.
  • a peripheral row of rotor blades, in particular a turbo rotor disk, in particular in cooperation with a stator disk thus forms a pump stage.
  • a turbo rotor can in principle, for example, be designed with several rows of blades connected in one piece and/or can have one or more turbo rotor disks.
  • the jet can generally preferably be directed into the effective range of the active pumping element and/or onto a rotating element, for example a turbo rotor disk.
  • the first partial beam can preferably be led out of the vacuum pump after passing through the intermediate stage area and/or a deflection device, for example to an analyzer unit.
  • an analyzer unit can be designed as a detector, for example.
  • the vacuum pump has a first intermediate connection on the intermediate stage area for the entry of the jet into the intermediate stage area and/or a second intermediate connection for the exit of the first partial jet from the intermediate stage area.
  • the first and/or the second intermediate connection can, for example, have a flange, in particular its own flange.
  • the intermediate connections can preferably be arranged at least essentially opposite one another, in particular in relation to a rotor axis and/or pumping direction.
  • The, in particular common, beam and/or the first partial beam can thus advantageously enter or exit the intermediate stage region.
  • the intermediate connections are not necessarily exactly radially opposite, e.g. H. offset by 180° around the rotor axis.
  • an off-centre connection axis of the intermediate connections which in particular leads past a rotor core, is preferred. This enables a particularly advantageous gas flow.
  • radially opposite intermediate connections are fundamentally possible, in particular in connection with a deflection device which at least partially deflects the gas jet around a rotor core.
  • the intermediate connections can preferably be formed separately from one another and/or arranged at a distance from one another in the circumferential direction.
  • a housing wall preferably extends in the circumferential direction between the intermediate connections, in particular over at least 20°, preferably at least 35°. The quality of the first partial beam is further improved by separating the intermediate connections.
  • a deflection device can have a magnetic and/or electric field, for example.
  • a magnetic field can be provided, for example, by a permanent magnet or, for example, by an electromagnet will.
  • a magnetic and/or electric field causes charged particles to be deflected differently, in particular depending on their mass.
  • the deflection device can have a field generating device, such as a magnet or an electrode.
  • the deflection device can preferably be effective and/or arranged in or on the intermediate stage area.
  • the term "effective" relates in particular to the electric and/or magnetic field of the deflection device, ie in general to its effective range.
  • the deflection device can, for example, also have components, such as a field generation device, outside of its effective range. Consequently, the term “arranged” also refers at least to the effective range of the deflection device.
  • an electric and/or magnetic field of the deflection device can be arranged in and/or on the intermediate stage area.
  • a deflection device or an electric and/or magnetic field can also be arranged radially outside the intermediate stage area, for example at or in the area of an intermediate connection, in particular that intermediate connection for the entry of the common beam.
  • the arrangement of a, in particular (electro)magnetic, deflection device in the area of at least one of the intermediate connections is also advantageously possible.
  • An arrangement of passive and/or permanent-magnetic as well as active deflection elements is possible on the one hand in the vacuum area or on the other hand also outside of the vacuum area or in the atmosphere.
  • a deflection device or a deflection element can be arranged, for example, in the area of the pump housing and/or on the outside of the pump housing.
  • the deflection device itself can also be arranged outside the vacuum area in such a way that it is effective in the vacuum area, that is to say that in particular an electric and/or magnetic field extends into the vacuum area, in particular into the intermediate stage area.
  • deflection devices can also be provided, also in or on the intermediate stage area.
  • two deflection devices can be provided at, in or on the respective intermediate connections.
  • the use of several deflection devices is particularly advantageous with regard to the installation space.
  • one large deflection device does not have to be provided, which completely fulfills the desired deflection, but rather the desired deflection can be divided among a number of deflection devices, which can subsequently be made smaller. In this way, they can be arranged more favorably with regard to the overall installation space required.
  • a magnetic and/or electric field of a deflection device penetrates the rotating parts of a rotor as little as possible.
  • several and/or small deflection devices which can preferably also be arranged outside of the intermediate stage area, have proven to be advantageous. In this way, eddy current losses in the rotor and associated, undesirable heating in the rotor can be reduced.
  • the jet can preferably be aligned eccentrically in relation to a rotor axis of the vacuum pump and/or be guided past a rotor core, in particular one that is not pump-active. This applies in particular to the common beam, ie before passing through the deflection device, and/or to the first and/or second partial beam.
  • the beam in particular the second partial beam, is guided into the active pumping area in a direction that supports the pumping action.
  • the beam can be guided into the active pumping area in such a way that the particles of the beam are captured particularly reliably.
  • the jet in the case of a turbomolecular vacuum pump or turbopump stage, can preferably have a direction which runs at least with a component counter to the direction of rotation of the turborotor when it enters the pumping-active region. The jet thus runs counter to the rotor blades.
  • the jet preferably also has a directional component in the pumping direction or parallel to the rotor axis in the direction of the outlet.
  • the jet In the case of a turbomolecular pump, it is particularly advantageous for the jet to enter in the opposite direction to the local direction of rotation of the rotor, so that the particles can at best pass through the first rotor disk without blade contact and only make initial contact with the stator disk below, with subsequent deflection in the usual cosine distribution in the molecular pressure range .
  • the jet can preferably be guided in such a way that its particles are captured by pump elements designed as rotor elements, such as turbo rotor blades, as far as possible without colliding with them.
  • the jet is aligned in particular taking into account its particle speed, the angle of attack of the rotor blades and/or the rotational speed of the rotor or rotor blades.
  • the selection of the point of entry of the jet into the active pumping area in relation to the active rotor disk diameter or the effective outer and inner diameters of the rotor blades is also subject to optimization, since the first deflection point on a stator disk behind it has a decisive influence will.
  • This deflection point should advantageously lie within an imaginary ring cylinder in the axial continuation of the area swept by the rotor blades, so that optimal further pumping can take place.
  • the active pump element is formed by a turbo rotor disk with a plurality of rotor blades distributed over the circumference of the turbo rotor disk, the rotor blades having a radial extent from a radially inner end to a radially outer end of the rotor blades.
  • the jet can preferably be guided onto a radial region of the rotor blades which is spaced from the radially inner end and/or from the radially outer end of the rotor blades by at least a quarter of the radial extension.
  • the jet can be guided onto the rotor blades approximately radially in the middle or approximately at a third of the radial extent measured from the radially outer end of the rotor blades.
  • the pump-active element is a rotor element, the jet being guided into the pump-active area of the rotor element in such a way that at an entry point of the jet into the pump-active area, the jet has a direction, in particular with respect to a cross-section perpendicular to the rotor axis, directed outwards, tangentially or inwards.
  • the active pump element is formed by a turbo rotor disk with a plurality of rotor blades distributed over the circumference of the turbo rotor disk, the rotor blades having an angle of attack in relation to the rotor axis and the jet being flatter when it enters the active pumping area than the rotor blades, corresponding to the rotor blades being slanted or slanted steeper is than the rotor blades.
  • An advantageous angle is subject to optimization and depends on many boundary conditions.
  • the vacuum pump has a multi-stage design
  • the second partial jet is guided into a pump stage and the first partial jet is guided into a chamber which is connected to a further pump stage of the vacuum pump, in particular upstream in the pumping direction, in particular the first in the pumping direction connected.
  • This embodiment permits a particularly compact construction with simultaneously high quality of the first partial beam, in that the same vacuum pump captures the second partial beam on the one hand and evacuates the chamber on the other.
  • the pump stage, into which the second partial beam is guided is arranged downstream of the, in particular first, pump stage connected to the chamber, in particular in the pumping direction, and in particular adjoins an intermediate stage region in the pumping direction, in particular through which the beam is passed.
  • the vacuum pump can, for example, generally be designed as a molecular pump, for example as a turbomolecular pump and/or Holweck pump. In principle, the vacuum pump can also be designed as a cryopump. Finally, combinations of different pump types, for example in the form of different pump stages, are advantageous.
  • the object of the invention is also achieved by a vacuum pump according to the independent claim directed thereto.
  • the vacuum pump comprises at least two pump stages, in particular those connected in series, with an intermediate stage region being arranged between the pump stages, in particular in the pumping direction.
  • the vacuum pump has a first intermediate connection for entering a particle beam into the interstage area and a second intermediate connection for exiting a particle beam from the interstage area.
  • the intermediate terminals are circumferential separated and spaced apart. The separation and spaced arrangement of the intermediate connections improves the quality of the exiting, first partial beam and thus the analysis result.
  • exactly two intermediate connections can be provided on the intermediate stage area.
  • more than two intermediate connections on the intermediate stage area are also possible.
  • At least one of the intermediate connections, preferably both intermediate connections, can have its own flange, for example.
  • a plurality of intermediate stage regions with passage of the particle beam can also be provided.
  • the intermediate terminals are circumferentially separated and spaced apart, specifically with a housing wall extending circumferentially between the intermediate terminals.
  • the housing wall preferably extends in the circumferential direction over an angular range of at least 20°, in particular at least 40°, in relation to a central and/or rotor axis.
  • the intermediate connections are arranged in such a way that no straight line can be laid through the intermediate connections.
  • the intermediate connections are thus not “optically transparent” and one cannot "see straight through” the intermediate connections.
  • the intermediate connections can preferably be arranged or aligned in the shape of an arrow, with the direction of the arrow preferably pointing essentially in the pumping direction of the vacuum pump.
  • At least one of the intermediate connections can have a flange plane that is arranged obliquely with respect to a rotor axis.
  • an angle between the flange plane and the rotor axis can preferably be in the range of 40° to 60°.
  • both intermediate connections can be arranged at an angle and, in particular, with the angle range specified relative to the rotor axis.
  • a particle beam can be guided through the intermediate stage area in such a way that part of the beam, namely a first partial beam, exits the intermediate stage area again and that another part of the beam, namely a second partial beam, is guided into an active pumping area of the vacuum pump.
  • the vacuum pump comprises a deflection device for a particle beam in the intermediate stage region, by means of which the beam can be divided into at least two partial beams and which is set up so that a first partial beam is guided to the second intermediate connection, and in particular through this to an analyzer unit, and a second partial beam is guided into a pump stage downstream of the intermediate stage region.
  • the intermediate connections can advantageously be arranged at least essentially opposite one another, in this case preferably not radially opposite one another, but with a connecting line running eccentrically with respect to a pump cross section.
  • a gas analysis method in particular a mass spectrometry method, according to the claim directed thereto.
  • this method is performed with a vacuum system as disclosed herein and/or with a vacuum pump as disclosed herein.
  • a or the vacuum pump is provided with an active pumping area in which a gas can be pumped by means of an active pump element, a beam of particles to be analyzed is generated and the beam is deflected by means of a deflection device in such a way that different components of the beam are deflected differently, so that at least a first and a second partial beam are formed, the second partial beam being guided into the active pumping area of the vacuum pump, and the first partial beam not being guided into the active pumping area of the vacuum pump, but being analyzed.
  • vacuum system according to the invention and its embodiments can be advantageously further developed individually and in combination at least analogously by the features of the vacuum pump according to the invention and the gas analysis method and their embodiments, and vice versa.
  • the turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient, not shown, can be connected in a manner known per se.
  • the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.
  • the inlet flange 113 forms when the vacuum pump is aligned according to FIG 1 the upper end of the housing 119 of the vacuum pump 111.
  • the housing 119 comprises a lower part 121 on which an electronics housing 123 is arranged laterally. Electrical and/or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump. A plurality of connections 127 for accessories are provided on the electronics housing 123.
  • a data interface 129 for example according to the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
  • a flood inlet 133 in particular in the form of a flood valve, is provided on the housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be flooded.
  • a sealing gas connection 135, which is also referred to as a flushing gas connection through which flushing gas to protect the electric motor 125 (see e.g 3 ) before the The gas delivered by the pump can be brought into the engine compartment 137 in which the electric motor 125 in the vacuum pump 111 is housed.
  • Two coolant connections 139 are also arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant, which can be conducted into the vacuum pump for cooling purposes.
  • the lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141 .
  • the vacuum pump 111 can also be fastened to a recipient via the inlet flange 113 and can thus be operated in a suspended manner, as it were.
  • the vacuum pump 111 can be designed in such a way that it can also be operated when it is oriented in a different way than in FIG 1 is shown. It is also possible to realize embodiments of the vacuum pump in which the underside 141 cannot be arranged facing downwards but to the side or directed upwards.
  • various screws 143 are also arranged, by means of which components of the vacuum pump that are not further specified here are fastened to one another.
  • a bearing cap 145 is attached to the underside 141 .
  • fastening bores 147 are arranged on the underside 141, via which the pump 111 can be fastened, for example, to a support surface.
  • a coolant line 148 is shown, in which the coolant fed in and out via the coolant connections 139 can circulate.
  • the vacuum pump comprises several process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
  • a rotor 149 is arranged in the housing 119 and has a rotor shaft 153 which can be rotated about an axis of rotation 151 .
  • the turbomolecular pump 111 comprises a plurality of turbomolecular pumping stages connected in series with one another in a pumping manner, with a plurality of radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119.
  • a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular pump stage.
  • the stator discs 157 are held at a desired axial distance from one another by spacer rings 159 .
  • the vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and are connected in series with one another for pumping purposes.
  • the rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two Holweck rotor sleeves 163, 165 in the shape of a cylinder jacket, fastened to the rotor hub 161 and carried by it, which are oriented coaxially to the axis of rotation 151 and are nested in one another in the radial direction.
  • two cylinder jacket-shaped Holweck stator sleeves 167, 169 which are also oriented coaxially with respect to the axis of rotation 151 and are nested in one another when viewed in the radial direction.
  • the pumping-active surfaces of the Holweck pump stages are formed by the lateral surfaces, ie by the radial inner and/or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169.
  • the radially inner surface of the outer Holweck stator sleeve 167 abuts the radially outer surface of the outer Holweck rotor sleeve 163 forming a radial Holweck gap 171 and forms the first Holweck pump stage following the turbomolecular pumps.
  • the radially inner surface of the outer Holweck rotor sleeve 163 faces the radially outer surface of the inner Holweck stator sleeve 169 to form a radial Holweck gap 173 and therewith forms a second Holweck pumping stage.
  • the radially inner surface of the inner Holweck stator sleeve 169 faces the radially outer surface of the inner Holweck rotor sleeve 165 to form a radial Holweck gap 175 and therewith forms the third Holweck pumping stage.
  • a radially running channel can be provided, via which the radially outer Holweck gap 171 is connected to the middle Holweck gap 173.
  • a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175.
  • a connecting channel 179 to the outlet 117 can be provided at the lower end of the radially inner Holweck rotor sleeve 165 .
  • the above-mentioned pumping-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running in a spiral shape around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas for operating the Advance vacuum pump 111 in the Holweck grooves.
  • a roller bearing 181 in the region of the pump outlet 117 and a permanent magnet bearing 183 in the region of the pump inlet 115 are provided for the rotatable mounting of the rotor shaft 153 .
  • a conical spray nut 185 is provided on the rotor shaft 153 with an outer diameter that increases toward the roller bearing 181 .
  • the injection nut 185 is in sliding contact with at least one stripper of an operating fluid store.
  • the resource reservoir comprises a plurality of absorbent discs 187 stacked on top of one another, which are impregnated with a resource for the roller bearing 181, e.g. with a lubricant.
  • the operating fluid is transferred by capillary action from the operating fluid reservoir to the rotating spray nut 185 via the scraper and, as a result of the centrifugal force, is conveyed along the spray nut 185 in the direction of the increasing outer diameter of the spray nut 185 to the roller bearing 181, where it e.g. fulfills a lubricating function.
  • the roller bearing 181 and the operating fluid reservoir are surrounded by a trough-shaped insert 189 and the bearing cover 145 in the vacuum pump.
  • the permanent magnet bearing 183 comprises a bearing half 191 on the rotor side and a bearing half 193 on the stator side, which each comprise a ring stack of a plurality of permanent magnetic rings 195, 197 stacked on top of one another in the axial direction.
  • the ring magnets 195, 197 lie opposite one another, forming a radial bearing gap 199, the ring magnets 195 on the rotor side being arranged radially on the outside and the ring magnets 197 on the stator side being arranged radially on the inside.
  • the magnetic field present in the bearing gap 199 produces magnetic repulsive forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially.
  • the ring magnets 195 on the rotor side are carried by a support section 201 of the rotor shaft 153, which radially surrounds the ring magnets 195 on the outside.
  • the ring magnets 197 on the stator side are carried by a support section 203 on the stator side, which extends through the ring magnets 197 and is suspended on radial struts 205 of the housing 119 .
  • the ring magnets 195 on the rotor side are parallel to the axis of rotation 151 by a cover element coupled to the carrier section 203 207 fixed.
  • the stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the support section 203 and a fastening ring 211 connected to the support section 203 .
  • a disc spring 213 can also be provided between the fastening ring 211 and the ring magnet 197 .
  • An emergency or safety bearing 215 is provided within the magnetic bearing, which runs idle without contact during normal operation of the vacuum pump 111 and only engages in the event of an excessive radial deflection of the rotor 149 relative to the stator, in order to create a radial stop for the rotor 149 to form since collision of the rotor-side structures with the stator-side structures is prevented.
  • the backup bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and/or the stator, which causes the backup bearing 215 to be disengaged during normal pumping operation.
  • the radial deflection at which the backup bearing 215 engages is dimensioned large enough so that the backup bearing 215 does not engage during normal operation of the vacuum pump, and at the same time small enough so that the rotor-side structures collide with the stator-side structures under all circumstances is prevented.
  • the vacuum pump 111 includes the electric motor 125 for rotating the rotor 149.
  • the armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217.
  • a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 that extends through the motor stator 217 .
  • the motor stator 217 is fixed in the housing inside the motor room 137 provided for the electric motor 125 .
  • a sealing gas which is also referred to as flushing gas and which can be air or nitrogen, for example, can get into the engine compartment 137 via the sealing gas connection 135 .
  • the sealing gas can protect the electric motor 125 from process gas, e.g. from corrosive components of the process gas.
  • the engine compartment 137 can also be evacuated via the pump outlet 117, i.e. the vacuum pressure produced by the backing pump connected to the pump outlet 117 prevails in the engine compartment 137 at least approximately.
  • a labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the motor compartment 137, in particular in order to achieve better sealing of the motor compartment 217 in relation to the Holweck pump stages located radially outside.
  • a gas analysis system 20 which includes a vacuum pump 22, a deflection device 24 for a particle beam 26 and an analyzer unit 28.
  • the deflection device 24 is set up to split the beam 26 into at least a first partial beam 30 and a second partial beam 32 in that the components of the relevant partial beams are deflected by the deflection device 24 to different extents.
  • the deflection device 24 is only indicated here by a circle, which symbolizes a magnetic field or electric field generated by the deflection device 24 .
  • the molecules are deflected to different extents, in particular as a function of their mass and their charge (at different speeds also as a function of this). Uncharged molecules are not deflected and fly straight ahead.
  • these molecules form the second partial beam 32, which is shown in dotted lines here and below.
  • Charged particles of a certain kind are deflected according to the dotted line of the first sub-beam 30 and are guided to the analyzer unit 28 . It is these particles that are to be detected by the analyzer unit 28 .
  • the particles of the second partial beam 32 form dirt particles and are not desired in the area of the analyzer unit 28 .
  • typical particle beams 26 from gas analysis systems usually have more than two components, ie more than two different types of molecules. Consequently, not only two discrete partial beams 30, 32 are typically formed, but actually a whole fan of partial beams is formed. For the most part, this fan contains dirt particles, that is to say partial beams which should not be guided to the analyzer unit 28 .
  • the goal is to guide as many dirt particles and as many second partial jets as possible, which include dirt particles, into a pump-active area 34 of the vacuum pump 22 . As a result, the dirt particles are actively removed and contamination of the first partial beam 30 and of the area of the analyzer unit 28 is reduced.
  • the active pumping area 34 is formed here at least by a first turbo rotor disk 36 in the pumping direction of the vacuum pump 22 and specifically by its rotor blades arranged distributed over the circumference.
  • the vacuum pump 22 includes, for example, a plurality of turbo rotor disks 36, generally turbo stages, and a Holweck stage 38.
  • the second partial beam 32 is guided parallel to the rotor axis 40 of the vacuum pump 22 and parallel to its pumping direction into the active pumping region 34 .
  • the second partial jet 32 is, however, guided obliquely to the rotor axis 40 into the active pumping area 34 .
  • an aperture 42 for the first partial beam 30 is also indicated, which is connected downstream of the deflection device 24 and further improves the selection of the partial beams.
  • FIG. 6 and 7 an embodiment of a vacuum system according to the invention that is not shown separately but is disclosed here can also be described, in which no deflection device is provided and in which no partial beams are formed.
  • the jet 26 in particular is guided into the active pumping region of the pump stage 36, with the path of the jet 26 corresponding in particular to that of the second partial jet 32 or the dotted arrow.
  • the particles of the beam 26 or 32 fed into the pump stage 36 are captured directly by the pump stage 36 and advantageously removed, regardless of whether parts of the beam 26 were previously deflected.
  • In 8 1 shows a gas analysis system 20 with a multi-stage vacuum pump 22, with the jet 26 or the partial jets 30 and 32 being guided through an intermediate stage region 44.
  • the second partial jet 32 is guided into an active pumping region of a turbo rotor disk 36 arranged downstream of the intermediate stage region 44 in the pumping direction.
  • the common beam 26 is guided into the interstage region 44 through a first intermediate port 46 .
  • the first split beam 30 exits the interstage region 44 through a second intermediate port 48 .
  • the deflection device 24 is arranged or active in the intermediate stage area 44 and causes the splitting of the common beam 26 into the partial beams 30, 32 there.
  • the intermediate port 48 is connected to a chamber 50 .
  • the analyzer unit 28 is located in this chamber 50 and the first partial beam 30 is guided through the intermediate connection 48 to the analyzer unit 28 .
  • the chamber 50 is also connected to an inlet 52 of the vacuum pump 22 , in this embodiment another set of turbo rotor disks 54 are arranged at the inlet 52 and evacuate the chamber 50 .
  • the turbo rotor disks 36 and 54 are arranged on a common rotor shaft 56, on which a Holweck rotor of the Holweck pump stage 38 is also located in this example.
  • the vacuum pump 22 is used on the one hand for improved separation of the partial beams 30 and 32 by actively removing the molecules of the second partial beam 32 and thus cleaning the first partial beam 30 to a certain extent.
  • the vacuum pump 22 also serves to evacuate the chamber 50 in which the analyzer unit 28 is located. This results in an extremely compact design with advantageous analysis accuracy.
  • the common jet 26 and the first partial jet 30 are also aligned at an angle with respect to the rotor axis or the rotor shaft 56 . Out of 8 it follows that this is also beneficial to the compact design.
  • the common particle beam 26 can also include molecules that are more heavily charged and/or lighter than those of the first partial beam 30. In general, the common beam 26 can therefore include molecules that are deflected even more strongly than the first partial beam 30 A resulting third partial beam, not shown in the figures for the sake of clarity, is guided by the deflection device 24 ie counter to the pumping direction onto the last of the turbo rotor disks 54 in the pumping direction. This third partial beam is thus also guided to a pump-active region, but unlike the second partial beam 32, it is not in the pumping direction but counter to the pumping direction.
  • the relevant turbo rotor disk 54 or its rotor blades gives the molecules of the third partial jet a preferred direction in the pumping direction, so that these molecules are also actively discharged.
  • a collision with the molecules of the first partial beam 30 is possible with these molecules.
  • the overall probability is reduced that the molecules of the third partial beam will emerge through the intermediate connection 48 or reach the analyzer unit 28 .
  • the analysis result is thus also improved in relation to the third partial beam.
  • the third partial beam can also be guided onto a stator disk which is arranged downstream of the last of the turbo rotor disks 54 .
  • a stator disk which is arranged downstream of the last of the turbo rotor disks 54 .
  • a stator disk as a disk on which the third partial beam impinges is also fundamentally advantageous in this context, although it does not have an active effect either. Because its the intermediate level The surface facing 44 provides an advantageous desorption direction distribution for a particle adhering thereto, with a high probability of desorption with a moving component in the pumping direction.
  • Some of these partial beams land on passive components, in particular on the inside wall of a housing. These molecules desorb from the inner wall of the housing with a statistical directional distribution, which is generally unfavorable with regard to the goal of allowing as few dirt particles as possible to reach the analyzer unit 28 . Consequently, it is important to guide as many partial jets and as many molecules as possible that are different from the first partial jet 30, ie as many dirt particles as possible, to a pumping-active area of the vacuum pump 22, in particular to the turbo rotor blades.
  • the embodiment of 9 is the one who 8 overall similar, but is distinguished by the fact that two deflection devices 24 are provided in the intermediate stage area 44, in contrast to the exemplary single deflection device 24 of the embodiment of FIG 8 .
  • a first deflection device 24 in the direction of the beam 26 separates the partial beams 30 and 32 .
  • the downstream deflection device 24, on the other hand, is only used for further deflection or further cleaning of the first partial beam 30. In principle, different arrangements of deflection devices are possible.
  • This embodiment therefore results in significantly lower eddy current losses and thus less heating of the rotor.
  • a vacuum pump 22 for example that of the embodiment of FIG 8 , shown in cross-section, the cutting plane being oriented perpendicularly to a rotor shaft 56 and, in particular, being arranged at the axial height of an intermediate stage region 44 .
  • a first intermediate terminal 46 and a second intermediate terminal 48 are provided on the interstage region 44 . These are designed separately from one another and are spaced apart in the circumferential direction in relation to the rotor shaft 56 .
  • a housing wall 58 of the vacuum pump 22 extends in the circumferential direction between the intermediate connections 46 and 48.
  • a deflection device 24 is effective between the housing wall 58 and the rotor shaft.
  • the intermediate connections 46 and 48 are arranged opposite one another, namely in such a way that a connecting line runs past the rotor shaft 56 off-center.
  • a ray 26 is indicated by a line shown here as a continuous line. This is because, due to the selected perspective, the first partial beam 30 and the second partial beam 32 are not separately visible here, but lie on top of one another. It goes without saying, however, that the beam alignment selected here, with the beam plane parallel to the rotor axis or to the rotor shaft 56, is exemplary.
  • the common beam 26 enters the intermediate stage area 44 through the first intermediate connection and reaches the effective area of the deflection device 24. There the beam 26 is divided into the partial beams 30, 32, with the first partial beam 30 passing through the second intermediate connection 48 from the intermediate stage area 44 is led out.
  • the second partial jet 32 is guided onto the active pumping area of the visible turbo rotor disk 36, specifically onto the area swept by the plurality of rotor blades 60.
  • the direction of rotation of the rotor shaft 56 or of the turbo rotor disk 36 preferably runs clockwise here.
  • Each intermediate port 46 includes a flange 62, 64, respectively, for sealingly connecting the intermediate ports 46, 48 to other components.
  • the flange 62 has a flange plane 66 which runs at an angle to the rotor axis 40 .
  • the flange 64 also has a flange plane 68 which is oriented at an angle to the rotor axis 40 .
  • the intermediate connections 46 and 48 are arranged in such a way that a straight line cannot be drawn through the intermediate connections, that is, the intermediate connections are not optically transparent.
  • the intermediate terminals 46 and 48 are arranged in an arrow shape in this embodiment.
  • possible angles of the intermediate ports and/or flange planes with respect to the rotor axis will correlate with those of jets 26 and 30.
  • the angles of the intermediate connections and/or flange planes can also lie in a significantly wider angle range, since the actual deflection can take place in the vicinity of the connection plane, and a largely free choice of angle is therefore possible.
  • the vacuum pump 22 has an inlet 52 .
  • This can be connected to a chamber, for example, also via a flange.
  • the flange plane can, for example, run perpendicularly to the rotor axis 40 or likewise run at an angle.
  • the flange plane of the inlet 52 can also be aligned parallel to that of the flange 64, so that the pump 22 with the connections 48 and 52 can advantageously be connected to a chamber housing.
  • a rotor shaft 56 with rotor blades 60 of a turbo rotor disk is shown in cross section.
  • a direction of rotation is indicated counterclockwise.
  • Differently aligned second partial beams 32 are indicated by arrows.
  • the reference to second partial beams 32 is here and in the following by way of example and chosen to facilitate the connection to the above-described examples with a deflection device. It is understood that with reference to the Figures 12 to 14 Possibilities of beam alignment illustrated are also valid for a beam in general, regardless of whether it was previously separated and/or deflected.
  • An entry point into the active pumping area is in 12 each indicated by the arrow end of the dotted arrows.
  • a rotor blade 60 is shown precisely at a rotational position corresponding to the entry points for the purpose of illustration.
  • the second partial beam 32.1 is guided into the pump-active region in such a way that at the point of entry the partial beam 32.1 has a direction that is directed inwards.
  • the second partial beam 32.2 is aligned tangentially with respect to the rotor shaft 56 at the entry point.
  • the partial beam 32.3 is directed outwards at the entry point.
  • the partial jet 32.1 enters the active pumping area before it passes the rotor shaft 56 or a point closest to the rotor axis.
  • the partial jet 32.3 has passed the rotor shaft 56 before entering the active pumping area.
  • the partial jet 32.2 enters the active pumping area at the point where it passes the rotor shaft 56.
  • 13 12 illustrates further options for aligning a beam, in particular a second partial beam, which illustrate a different perspective and in this respect independently or in combination with the alignments according to FIG 12 are applicable.
  • rotor blades 60 are shown in simplified form in a row, with one direction of rotation being indicated by an arrow and running to the right in the plane of the drawing.
  • the rotor blades 60 have an angle of attack 69 in relation to the rotor axis 40 .
  • the second partial beams 32 can be arranged differently in relation to the rotor axis.
  • the partial jet 32.4 is aligned parallel to the rotor axis and is generally aligned steeper than the angle of attack of the rotor blades.
  • the direction of the second partial jet 32.5 corresponds to that of the rotor blades 60, ie it is adjusted accordingly.
  • the second partial jet 32.6 is set flatter than the rotor blades 46.
  • co-rotating beam alignment ie beam alignment with a directional component in the direction of rotation.
  • a radial extension 70 of a rotor blade 60 is shown, which in operation rotates about the rotor axis, which is shown in 14 perpendicular to the image plane.
  • the rotor blade 60 extends from a radially inner end defined by a rotor core, a rotor shaft 56 and/or a blade root to a radially outer end.
  • the radial extension 70 forms an active pumping area of the rotor blade 60 or a turbo rotor.
  • the second partial jet 32 can be guided onto a radial area 72 of the rotor blades 60, which is spaced from the radially inner end and/or from the radially outer end of the rotor blades by at least a quarter of the radial extent.
  • the second partial jet 32 can be guided onto the rotor blades 60 approximately radially in the middle or approximately at one third of the radial extent measured from the radially outer end of the rotor blades.
  • the beam alignment according to the invention enables a particularly high capture probability for the particles of the beam that is guided into the active pumping region, in particular the second partial beam, and in particular for those particles that do not belong to the first partial beam.
  • the at least essentially entire suction capacity of the pump stage, in particular the turbo rotor disk comes into play, in whose active pumping area the jet is guided.
  • the active pumping area is advantageously arranged close to the deflection device and thus at the location at which the partial beams are separated. Thus conductance losses between this location and the active pumping area are small.
  • the invention makes it possible to remove a particularly large proportion of dirt particles in a particularly effective manner and thus in particular to improve the accuracy of the analysis.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

Die vorliegende Erfindung betrifft ein Vakuumsystem, insbesondere Gasanalysesystem und/oder Massenspektrometriesystem, umfassend eine Vakuumpumpe mit einem pumpaktiven Bereich, in dem ein Gas mittels eines aktiven Pumpelements förderbar ist, und eine Einrichtung zum Erzeugen eines Strahls von Teilchen. Derartige Vakuumsysteme sind in EP 1 193 497 A2 und US 2007/0148020 A1 offenbart. Weiteren Stand der Technik bildet die WO 2016/142683 A1 .The present invention relates to a vacuum system, in particular a gas analysis system and/or mass spectrometry system, comprising a vacuum pump with a pump-active area in which a gas can be pumped by means of an active pump element, and a device for generating a beam of particles. Such vacuum systems are in EP 1 193 497 A2 and U.S. 2007/0148020 A1 disclosed. Further prior art forms the WO 2016/142683 A1 .

Teilchenstrahlen werden häufig in Vakuumsystemen erzeugt und genutzt, beispielsweise in Massenspektrometriesystemen. In bekannten Massenspektrometriesystemen werden häufig beispielsweise Umlenkeinrichtungen eingesetzt, mittels denen der Strahl derart umlenkbar ist, dass unterschiedliche Bestandteile des Strahls unterschiedlich abgelenkt werden, sodass wenigstens ein erster und ein zweiter Teilstrahl ausbildbar sind. Diese haben einerseits den Zweck, dass der Teilchenstrahl aufgeteilt wird, sodass nur bestimmte, zu analysierende Bestandteile, die insbesondere den ersten Teilstrahl bilden, in eine gewünschte Richtung, insbesondere zu einer Analysatoreinheit, geführt werden. Übrige Bestandteile, die insbesondere den zweiten Teilstrahl bilden, weisen nach Passage der Umlenkeinrichtung eine andere Richtung als die zu analysierenden Bestandteile auf. Die Umlenkeinrichtung wirkt somit als Filter. Andererseits ermöglicht eine derartige Umlenkung, häufig um etwa 90°, eine kompakte Bauform des Massenspektrometriesystems.Particle beams are often generated and used in vacuum systems, for example in mass spectrometry systems. In known mass spectrometry systems, deflection devices are often used, for example, by means of which the beam can be deflected in such a way that different components of the beam are deflected differently, so that at least a first and a second partial beam can be formed. On the one hand, these have the purpose that the particle beam is divided so that only certain components to be analyzed, which in particular form the first partial beam, are guided in a desired direction, in particular to an analyzer unit. After passing through the deflection device, other components, which in particular form the second partial beam, have a different direction than the components to be analyzed. The deflection device thus acts as a filter. On the other hand, such a deflection, often by about 90°, enables a compact design of the mass spectrometry system.

Es ist eine Aufgabe der Erfindung, bei einem Vakuumsystem der eingangs genannten Art die Evakuierung im Bereich des Strahls zu verbessern.It is an object of the invention to improve the evacuation in the area of the jet in a vacuum system of the type mentioned at the outset.

Diese Aufgabe wird durch ein Vakuumsystem nach Anspruch 1 gelöst, und insbesondere dadurch, dass der Strahl in den pumpaktiven Bereich der Vakuumpumpe geführt ist.This object is achieved by a vacuum system according to claim 1, and in particular in that the jet is guided into the active pumping area of the vacuum pump.

Hierdurch wird der Strahl bzw. werden dessen Moleküle direkt abgepumpt und die Evakuierung wird verbessert. Bei dem in den pumpaktiven Bereich geführten Strahl kann es sich z.B. um einen Teilstrahl nach Passage einer Filter- und/oder Separierungseinrichtung handeln. Generell wird hier aber ausgenutzt, dass der Strahl einen Teilchenstrom mit einer bestimmten Richtung aufweist und dass diese Richtung vorteilhaft ausgenutzt wird, um die Teilchen direkt einzufangen. Insoweit kann es sich auch beispielsweise um eine Art Hauptstrahl und/oder einen Gesamtstrahl handeln. Allgemein ist die Erfindung darauf gerichtet, die Einfangwahrscheinlichkeit eines jeweiligen Teilchens des Strahls zu erhöhen. Dies wird auf konstruktiv besonders einfache Weise durch die Erfindung erreicht.As a result, the beam or its molecules are pumped out directly and the evacuation is improved. The beam guided into the active pump area can be, for example, a partial beam after passing through a filter and/or separation device. In general, however, use is made here of the fact that the beam has a particle stream with a specific direction and that this direction is advantageously used to capture the particles directly. In this respect, it can also be a type of main jet and/or an overall jet, for example. In general, the invention is aimed at increasing the probability of capture of a respective particle of the beam. This is achieved by the invention in a structurally particularly simple manner.

Bevorzugt kann das Vakuumsystem eine Umlenkeinrichtung umfassen, mittels derer der Strahl derart umlenkbar ist, dass unterschiedliche Bestandteile des Strahls unterschiedlich abgelenkt werden, sodass wenigstens ein erster und ein zweiter Teilstrahl ausbildbar sind, wobei der zweite Teilstrahl in den pumpaktiven Bereich geführt ist. Allgemein ist der Strahl also insbesondere zumindest teilweise in den pumpaktiven Bereich geführt. Insoweit nachfolgend von dem Strahl die Rede ist, versteht es sich, dass auch ein, insbesondere zweiter, Teilstrahl gemeint sein kann.The vacuum system can preferably include a deflection device, by means of which the jet can be deflected in such a way that different components of the jet are deflected differently, so that at least a first and a second partial jet can be formed, with the second partial jet being guided into the pump-active region. In general, the jet is therefore in particular at least partially guided into the active pumping area. Insofar as the beam is mentioned below, it goes without saying that a partial beam, in particular a second partial beam, can also be meant.

Die Möglichkeit der Kontamination des ersten Teilstrahls durch Moleküle des zweiten Teilstrahls ist besonders gering. Die Erfindung ermöglich in diesem Zusammenhang also insbesondere eine gute Separierung der Teilstrahlen und eine hohe Qualität des ersten Teilstrahls, die sich beispielsweise positiv auf eine Analyse des ersten Teilstrahls auswirken kann.The possibility of the first partial beam being contaminated by molecules from the second partial beam is particularly low. In this context, the invention thus enables in particular a good separation of the partial beams and a high quality of the first partial beam, which can have a positive effect on an analysis of the first partial beam, for example.

Die Gasbestandteile des zweiten Teilstrahls sind häufig solche Bestandteile, die im Hinblick auf eine Analyseaufgabe unerwünscht sind, also unerwünschte Moleküle darstellen. Diese können als Schmutzpartikel bezeichnet werden. Bei Umlenkeinrichtungen des Standes der Technik landen zweite Teilstrahlen bzw. Schmutzpartikel typischerweise an statischen Bauteilen im Bereich der oder benachbart zur Umlenkeinrichtung. Auch wird häufig der Umlenkeinrichtung nachgeschaltet eine Blende angeordnet, durch die der erste Teilstrahl passieren kann, auf deren Oberfläche abseits des ersten Teilstrahls bzw. eines Durchgangs hierfür aber die Schmutzpartikel auftreffen. Alle Schmutzpartikel, die auf statischen Oberflächen landen, desorbieren nach einer gewissen Zeit wieder von der betreffenden Oberfläche mit einer statistischen Verteilung der Richtung. Dies bedeutet einerseits eine erhöhte Wahrscheinlichkeit, dass Schmutzpartikel trotz aller Filtereinrichtungen zur Analysatoreinheit gelangen. Andererseits können die Schmutzpartikel mit zu analysierenden Gasmolekülen des ersten Teilstrahls kollidieren und so dessen Qualität verringern. Denn die Moleküle des ersten Teilstrahl werden hierdurch abgelenkt und die Anzahl derjenigen zu analysierenden Moleküle, die die Analysatoreinheit erreichen, wird reduziert.The gas components of the second partial beam are often those components that are undesirable with regard to an analysis task, that is to say they represent undesirable molecules. These can be referred to as dirt particles. In the case of deflection devices of the prior art, second partial jets or dirt particles typically land on static components in the area of or adjacent to the deflection device. A diaphragm is also often arranged downstream of the deflection device, through which the first partial beam can pass, but on the surface of which the dirt particles impinge away from the first partial beam or a passage for this. All dirt particles that land on static surfaces desorb after a certain time from the surface in question with a statistical distribution of direction. On the one hand, this means an increased probability that dirt particles will reach the analyzer unit despite all the filter devices. On the other hand, the dirt particles can collide with the gas molecules to be analyzed in the first partial beam and thus reduce its quality. This is because the molecules of the first partial beam are thereby deflected and the number of molecules to be analyzed that reach the analyzer unit is reduced.

Die Erfindung ermöglicht nun, dass Schmutzpartikel unmittelbar durch die Pumpwirkung der Vakuumpumpe abgeführt werden. Dabei wird vorteilhaft die Richtung bzw. kinetische Energie der Schmutzpartikel im Teilchenstrahl ausgenutzt, um diese aktiv dem pumpaktiven Bereich der Vakuumpumpe zuzuführen. Durch den pumpaktiven Bereich wird den Schmutzpartikeln bzw. dem zweiten Teilstrahl sodann aktiv eine Vorzugsrichtung in Pumprichtung verliehen, sodass die Schmutzpartikel aktiv von dem ersten Teilstrahl und insbesondere von einer Analysatoreinheit weggeführt werden. Im Stand der Technik ist eine wirksame Evakuierung von Vakuumkammern eines Gasanalysesystems häufig schwierig, nämlich durch nachteilige Geometrien und Leitwerte. Eine bessere Evakuierung ermöglicht jedoch eine bessere Analysegenauigkeit. Die Erfindung ermöglicht durch die Ausnutzung der Strahlrichtung bzw. der kinetischen Energie der Teilchen und durch die aktive Abführung eine bessere Evakuierung und somit insbesondere eine verbesserte Analysegenauigkeit.The invention now makes it possible for dirt particles to be removed directly by the pumping action of the vacuum pump. In this case, the direction or kinetic energy of the dirt particles in the particle beam is advantageously used in order to actively feed them to the active pumping area of the vacuum pump. The active pumping area then actively gives the dirt particles or the second partial jet a preferred direction in the pumping direction, so that the dirt particles are actively guided away from the first partial jet and in particular from an analyzer unit. In the prior art, effective evacuation of vacuum chambers of a gas analysis system is often difficult, namely due to disadvantageous geometries and conductivity values. However, better evacuation allows for better analysis accuracy. The invention makes it possible by utilizing the direction of the beam or the kinetic energy of the particles and due to the active discharge, better evacuation and thus, in particular, improved analysis accuracy.

Als pumpaktiver Bereich ist allgemein ein Wirkbereich eines aktiven Pumpelements der Vakuumpumpe, zum Beispiel eines Rotors oder Rotorelements, insbesondere einer Turborotorscheibe, zu verstehen. Im Falle eines Rotors wird der Strahl, insbesondere der zweite Teilstrahl, insbesondere in einen aktiven Rotorbereich geführt. Bei einer Turbomolekularvakuumpumpe bzw. Turborotorscheibe ist dies insbesondere ein von den Rotorschaufeln im Betrieb überstrichener Bereich. Insbesondere gehört ein Rotorkern, der selbst keine pumpaktive Wirkung aufweist, sondern lediglich strukturelle Funktion hat, nicht zum pumpaktiven Bereich. Allgemein vorteilhaft ist der Strahl nicht auf einen Rotorkern geführt bzw. ist der Strahl an einem Rotorkern vorbeigeführt.The active pumping area is generally understood to be an effective area of an active pumping element of the vacuum pump, for example a rotor or rotor element, in particular a turbo rotor disk. In the case of a rotor, the beam, in particular the second partial beam, is guided in particular into an active rotor area. In the case of a turbomolecular vacuum pump or turbo rotor disk, this is in particular an area swept over by the rotor blades during operation. In particular, a rotor core that does not itself have an active pumping effect, but only has a structural function, does not belong to the active pumping area. It is generally advantageous if the beam is not guided onto a rotor core or the beam is guided past a rotor core.

Die Umlenkeinrichtung lenkt unterschiedliche Bestandteile des Teilchenstrahls unterschiedlich ab. Dabei werden typischerweise auch bestimmte Bestandteile gar nicht abgelenkt, nämlich insbesondere ungeladene Bestandteile. Allgemein gilt also, dass wenigstens einer von erstem und zweitem Teilstrahl durch die Umlenkeinrichtung umgelenkt werden muss, um die Teilstrahlen in solche aufzuteilen. Zum Beispiel kann der zweite Teilstrahl nicht durch die Umlenkeinrichtung umgelenkt sein bzw. in Fortführung des Teilchenstrahls vor der Umlenkeinrichtung ausgerichtet sein. Ungeladene Teilchen bilden besonders häufig unerwünschte Moleküle bzw. Schmutzpartikel im Hinblick auf die Analyseaufgabe. Wenn der Teilstrahl ungeladener Bestandteile in den pumpaktiven Bereich geführt wird, wird also insbesondere ein besonders großer Anteil an Schmutzpartikeln direkt abgeführt.The deflection device deflects different components of the particle beam differently. Typically, certain components are not deflected at all, namely uncharged components in particular. It is therefore generally the case that at least one of the first and second partial beams must be deflected by the deflection device in order to split the partial beams into such. For example, the second partial beam cannot be deflected by the deflection device or can be aligned in continuation of the particle beam in front of the deflection device. Uncharged particles often form undesirable molecules or dirt particles with regard to the analysis task. If the partial jet of uncharged components is guided into the active pumping area, a particularly large proportion of dirt particles in particular will be discharged directly.

Die Moleküle des Strahls, der in den pumpaktiven Bereich geführt ist, werden insbesondere unmittelbar von wenigstens einem pumpaktiven Element der Vakuumpumpe im pumpaktiven Bereich eingefangen. Im Zusammenhang mit einem als Turborotor ausgebildeten pumpaktiven Element bedeutet dies insbesondere, dass die Moleküle des Strahls den von den Rotorschaufeln überstrichenen Bereich durchtreten und anschließend durch das allgemein bekannte Wirkprinzip des Turborotors stromabwärts derselben "gehalten" werden, dass also - physikalisch betrachtet - die Wahrscheinlichkeit verringert wird, dass ein jeweiliges Molekül zurück in den Bereich stromaufwärts der Rotorschaufeln gelangt.The molecules of the jet, which is guided into the pump-active area, are in particular captured directly by at least one pump-active element of the vacuum pump in the pump-active area. Associated with an as With the pumping element designed as a turbo rotor, this means in particular that the molecules of the jet pass through the area swept by the rotor blades and are then "held" downstream by the well-known principle of operation of the turbo rotor, meaning that - from a physical point of view - the probability is reduced that a respective Molecule back into the area upstream of the rotor blades.

Verschiedene Teilstrahlen umfassen nach Passage einer Umlenkeinrichtung allgemein unterschiedliche Bestandteile und weisen unterschiedliche Richtungen auf. Dabei weist ein Teilstrahl nicht notwendigerweise nur einen Bestandteil bzw. eine Teilchenart auf. Insbesondere der zweite Teilstrahl kann zum Beispiel eine Vielzahl von Bestandteilen aufweisen, die allesamt Schmutzpartikel bilden können. Dies gilt insbesondere für einen zweiten Teilstrahl, der in Bezug auf den gemeinsamen Strahl vor Passage der Umlenkeinrichtung geradeaus gerichtet ist und/oder ungeladene Moleküle aufweist. Jedoch kann auch der erste Teilstrahl grundsätzlich unterschiedliche Bestandteile aufweisen, wobei die Unterschiede typischerweise klein sind.After passing through a deflection device, different partial beams generally comprise different components and have different directions. In this case, a partial beam does not necessarily have only one component or one type of particle. In particular, the second partial jet can, for example, have a large number of components, all of which can form dirt particles. This applies in particular to a second partial beam, which is directed straight ahead in relation to the common beam before passing through the deflection device and/or has uncharged molecules. However, the first partial beam can also have fundamentally different components, with the differences typically being small.

Zudem versteht es sich, dass die Umlenkeinrichtung den gemeinsamen Teilchenstrahl typischerweise nicht in lediglich zwei absolut diskrete Teilstrahlen aufteilt. Vielmehr weisen Teilchenstrahlen in derartigen Systemen typischerweise eine Vielzahl von Bestandteilen auf, wobei meist lediglich ein kleiner Teil der Bestandteile analysiert werden soll, häufig eine bestimmte lonen- und/oder Molekülart. Folglich bilden sich nach Passage der Umlenkeinrichtung typischerweise eine Vielzahl von, insbesondere zweiten, Teilstrahlen fächerartig aus. Grundsätzlich kann insbesondere wenigstens ein zweiter Teilstrahl in den pumpaktiven Bereich geführt sein, vorteilhaft werden aber mehrere zweite Teilstrahlen bzw. Teilstrahlen mit Schmutzpartikeln in den pumpaktiven Bereich geführt, um möglichst viele Schmutzpartikel direkt abzuführen. Wie viele zweite Teilstrahlen in den pumpaktiven Bereich geführt werden können und welcher Winkelbereich des Fächers von Teilstrahlen in den pumpaktiven Bereich geführt werden kann, ist insbesondere von den geometrischen Gegebenheiten in der Vakuumpumpe abhängig. Grundsätzlich können also auch mehr als zwei Teilstrahlen ausgebildet werden, z.B. mehrere erste, nicht in den pumpaktiven Bereich hineingeführte und/oder mehrere zweite, in den pumpaktiven Bereich hineingeführte Teilstrahlen.In addition, it goes without saying that the deflection device typically does not split the common particle beam into just two absolutely discrete partial beams. Rather, particle beams in such systems typically have a large number of components, with mostly only a small part of the components to be analyzed, often a specific type of ion and/or molecule. Consequently, after passing through the deflection device, a large number of, in particular second, partial beams typically form in a fan-like manner. In principle, at least one second partial jet can be guided into the active pumping area, but several second partial jets or partial jets with dirt particles are advantageously guided into the active pumping area in order to remove as many dirt particles as possible directly. How many second partial beams can be guided into the active pumping area and what angular range of the fan from Partial beams can be guided into the active pump area is particularly dependent on the geometric conditions in the vacuum pump. In principle, therefore, more than two partial beams can also be formed, for example a plurality of first partial beams which are not guided into the pump-active region and/or a plurality of second partial beams which are guided into the pump-active region.

Der zweite Teilstrahl kann insbesondere ungeladene Teilchen und/oder Teilchen eines Trägergases aufweisen oder im Wesentlichen aus solchen bestehen. Häufig macht ein Trägergas einen Großteil des Drucks in einem Vakuumsystem, insbesondere Massenspektrometriesystem, aus. Entsprechend kann durch die Erfindung vorteilhaft ein großer Anteil von Teilchen, die nicht Teil des ersten Teilstrahls sein sollen, direkt abgepumpt werden. Bei einem Trägergas handelt es sich beispielsweise um ein Inertgas und/oder Luft. Z.B. kann als Trägergas Helium eingesetzt werden. Wenn Luft das Trägergas bildet, umfasst der zweite Teilstrahl beispielsweise Sauerstoff und/oder Stickstoff, insbesondere ungeladene Teilchen hiervon. Allgemein umfasst der zweite Teilstrahl insbesondere hauptsächlich eine Molekülart und/oder weist einen vielfach höheren Teilchenstrom auf als der erste Teilchenstrahl. Typischerweise macht eine zu analysierende Molekülart in einem Gasanalysesystem, insbesondere Massenspektrometer, nur einen kleinen Teil des Gasstromes aus und/oder ein Trägergas macht einen weit überwiegenden Teil aus.The second partial beam can in particular have uncharged particles and/or particles of a carrier gas or consist essentially of such. A carrier gas often makes up a large part of the pressure in a vacuum system, particularly a mass spectrometry system. Accordingly, the invention advantageously allows a large proportion of particles that are not intended to be part of the first partial beam to be pumped off directly. A carrier gas is, for example, an inert gas and/or air. For example, helium can be used as the carrier gas. If air forms the carrier gas, the second partial jet comprises, for example, oxygen and/or nitrogen, in particular uncharged particles thereof. In general, the second partial beam comprises in particular mainly one type of molecule and/or has a particle flow that is many times higher than that of the first particle beam. Typically, in a gas analysis system, particularly a mass spectrometer, a molecular species to be analyzed makes up only a small portion of the gas flow and/or a carrier gas makes up a vast majority.

Ein wichtiger Gedanke der Erfindung im Zusammenhang mit der Umlenkeinrichtung besteht also darin, dass Gasbestandteile unterschiedlich abgelenkt werden und ein möglichst großer Teil von, insbesondere im Hinblick auf eine Analyseaufgabe unerwünschten, Gasbestandteilen unter Ausnutzung ihrer Richtung direkt in den pumpaktiven Bereich geführt wird. So können diese, insbesondere unerwünschten, Bestandteile aktiv abgeführt werden, nämlich insbesondere aus dem Bereich des ersten Teilstrahls heraus und beispielsweise weg von einem Analysebereich bzw. einem Bereich einer Analysatoreinheit.An important idea of the invention in connection with the deflection device is that gas components are deflected differently and as large a part as possible of gas components that are undesirable, especially with regard to an analysis task, is guided directly into the active pumping area using their direction. In this way, these, in particular undesired, components can be actively removed, namely in particular out of the area of the first partial beam and, for example, away from an analysis area or an area of an analyzer unit.

Die Umlenkeinrichtung teilt den Teilchenstrahl in Teilstrahlen auf. Dabei wird der Strahl vor Passage der Umlenkeinrichtung hier auch als gemeinsamer (Teilchen-) Strahl bezeichnet, dies in Abgrenzung zu den Teilstrahlen, die sich bei und/oder nach Passage der Umlenkeinrichtung ausbilden.The deflection device divides the particle beam into partial beams. The beam before passing through the deflection device is also referred to here as a common (particle) beam, in contrast to the partial beams that form during and/or after passing through the deflection device.

Grundsätzlich kann das Vakuumsystem beispielsweise auch mehrere Umlenkeinrichtungen, zum Beispiel jeweils mit vorteilhafter Führung eines Teilstrahls in einen pumpaktiven Bereich einer Vakuumpumpe, aufweisen. Allgemein können, beispielsweise auch neben einer Umlenkeinrichtung, auch verschiedenste andere Filterelemente zum Einsatz kommen, wie zum Beispiel eine Blende und/oder ein Quadrupol.In principle, the vacuum system can, for example, also have a plurality of deflection devices, for example each with advantageous guidance of a partial beam into a pump-active region of a vacuum pump. In general, in addition to a deflection device, for example, a wide variety of other filter elements can also be used, such as an aperture and/or a quadrupole.

Gemäß einer Ausführungsform ist vorgesehen, dass der Strahl zumindest mit einer Richtungskomponente in Pumprichtung in den pumpaktiven Bereich geführt ist. Hierdurch wird die Pumpwirkung des pumpaktiven Bereichs unterstützt und die Moleküle des Strahls werden besonders wirksam abgeführt.According to one embodiment, it is provided that the jet is guided into the active pumping region with at least one directional component in the pumping direction. This supports the pumping action of the pump-active area and the molecules of the jet are removed particularly effectively.

Insbesondere kann es vorgesehen sein, dass der erste Teilstrahl nicht in den pumpaktiven Bereich geführt ist. Alternativ oder zusätzlich kann der erste Teilstrahl zu einem Bereich außerhalb der Vakuumpumpe geführt sein. Insbesondere kann der erste Teilstrahl zu einer Analysatoreinheit geführt sein, beispielsweise direkt oder durch wenigstens ein weiteres Filterelement, insbesondere eine Blende, hindurch. Grundsätzlich kann der erste Teilstrahl an einem Gehäuse der Vakuumpumpe vorbei oder durch ein solches hindurchgeführt sein.In particular, it can be provided that the first partial beam is not guided into the pump-active area. Alternatively or additionally, the first partial beam can be guided to an area outside the vacuum pump. In particular, the first partial beam can be guided to an analyzer unit, for example directly or through at least one further filter element, in particular a diaphragm. In principle, the first partial beam can be routed past or through a housing of the vacuum pump.

Allgemein kann die Vakuumpumpe einen Rotor umfassen, der zur Rotation um eine Rotorachse antreibbar ist. Ein aktives Pumpelement der Vakuumpumpe bzw. des pumpaktiven Bereichs kann mit dem Rotor gekoppelt sein, sodass der Rotor das Pumpelement antreibt. Der Strahl kann insbesondere in einen aktiven Rotorbereich des Rotors bzw. des aktiven Pumpelements geführt sein.In general, the vacuum pump can include a rotor which can be driven to rotate about a rotor axis. An active pumping element of the vacuum pump or of the active pumping area can be coupled to the rotor, so that the rotor drives the pump element. In particular, the jet can be guided into an active rotor area of the rotor or of the active pump element.

Gemäß einer weiteren Ausführungsform ist vorgesehen, dass eine Pumprichtung und/oder eine Rotorachse eines aktiven Pumpelements und/oder der Vakuumpumpe schräg in Bezug auf eine Richtung des Strahls, insbesondere vor Passage einer oder der Umlenkeinrichtung, ausgerichtet ist. Hierdurch kann der Strahl und insbesondere ein in Bezug auf einen gemeinsamen Strahl geradeaus gerichteter, zweiter Teilstrahl besonders vorteilhaft im Hinblick auf die Pumpwirkung in den pumpaktiven Bereich geführt werden. Zudem ist eine derartige Anordnung im Hinblick auf den Bauraum besonders vorteilhaft. Insbesondere kann ein Winkel zwischen einer Pumprichtung und/oder einer Rotorachse des aktiven Pumpelements und/oder der Vakuumpumpe und einer Richtung des Strahls, insbesondere vor Passage einer oder der Umlenkeinrichtung, im Bereich von 40° bis 60° liegen, bevorzugt im Bereich von 50° bis 55°. Diese Werte werden durch die Teilchengeschwindigkeit, die Rotorschaufelumlaufgeschwindigkeit im "Zielbereich" des Strahls und den dortigen Rotorschaufelwinkel bzw. Anstellwinkel beeinflusst. Der Winkel kann fallbezogen dreidimensional optimiert werden.According to a further embodiment, it is provided that a pumping direction and/or a rotor axis of an active pumping element and/or the vacuum pump is aligned obliquely with respect to a direction of the jet, in particular before passing through one or the deflection device. As a result, the beam and in particular a second partial beam directed straight ahead in relation to a common beam can be guided particularly advantageously with regard to the pumping effect into the active pumping region. In addition, such an arrangement is particularly advantageous in terms of installation space. In particular, an angle between a pumping direction and/or a rotor axis of the active pump element and/or the vacuum pump and a direction of the jet, in particular before passing through a deflection device, can be in the range of 40° to 60°, preferably in the range of 50° up to 55°. These values are influenced by the particle speed, the rotor blade rotation speed in the "target area" of the jet and the rotor blade angle or angle of attack there. The angle can be optimized three-dimensionally depending on the case.

Bevorzugt kann eine Pumprichtung und/oder eine Rotorachse des aktiven Pumpelements und/oder der Vakuumpumpe schräg in Bezug auf eine Richtung des ersten und/oder des zweiten Teilstrahls nach Passage der Umlenkeinrichtung ausgerichtet sein. Auch dies ist förderlich für eine kompakte Bauweise.Preferably, a pumping direction and/or a rotor axis of the active pumping element and/or the vacuum pump can be aligned obliquely in relation to a direction of the first and/or the second partial jet after passage through the deflection device. This is also conducive to a compact design.

Allgemein kann die Vakuumpumpe beispielsweise ein- oder mehrstufig ausgebildet sein. Mehrstufig bedeutet, dass die Vakuumpumpe wenigstens zwei Pumpstufen aufweist. Wenigstens zwei Pumpstufen können bevorzugt in Reihe geschaltet sein. Die Pumpstufen können beispielsweise durch einen gemeinsamen Rotor angetrieben sein.In general, the vacuum pump can be designed in one or more stages, for example. Multi-stage means that the vacuum pump has at least two pump stages. At least two pump stages can preferably be connected in series. The pump stages can be driven by a common rotor, for example.

Bei einer Ausführungsform ist vorgesehen, dass die Vakuumpumpe wenigstens zwei, bevorzugt in Reihe geschaltete, Pumpstufen aufweist, wobei, insbesondere in Pumprichtung, zwischen den Pumpstufen ein Zwischenstufenbereich angeordnet ist. Über diesen Zwischenstufenbereich können die Pumpstufen insbesondere beabstandet sein. Der Strahl ist bevorzugt durch den Zwischenstufenbereich geführt. Grundsätzlich kann der Strahl, insbesondere ein zweiter Teilstrahl, in eine Pumpstufe geführt sein, die insbesondere in Pumprichtung stromabwärts des Zwischenstufenbereichs angeordnet ist. Somit werden einerseits eine besonders kompakte Bauform und andererseits eine besonders gute Abführung der Teilchen, insbesondere von Schmutzpartikeln, ermöglicht.In one embodiment, it is provided that the vacuum pump has at least two pump stages, preferably connected in series, with an intermediate stage region being arranged between the pump stages, in particular in the pumping direction. In particular, the pumping stages can be spaced apart over this interstage region. The beam is preferably passed through the interstage region. In principle, the beam, in particular a second partial beam, can be guided into a pump stage which is arranged downstream of the intermediate stage region, in particular in the pumping direction. Thus, on the one hand, a particularly compact design and, on the other hand, particularly good removal of the particles, in particular dirt particles, are made possible.

Eine Pumpstufe ist insbesondere durch ein aktives Pumpelement definiert, insbesondere in Zusammenwirkung mit einem statischen und/oder passiven Element. Bei einer Turbomolekularpumpe bildet somit eine umfängliche Reihe von Rotorschaufeln, insbesondere einer Turborotorscheibe, insbesondere in Zusammenwirkung mit einer Statorscheibe, eine Pumpstufe. In diesem Zusammenhang sei erwähnt, dass ein Turborotor grundsätzlich beispielsweise mit mehreren einteilig verbundenen Schaufelreihen ausgeführt sein kann und/oder ein oder mehrere Turborotorscheiben aufweisen kann.A pumping stage is defined in particular by an active pumping element, in particular in cooperation with a static and/or passive element. In the case of a turbomolecular pump, a peripheral row of rotor blades, in particular a turbo rotor disk, in particular in cooperation with a stator disk, thus forms a pump stage. In this context it should be mentioned that a turbo rotor can in principle, for example, be designed with several rows of blades connected in one piece and/or can have one or more turbo rotor disks.

Der Strahl kann allgemein bevorzugt in den Wirkbereich des aktiven Pumpelements und/oder auf ein drehendes Element, beispielsweise eine Turborotorscheibe, gerichtet sein.The jet can generally preferably be directed into the effective range of the active pumping element and/or onto a rotating element, for example a turbo rotor disk.

Der erste Teilstrahl kann bevorzugt nach Passage des Zwischenstufenbereichs und/oder einer Umlenkeinrichtung aus der Vakuumpumpe herausgeführt sein, beispielsweise zu einer Analysatoreinheit. Allgemein kann eine Analysatoreinheit zum Beispiel als Detektor ausgebildet sein.The first partial beam can preferably be led out of the vacuum pump after passing through the intermediate stage area and/or a deflection device, for example to an analyzer unit. In general, an analyzer unit can be designed as a detector, for example.

Gemäß einer Weiterbildung ist vorgesehen, dass die Vakuumpumpe am Zwischenstufenbereich einen ersten Zwischenanschluss zum Eintritt des Strahls in den Zwischenstufenbereich und/oder einen zweiten Zwischenanschluss zum Austritt des ersten Teilstrahls aus dem Zwischenstufenbereich aufweist. Der erste und/oder der zweite Zwischenanschluss können beispielsweise einen, insbesondere eigenen, Flansch aufweisen.According to a development, it is provided that the vacuum pump has a first intermediate connection on the intermediate stage area for the entry of the jet into the intermediate stage area and/or a second intermediate connection for the exit of the first partial jet from the intermediate stage area. The first and/or the second intermediate connection can, for example, have a flange, in particular its own flange.

Die Zwischenanschlüsse können bevorzugt, insbesondere in Bezug auf eine Rotorachse und/oder Pumprichtung, zumindest im Wesentlichen gegenüberliegend voneinander angeordnet sein. Der, insbesondere gemeinsame, Strahl und/oder der erste Teilstrahl können somit vorteilhaft in den Zwischenstufenbereich eintreten bzw. hieraus austreten. Die Zwischenanschlüsse sind aber nicht notwendigerweise exakt radial gegenüberliegend, d. h. um 180° um die Rotorachse versetzt, angeordnet. Bevorzugt ist hingegen eine außermittige Verbindungsachse der Zwischenanschlüsse, die insbesondere an einem Rotorkern vorbeiführt. Hierdurch wird eine besonders vorteilhafte Gasführung ermöglicht. Gleichwohl sind radial gegenüberliegende Zwischenanschlüsse grundsätzlich möglich, insbesondere in Verbindung mit einer Umlenkeinrichtung, die den Gasstrahl zumindest teilweise um einen Rotorkern herum umlenkt.The intermediate connections can preferably be arranged at least essentially opposite one another, in particular in relation to a rotor axis and/or pumping direction. The, in particular common, beam and/or the first partial beam can thus advantageously enter or exit the intermediate stage region. However, the intermediate connections are not necessarily exactly radially opposite, e.g. H. offset by 180° around the rotor axis. On the other hand, an off-centre connection axis of the intermediate connections, which in particular leads past a rotor core, is preferred. This enables a particularly advantageous gas flow. Nevertheless, radially opposite intermediate connections are fundamentally possible, in particular in connection with a deflection device which at least partially deflects the gas jet around a rotor core.

Bevorzugt können die Zwischenanschlüsse separat voneinander ausgebildet und/oder in Umfangsrichtung beabstandet angeordnet sein. Dabei erstreckt sich vorzugsweise eine Gehäusewand in Umfangsrichtung zwischen den Zwischenanschlüssen, insbesondere über wenigstens 20°, bevorzugt wenigstens 35°. Durch die Trennung der Zwischenanschlüsse wird die Güte des ersten Teilstrahls weiter verbessert.The intermediate connections can preferably be formed separately from one another and/or arranged at a distance from one another in the circumferential direction. A housing wall preferably extends in the circumferential direction between the intermediate connections, in particular over at least 20°, preferably at least 35°. The quality of the first partial beam is further improved by separating the intermediate connections.

Eine Umlenkeinrichtung kann beispielsweise ein magnetisches und/oder elektrisches Feld aufweisen. Ein magnetisches Feld kann beispielsweise durch einen Dauermagneten oder zum Beispiel auch durch einen Elektromagneten bereitgestellt werden. Ein magnetisches und/oder elektrisches Feld bewirkt die unterschiedliche Ablenkung von geladenen Teilchen, insbesondere in Abhängigkeit von ihrer Masse. Entsprechend kann die Umlenkeinrichtung eine Felderzeugungseinrichtung aufweisen, wie z.B. einen Magneten oder eine Elektrode.A deflection device can have a magnetic and/or electric field, for example. A magnetic field can be provided, for example, by a permanent magnet or, for example, by an electromagnet will. A magnetic and/or electric field causes charged particles to be deflected differently, in particular depending on their mass. Correspondingly, the deflection device can have a field generating device, such as a magnet or an electrode.

Die Umlenkeinrichtung kann bevorzugt im oder am Zwischenstufenbereich wirksam und/oder angeordnet sein. Der Begriff "wirksam" bezieht sich insbesondere auf das elektrische und/oder magnetische Feld der Umlenkeinrichtung, also allgemein auf ihren Wirkbereich. Die Umlenkeinrichtung kann beispielsweise auch Komponenten, wie z.B. eine Felderzeugungseinrichtung, außerhalb ihres Wirkbereichs aufweisen. Folglich bezieht sich der Begriff "angeordnet" zumindest auch auf den Wirkbereich der Umlenkeinrichtung. Insbesondere kann ein elektrisches und/oder magnetisches Feld der Umlenkeinrichtung im und oder am Zwischenstufenbereich angeordnet sein. Alternativ oder zusätzlich kann eine Umlenkeinrichtung bzw. ein elektrisches und/oder magnetisches Feld beispielsweise auch radial außerhalb des Zwischenstufenbereichs, beispielsweise am oder im Bereich eines Zwischenanschlusses, insbesondere desjenigen Zwischenanschlusses zum Eintritt des gemeinsamen Strahls, angeordnet sein.The deflection device can preferably be effective and/or arranged in or on the intermediate stage area. The term "effective" relates in particular to the electric and/or magnetic field of the deflection device, ie in general to its effective range. The deflection device can, for example, also have components, such as a field generation device, outside of its effective range. Consequently, the term "arranged" also refers at least to the effective range of the deflection device. In particular, an electric and/or magnetic field of the deflection device can be arranged in and/or on the intermediate stage area. Alternatively or additionally, a deflection device or an electric and/or magnetic field can also be arranged radially outside the intermediate stage area, for example at or in the area of an intermediate connection, in particular that intermediate connection for the entry of the common beam.

Die Anordnung einer, insbesondere (elektro-)magnetischen, Umlenkeinrichtung im Bereich wenigstens eines der Zwischenanschlüsse ist ebenfalls vorteilhaft möglich. Sowohl eine Anordnung von passiven und/oder permanentmagnetischen als auch von aktiven Umlenkelementen ist einerseits im Vakuumbereich oder andererseits auch außerhalb des Vakuumbereichs bzw. in Atmosphäre möglich. So kann eine Umlenkeinrichtung bzw. ein Umlenkelement z.B. im Bereich des Pumpengehäuses und/oder außen am Pumpengehäuse angeordnet werden. Grundsätzlich kann auch die Umlenkeinrichtung selbst außerhalb des Vakuumbereichs derart angeordnet sein, dass sie im Vakuumbereich wirksam ist, dass sich also insbesondere ein elektrisches und/oder magnetisches Feld in den Vakuumbereich, insbesondere in den Zwischenstufenbereich, erstreckt.The arrangement of a, in particular (electro)magnetic, deflection device in the area of at least one of the intermediate connections is also advantageously possible. An arrangement of passive and/or permanent-magnetic as well as active deflection elements is possible on the one hand in the vacuum area or on the other hand also outside of the vacuum area or in the atmosphere. A deflection device or a deflection element can be arranged, for example, in the area of the pump housing and/or on the outside of the pump housing. In principle, the deflection device itself can also be arranged outside the vacuum area in such a way that it is effective in the vacuum area, that is to say that in particular an electric and/or magnetic field extends into the vacuum area, in particular into the intermediate stage area.

Es können beispielsweise auch mehrere Umlenkeinrichtungen vorgesehen sein, auch im oder am Zwischenstufenbereich. So können zum Beispiel zwei Umlenkeinrichtungen bei, in oder an den jeweiligen Zwischenanschlüssen vorgesehen sein. Die Verwendung von mehreren Umlenkeinrichtungen ist insbesondere im Hinblick auf den Bauraum vorteilhaft. So muss nicht eine große Umlenkeinrichtung vorgesehen sein, die die gewünschte Umlenkung vollständig erfüllt, sondern die gewünschte Umlenkung kann auf mehrere Umlenkeinrichtungen aufgeteilt werden, die in der Folge kleiner ausgeführt werden können. So lassen sich diese günstiger im Hinblick auf den insgesamt nötigen Bauraum anordnen.For example, several deflection devices can also be provided, also in or on the intermediate stage area. For example, two deflection devices can be provided at, in or on the respective intermediate connections. The use of several deflection devices is particularly advantageous with regard to the installation space. Thus, one large deflection device does not have to be provided, which completely fulfills the desired deflection, but rather the desired deflection can be divided among a number of deflection devices, which can subsequently be made smaller. In this way, they can be arranged more favorably with regard to the overall installation space required.

Allgemein vorteilhaft ist es, wenn ein magnetisches und/oder elektrisches Feld einer Umlenkeinrichtung die rotierenden Teile eines Rotors möglichst wenig durchdringt. In diesem Zusammenhang erweisen sich mehrere und/oder kleine Umlenkeinrichtungen, die bevorzugt auch außerhalb des Zwischenstufenbereichs angeordnet sein können, als vorteilhaft. So können Wirbelstromverluste im Rotor und eine hiermit einhergehende, unerwünschte Erwärmung im Rotor verringert werden.It is generally advantageous if a magnetic and/or electric field of a deflection device penetrates the rotating parts of a rotor as little as possible. In this context, several and/or small deflection devices, which can preferably also be arranged outside of the intermediate stage area, have proven to be advantageous. In this way, eddy current losses in the rotor and associated, undesirable heating in the rotor can be reduced.

Der Strahl kann bevorzugt außermittig in Bezug auf eine Rotorachse der Vakuumpumpe ausgerichtet sein und/oder an einem, insbesondere nicht pumpaktiven, Rotorkern vorbeigeführt sein. Dies gilt insbesondere für den gemeinsamen Strahl, also vor Passage der Umlenkeinrichtung, und/oder für den ersten und/oder zweiten Teilstrahl.The jet can preferably be aligned eccentrically in relation to a rotor axis of the vacuum pump and/or be guided past a rotor core, in particular one that is not pump-active. This applies in particular to the common beam, ie before passing through the deflection device, and/or to the first and/or second partial beam.

Vorteilhafterweise kann es vorgesehen sein, dass der Strahl, insbesondere der zweite Teilstrahl, in einer die Pumpwirkung unterstützenden Richtung in den pumpaktiven Bereich geführt ist. Somit kann unter Ausnutzung des zugrunde liegenden Pumpprinzips der Strahl derart in den pumpaktiven Bereich geführt werden, dass die Teilchen des Strahls besonders zuverlässig eingefangen werden. Im Fall einer Turbomolekularvakuumpumpe bzw. Turbopumpstufe kann der Strahl bevorzugt eine Richtung aufweisen, die bei Eintritt in den pumpaktiven Bereich zumindest mit einer Komponente entgegen der Drehrichtung des Turborotors verläuft. Der Strahl läuft somit den Rotorschaufeln entgegen. Dabei hat der Strahl bevorzugt außerdem eine Richtungskomponente in Pumprichtung bzw. parallel zur Rotorachse in Richtung des Auslasses. Auch wenn eine gegenläufige Einleitung des Strahls vorteilhaft ist, versteht es sich, dass es ebenso und in gewisser Hinsicht ebenfalls vorteilhaft möglich ist, dass der Strahl mitläufig mit den Rotorschaufeln in den pumpaktiven Bereich geführt ist, also mit einer Richtungskomponente in Drehrichtung der Rotorschaufeln. Grundsätzlich ist auch eine Einleitung des Strahls parallel zur Rotorachse, also weder gegen- noch mitläufig, möglich.Advantageously, it can be provided that the beam, in particular the second partial beam, is guided into the active pumping area in a direction that supports the pumping action. Thus, utilizing the underlying pumping principle, the beam can be guided into the active pumping area in such a way that the particles of the beam are captured particularly reliably. in the In the case of a turbomolecular vacuum pump or turbopump stage, the jet can preferably have a direction which runs at least with a component counter to the direction of rotation of the turborotor when it enters the pumping-active region. The jet thus runs counter to the rotor blades. In this case, the jet preferably also has a directional component in the pumping direction or parallel to the rotor axis in the direction of the outlet. Even if introducing the jet in the opposite direction is advantageous, it goes without saying that it is also possible, and in a certain respect also advantageous, for the jet to be guided co-rotating with the rotor blades into the active pumping area, i.e. with a directional component in the direction of rotation of the rotor blades. In principle, it is also possible to introduce the jet parallel to the rotor axis, i.e. neither in the opposite direction nor in the same direction.

Besonders vorteilhaft ist insbesondere bei einer Turbomolekularpumpe eine Eintrittsrichtung des Strahls entgegen dem lokalen Drehrichtungssinn des Rotors, so dass die Teilchen bestenfalls die erste Rotorscheibe ohne Schaufelkontakt passieren können und erst an der darunter liegenden Statorscheibe einen Erstkontakt mit anschließender Ablenkung in der üblichen Kosinusverteilung im molekularen Druckbereich erhalten. Allgemein bevorzugt kann der Strahl derart geführt sein, dass seine Teilchen möglichst ohne Kollision mit als Rotorelementen ausgebildeten Pumpelementen, wie zum Beispiel Turborotorschaufeln, von diesen eingefangen werden. Vorzugsweise sollen also möglichst viele Teilchen des Strahls die Ebene der Turborotorschaufeln ohne Kollision durchtreten können. Hierzu wird der Strahl insbesondere unter Berücksichtigung seiner Teilchengeschwindigkeit, des Anstellwinkels der Rotorschaufeln und/oder der Drehgeschwindigkeit des Rotors bzw. der Rotorschaufeln ausgerichtet.In the case of a turbomolecular pump, it is particularly advantageous for the jet to enter in the opposite direction to the local direction of rotation of the rotor, so that the particles can at best pass through the first rotor disk without blade contact and only make initial contact with the stator disk below, with subsequent deflection in the usual cosine distribution in the molecular pressure range . In general, the jet can preferably be guided in such a way that its particles are captured by pump elements designed as rotor elements, such as turbo rotor blades, as far as possible without colliding with them. Preferably, as many particles of the jet as possible should be able to pass through the plane of the turbo rotor blades without colliding. For this purpose, the jet is aligned in particular taking into account its particle speed, the angle of attack of the rotor blades and/or the rotational speed of the rotor or rotor blades.

Auch die Wahl des Eintrittspunkts des Strahls in den pumpaktiven Bereich in Relation zum aktiven Rotorscheibendurchmesser bzw. zu den effektiven Außen- und Innendurchmessern der Rotorschaufeln unterliegt der Optimierung, da damit der erste Ablenkpunkt an einer dahinter liegenden Statorscheibe maßgeblich mitbestimmt wird. Dieser Ablenkpunkt sollte vorteilhaft innerhalb eines gedachten Ringzylinders in axialer Fortführung des von den Rotorschaufeln überstrichenen Bereichs liegen, so dass ein optimales Weiterpumpen erfolgen kann. Zum Beispiel kann es vorgesehen sein, dass das aktive Pumpelement durch eine Turborotorscheibe mit mehreren über den Umfang der Turborotorscheibe verteilt angeordneten Rotorschaufeln gebildet ist, wobei die Rotorschaufeln eine radiale Erstreckung von einem radial inneren Ende zu einem radial äußeren Ende der Rotorschaufeln aufweisen. Dabei kann bevorzugt der Strahl auf einen radialen Bereich der Rotorschaufeln geführt sein, der vom radial inneren Ende und/oder vom radial äußeren Ende der Rotorschaufeln um wenigstens ein Viertel der radialen Erstreckung beabstandet ist. Insbesondere kann der Strahl etwa radial mittig oder etwa bei einem Drittel der radialen Erstreckung gemessen vom radial äußeren Ende der Rotorschaufeln auf diese geführt sein. Diese Merkmale dienen dazu, möglichst viele Teilchen des Strahls, insbesondere des zweiten Teilstrahls bzw. möglichst viele Schmutzpartikel, einfangen zu können.The selection of the point of entry of the jet into the active pumping area in relation to the active rotor disk diameter or the effective outer and inner diameters of the rotor blades is also subject to optimization, since the first deflection point on a stator disk behind it has a decisive influence will. This deflection point should advantageously lie within an imaginary ring cylinder in the axial continuation of the area swept by the rotor blades, so that optimal further pumping can take place. For example, it can be provided that the active pump element is formed by a turbo rotor disk with a plurality of rotor blades distributed over the circumference of the turbo rotor disk, the rotor blades having a radial extent from a radially inner end to a radially outer end of the rotor blades. In this case, the jet can preferably be guided onto a radial region of the rotor blades which is spaced from the radially inner end and/or from the radially outer end of the rotor blades by at least a quarter of the radial extension. In particular, the jet can be guided onto the rotor blades approximately radially in the middle or approximately at a third of the radial extent measured from the radially outer end of the rotor blades. These features serve to be able to capture as many particles as possible of the beam, in particular of the second partial beam, or as many dirt particles as possible.

In dieser Hinsicht ebenfalls vorteilhaft aber unabhängig hiervon kann es vorgesehen sein, dass das pumpaktive Element ein Rotorelement ist, wobei der Strahl derart in den pumpaktiven Bereich des Rotorelements geführt ist, dass an einem Eintrittspunkt des Strahls in den pumpaktiven Bereich der Strahl eine Richtung, insbesondere in Bezug auf einen Querschnitt senkrecht zur Rotorachse, aufweist, die nach außen, tangential oder nach innen gerichtet ist.Also advantageous in this respect, but independently of this, it can be provided that the pump-active element is a rotor element, the jet being guided into the pump-active area of the rotor element in such a way that at an entry point of the jet into the pump-active area, the jet has a direction, in particular with respect to a cross-section perpendicular to the rotor axis, directed outwards, tangentially or inwards.

Bei weiteren Ausführungsformen ist vorgesehen, dass das aktive Pumpelement durch eine Turborotorscheibe mit mehreren über den Umfang der Turborotorscheibe verteilt angeordneten Rotorschaufeln gebildet ist, wobei die Rotorschaufeln einen Anstellwinkel in Bezug auf die Rotorachse aufweisen und wobei der Strahl beim Eintritt in den pumpaktiven Bereich flacher angestellt ist als die Rotorschaufeln, entsprechend den Rotorschaufeln angestellt ist oder steiler angestellt ist als die Rotorschaufeln. Ein vorteilhafter Winkel unterliegt der Optimierung und ist abhängig von vielen Randbedingungen.In further embodiments, it is provided that the active pump element is formed by a turbo rotor disk with a plurality of rotor blades distributed over the circumference of the turbo rotor disk, the rotor blades having an angle of attack in relation to the rotor axis and the jet being flatter when it enters the active pumping area than the rotor blades, corresponding to the rotor blades being slanted or slanted steeper is than the rotor blades. An advantageous angle is subject to optimization and depends on many boundary conditions.

Gemäß einer weiteren Ausführungsform ist vorgesehen, dass die Vakuumpumpe mehrstufig ausgebildet ist, der zweite Teilstrahl in eine Pumpstufe geführt ist und der erste Teilstrahl in eine Kammer geführt ist, die an einer weiteren, insbesondere in Pumprichtung vorgeschalteten, insbesondere in Pumprichtung ersten, Pumpstufe der Vakuumpumpe angeschlossen ist. Diese Ausführungsform erlaubt eine besonders kompakte Bauweise bei gleichzeitig hoher Güte des ersten Teilstrahls, indem dieselbe Vakuumpumpe einerseits den zweiten Teilstrahl einfängt und andererseits die Kammer evakuiert. Die Pumpstufe, in die der zweite Teilstrahl geführt ist, ist insbesondere in Pumprichtung der an die Kammer angeschlossenen, insbesondere ersten, Pumpstufe nachgeordnet und schließt sich insbesondere in Pumprichtung an einen Zwischenstufenbereich an, insbesondere durch den der Strahl hindurchgeleitet ist.According to a further embodiment, it is provided that the vacuum pump has a multi-stage design, the second partial jet is guided into a pump stage and the first partial jet is guided into a chamber which is connected to a further pump stage of the vacuum pump, in particular upstream in the pumping direction, in particular the first in the pumping direction connected. This embodiment permits a particularly compact construction with simultaneously high quality of the first partial beam, in that the same vacuum pump captures the second partial beam on the one hand and evacuates the chamber on the other. The pump stage, into which the second partial beam is guided, is arranged downstream of the, in particular first, pump stage connected to the chamber, in particular in the pumping direction, and in particular adjoins an intermediate stage region in the pumping direction, in particular through which the beam is passed.

Die Vakuumpumpe kann zum Beispiel allgemein als Molekularpumpe ausgebildet sein, zum Beispiel als Turbomolekularpumpe und/oder Holweckpumpe. Grundsätzlich kann die Vakuumpumpe auch als Kryopumpe ausgebildet sein. Schließlich sind Kombinationen verschiedener Pumpentypen, beispielsweise in Form von unterschiedlichen Pumpstufen, vorteilhaft.The vacuum pump can, for example, generally be designed as a molecular pump, for example as a turbomolecular pump and/or Holweck pump. In principle, the vacuum pump can also be designed as a cryopump. Finally, combinations of different pump types, for example in the form of different pump stages, are advantageous.

Die Aufgabe der Erfindung wird auch gelöst durch eine Vakuumpumpe nach dem hierauf gerichteten, unabhängigen Anspruch. Die Vakuumpumpe umfasst wenigstens zwei, insbesondere in Reihe geschaltete, Pumpstufen, wobei, insbesondere in Pumprichtung, zwischen den Pumpstufen ein Zwischenstufenbereich angeordnet ist. Die Vakuumpumpe weist am Zwischenstufenbereich einen ersten Zwischenanschluss zum Eintritt eines Teilchenstrahls in den Zwischenstufenbereich und einen zweiten Zwischenanschluss zum Austritt eines Teilchenstrahls aus dem Zwischenstufenbereich auf. Die Zwischenanschlüsse sind in Umfangsrichtung voneinander getrennt und beabstandet. Die Trennung und beabstandete Anordnung der Zwischenanschlüsse verbessert die Qualität des austretenden, ersten Teilstrahls und somit das Analyseergebnis.The object of the invention is also achieved by a vacuum pump according to the independent claim directed thereto. The vacuum pump comprises at least two pump stages, in particular those connected in series, with an intermediate stage region being arranged between the pump stages, in particular in the pumping direction. At the interstage area, the vacuum pump has a first intermediate connection for entering a particle beam into the interstage area and a second intermediate connection for exiting a particle beam from the interstage area. The intermediate terminals are circumferential separated and spaced apart. The separation and spaced arrangement of the intermediate connections improves the quality of the exiting, first partial beam and thus the analysis result.

Insbesondere können am Zwischenstufenbereich genau zwei Zwischenanschlüsse vorgesehen sein. Grundsätzlich sind aber auch mehr als zwei Zwischenanschlüsse am Zwischenstufenbereich möglich. Wenigstens einer der Zwischenanschlüsse, bevorzugt beide Zwischenanschlüsse, kann beispielsweise einen eigenen Flansch aufweisen.In particular, exactly two intermediate connections can be provided on the intermediate stage area. In principle, however, more than two intermediate connections on the intermediate stage area are also possible. At least one of the intermediate connections, preferably both intermediate connections, can have its own flange, for example.

Außerdem können grundsätzlich auch mehrere Zwischenstufenbereiche mit Durchleitung des Teilchenstrahls vorgesehen sein.In addition, in principle, a plurality of intermediate stage regions with passage of the particle beam can also be provided.

Die Zwischenanschlüsse sind in Umfangsrichtung voneinander getrennt und beabstandet, insbesondere wobei sich eine Gehäusewand in Umfangsrichtung zwischen den Zwischenanschlüssen erstreckt. Die Gehäusewand erstreckt sich bevorzugt in Umfangsrichtung über einen Winkelbereich von wenigstens 20°, insbesondere wenigstens 40°, in Bezug auf eine Zentral- und/oder Rotorachse.The intermediate terminals are circumferentially separated and spaced apart, specifically with a housing wall extending circumferentially between the intermediate terminals. The housing wall preferably extends in the circumferential direction over an angular range of at least 20°, in particular at least 40°, in relation to a central and/or rotor axis.

Gemäß einer Ausführungsform ist vorgesehen, dass die Zwischenanschlüsse derart angeordnet sind, dass sich keine gerade Linie durch die Zwischenanschlüsse legen lässt. Die Zwischenanschlüsse sind demnach nicht "optisch durchsichtig" und man kann durch die Zwischenanschlüsse nicht "geradeaus durchgucken".According to one embodiment, it is provided that the intermediate connections are arranged in such a way that no straight line can be laid through the intermediate connections. The intermediate connections are thus not "optically transparent" and one cannot "see straight through" the intermediate connections.

Allgemein können die Zwischenanschlüsse bevorzugt pfeilförmig angeordnet bzw. ausgerichtet sein, wobei die Pfeilrichtung bevorzugt im Wesentlichen in Pumprichtung der Vakuumpumpe zeigt.In general, the intermediate connections can preferably be arranged or aligned in the shape of an arrow, with the direction of the arrow preferably pointing essentially in the pumping direction of the vacuum pump.

Beispielsweise kann wenigstens einer der Zwischenanschlüsse eine Flanschebene aufweisen, die schräg in Bezug auf eine Rotorachse angeordnet ist. Ein Winkel zwischen der Flanschebene und der Rotorachse kann dabei bevorzugt im Bereich von 40° bis 60° liegen. Insbesondere können beide Zwischenanschlüsse schräg und insbesondere mit dem angegebenen Winkelbereich zur Rotorachse angeordnet sein.For example, at least one of the intermediate connections can have a flange plane that is arranged obliquely with respect to a rotor axis. an angle between the flange plane and the rotor axis can preferably be in the range of 40° to 60°. In particular, both intermediate connections can be arranged at an angle and, in particular, with the angle range specified relative to the rotor axis.

Ein Teilchenstrahl ist durch den Zwischenstufenbereich derart hindurchführbar, dass ein Teil des Strahls, nämlich ein erster Teilstrahl, wieder aus dem Zwischenstufenbereich austritt und dass ein anderer Teil des Strahls, nämlich ein zweiter Teilstrahl, in einen pumpaktiven Bereich der Vakuumpumpe geführt ist.A particle beam can be guided through the intermediate stage area in such a way that part of the beam, namely a first partial beam, exits the intermediate stage area again and that another part of the beam, namely a second partial beam, is guided into an active pumping area of the vacuum pump.

Die Vakuumpumpe umfasst gemäß einer Ausführungsform eine Umlenkeinrichtung für einen Teilchenstrahl im Zwischenstufenbereich, mittels derer der Strahl in wenigstens zwei Teilstrahlen aufteilbar ist und die dazu eingerichtet ist, dass ein erster Teilstrahl zum zweiten Zwischenanschluss, und insbesondere durch diesen hindurch zu einer Analysatoreinheit, geführt ist und ein zweiter Teilstrahl in eine dem Zwischenstufenbereich nachgeordnete Pumpstufe geführt ist.According to one embodiment, the vacuum pump comprises a deflection device for a particle beam in the intermediate stage region, by means of which the beam can be divided into at least two partial beams and which is set up so that a first partial beam is guided to the second intermediate connection, and in particular through this to an analyzer unit, and a second partial beam is guided into a pump stage downstream of the intermediate stage region.

Die Zwischenanschlüsse können mit Vorteil zumindest im Wesentlichen gegenüberliegend angeordnet sein, dabei bevorzugt nicht radial gegenüberliegend, sondern mit einer in Bezug auf einen Pumpenquerschnitt außermittig verlaufenden Verbindungslinie.The intermediate connections can advantageously be arranged at least essentially opposite one another, in this case preferably not radially opposite one another, but with a connecting line running eccentrically with respect to a pump cross section.

Die Aufgabe wird auch gelöst durch ein Gasanalyseverfahren, insbesondere Massenspektrometrieverfahren, nach dem hierauf gerichteten Anspruch. Insbesondere wird dieses Verfahren mit einem Vakuumsystem wie hierin offenbart und/oder mit einer Vakuumpumpe wie hierin offenbart durchgeführt. Dabei wird eine bzw. die Vakuumpumpe mit einem pumpaktiven Bereich, in dem ein Gas mittels eines aktiven Pumpelements förderbar ist, bereitgestellt, ein Strahl von zu analysierenden Teilchen erzeugt und der Strahl mittels einer Umlenkeinrichtung derart umgelenkt, dass unterschiedliche Bestandteile des Strahls unterschiedlich abgelenkt werden, sodass wenigstens ein erster und ein zweiter Teilstrahl ausgebildet werden, wobei der zweite Teilstrahl in den pumpaktiven Bereich der Vakuumpumpe geführt wird, und wobei der erste Teilstrahl nicht in den pumpaktiven Bereich der Vakuumpumpe geführt, sondern analysiert wird.The object is also achieved by a gas analysis method, in particular a mass spectrometry method, according to the claim directed thereto. In particular, this method is performed with a vacuum system as disclosed herein and/or with a vacuum pump as disclosed herein. In this case, a or the vacuum pump is provided with an active pumping area in which a gas can be pumped by means of an active pump element, a beam of particles to be analyzed is generated and the beam is deflected by means of a deflection device in such a way that different components of the beam are deflected differently, so that at least a first and a second partial beam are formed, the second partial beam being guided into the active pumping area of the vacuum pump, and the first partial beam not being guided into the active pumping area of the vacuum pump, but being analyzed.

Es versteht sich, dass das erfindungsgemäße Vakuumsystem und seine Ausführungsformen durch die Merkmale der erfindungsgemäßen Vakuumpumpe und des Gasanalyseverfahrens sowie ihrer Ausführungsformen einzeln und in Kombination zumindest sinngemäß vorteilhaft weitergebildet werden können, und umgekehrt.It goes without saying that the vacuum system according to the invention and its embodiments can be advantageously further developed individually and in combination at least analogously by the features of the vacuum pump according to the invention and the gas analysis method and their embodiments, and vice versa.

Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen, jeweils schematisch:

Fig. 1
eine perspektivische Ansicht einer Turbomolekularpumpe,
Fig. 2
eine Ansicht der Unterseite der Turbomolekularpumpe von Fig. 1,
Fig. 3
einen Querschnitt der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie A-A,
Fig. 4
eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie B-B,
Fig. 5
eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie C-C,
Fig. 6 bis 9
schematisch verschiedene Ausführungsformen eines erfindungsgemäßen Vakuumsystems,
Fig. 10
eine Vakuumpumpe im Querschnitt mit einer Umlenkeinrichtung,
Fig. 11
eine mehrstufige Vakuumpumpe mit Zwischenanschlüssen,
Fig. 12 bis 14
verschiedene Ausrichtungsmöglichkeiten für den Strahl in Bezug auf einen Rotor einer Turbomolekularpumpe.
The invention is described below by way of example using advantageous embodiments with reference to the attached figures. They show, each schematically:
1
a perspective view of a turbomolecular pump,
2
a view of the bottom of the turbo molecular pump from 1 ,
3
a cross-section of the turbomolecular pump along the in 2 shown cutting line AA,
4
a cross-sectional view of the turbomolecular pump along the in 2 shown cutting line BB,
figure 5
a cross-sectional view of the turbomolecular pump along the in 2 shown cutting line CC,
Figures 6 to 9
schematically different embodiments of a vacuum system according to the invention,
10
a vacuum pump in cross section with a deflection device,
11
a multi-stage vacuum pump with intermediate connections,
Figures 12 to 14
Different jet orientation options in relation to a turbomolecular pump rotor.

Die in Fig. 1 gezeigte Turbomolekularpumpe 111 umfasst einen von einem Einlassflansch 113 umgebenen Pumpeneinlass 115, an welchen in an sich bekannter Weise ein nicht dargestellter Rezipient angeschlossen werden kann. Das Gas aus dem Rezipienten kann über den Pumpeneinlass 115 aus dem Rezipienten gesaugt und durch die Pumpe hindurch zu einem Pumpenauslass 117 gefördert werden, an den eine Vorvakuumpumpe, wie etwa eine Drehschieberpumpe, angeschlossen sein kann.In the 1 The turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient, not shown, can be connected in a manner known per se. The gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.

Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß Fig. 1 das obere Ende des Gehäuses 119 der Vakuumpumpe 111. Das Gehäuse 119 umfasst ein Unterteil 121, an welchem seitlich ein Elektronikgehäuse 123 angeordnet ist. In dem Elektronikgehäuse 123 sind elektrische und/oder elektronische Komponenten der Vakuumpumpe 111 untergebracht, z.B. zum Betreiben eines in der Vakuumpumpe angeordneten Elektromotors 125. Am Elektronikgehäuse 123 sind mehrere Anschlüsse 127 für Zubehör vorgesehen. Außerdem sind eine Datenschnittstelle 129, z.B. gemäß dem RS485-Standard, und ein Stromversorgungsanschluss 131 am Elektronikgehäuse 123 angeordnet.The inlet flange 113 forms when the vacuum pump is aligned according to FIG 1 the upper end of the housing 119 of the vacuum pump 111. The housing 119 comprises a lower part 121 on which an electronics housing 123 is arranged laterally. Electrical and/or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump. A plurality of connections 127 for accessories are provided on the electronics housing 123. In addition, a data interface 129, for example according to the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.

Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 (siehe z.B. Fig. 3) vor dem von der Pumpe geförderten Gas in den Motorraum 137, in welchem der Elektromotor 125 in der Vakuumpumpe 111 untergebracht ist, gebracht werden kann. Im Unterteil 121 sind ferner noch zwei Kühlmittelanschlüsse 139 angeordnet, wobei einer der Kühlmittelanschlüsse als Einlass und der andere Kühlmittelanschluss als Auslass für Kühlmittel vorgesehen ist, das zu Kühlzwecken in die Vakuumpumpe geleitet werden kann.A flood inlet 133, in particular in the form of a flood valve, is provided on the housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be flooded. In the area of the lower part 121 there is also a sealing gas connection 135, which is also referred to as a flushing gas connection, through which flushing gas to protect the electric motor 125 (see e.g 3 ) before the The gas delivered by the pump can be brought into the engine compartment 137 in which the electric motor 125 in the vacuum pump 111 is housed. Two coolant connections 139 are also arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant, which can be conducted into the vacuum pump for cooling purposes.

Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in Fig. 1 gezeigt ist. Es lassen sich auch Ausführungsformen der Vakuumpumpe realisieren, bei der die Unterseite 141 nicht nach unten, sondern zur Seite gewandt oder nach oben gerichtet angeordnet werden kann.The lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141 . However, the vacuum pump 111 can also be fastened to a recipient via the inlet flange 113 and can thus be operated in a suspended manner, as it were. In addition, the vacuum pump 111 can be designed in such a way that it can also be operated when it is oriented in a different way than in FIG 1 is shown. It is also possible to realize embodiments of the vacuum pump in which the underside 141 cannot be arranged facing downwards but to the side or directed upwards.

An der Unterseite 141, die in Fig. 2 dargestellt ist, sind noch diverse Schrauben 143 angeordnet, mittels denen hier nicht weiter spezifizierte Bauteile der Vakuumpumpe aneinander befestigt sind. Beispielsweise ist ein Lagerdeckel 145 an der Unterseite 141 befestigt.At the bottom 141, the in 2 shown, various screws 143 are also arranged, by means of which components of the vacuum pump that are not further specified here are fastened to one another. For example, a bearing cap 145 is attached to the underside 141 .

An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann.In addition, fastening bores 147 are arranged on the underside 141, via which the pump 111 can be fastened, for example, to a support surface.

In den Figuren 2 bis 5 ist eine Kühlmittelleitung 148 dargestellt, in welcher das über die Kühlmittelanschlüsse 139 ein- und ausgeleitete Kühlmittel zirkulieren kann.In the Figures 2 to 5 a coolant line 148 is shown, in which the coolant fed in and out via the coolant connections 139 can circulate.

Wie die Schnittdarstellungen der Figuren 3 bis 5 zeigen, umfasst die Vakuumpumpe mehrere Prozessgaspumpstufen zur Förderung des an dem Pumpeneinlass 115 anstehenden Prozessgases zu dem Pumpenauslass 117.Like the sectional views of the Figures 3 to 5 show, the vacuum pump comprises several process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.

In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.A rotor 149 is arranged in the housing 119 and has a rotor shaft 153 which can be rotated about an axis of rotation 151 .

Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.The turbomolecular pump 111 comprises a plurality of turbomolecular pumping stages connected in series with one another in a pumping manner, with a plurality of radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119. A rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular pump stage. The stator discs 157 are held at a desired axial distance from one another by spacer rings 159 .

Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.The vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and are connected in series with one another for pumping purposes. The rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two Holweck rotor sleeves 163, 165 in the shape of a cylinder jacket, fastened to the rotor hub 161 and carried by it, which are oriented coaxially to the axis of rotation 151 and are nested in one another in the radial direction. Also provided are two cylinder jacket-shaped Holweck stator sleeves 167, 169, which are also oriented coaxially with respect to the axis of rotation 151 and are nested in one another when viewed in the radial direction.

Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.The pumping-active surfaces of the Holweck pump stages are formed by the lateral surfaces, ie by the radial inner and/or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169. The radially inner surface of the outer Holweck stator sleeve 167 abuts the radially outer surface of the outer Holweck rotor sleeve 163 forming a radial Holweck gap 171 and forms the first Holweck pump stage following the turbomolecular pumps. The radially inner surface of the outer Holweck rotor sleeve 163 faces the radially outer surface of the inner Holweck stator sleeve 169 to form a radial Holweck gap 173 and therewith forms a second Holweck pumping stage. The radially inner surface of the inner Holweck stator sleeve 169 faces the radially outer surface of the inner Holweck rotor sleeve 165 to form a radial Holweck gap 175 and therewith forms the third Holweck pumping stage.

Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.At the lower end of the Holweck rotor sleeve 163, a radially running channel can be provided, via which the radially outer Holweck gap 171 is connected to the middle Holweck gap 173. In addition, a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175. As a result, the nested Holweck pump stages are connected in series with one another. Furthermore, a connecting channel 179 to the outlet 117 can be provided at the lower end of the radially inner Holweck rotor sleeve 165 .

Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 163, 165 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.The above-mentioned pumping-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running in a spiral shape around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas for operating the Advance vacuum pump 111 in the Holweck grooves.

Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.A roller bearing 181 in the region of the pump outlet 117 and a permanent magnet bearing 183 in the region of the pump inlet 115 are provided for the rotatable mounting of the rotor shaft 153 .

Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.In the area of the roller bearing 181 , a conical spray nut 185 is provided on the rotor shaft 153 with an outer diameter that increases toward the roller bearing 181 . The injection nut 185 is in sliding contact with at least one stripper of an operating fluid store. The resource reservoir comprises a plurality of absorbent discs 187 stacked on top of one another, which are impregnated with a resource for the roller bearing 181, e.g. with a lubricant.

Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.During operation of vacuum pump 111, the operating fluid is transferred by capillary action from the operating fluid reservoir to the rotating spray nut 185 via the scraper and, as a result of the centrifugal force, is conveyed along the spray nut 185 in the direction of the increasing outer diameter of the spray nut 185 to the roller bearing 181, where it e.g. fulfills a lubricating function. The roller bearing 181 and the operating fluid reservoir are surrounded by a trough-shaped insert 189 and the bearing cover 145 in the vacuum pump.

Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 203 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.The permanent magnet bearing 183 comprises a bearing half 191 on the rotor side and a bearing half 193 on the stator side, which each comprise a ring stack of a plurality of permanent magnetic rings 195, 197 stacked on top of one another in the axial direction. The ring magnets 195, 197 lie opposite one another, forming a radial bearing gap 199, the ring magnets 195 on the rotor side being arranged radially on the outside and the ring magnets 197 on the stator side being arranged radially on the inside. The magnetic field present in the bearing gap 199 produces magnetic repulsive forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially. The ring magnets 195 on the rotor side are carried by a support section 201 of the rotor shaft 153, which radially surrounds the ring magnets 195 on the outside. The ring magnets 197 on the stator side are carried by a support section 203 on the stator side, which extends through the ring magnets 197 and is suspended on radial struts 205 of the housing 119 . The ring magnets 195 on the rotor side are parallel to the axis of rotation 151 by a cover element coupled to the carrier section 203 207 fixed. The stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the support section 203 and a fastening ring 211 connected to the support section 203 . A disc spring 213 can also be provided between the fastening ring 211 and the ring magnet 197 .

Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, da eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.An emergency or safety bearing 215 is provided within the magnetic bearing, which runs idle without contact during normal operation of the vacuum pump 111 and only engages in the event of an excessive radial deflection of the rotor 149 relative to the stator, in order to create a radial stop for the rotor 149 to form since collision of the rotor-side structures with the stator-side structures is prevented. The backup bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and/or the stator, which causes the backup bearing 215 to be disengaged during normal pumping operation. The radial deflection at which the backup bearing 215 engages is dimensioned large enough so that the backup bearing 215 does not engage during normal operation of the vacuum pump, and at the same time small enough so that the rotor-side structures collide with the stator-side structures under all circumstances is prevented.

Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.The vacuum pump 111 includes the electric motor 125 for rotating the rotor 149. The armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217. A permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 that extends through the motor stator 217 . Between the motor stator 217 and the section of the rotor 149 extending through the motor stator 217 there is a space 219 which comprises a radial motor gap over which the motor stator 217 and the permanent magnet arrangement for the transmission of the drive torque can affect each other magnetically.

Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.The motor stator 217 is fixed in the housing inside the motor room 137 provided for the electric motor 125 . A sealing gas, which is also referred to as flushing gas and which can be air or nitrogen, for example, can get into the engine compartment 137 via the sealing gas connection 135 . The sealing gas can protect the electric motor 125 from process gas, e.g. from corrosive components of the process gas. The engine compartment 137 can also be evacuated via the pump outlet 117, i.e. the vacuum pressure produced by the backing pump connected to the pump outlet 117 prevails in the engine compartment 137 at least approximately.

Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.What is known as a labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the motor compartment 137, in particular in order to achieve better sealing of the motor compartment 217 in relation to the Holweck pump stages located radially outside.

Die nachfolgend beschriebenen Pumpen und Systeme sind stark schematisiert und vereinfach dargestellt. Sie sind zwecks praktischer Umsetzung vorteilhaft mit einzelnen oder mehreren Merkmalen der vorstehend insbesondere anhand der Fig. 1 bis 5 beschriebenen Pumpe ausführbar.The pumps and systems described below are highly schematic and simplified. For the purpose of practical implementation, they are advantageous with one or more features of the above, in particular with reference to the Figures 1 to 5 described pump executable.

In Fig. 6 ist ein Gasanalysesystem 20 gezeigt, welches eine Vakuumpumpe 22, eine Umlenkeinrichtung 24 für einen Teilchenstrahl 26 sowie eine Analysatoreinheit 28 umfasst. Die Umlenkeinrichtung 24 ist dazu eingerichtet, den Strahl 26 in wenigstens einen ersten Teilstrahl 30 und einen zweiten Teilstrahl 32 aufzuteilen, indem die Bestandteile der betreffenden Teilstrahlen durch die Umlenkeinrichtung 24 unterschiedlich stark abgelenkt werden.In 6 a gas analysis system 20 is shown, which includes a vacuum pump 22, a deflection device 24 for a particle beam 26 and an analyzer unit 28. The deflection device 24 is set up to split the beam 26 into at least a first partial beam 30 and a second partial beam 32 in that the components of the relevant partial beams are deflected by the deflection device 24 to different extents.

Die Umlenkeinrichtung 24 ist hier lediglich durch einen Kreis angedeutet, der ein durch die Umlenkeinrichtung 24 erzeugtes Magnetfeld oder elektrisches Feld symbolisiert.The deflection device 24 is only indicated here by a circle, which symbolizes a magnetic field or electric field generated by the deflection device 24 .

Die Moleküle des Strahls 26 vor Passage der Umlenkeinrichtung 24, also des gemeinsamen Strahls, haben eine bestimmte Geschwindigkeit und sind teilweise geladen. Im Feld der Umlenkeinrichtung 24 werden die Moleküle insbesondere in Abhängigkeit von ihrer Masse und ihrer Ladung (bei unterschiedlicher Geschwindigkeit auch abhängig von dieser) unterschiedlich stark abgelenkt. Ungeladene Moleküle werden nicht abgelenkt und fliegen geradeaus. Diese Moleküle bilden hier den zweiten Teilstrahl 32, der hier und im Folgenden gepunktet dargestellt ist.The molecules of the beam 26 before the passage of the deflection device 24, ie the common beam, have a specific speed and are partially charged. In the field of the deflection device 24, the molecules are deflected to different extents, in particular as a function of their mass and their charge (at different speeds also as a function of this). Uncharged molecules are not deflected and fly straight ahead. Here, these molecules form the second partial beam 32, which is shown in dotted lines here and below.

Geladene Teilchen einer bestimmten Art werden entsprechend der gestrichelten Linie des ersten Teilstrahls 30 abgelenkt und sind zu der Analysatoreinheit 28 geführt. Diese Teilchen sind es, die durch die Analysatoreinheit 28 zu detektieren sind. Die Teilchen des zweiten Teilstrahls 32 bilden in diesem Zusammenhang Schmutzpartikel und sind im Bereich der Analysatoreinheit 28 nicht erwünscht.Charged particles of a certain kind are deflected according to the dotted line of the first sub-beam 30 and are guided to the analyzer unit 28 . It is these particles that are to be detected by the analyzer unit 28 . In this context, the particles of the second partial beam 32 form dirt particles and are not desired in the area of the analyzer unit 28 .

Es versteht sich, dass typische Teilchenstrahlen 26 von Gasanalysesystemen meist mehr als zwei Bestandteile, also mehr als zwei verschiedene Molekülarten aufweisen. Folglich werden typischerweise nicht lediglich zwei diskrete Teilstrahlen 30, 32 ausgebildet, sondern tatsächlich bildet sich ein ganzer Fächer von Teilstrahlen aus. Dieser Fächer enthält zum großen Teil Schmutzpartikel, also Teilstrahlen, die nicht zur Analysatoreinheit 28 geführt werden sollen. Das Ziel ist es, möglichst viele Schmutzpartikel und möglichst viele zweite Teilstrahlen, die Schmutzpartikel umfassen, in einen pumpaktiven Bereich 34 der Vakuumpumpe 22 zu führen. Hierdurch werden die Schmutzpartikel aktiv abgeführt und eine Kontamination des ersten Teilstrahls 30 sowie des Bereichs der Analysatoreinheit 28 wird reduziert.It goes without saying that typical particle beams 26 from gas analysis systems usually have more than two components, ie more than two different types of molecules. Consequently, not only two discrete partial beams 30, 32 are typically formed, but actually a whole fan of partial beams is formed. For the most part, this fan contains dirt particles, that is to say partial beams which should not be guided to the analyzer unit 28 . The goal is to guide as many dirt particles and as many second partial jets as possible, which include dirt particles, into a pump-active area 34 of the vacuum pump 22 . As a result, the dirt particles are actively removed and contamination of the first partial beam 30 and of the area of the analyzer unit 28 is reduced.

Der pumpaktive Bereich 34 ist hier zumindest durch eine in Pumprichtung der Vakuumpumpe 22 erste Turborotorscheibe 36 gebildet und konkret durch deren über den Umfang verteilt angeordnete Rotorschaufeln. Die Vakuumpumpe 22 umfasst beispielhaft mehrere Turborotorscheiben 36, allgemein Turbostufen, sowie eine Holweckstufe 38.The active pumping area 34 is formed here at least by a first turbo rotor disk 36 in the pumping direction of the vacuum pump 22 and specifically by its rotor blades arranged distributed over the circumference. The vacuum pump 22 includes, for example, a plurality of turbo rotor disks 36, generally turbo stages, and a Holweck stage 38.

Bei der Ausführungsform der Fig. 6 ist der zweite Teilstrahl 32 parallel zur Rotorachse 40 der Vakuumpumpe 22 und parallel zu deren Pumprichtung in den pumpaktiven Bereich 34 geführt. Bei der Ausführungsform der Fig. 7 ist der zweite Teilstrahl 32 hingegen schräg zur Rotorachse 40 in den pumpaktiven Bereich 34 geführt. In Fig. 7 ist zudem eine Blende 42 für den ersten Teilstrahl 30 angedeutet, die der Umlenkeinrichtung 24 nachgeschaltet ist und die Selektion der Teilstrahlen weiter verbessert.In the embodiment of 6 the second partial beam 32 is guided parallel to the rotor axis 40 of the vacuum pump 22 and parallel to its pumping direction into the active pumping region 34 . In the embodiment of 7 the second partial jet 32 is, however, guided obliquely to the rotor axis 40 into the active pumping area 34 . In 7 an aperture 42 for the first partial beam 30 is also indicated, which is connected downstream of the deflection device 24 and further improves the selection of the partial beams.

Insbesondere mit Blick auf die Fig. 6 und 7 lässt sich außerdem eine nicht separat dargestellte, gleichwohl hiermit offenbarte erfindungsgemäße Ausführungsform eines Vakuumsystems beschreiben, bei der keine Umlenkeinrichtung vorgesehen ist und bei der keine Teilstrahlen ausgebildet werden. Dabei wird insbesondere der Strahl 26 in den pumpaktiven Bereich der Pumpstufe 36 geführt, wobei der Weg des Strahls 26 insbesondere demjenigen des zweiten Teilstrahls 32 bzw. dem gepunkteten Pfeil entspricht. Die Teilchen des in die Pumpstufe 36 geführten Strahls 26 bzw. 32 werden direkt von der Pumpstufe 36 eingefangen und vorteilhaft abgeführt, unabhängig davon, ob zuvor Teile des Strahls 26 umgelenkt wurden.Especially with regard to the Figures 6 and 7 an embodiment of a vacuum system according to the invention that is not shown separately but is disclosed here can also be described, in which no deflection device is provided and in which no partial beams are formed. The jet 26 in particular is guided into the active pumping region of the pump stage 36, with the path of the jet 26 corresponding in particular to that of the second partial jet 32 or the dotted arrow. The particles of the beam 26 or 32 fed into the pump stage 36 are captured directly by the pump stage 36 and advantageously removed, regardless of whether parts of the beam 26 were previously deflected.

In Fig. 8 ist ein Gasanalysesystem 20 mit einer mehrstufigen Vakuumpumpe 22 dargestellt, wobei der Strahl 26 bzw. die Teilstrahlen 30 und 32 durch einen Zwischenstufenbereich 44 geführt sind. Dabei ist der zweite Teilstrahl 32 in einen pumpaktiven Bereich einer dem Zwischenstufenbereich 44 in Pumprichtung nachgeordneten Turborotorscheibe 36 geführt.In 8 1 shows a gas analysis system 20 with a multi-stage vacuum pump 22, with the jet 26 or the partial jets 30 and 32 being guided through an intermediate stage region 44. In this case, the second partial jet 32 is guided into an active pumping region of a turbo rotor disk 36 arranged downstream of the intermediate stage region 44 in the pumping direction.

Der gemeinsame Strahl 26 ist in den Zwischenstufenbereich 44 durch einen ersten Zwischenanschluss 46 geführt. Der erste Teilstrahl 30 tritt aus dem Zwischenstufenbereich 44 durch einen zweiten Zwischenanschluss 48 aus.The common beam 26 is guided into the interstage region 44 through a first intermediate port 46 . The first split beam 30 exits the interstage region 44 through a second intermediate port 48 .

Die Umlenkeinrichtung 24 ist im Zwischenstufenbereich 44 angeordnet bzw. wirksam und bewirkt dort die Aufteilung des gemeinsamen Strahls 26 in die Teilstrahlen 30, 32.The deflection device 24 is arranged or active in the intermediate stage area 44 and causes the splitting of the common beam 26 into the partial beams 30, 32 there.

Bei der Ausführungsform der Fig. 8 ist der Zwischenanschluss 48 an eine Kammer 50 angeschlossen. In dieser Kammer 50 befindet sich die Analysatoreinheit 28 und der erste Teilstrahl 30 ist durch den Zwischenanschluss 48 zu der Analysatoreinheit 28 geführt. Die Kammer 50 ist zudem an einen Einlass 52 der Vakuumpumpe 22 angeschlossen, wobei in dieser Ausführungsform ein weiterer Satz von Turborotorscheiben 54 am Einlass 52 angeordnet ist und die Kammer 50 evakuiert.In the embodiment of 8 the intermediate port 48 is connected to a chamber 50 . The analyzer unit 28 is located in this chamber 50 and the first partial beam 30 is guided through the intermediate connection 48 to the analyzer unit 28 . The chamber 50 is also connected to an inlet 52 of the vacuum pump 22 , in this embodiment another set of turbo rotor disks 54 are arranged at the inlet 52 and evacuate the chamber 50 .

Die Turborotorscheiben 36 und 54 sind auf einer gemeinsamen Rotorwelle 56 angeordnet, auf der sich in diesem Beispiel auch ein Holweckrotor der Holweck-pumpstufe 38 befindet.The turbo rotor disks 36 and 54 are arranged on a common rotor shaft 56, on which a Holweck rotor of the Holweck pump stage 38 is also located in this example.

Die Vakuumpumpe 22 wird in dieser Ausführungsform einerseits zur verbesserten Auftrennung der Teilstrahlen 30 und 32 eingesetzt, indem die Moleküle des zweiten Teilstrahls 32 aktiv abgeführt werden und somit der erste Teilstrahl 30 gewissermaßen gereinigt wird. Andererseits dient die Vakuumpumpe 22 gleichzeitig der Evakuierung der Kammer 50, in der sich die Analysatoreinheit 28 befindet. Hieraus ergibt sich eine äußerst kompakte Bauweise bei vorteilhafter Analysegenauigkeit.In this embodiment, the vacuum pump 22 is used on the one hand for improved separation of the partial beams 30 and 32 by actively removing the molecules of the second partial beam 32 and thus cleaning the first partial beam 30 to a certain extent. On the other hand, the vacuum pump 22 also serves to evacuate the chamber 50 in which the analyzer unit 28 is located. This results in an extremely compact design with advantageous analysis accuracy.

Bei der gezeigten Ausführungsform sind zudem der gemeinsame Strahl 26 und der erste Teilstrahl 30 schräg in Bezug auf die Rotorachse bzw. die Rotorwelle 56 ausgerichtet. Aus Fig. 8 ergibt sich, dass dies ebenfalls der kompakten Bauweise zuträglich ist.In the embodiment shown, the common jet 26 and the first partial jet 30 are also aligned at an angle with respect to the rotor axis or the rotor shaft 56 . Out of 8 it follows that this is also beneficial to the compact design.

Allgemein und am Beispiel der Fig. 8 anschaulich nachvollziehbar gilt, dass der gemeinsame Teilchenstrahl 26 auch Moleküle umfassen kann, die stärker geladen sind und/oder leichter sind als diejenigen des ersten Teilstrahls 30. Allgemein kann der gemeinsame Strahl 26 also Moleküle umfassen, die noch stärker abgelenkt werden als der erste Teilstrahl 30. Ein hieraus resultierender, der Übersichtlichkeit halber in den Figuren nicht gezeigter, dritter Teilstrahl wird durch die Umlenkeinrichtung 24 also entgegen der Pumprichtung auf die in Pumprichtung letzte der Turborotorscheiben 54 geführt. Auch dieser dritte Teilstrahl ist damit auf einen pumpaktiven Bereich geführt, anders als der zweite Teilstrahl 32 allerdings nicht in Pumprichtung, sondern entgegen der Pumprichtung. Gleichwohl verleiht die betreffende Turborotorscheibe 54 bzw. deren Rotorschaufeln den Molekülen des dritten Teilstrahls eine Vorzugsrichtung in Pumprichtung, sodass auch diese Moleküle aktiv abgeführt werden. Bei diesen Molekülen ist zwar dann eine Kollision mit den Molekülen des ersten Teilstrahls 30 möglich. Gleichwohl wird insgesamt die Wahrscheinlichkeit verringert, dass die Moleküle des dritten Teilstrahls durch den Zwischenanschluss 48 austreten bzw. zur Analysatoreinheit 28 gelangen. Auch in Bezug auf den dritten Teilstrahl wird somit das Analyseergebnis verbessert.In general and using the example of 8 It is clearly understandable that the common particle beam 26 can also include molecules that are more heavily charged and/or lighter than those of the first partial beam 30. In general, the common beam 26 can therefore include molecules that are deflected even more strongly than the first partial beam 30 A resulting third partial beam, not shown in the figures for the sake of clarity, is guided by the deflection device 24 ie counter to the pumping direction onto the last of the turbo rotor disks 54 in the pumping direction. This third partial beam is thus also guided to a pump-active region, but unlike the second partial beam 32, it is not in the pumping direction but counter to the pumping direction. Nevertheless, the relevant turbo rotor disk 54 or its rotor blades gives the molecules of the third partial jet a preferred direction in the pumping direction, so that these molecules are also actively discharged. A collision with the molecules of the first partial beam 30 is possible with these molecules. Nevertheless, the overall probability is reduced that the molecules of the third partial beam will emerge through the intermediate connection 48 or reach the analyzer unit 28 . The analysis result is thus also improved in relation to the third partial beam.

Grundsätzlich kann der dritte Teilstrahl auch auf eine Statorscheibe geführt sein, die der letzten der Turborotorscheiben 54 nachgeordnet ist. In diesem Zusammenhang sei erwähnt, dass in den Figuren 6 bis 14 keine Statorscheiben gezeigt sind, dass jedoch allgemein vorteilhaft eine solche einer jeweiligen Turborotorscheibe zugeordnet, insbesondere nachgeordnet, ist. Auch eine Statorscheibe als Scheibe, auf weiche der dritte Teilstrahl trifft, ist grundsätzlich vorteilhaft in diesem Zusammenhang, wenngleich sie auch nicht aktiv wirkt. Denn ihre dem Zwischenstufenbereich 44 zugewandte Oberfläche gibt eine vorteilhafte Desorptionsrichtungsverteilung für ein daran haftendes Teilchen vor, wobei die Wahrscheinlichkeit für eine Desorption mit Bewegungskomponente in Pumprichtung hoch ist.In principle, the third partial beam can also be guided onto a stator disk which is arranged downstream of the last of the turbo rotor disks 54 . In this context it should be mentioned that in Figures 6 to 14 no stator disks are shown, but that one is generally advantageously associated with, in particular downstream of, a respective turbo rotor disk. A stator disk as a disk on which the third partial beam impinges is also fundamentally advantageous in this context, although it does not have an active effect either. Because its the intermediate level The surface facing 44 provides an advantageous desorption direction distribution for a particle adhering thereto, with a high probability of desorption with a moving component in the pumping direction.

Wie bereits angedeutet, bilden sich zwischen dem ersten Teilstrahl 30 und dem zweiten Teilstrahl 32 einerseits sowie zwischen dem ersten Teilstrahl 30 und dem vorstehend beschriebenen dritten Teilstrahl in der Praxis zahlreiche weitere Teilstrahlen aus, die im Wesentlichen fächerartig ausgerichtet sind. Einige dieser Teilstrahlen landen auf passiven Bauteilen, insbesondere auf einer Gehäuseinnenwand. Diese Moleküle desorbieren von der Gehäuseinnenwand mit statistischer Richtungsverteilung, was allgemein ungünstig im Hinblick auf das Ziel ist, möglichst wenige Schmutzpartikel zu der Analysatoreinheit 28 gelangen zu lassen. Folglich gilt es, möglichst viele Teilstrahlen und möglichst viele Moleküle, die vom ersten Teilstrahl 30 verschieden sind, also möglichst viele Schmutzpartikel, zu einem pumpaktiven Bereich der Vakuumpumpe 22, insbesondere zu den Turborotorschaufeln, zu führen.As already indicated, in practice numerous further partial beams are formed between the first partial beam 30 and the second partial beam 32 on the one hand and between the first partial beam 30 and the third partial beam described above, which are essentially aligned in a fan shape. Some of these partial beams land on passive components, in particular on the inside wall of a housing. These molecules desorb from the inner wall of the housing with a statistical directional distribution, which is generally unfavorable with regard to the goal of allowing as few dirt particles as possible to reach the analyzer unit 28 . Consequently, it is important to guide as many partial jets and as many molecules as possible that are different from the first partial jet 30, ie as many dirt particles as possible, to a pumping-active area of the vacuum pump 22, in particular to the turbo rotor blades.

Die Ausführungsform der Fig. 9 ist derjenigen der Fig. 8 insgesamt ähnlich, zeichnet sich aber dadurch aus, dass hier zwei Umlenkeinrichtungen 24 im Zwischenstufenbereich 44 vorgesehen sind, dies im Gegensatz zu der beispielhaft einzigen Umlenkeinrichtung 24 der Ausführungsform der Fig. 8.The embodiment of 9 is the one who 8 overall similar, but is distinguished by the fact that two deflection devices 24 are provided in the intermediate stage area 44, in contrast to the exemplary single deflection device 24 of the embodiment of FIG 8 .

Eine in Richtung des Strahls 26 erste Umlenkeinrichtung 24 trennt die Teilstrahlen 30 und 32 auf. Die nachgeordnete Umlenkeinrichtung 24 dient hingegen lediglich der weiteren Umlenkung bzw. weiteren Reinigung des ersten Teilstrahls 30. Grundsätzlich sind verschiedene Anordnungen von Umlenkeinrichtungen möglich.A first deflection device 24 in the direction of the beam 26 separates the partial beams 30 and 32 . The downstream deflection device 24, on the other hand, is only used for further deflection or further cleaning of the first partial beam 30. In principle, different arrangements of deflection devices are possible.

Die Felder der zwei Umlenkeinrichtungen 24 der Ausführungsform der Fig. 9 durchdringen den Rotor der Vakuumpumpe 22 und dessen rotierende Teile in deutlich geringerem Maße, als das Feld der Umlenkeinrichtung 24 der Ausführungsform der Fig. 8. Es ergeben sich somit bei dieser Ausführungsform deutlich geringere Wirbelstromverluste und somit eine geringere Erwärmung des Rotors.The fields of the two deflection devices 24 of the embodiment of 9 penetrate the rotor of the vacuum pump 22 and its rotating parts to a significantly lesser extent than the field of the deflection device 24 of the embodiment the 8 . This embodiment therefore results in significantly lower eddy current losses and thus less heating of the rotor.

In Fig. 10 ist eine Vakuumpumpe 22, zum Beispiel diejenige der Ausführungsform der Fig. 8, im Querschnitt dargestellt, wobei die Schnittebene senkrecht zu einer Rotorwelle 56 ausgerichtet und insbesondere auf axialer Höhe eines Zwischenstufenbereichs 44 angeordnet ist. An dem Zwischenstufenbereich 44 sind ein erster Zwischenanschluss 46 und ein zweiter Zwischenanschluss 48 vorgesehen. Diese sind separat voneinander ausgeführt und in Umfangsrichtung in Bezug auf die Rotorwelle 56 beabstandet. In Umfangsrichtung zwischen den Zwischenanschlüssen 46 und 48 erstreckt sich eine Gehäusewand 58 der Vakuumpumpe 22. Zwischen der Gehäusewand 58 und der Rotorwelle ist ein Umlenkeinrichtung 24 wirksam.In 10 is a vacuum pump 22, for example that of the embodiment of FIG 8 , shown in cross-section, the cutting plane being oriented perpendicularly to a rotor shaft 56 and, in particular, being arranged at the axial height of an intermediate stage region 44 . A first intermediate terminal 46 and a second intermediate terminal 48 are provided on the interstage region 44 . These are designed separately from one another and are spaced apart in the circumferential direction in relation to the rotor shaft 56 . A housing wall 58 of the vacuum pump 22 extends in the circumferential direction between the intermediate connections 46 and 48. A deflection device 24 is effective between the housing wall 58 and the rotor shaft.

Die Zwischenanschlüsse 46 und 48 sind gegenüberliegend voneinander angeordnet, nämlich derart, dass eine Verbindungslinie außermittig an der Rotorwelle 56 vorbei verläuft.The intermediate connections 46 and 48 are arranged opposite one another, namely in such a way that a connecting line runs past the rotor shaft 56 off-center.

Ein Strahl 26 ist durch eine hier durchgehend dargestellte Linie angedeutet. Denn aufgrund der gewählten Perspektive sind hier der erste Teilstrahl 30 und der zweite Teilstrahl 32 nicht separat sichtbar, sondern liegen übereinander. Es versteht sich aber, dass die hier gewählte Strahlausrichtung, mit Strahlebene parallel zur Rotorachse bzw. zur Rotorwelle 56, beispielhaft ist.A ray 26 is indicated by a line shown here as a continuous line. This is because, due to the selected perspective, the first partial beam 30 and the second partial beam 32 are not separately visible here, but lie on top of one another. It goes without saying, however, that the beam alignment selected here, with the beam plane parallel to the rotor axis or to the rotor shaft 56, is exemplary.

Der gemeinsame Strahl 26 tritt durch den ersten Zwischenanschluss in den Zwischenstufenbereich 44 ein und gelangt in den Wirkbereich der Umlenkeinrichtung 24. Dort wird der Strahl 26 in die Teilstrahlen 30, 32 aufgeteilt, wobei der erste Teilstrahl 30 durch den zweiten Zwischenanschluss 48 aus dem Zwischenstufenbereich 44 herausgeführt ist.The common beam 26 enters the intermediate stage area 44 through the first intermediate connection and reaches the effective area of the deflection device 24. There the beam 26 is divided into the partial beams 30, 32, with the first partial beam 30 passing through the second intermediate connection 48 from the intermediate stage area 44 is led out.

Der zweite Teilstrahl 32 ist auf den pumpaktiven Bereich der sichtbaren Turborotorscheibe 36, konkret auf den von den mehreren Rotorschaufeln 60 überstrichenen Bereich geführt. Bevorzugt verläuft die Rotationsrichtung der Rotorwelle 56 bzw. der Turborotorscheibe 36 hier mit dem Uhrzeigersinn.The second partial jet 32 is guided onto the active pumping area of the visible turbo rotor disk 36, specifically onto the area swept by the plurality of rotor blades 60. The direction of rotation of the rotor shaft 56 or of the turbo rotor disk 36 preferably runs clockwise here.

Fig. 11 zeigt eine Vakuumpumpe 22 mit Zwischenanschlüssen 46 und 48 an einem Zwischenstufenbereich 44. Ein jeweiliger Zwischenanschluss 46 umfasst einen Flansch 62 bzw. 64 zum dichten Anschluss der Zwischenanschlüsse 46, 48 an weitere Komponenten. Der Flansch 62 weist eine Flanschebene 66 auf, die schräg zur Rotorachse 40 verläuft. Auch der Flansch 64 weist eine Flanschebene 68 auf, die schräg zur Rotorachse 40 ausgerichtet ist. 11 12 shows a vacuum pump 22 having intermediate ports 46 and 48 at an interstage region 44. Each intermediate port 46 includes a flange 62, 64, respectively, for sealingly connecting the intermediate ports 46, 48 to other components. The flange 62 has a flange plane 66 which runs at an angle to the rotor axis 40 . The flange 64 also has a flange plane 68 which is oriented at an angle to the rotor axis 40 .

Die Zwischenanschlüsse 46 und 48 sind derart angeordnet, dass sich keine gerade Linie durch die Zwischenanschlüsse legen lässt, dass die Zwischenanschlüsse also nicht optisch durchsichtig sind.The intermediate connections 46 and 48 are arranged in such a way that a straight line cannot be drawn through the intermediate connections, that is, the intermediate connections are not optically transparent.

Die Zwischenanschlüsse 46 und 48 sind in dieser Ausführungsform pfeilförmig angeordnet. Typischerweise werden mögliche Winkel der Zwischenanschlüsse und/oder Flanschebenen in Bezug auf die Rotorachse mit denjenigen der Strahlen 26 und 30 korrelieren. Die Winkel der Zwischenanschlüsse und/oder Flanschebenen können aber auch in einem deutlich weiteren Winkelbereich liegen, da gegebenenfalls die eigentliche Umlenkung in der Umgebung der Anschlussebene erfolgen kann und damit eine weitgehend freie Winkelwahl möglich wird.The intermediate terminals 46 and 48 are arranged in an arrow shape in this embodiment. Typically, possible angles of the intermediate ports and/or flange planes with respect to the rotor axis will correlate with those of jets 26 and 30. However, the angles of the intermediate connections and/or flange planes can also lie in a significantly wider angle range, since the actual deflection can take place in the vicinity of the connection plane, and a largely free choice of angle is therefore possible.

Die Vakuumpumpe 22 weist einen Einlass 52 auf. Dieser kann zum Beispiel an eine Kammer angeschlossen sein, zum Beispiel ebenfalls über einen Flansch. Dabei kann die Flanschebene zum Beispiel senkrecht zur Rotorachse 40 verlaufen oder ebenfalls schräg verlaufen. Zum Beispiel kann die Flanschebene des Einlasses 52 auch parallel zu derjenigen des Flansches 64 ausgerichtet sein, sodass die Pumpe 22 mit den Anschlüssen 48 und 52 vorteilhaft an ein Kammergehäuse angeschlossen werden kann.The vacuum pump 22 has an inlet 52 . This can be connected to a chamber, for example, also via a flange. In this case, the flange plane can, for example, run perpendicularly to the rotor axis 40 or likewise run at an angle. For example, the flange plane of the inlet 52 can also be aligned parallel to that of the flange 64, so that the pump 22 with the connections 48 and 52 can advantageously be connected to a chamber housing.

In Fig. 12 ist eine Rotorwelle 56 mit Rotorschaufeln 60 einer Turborotorscheibe im Querschnitt dargestellt. Eine Drehrichtung ist entgegen dem Uhrzeigersinn angedeutet. Unterschiedlich ausgerichtete zweite Teilstrahlen 32 sind durch Pfeile angedeutet. Der Bezug auf zweite Teilstrahlen 32 ist hier und im Folgenden beispielhaft und zur erleichterten Anknüpfung an die vorstehend beschriebenen Beispiele mit Umlenkeinrichtung gewählt. Es versteht sich, dass die mit Bezug auf die Fig. 12 bis 14 veranschaulichten Möglichkeiten der Strahlausrichtung auch für einen Strahl im Allgemeinen Gültigkeit besitzen, unabhängig davon, ob dieser zuvor separiert und/oder umgelenkt wurde.In 12 a rotor shaft 56 with rotor blades 60 of a turbo rotor disk is shown in cross section. A direction of rotation is indicated counterclockwise. Differently aligned second partial beams 32 are indicated by arrows. The reference to second partial beams 32 is here and in the following by way of example and chosen to facilitate the connection to the above-described examples with a deflection device. It is understood that with reference to the Figures 12 to 14 Possibilities of beam alignment illustrated are also valid for a beam in general, regardless of whether it was previously separated and/or deflected.

Ein Eintrittspunkt in den pumpaktiven Bereich ist in Fig. 12 jeweils durch das Pfeilende der gepunkteten Pfeile angedeutet. Dabei ist eine Rotorschaufel 60 zwecks Illustration genau bei einer den Eintrittspunkten entsprechenden Drehstellung gezeigt. Der zweite Teilstrahl 32.1 ist derart in den pumpaktiven Bereich geführt, dass an dem Eintrittspunkt der Teilstrahl 32.1 eine Richtung aufweist, die nach innen gerichtet ist. Der zweite Teilstrahl 32.2 ist am Eintrittspunkt tangential in Bezug auf die Rotorwelle 56 ausgerichtet. Der Teilstrahl 32.3 ist am Eintrittspunkt nach außen gerichtet. Mit anderen Worten tritt der Teilstrahl 32.1 in den pumpaktiven Bereich ein, bevor er die Rotorwelle 56 bzw. einen zur Rotorachse nächsten Punkt passiert. Der Teilstrahl 32.3 hat hingegen vor Eintritt in den pumpaktiven Bereich die Rotorwelle 56 passiert. Der Teilstrahl 32.2 tritt in den pumpaktiven Bereich an dem Punkt ein, an dem er die Rotorwelle 56 passiert.An entry point into the active pumping area is in 12 each indicated by the arrow end of the dotted arrows. A rotor blade 60 is shown precisely at a rotational position corresponding to the entry points for the purpose of illustration. The second partial beam 32.1 is guided into the pump-active region in such a way that at the point of entry the partial beam 32.1 has a direction that is directed inwards. The second partial beam 32.2 is aligned tangentially with respect to the rotor shaft 56 at the entry point. The partial beam 32.3 is directed outwards at the entry point. In other words, the partial jet 32.1 enters the active pumping area before it passes the rotor shaft 56 or a point closest to the rotor axis. The partial jet 32.3, on the other hand, has passed the rotor shaft 56 before entering the active pumping area. The partial jet 32.2 enters the active pumping area at the point where it passes the rotor shaft 56.

Fig. 13 illustriert weitere Ausrichtungsmöglichkeiten eines Strahls, insbesondere zweiten Teilstrahls, die eine andere Perspektive veranschaulichen und insofern unabhängig oder in Kombination mit den Ausrichtungen gemäß Fig. 12 anwendbar sind. 13 12 illustrates further options for aligning a beam, in particular a second partial beam, which illustrate a different perspective and in this respect independently or in combination with the alignments according to FIG 12 are applicable.

In Fig. 13 sind mehrere Rotorschaufeln 60 vereinfacht in einer Reihe dargestellt, wobei eine Rotationsrichtung durch einen Pfeil angedeutet ist und in der Bildebene nach rechts verläuft. Die Rotorschaufeln 60 weisen einen Anstellwinkel 69 in Bezug auf die Rotorachse 40 auf.In 13 several rotor blades 60 are shown in simplified form in a row, with one direction of rotation being indicated by an arrow and running to the right in the plane of the drawing. The rotor blades 60 have an angle of attack 69 in relation to the rotor axis 40 .

Die zweiten Teilstrahlen 32 können unterschiedlich in Bezug auf die Rotorachse angeordnet sein. So ist beispielsweise der Teilstrahl 32.4 parallel zur Rotorachse ausgerichtet und allgemein steiler als der Anstellwinkel der Rotorschaufeln ausgerichtet. Der zweite Teilstrahl 32.5 entspricht in seiner Richtung den Rotorschaufeln 60, ist also entsprechend angestellt. Der zweite Teilstrahl 32.6 ist hingegen flacher als die Rotorschaufeln 46 angestellt. Nicht dargestellt, aber ebenfalls möglich ist eine mitläufige Strahlausrichtung, also eine Strahlausrichtung mit einer Richtungskomponente in Drehrichtung.The second partial beams 32 can be arranged differently in relation to the rotor axis. For example, the partial jet 32.4 is aligned parallel to the rotor axis and is generally aligned steeper than the angle of attack of the rotor blades. The direction of the second partial jet 32.5 corresponds to that of the rotor blades 60, ie it is adjusted accordingly. The second partial jet 32.6, on the other hand, is set flatter than the rotor blades 46. Not shown, but also possible, is co-rotating beam alignment, ie beam alignment with a directional component in the direction of rotation.

In Fig. 14, die einen Querschnitt des Rotors bzw. der Rotorwelle 56 andeutet, ist eine radiale Erstreckung 70 einer Rotorschaufel 60 gezeigt, welche sich im Betrieb um die Rotorachse dreht, die in Fig. 14 senkrecht zur Bildebene verläuft. Die Rotorschaufel 60 erstreckt sich von einem radial inneren Ende, welches durch einen Rotorkern, eine Rotorwelle 56 und/oder einen Schaufelgrund definiert ist, zu einem radial äußeren Ende. Die radiale Erstreckung 70 bildet einen pumpaktiven Bereich der Rotorschaufel 60 bzw. eines Turborotors. Vorteilhafterweise kann der zweite Teilstrahl 32 auf einen radialen Bereich 72 der Rotorschaufeln 60 geführt sein, der vom radial inneren Ende und/oder vom radial äußeren Ende der Rotorschaufeln um wenigstens ein Viertel der radialen Erstreckung beabstandet ist. Insbesondere kann der zweite Teilstrahl 32 etwa radial mittig oder etwa bei einem Drittel der radialen Erstreckung gemessen vom radial äußeren Ende der Rotorschaufeln 60 auf diese geführt sein.In 14 , which indicates a cross-section of the rotor or the rotor shaft 56, a radial extension 70 of a rotor blade 60 is shown, which in operation rotates about the rotor axis, which is shown in 14 perpendicular to the image plane. The rotor blade 60 extends from a radially inner end defined by a rotor core, a rotor shaft 56 and/or a blade root to a radially outer end. The radial extension 70 forms an active pumping area of the rotor blade 60 or a turbo rotor. Advantageously, the second partial jet 32 can be guided onto a radial area 72 of the rotor blades 60, which is spaced from the radially inner end and/or from the radially outer end of the rotor blades by at least a quarter of the radial extent. In particular, the second partial jet 32 can be guided onto the rotor blades 60 approximately radially in the middle or approximately at one third of the radial extent measured from the radially outer end of the rotor blades.

Es ist somit anschaulich nachvollziehbar, dass durch die Erfindung insbesondere die Schmutzpartikel bzw. solche Moleküle, die nicht der Analysatoreinheit zugeführt werden sollen, vorteilhaft abgeführt werden. Allgemein ermöglicht die erfindungsgemäße Strahlausrichtung eine besonders hohe Einfangwahrscheinlichkeit für die Teilchen des Strahls, der in den pumpaktiven Bereich geführt ist, insbesondere des zweiten Teilstrahls, und insbesondere für solche Teilchen, die nicht zum ersten Teilstrahl gehören. Dabei kommt insbesondere das zumindest im Wesentlichen ganze Saugvermögen der Pumpstufe, insbesondere Turborotorscheibe, zum Tragen, in deren pumpaktiven Bereich der Strahl geführt ist. Der pumpaktive Bereich ist vorteilhaft nah an der Umlenkeinrichtung und somit an dem Ort angeordnet, an dem die Teilstrahlen separiert werden. Somit sind Leitwertverluste zwischen diesem Ort und dem pumpaktiven Bereich klein. Im Stand der Technik mussten teilweise zusätzliche Ablenkungen der Schmutzpartikel auf dem Weg in die Vakuumpumpe in Kauf genommen werden, womit allgemein Leitwertverluste einhergehen. Im Ergebnis ist es also durch die Erfindung möglich, einen besonders großen Teil von Schmutzpartikeln besonders wirksam abzuführen und so insbesondere die Analysegenauigkeit zu verbessern.It is thus clearly understandable that the dirt particles or those molecules in particular that are not intended to be fed to the analyzer unit are advantageously removed by the invention. In general, the beam alignment according to the invention enables a particularly high capture probability for the particles of the beam that is guided into the active pumping region, in particular the second partial beam, and in particular for those particles that do not belong to the first partial beam. In this case, the at least essentially entire suction capacity of the pump stage, in particular the turbo rotor disk, comes into play, in whose active pumping area the jet is guided. The active pumping area is advantageously arranged close to the deflection device and thus at the location at which the partial beams are separated. Thus conductance losses between this location and the active pumping area are small. In the prior art, additional deflections of the dirt particles on their way into the vacuum pump sometimes had to be accepted, which is generally associated with losses in conductance. As a result, the invention makes it possible to remove a particularly large proportion of dirt particles in a particularly effective manner and thus in particular to improve the accuracy of the analysis.

BezuqszeichenlisteReference character list

111111
Turbomolekularpumpeturbomolecular pump
113113
Einlassflanschinlet flange
115115
Pumpeneinlasspump inlet
117117
Pumpenauslasspump outlet
119119
GehäuseHousing
121121
Unterteillower part
123123
Elektronikgehäuseelectronics housing
125125
Elektromotorelectric motor
127127
Zubehöranschlussaccessory port
129129
Datenschnittstelledata interface
131131
Stromversorgungsanschlusspower connector
133133
Fluteinlassflood inlet
135135
Sperrgasanschlusssealing gas connection
137137
Motorraumengine compartment
139139
Kühlmittelanschlusscoolant connection
141141
Unterseitebottom
143143
Schraubescrew
145145
Lagerdeckelbearing cap
147147
Befestigungsbohrungmounting hole
148148
Kühlmittelleitungcoolant line
149149
Rotorrotor
151151
Rotationsachseaxis of rotation
153153
Rotorwellerotor shaft
155155
Rotorscheiberotor disk
157157
Statorscheibestator disc
159159
Abstandsringspacer ring
161161
Rotornaberotor hub
163163
Holweck-RotorhülseHolweck rotor sleeve
165165
Holweck-RotorhülseHolweck rotor sleeve
167167
Holweck-StatorhülseHolweck stator sleeve
169169
Holweck-StatorhülseHolweck stator sleeve
171171
Holweck-SpaltHolweck fissure
173173
Holweck-SpaltHolweck fissure
175175
Holweck-SpaltHolweck fissure
179179
Verbindungskanalconnecting channel
181181
Wälzlagerroller bearing
183183
Permanentmagnetlagerpermanent magnet bearing
185185
Spritzmutterinjection nut
187187
Scheibedisc
189189
Einsatzmission
191191
rotorseitige Lagerhälfterotor-side bearing half
193193
statorseitige Lagerhälftestator bearing half
195195
Ringmagnetring magnet
197197
Ringmagnetring magnet
199199
Lagerspaltbearing gap
201201
Trägerabschnittcarrier section
203203
Trägerabschnittcarrier section
205205
radiale Streberadial strut
207207
Deckelelementcover element
209209
Stützringsupport ring
211211
Befestigungsringmounting ring
213213
Tellerfederdisc spring
215215
Not- bzw. FanglagerEmergency or catch camp
217217
Motorstatormotor stator
219219
Zwischenraumspace
221221
Wandungwall
223223
Labyrinthdichtunglabyrinth seal
2020
Gasanalysesystemgas analysis system
2222
Vakuumpumpevacuum pump
2424
Umlenkeinrichtungdeflection device
2626
Teilchenstrahlparticle beam
2828
Analysatoreinheitanalyzer unit
3030
erster Teilstrahlfirst partial beam
3232
zweiter Teilstrahlsecond partial beam
3434
pumpaktiver Bereichpumping area
3636
Turborotorscheibenturbo rotor disks
3838
HolweckstufeHolweck level
4040
Rotorachserotor axis
4242
Blendecover
4444
ZwischenstufenbereichIntermediate area
4646
erster Zwischenanschlussfirst intermediate connection
4848
zweiter Zwischenanschlusssecond intermediate connection
5050
Kammerchamber
5252
Einlassinlet
5454
Turborotorscheibenturbo rotor disks
5656
Rotorwellerotor shaft
5858
Gehäusewandhousing wall
6060
Rotorschaufelrotor blade
6262
Flanschflange
6464
Flanschflange
6666
Flanschebeneflange level
6868
Flanschebeneflange level
6969
Anstellwinkelangle of attack
7070
radiale Erstreckungradial extension
7272
Radialbereichradial range

Claims (15)

  1. A vacuum system (20), in particular a mass spectrometry system, comprising:
    a vacuum pump (22) having a pump-active region (34) in which a gas can be conveyed by means of an active pump element (36), and
    a device for generating a beam (26, 32) of particles,
    characterized in that
    the beam (26, 32) is guided into the pump-active region (34).
  2. A vacuum system (20) in accordance with claim 1,
    comprising a deflection device (24) by means of which the beam (26) can be deflected such that different components of the beam (26) are deflected differently so that at least a first and a second part beam (30, 32) can be formed,
    wherein the second part beam (32) is guided into the pump-active region (34),
    and/or wherein the beam, in particular the second part beam (32), is guided into the pump-active region (34) with at least one directional component in the pump direction.
  3. A vacuum system (20) in accordance with claim 2,
    wherein the first part beam (30) is not guided into the pump-active region (34), and/or wherein the first part beam (30) is guided to a region outside the vacuum pump (22).
  4. A vacuum system (20) in accordance with at least one of the preceding claims,
    wherein a pump direction and/or a rotor axis (40) of the active pump element (36) and/or of the vacuum pump (22) is/are oriented obliquely with respect to a direction of the beam (26), in particular before passing through a deflection device (24),
    in particular wherein an angle between a pump direction and/or a rotor axis of the active pump element and/or of the vacuum pump and a direction of the beam (26) is in the range from 40° to 60°.
  5. A vacuum system (20) in accordance with at least one of the claims 2 to 4, wherein a pump direction and/or a rotor axis (40) of the active pump element (36) and/or of the vacuum pump (22) is/are oriented obliquely with respect to a direction of the first and/or the second part beam (30, 32) after passing through the deflection device (24).
  6. A vacuum system (20) in accordance with at least one of the preceding claims,
    wherein the vacuum pump (22) has at least two pump stages (36, 54), wherein an intermediate stage region (44) is arranged between the pump stages (36, 54),
    wherein the beam is guided through the intermediate stage region (44) and/or
    is guided into a pump stage (36) which is arranged downstream of the intermediate stage region (44) in the pump direction,
    in particular wherein a first part beam (32) is guided out of the vacuum pump (22) after passing through the intermediate stage region (44).
  7. A vacuum system (20) in accordance with claim 6,
    wherein, at the intermediate stage region (44), the vacuum pump (22) has a first intermediate connection (46) for the entry of the beam (26) into the intermediate stage region (44) and a second intermediate connection (48) for the exit of a first part beam (30) from the intermediate stage region (44).
  8. A vacuum system (20) in accordance with claim 7,
    wherein the intermediate connections (46, 48) are arranged at least substantially disposed opposite one another,
    and/or wherein the intermediate connections (46, 48) are formed separately from one another and/or are arranged separately and spaced apart in the peripheral direction.
  9. A vacuum system (6) in accordance with claim 2 and at least one of the claims 6 to 8,
    wherein the deflection device (24) is effective and/or arranged in or at the intermediate stage region (44).
  10. A vacuum system (20) in accordance with at least one of the preceding claims,
    wherein the beam (26, 32) is oriented off-center with respect to a rotor axis (40) of the vacuum pump (22) and/or is guided past a rotor core, in particular a non-pump-active rotor core.
  11. A vacuum system (20) in accordance with at least one of the preceding claims,
    wherein the beam (26, 32) is guided into the pump-active region (34) in a direction supporting the pumping effect, in particular in an opposite sense to a direction of rotation of a turbo-rotor disk (36).
  12. A vacuum system (20) in accordance with at least one of the claims 2 to 11,
    wherein the vacuum pump (22) is of multi-stage design, the second part beam (32) is guided into a pump stage (36) and the first part beam (30) is guided into a chamber (50) which is connected to a further pump stage (54) of the vacuum pump (22).
  13. A vacuum pump (22), in particular a turbomolecular vacuum pump, comprising at least two pump stages (36, 54), wherein an intermediate stage region (44) is arranged between the pump stages (36, 54), wherein, at the intermediate stage region (44), the vacuum pump (22) has a first intermediate connection (46) for the entry of a particle beam (26) into the intermediate stage region (44) and a second intermediate connection (48) for the exit of a particle beam (30) from the intermediate stage region (44),
    wherein the incoming particle beam (26) can be guided through the intermediate stage region such that the particle beam (30) exiting from the second intermediate connection (48) exits again from the intermediate stage region (44) as a first part beam (30) of the incoming particle beam (26) and such that a second part beam (32) of the incoming particle beam (26) is guided into a pump-active region (34) of the vacuum pump, wherein the intermediate connections (46, 48) are separated and spaced apart from one another in the peripheral direction,
    in particular wherein exactly two intermediate connections (46, 48) are provided at the intermediate stage region (44).
  14. A vacuum pump (22) in accordance with claim 13,
    wherein the intermediate connections (46, 48) are arranged such that no straight line can be laid through the intermediate connections.
  15. A gas analysis method, in particular a mass spectrometry method, in particular performed using a vacuum system (20) in accordance with any one of the claims 1 to 12 and/or using a vacuum pump (22) in accordance with claim 13 or claim 14, in which
    a vacuum pump (22), in particular the vacuum pump in accordance with claim 13 or claim 14, is provided with a pump-active region (34) in which a gas can be conveyed by means of an active pump element (36),
    a beam (26) of particles to be analyzed is generated, and
    the beam (26) is deflected by means of a deflection device (24) such that different components of the beam (26) are deflected differently so that at least a first and a second part beam (32) are formed, wherein the second part beam (32) is guided into the pump-active region (34) of the vacuum pump (22), and wherein the first part beam (30) is not guided into the pump-active region (34) of the vacuum pump (22), but is analyzed.
EP20152401.4A 2020-01-17 2020-01-17 Vacuum system and vacuum pump Active EP3629366B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20152401.4A EP3629366B1 (en) 2020-01-17 2020-01-17 Vacuum system and vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20152401.4A EP3629366B1 (en) 2020-01-17 2020-01-17 Vacuum system and vacuum pump

Publications (3)

Publication Number Publication Date
EP3629366A2 EP3629366A2 (en) 2020-04-01
EP3629366A3 EP3629366A3 (en) 2020-09-02
EP3629366B1 true EP3629366B1 (en) 2022-05-11

Family

ID=69177062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20152401.4A Active EP3629366B1 (en) 2020-01-17 2020-01-17 Vacuum system and vacuum pump

Country Status (1)

Country Link
EP (1) EP3629366B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10045449B4 (en) * 2000-09-14 2007-03-29 GSF - Forschungszentrum für Umwelt und Gesundheit GmbH Method and device for characterizing the surface of gas-borne aerosol particles
US8740587B2 (en) * 2005-12-22 2014-06-03 Thermo Finnigan Llc Apparatus and method for pumping in an ion optical device
GB2553937B (en) * 2015-03-06 2022-06-08 Micromass Ltd Improved ionisation of gaseous samples

Also Published As

Publication number Publication date
EP3629366A2 (en) 2020-04-01
EP3629366A3 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
EP1078166B1 (en) Friction vacuum pump with a stator and a rotor
EP2295812A1 (en) Vacuum pump
DE602004008089T2 (en) VACUUM PUMP
EP2039941B1 (en) Vacuum pump
EP3629366B1 (en) Vacuum system and vacuum pump
EP3112687B1 (en) Detection of the circulation of a flow of auxiliary gas that is supplied to a vacuum pump
EP3851680B1 (en) Molecular vacuum pump and method for influencing the suction performance of same
EP2990656A2 (en) Vacuum pump
EP4108932A1 (en) Recipient and high vacuum pump
EP3734078B1 (en) Turbomolecular pump and method of manufacturing a stator disc for such a pump
EP3196471B1 (en) Vacuum pump
EP3767109B1 (en) Vacuum system
EP3327293B1 (en) Vacuum pump having multiple inlets
EP3666449B1 (en) Method and device for deburring a vacuum pump component
EP3564538B1 (en) Vacuum system and method for manufacturing the same
DE102015113821A1 (en) vacuum pump
EP3135932B1 (en) Vacuum pump and permanent magnet bearing
EP3267040B1 (en) Turbomolecular pump
EP3339652B1 (en) Vacuum pump with inner lining to receive deposits
EP4108931B1 (en) Method for operating a molecular vacuum pump to achieve improved suction capacity
EP3561306B1 (en) Vacuum pump
EP3628883B1 (en) Vacuum pump
EP3845764B1 (en) Vacuum pump and vacuum pump system
EP3462036B1 (en) Turbomolecular vacuum pump
EP2520810B1 (en) Device with a guidance structure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04B 37/06 20060101ALI20200727BHEP

Ipc: H01J 49/24 20060101AFI20200727BHEP

Ipc: F04B 37/14 20060101ALI20200727BHEP

Ipc: F04D 19/04 20060101ALI20200727BHEP

Ipc: F04B 37/08 20060101ALI20200727BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210105

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17Q First examination report despatched

Effective date: 20210422

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210723

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220127

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1492174

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001072

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001072

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

26N No opposition filed

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240326

Year of fee payment: 5

Ref country code: CZ

Payment date: 20240108

Year of fee payment: 5

Ref country code: GB

Payment date: 20240123

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240129

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511