EP3564538B1 - Vacuum system and method for manufacturing the same - Google Patents
Vacuum system and method for manufacturing the same Download PDFInfo
- Publication number
- EP3564538B1 EP3564538B1 EP19158341.8A EP19158341A EP3564538B1 EP 3564538 B1 EP3564538 B1 EP 3564538B1 EP 19158341 A EP19158341 A EP 19158341A EP 3564538 B1 EP3564538 B1 EP 3564538B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pump
- rotor
- vacuum
- housing
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 13
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 238000001125 extrusion Methods 0.000 claims description 8
- 238000004949 mass spectrometry Methods 0.000 claims description 7
- 238000005520 cutting process Methods 0.000 claims description 6
- 238000009434 installation Methods 0.000 claims description 5
- 239000011796 hollow space material Substances 0.000 claims 7
- 239000007789 gas Substances 0.000 description 15
- 239000002826 coolant Substances 0.000 description 9
- 238000005086 pumping Methods 0.000 description 9
- 238000007789 sealing Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 125000006850 spacer group Chemical group 0.000 description 4
- 238000003754 machining Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/40—Casings; Connections of working fluid
- F04D29/403—Casings; Connections of working fluid especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/60—Mounting; Assembling; Disassembling
- F04D29/601—Mounting; Assembling; Disassembling specially adapted for elastic fluid pumps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/02—Details
- H01J49/24—Vacuum systems, e.g. maintaining desired pressures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/24—Manufacture essentially without removing material by extrusion
Definitions
- the present invention relates to a vacuum system, in particular a mass spectrometry system, comprising a vacuum pump, in particular a turbo-molecular and / or split-flow vacuum pump, with a pump rotor which is arranged in a rotor housing, and a vacuum chamber which can be evacuated by means of the vacuum pump and which is surrounded by a chamber housing.
- a vacuum pump in particular a turbo-molecular and / or split-flow vacuum pump
- a pump rotor which is arranged in a rotor housing
- a vacuum chamber which can be evacuated by means of the vacuum pump and which is surrounded by a chamber housing.
- the invention also relates to a method for producing a vacuum system, in particular a mass spectrometry system, the vacuum system being a vacuum pump, in particular a turbo-molecular and / or split-flow vacuum pump, with a pump rotor which is arranged in a rotor housing, and a vacuum chamber which can be evacuated by means of the vacuum pump, which is surrounded by a chamber housing, includes.
- a vacuum pump in particular a turbo-molecular and / or split-flow vacuum pump
- a pump rotor which is arranged in a rotor housing
- a vacuum chamber which can be evacuated by means of the vacuum pump, which is surrounded by a chamber housing
- a split-flow pump With current designs of multi-chamber vacuum systems, the question arises as to how a split-flow pump can best be connected to the vacuum chamber or chambers. Installation space, number of components, manufacturing costs, testing effort, dimensions and weight, the latter in particular with regard to transport, represent important decision-making parameters in the course of optimization. It is generally known to equip a split-flow pump with a rotor housing designed as an extruded part, for example in the US 2018/0163732 A1 discloses which has at least one connecting flange for connecting a chamber housing of a vacuum chamber. This is also referred to as a box-type pump. Most systems have a simple structure. For example a box-type pump is screwed to a multi-chamber housing. Numerous connecting surfaces have to be sealed.
- the US 6,336,356 B1 discloses a vacuum pump with a common housing for two vacuum pumps.
- the US 6,182,851 B1 discloses a vacuum chamber made by extrusion.
- the DE 10 2007 027 352 A1 discloses a vacuum system having a one-piece housing body defining a rotor housing and a chamber housing.
- a vacuum system according to claim 1, and in particular in that the rotor housing and the chamber housing are formed in one piece by a housing body, and the housing body is an extruded part.
- the housing body according to the invention is particularly simple and inexpensive to manufacture and the rotor and chamber housings do not need to be manufactured separately and then connected and sealed in a complex manner. This not only allows the assembly effort to be reduced. Also, separate leak tests do not have to be carried out for the rotor housing and chamber housing, as in the prior art.
- the invention allows the pump rotor and the vacuum chamber or functional elements arranged therein to be arranged close to one another.
- thin wall thicknesses are possible in the connection area, which further reduces the space required.
- the size of the chamber is now largely independent of the size of the pump rotor and / or of the size of a flange connection.
- the chamber can thus be designed to be particularly small and close to the pump rotor, for example, so that the volume to be evacuated and the pumping time required for evacuation are correspondingly short.
- the chamber housing can also be made larger and / or wider are called the rotor housing.
- the chamber extends around the pump rotor at least in some areas.
- the invention also offers a high level of process reliability and particularly low material waste and thus, in turn, cost advantages.
- a vacuum system is hereby also disclosed to solve the problem, in particular a mass spectrometry system, comprising a vacuum pump, in particular turbo-molecular and / or split-flow vacuum pump, with a pump rotor which is arranged in a rotor housing, and a Vacuum chamber which is surrounded by a chamber housing, the rotor housing and the chamber housing being formed in one piece by a housing body, and the housing body being designed as a profile component, cylinder body and / or an extruded part.
- the term “cylinder” is not restricted to a circular cylinder here.
- the profile component has a profile axis
- the cylinder body has a cylinder axis and / or the extruded part has a strand axis which runs parallel to the pump rotor.
- the housing body can be designed as a double extruded profile and / or have at least two partial strands, one of which forms the rotor housing and another of which forms the chamber housing.
- at least two chambers can also be arranged offset around the pump rotor.
- an opening is formed between the pump rotor and the vacuum chamber in the housing body.
- the vacuum chamber can be pumped out through the opening.
- This opening can also be referred to as a port, as it establishes the connection between the vacuum chamber and the pump rotor.
- the port is thus integrated in the housing body.
- the housing body can in particular have at least two parallel, cylindrical cavities, the pump rotor preferably being arranged in a first of the cavities and the vacuum chamber being formed in a second of the cavities.
- the cavities can in particular be formed in parallel aligned partial strands and / or partial profiles of the housing body.
- the housing body can for example also comprise a third cylindrical cavity, in particular a further pump rotor and / or a further vacuum chamber being or are provided in the third cylindrical cavity.
- two pump rotors can be provided in separate cylindrical cavities, in particular in the first and third cylindrical cavity, by means of which at least one vacuum chamber, in particular in the second cylindrical cavity, can be evacuated together. A particularly high pumping speed can thus be provided for the vacuum chamber.
- a pump rotor can also evacuate two vacuum chambers provided in separate cylindrical cavities.
- the housing body can also comprise more than three parallel aligned cylindrical cavities.
- the pump rotor is arranged inserted in the rotor housing. This enables a particularly simple assembly of the system.
- the pump can be serviced without influencing the vacuum chamber and the functional elements present therein.
- the rotor is plugged directly into the rotor housing, ie in particular no intermediate sleeve is provided between the pump rotor and the rotor housing.
- stator disks and possibly spacers for the stator disks can also be inserted.
- the pump rotor is separated from an inner wall of the rotor housing by at most stator disks and, if necessary, spacer sleeves.
- an additional sleeve for the rotor and, if necessary, stator disks can also be provided as an alternative.
- a bearing element in particular together with a carrier provided for this purpose, in particular a so-called star, can be inserted into the rotor housing.
- the pump has a pump base element which is fastened to the housing body, in particular by means of at least one fastening element.
- the pump base element can be screwed to the housing body.
- the pump base member may be attached to the case body by screws that are screwed into the case body.
- the pump base element can for example comprise a drive, a control and / or a bearing for the pump rotor.
- the housing body has at least one projection, in particular a fastening projection, to which any functional part, in particular the pump base element, can be fastened.
- the projection can be formed on the rotor housing, in particular molded on and / or formed in one piece with it.
- the projection can be designed to protrude radially and / or transversely to the rotor axis.
- the projection preferably extends with a substantially constant cross section and / or along the entire axial length of the rotor housing, the chamber housing and / or the housing body.
- the projection can be designed, for example, as a column of material extending in the axial direction.
- the pump base element can be screwed into the projection by means of at least one fastening screw.
- the pump base element preferably has at least one fastening projection that corresponds to the projection on the housing body, for example with through bores.
- a functional element is arranged in the vacuum chamber, wherein the housing body, in particular the chamber housing, can preferably have a mounting opening for the functional element.
- the functional element can be introduced into the vacuum chamber in a particularly simple manner.
- the functional element can, in particular in a mass spectrometry system, be, for example, ion optics, a quadrupole or the like.
- the assembly opening can in particular be arranged transversely and / or radially, which enables a particularly simple installation of the functional element. In principle, the assembly opening can also be designed as an axial opening.
- an opening in the axial end of the housing body or extruded profile in particular the opening of a cylindrical cavity defining the vacuum chamber, can also be used as an assembly opening.
- the functional element can, for example, simply be attached to a carrier, in particular a cover, which is attached to the assembly opening, in particular spans the assembly opening. The fastening of the functional element on the carrier or cover can take place outside the system, in particular in an ergonomic work environment.
- the cover then only needs to cover the Mounting opening to be attached.
- the fastening can preferably be done by externally actuatable screws, so that it can be carried out easily for the fitter.
- the housing body is preferably machined in an area enclosing the assembly opening and, in particular, has a low roughness so that a seal can be carried out effectively.
- the vacuum system can have at least one second vacuum chamber, which is preferably also formed in the housing body, in particular in the same partial line as the first vacuum chamber and / or as the pump rotor.
- a multi-chamber system can thus be implemented in a simple manner.
- the vacuum chambers can, for example, be arranged axially one behind the other and aligned parallel to the pump rotor and / or be formed by the same cylindrical cavity of the extruded part.
- one or the vacuum chamber can also be arranged in an axial extension of the rotor housing and / or in the same cylindrical cavity as the pump rotor.
- the vacuum chamber can, for example, be arranged radially and / or axially adjacent to the pump rotor with respect to the latter.
- both a vacuum chamber can be arranged radially adjacent and a vacuum chamber can be arranged axially adjacent.
- the vacuum chamber axially adjacent to the pump rotor can be formed at least partially by a cylindrical cavity which also contains the pump rotor.
- a vacuum chamber can be formed in a continuation of a rotor housing string.
- the axially adjacent vacuum chamber can, however, preferably also be formed by a strand or cylindrical cavity of the chamber housing, wherein, for example, a through opening can be provided between the continuation of the rotor housing and the chamber housing.
- the chamber housing and the rotor housing can be axially closed by a common, in particular one-piece, cover.
- the cover can for example be designed as a plate, for example on a side facing away from a pump base element. However, the cover can also be arranged and / or molded onto the pump base element.
- the rotor housing and chamber housing can, for example, terminate axially at the same height or not, which applies both to a low-pressure end and to a pressure end, such as a fore-vacuum end, of the system.
- the rotor housing and the chamber housing and / or the cylindrical cavities provided therein are preferably of significantly different sizes in their cross-sectional areas, for example with at least 20%, in particular at least 40%, in particular at least 60% size difference.
- the cross-sectional area extends in particular perpendicular to the rotor axis.
- a relatively large pump rotor with a relatively small vacuum chamber can be used, and vice versa.
- the vacuum system can be designed in a particularly simple manner as required, without an interposed connecting flange specifying or at least influencing the sizes.
- the object is also achieved by a method according to the independent method claim, in particular in that the rotor housing and the chamber housing are formed in one piece by a housing body which is produced by extrusion.
- machining in particular machining, is possible after extrusion, for example to form openings and / or contact and / or sealing surfaces.
- the housing body can be designed, for example, as a double extruded profile with at least two partial strands, in particular one each for the rotor housing and for the chamber housing.
- the housing body is preferably extruded with a common die for the partial strands.
- the pump rotor is inserted into the rotor housing.
- an opening in particular an assembly opening, is made in the housing body, in particular in the chamber housing, wherein in particular a functional element is introduced through this opening into the vacuum chamber.
- the opening can, for example, be directed outwards, that is to say, for example, enable a functional element to be assembled from the outside.
- the assembly of a functional element is basically also conceivable, for example, through an opening between the vacuum chamber and the pump rotor, in particular before the pump rotor is inserted.
- Another example provides that an opening connecting the interior of the rotor housing, in particular the pump rotor, to the vacuum chamber is made in the housing body.
- openings can be made in a simple manner, for example by means of a cutting tool that engages behind, in particular a T-slot cutter.
- the cutting tool is axially inserted into the rotor housing, in particular into a cylindrical cavity for the pump rotor, and / or the Chamber housing, in particular introduced into a cylindrical cavity for the vacuum chamber and, in particular then, advanced in the transverse direction against the material to be machined.
- FIGS 8-11 different embodiments of a vacuum system.
- the turbo molecular pump 111 shown comprises a pump inlet 115 which is surrounded by an inlet flange 113 and to which a recipient (not shown) can be connected in a manner known per se.
- the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.
- the inlet flange 113 forms according to FIG Fig. 1 the upper end of the housing 119 of the vacuum pump 111.
- the housing 119 comprises a lower part 121 on which an electronics housing 123 is arranged laterally. Electrical and / or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump. A plurality of connections 127 for accessories are provided on the electronics housing 123.
- a data interface 129 for example in accordance with the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
- a flood inlet 133 in particular in the form of a flood valve, is provided on the housing 119 of the turbo molecular pump 111, via which the vacuum pump 111 can be flooded.
- a sealing gas connection 135, which is also referred to as a purge gas connection via which purge gas is used to protect the electric motor 125 (see e.g. Fig. 3 ) can be brought into the engine compartment 137, in which the electric motor 125 in the vacuum pump 111 is accommodated, before the gas conveyed by the pump.
- two coolant connections 139 are arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant, which can be passed into the vacuum pump for cooling purposes.
- the lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the lower side 141.
- the vacuum pump 111 can, however, also be attached to a recipient via the inlet flange 113 and can thus be operated in a suspended manner, as it were.
- the vacuum pump 111 can be designed in such a way that it can also be put into operation when it is oriented in a different way than in FIG Fig. 1 is shown.
- Embodiments of the vacuum pump can also be implemented in which the underside 141 cannot be arranged facing downwards, but facing to the side or facing upwards.
- a bearing cap 145 is attached to the underside 141.
- Fastening bores 147 are also arranged on the underside 141, via which the pump 111 can be fastened to a support surface, for example.
- a coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.
- the vacuum pump comprises several process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
- a rotor 149 is arranged in the housing 119 and has a rotor shaft 153 which is rotatable about an axis of rotation 151.
- the turbo-molecular pump 111 comprises several turbo-molecular pump stages connected in series with one another with several radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119.
- a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular one Pumping stage.
- the stator disks 157 are held at a desired axial distance from one another by spacer rings 159.
- the vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and are connected in series with one another for effective pumping.
- the rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two cylinder-jacket-shaped Holweck rotor sleeves 163, 165 which are attached to the rotor hub 161 and carried by the latter, are oriented coaxially to the axis of rotation 151 and nested in one another in the radial direction.
- two cylinder jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the axis of rotation 151 and, viewed in the radial direction, are nested inside one another.
- the active pumping surfaces of the Holweck pump stages are formed by the jacket surfaces, that is to say by the radial inner and / or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169.
- the radial inner surface of the outer Holweck stator sleeve 167 lies on the radial outer surface of the outer Holweck rotor sleeve 163 with the formation of a radial Holweck gap 171 opposite and with this forms the first Holweck pump stage following the turbo molecular pumps.
- the radial inner surface of the outer Holweck rotor sleeve 163 faces the radial outer surface of the inner Holweck stator sleeve 169 with the formation of a radial Holweck gap 173 and forms with this a second Holweck pumping stage.
- the radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165 with the formation of a radial Holweck gap 175 and with this forms the third Holweck pumping stage.
- a radially running channel can be provided, via which the radially outer Holweck gap 171 is connected to the central Holweck gap 173.
- a radially running channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175.
- a connecting channel 179 to the outlet 117 can also be provided at the lower end of the radially inner Holweck rotor sleeve 165.
- the aforementioned pump-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running spirally around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas for operating the Drive vacuum pump 111 in the Holweck grooves.
- a roller bearing 181 is provided in the area of the pump outlet 117 and a permanent magnetic bearing 183 in the area of the pump inlet 115.
- a conical injection-molded nut 185 is provided on the rotor shaft 153 with an outer diameter that increases towards the roller bearing 181.
- the injection-molded nut 185 is in sliding contact with at least one stripper of an operating medium store.
- the operating medium reservoir comprises several absorbent disks 187 stacked on top of one another, which are impregnated with an operating medium for the roller bearing 181, e.g. with a lubricant.
- the operating medium is transferred by capillary action from the operating medium reservoir via the scraper to the rotating injection nut 185 and, as a result of the centrifugal force, is conveyed along the injection nut 185 in the direction of the increasing outer diameter of the injection nut 185 to the roller bearing 181, where it eg fulfills a lubricating function.
- the roller bearing 181 and the operating medium store are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.
- the permanent magnetic bearing 183 comprises a rotor-side bearing half 191 and a stator-side bearing half 193, each of which comprises a ring stack of several permanent magnetic rings 195, 197 stacked on top of one another in the axial direction.
- the ring magnets 195, 197 are opposite one another with the formation of a radial bearing gap 199, the rotor-side ring magnets 195 being arranged radially on the outside and the stator-side ring magnets 197 being arranged radially on the inside.
- the magnetic field present in the bearing gap 199 causes magnetic repulsive forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially.
- the rotor-side ring magnets 195 are carried by a carrier section 201 of the rotor shaft 153 which surrounds the ring magnets 195 radially on the outside.
- the stator-side ring magnets 197 are carried by a stator-side support section 203 which extends through the ring magnets 197 and is suspended from radial struts 205 of the housing 119.
- the ring magnets 195 on the rotor side are parallel to the axis of rotation 151 by means of a cover element coupled to the carrier section 203 207 set.
- the stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203.
- a plate spring 213 can also be provided between the fastening ring 211 and the ring magnet 197.
- An emergency or retainer bearing 215 is provided within the magnetic bearing, which runs empty during normal operation of the vacuum pump 111 without contact and only comes into engagement with an excessive radial deflection of the rotor 149 relative to the stator to create a radial stop for the rotor 149 to form, since a collision of the rotor-side structures with the stator-side structures is prevented.
- the backup bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and / or the stator, which has the effect that the backup bearing 215 is disengaged during normal pumping operation.
- the radial deflection at which the backup bearing 215 engages is dimensioned large enough that the backup bearing 215 does not come into engagement during normal operation of the vacuum pump, and at the same time small enough that a collision of the rotor-side structures with the stator-side structures under all circumstances is prevented.
- the vacuum pump 111 comprises the electric motor 125 for rotatingly driving the rotor 149.
- the armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217.
- a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 extending through the motor stator 217.
- the motor stator 217 is fixed in the housing within the motor compartment 137 provided for the electric motor 125.
- a sealing gas which is also referred to as a flushing gas and which can be air or nitrogen, for example, can enter the engine compartment 137 via the sealing gas connection 135.
- the electric motor 125 can be protected from process gas, e.g. from corrosive components of the process gas, via the sealing gas.
- the engine compartment 137 can also be evacuated via the pump outlet 117, i.e. the vacuum pressure produced by the backing pump connected to the pump outlet 117 is at least approximately in the engine compartment 137.
- a so-called and known labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the engine compartment 137, in particular to achieve better sealing of the motor compartment 217 from the Holweck pump stages located radially outside.
- the turbo-molecular vacuum pump described above has exactly one inlet for a vacuum chamber, namely on the inlet flange 113.
- Examples of vacuum pumps with several inlets for several vacuum chambers, so-called split-flow vacuum pumps, are described below. It goes without saying that the general structure of the turbomolecular pump described above and also any detailed features can be used to construct the split-flow vacuum pumps shown only schematically in the other figures.
- a one-piece housing body 20 is shown, which is designed as an extruded part and has two parallel sub-strands 22 and 24, which form a rotor housing 26 and a chamber housing 28, respectively.
- the Partial strands 22 and 24 each have a cylindrical cavity 30 and 32, respectively.
- the cylindrical cavity 30 is provided for receiving a pump rotor, not shown here, whereas the cylindrical cavity 32 forms at least one, preferably a plurality of vacuum chambers.
- FIG. 7 Another housing body 20 is shown in a side view in such a way that the viewing direction runs through two cylindrical cavities 30 and 32.
- the cylindrical cavity 30 again forms a receiving space for a pump rotor (not shown), while the cylindrical cavity 32 forms a plurality of vacuum chambers.
- the housing body 20 of the Fig. 7 likewise has a rotor housing 26 and a chamber housing 28. These are integrally connected to one another and designed as a common extrusion. The pressed strand runs into the image plane.
- the cylindrical cavity 30 for the pump rotor is designed as a circular cylinder in this exemplary embodiment. Its final shape and surface quality of the inner wall can, for example, also be machined, with a corresponding cylindrical cavity preferably already being provided during extrusion.
- the housing body 20 has a plurality of projections 34 protruding in the transverse direction, to which, for example, a pump base element, which is not shown here, can be fastened, in particular screwed.
- three such projections 34 are provided by way of example.
- the projections 34 regardless of their number, can be arranged, for example, evenly over the circumference of the rotor housing 26 or, as here, in an unevenly distributed manner on the latter.
- similar projections can be made on the chamber housing 28 be arranged.
- the projections 34 preferably extend as in FIG Fig. 6 visible over the entire length of the housing body 20.
- additional functional structures are implemented in the extruded part, that is to say the housing body 20. These can be provided with only a small additional cost.
- other functional structures can also be provided, such as recesses or grooves, e.g. as cable ducts, or temperature control structures, such as ribs or fluid lines.
- Mounting openings are preferably provided in the chamber housing 28 so that functional elements (not shown here) can be introduced into the vacuum chambers in a particularly simple manner.
- a mounting opening can be aligned in the transverse direction, which is shown in FIG Fig. 7 corresponds to a direction along the image plane.
- a mounting opening can be provided on the upper, right and / or lower wall of the chamber housing 28, for example.
- two assembly openings 36 are visible, which are arranged here by way of example in a wall of the chamber housing 28 facing away from the rotor housing 26.
- a plurality of openings are preferably also arranged, which in the axial direction in Fig. 7 that is, in the direction of the image plane, are spaced apart. These openings form several ports between the pump rotor and a respective associated vacuum chamber.
- a vacuum system 40 which has a plurality of vacuum chambers 42 which are connected to respective ports of a split-flow vacuum pump 44.
- the ports are implemented through openings 46 between a pump rotor 48 of the split-flow vacuum pump 44 and the vacuum chambers 42.
- the vacuum chambers 42 are axially separated from one another by walls 50, but in this example they are connected to one another by small openings in the walls 50 such that a small fluid flow is nevertheless possible.
- a mounting opening 36 for functional elements is provided for each of the vacuum chambers 42, whereby, depending on the application, several mounting openings 36 can be provided for a vacuum chamber and / or a vacuum chamber does not have a separate mounting opening in the transverse direction, but is equipped with a functional element, for example, through an axial opening .
- the pump rotor 48 comprises two spaced turbo stages 52 and a Holweck stage 54. Apart from the one in FIG Fig. 8 In the upper opening 46, the openings 46 are each arranged between spaced apart pump stages of the pump rotor 48.
- the pump rotor 48 is arranged inserted into a rotor housing 26.
- the vacuum chambers 42 are formed in a chamber housing 28.
- the rotor housing 26 and the chamber housing 28 are formed by a common housing body 20 which is produced by extrusion.
- the openings 46 are provided in a wall of the housing body 20 between the vacuum chambers 42 and the pump rotor 48.
- the openings can be made in the extruded profile, for example, by a cutting tool that engages behind, for example a T-slot cutter.
- the cutting tool can be axially, in Fig. 8 from top to bottom or from bottom to top, moved into the rotor housing 26 and / or the chamber housing 28 and then be delivered towards the wall.
- a pump base member 56 is on in Fig. 8 arranged lower axial end of the housing body 20 and attached in a manner not shown here on the housing body 20, for example on projections 34, as they are in the Figures 6 and 7 are shown.
- the pump base element 56 comprises a drive and a bearing for the pump rotor 48.
- the latter is preferably also supported, for example via a carrier supported in the rotor housing 26, in particular a so-called star, and for example by means of a magnetic bearing.
- a different functional section 58 which, for example, controls the functional elements introduced into the vacuum chambers 42 or, for example, a control for the Vacuum pump 44 may include.
- the in Fig. 8 lower vacuum chamber 42 but also protrude into the axial area of the pump base element 56.
- the pump base element 56 and the functional section 58 are arranged here at a pressure-side end of the vacuum system 40.
- the chamber housing 28 is made longer than the rotor housing 26.
- the free axial section in extension of the rotor housing 26 can, for example, be removed by machining after the extrusion of the housing body 20, since it is not used in this embodiment.
- an axial area not occupied by the vacuum pump 44 and / or the pump rotor 48 can be used for other purposes, for example in order to optimally utilize the entire installation space.
- a vacuum chamber 42 for example with functional elements arranged therein, is provided in the partial strand 22 forming the rotor housing 26.
- the vacuum chamber 42 arranged in the partial line 22 is connected by openings to an inlet region of the vacuum pump 44 and to an adjacent vacuum chamber 42 arranged in the other partial line 24.
- the vacuum pump 44 comprises a turbo stage 52 and a combined pump stage 60 with turbo and Holweck units.
- the vacuum pump 44 comprises an outlet connection, in particular a forevacuum connection 62.
- An opening 64 to a further vacuum chamber 42 is provided at the same pressure level.
- the opening 64 is also made in the extruded profile or the housing body 20.
- the partial strands 22 and 24 are closed by a common cover 66.
- the cover 66 axially closes only the vacuum chambers 42.
- the cover 66 can, however, also close these two when the rotor and chamber housings 26, 28 end axially together.
- the Fig. 10 shows a vacuum system 40, the internal structure of which, for example, at least partially corresponds to that of Fig. 9 can correspond. While in Fig. 9 the partial strands aligned vertically during operation are generally also a horizontal arrangement, for example according to Fig. 10 , and other arrangements possible.
- FIG. 11 an exemplary vacuum system 40 designed as a mass spectrometry system with two vacuum chambers 42 is shown.
- the vacuum chambers 42 is both in the branch 22 and formed in the partial strand 24, an opening 46 connecting the partial regions of the vacuum chamber 42 arranged in the partial strands.
- a first quadrupole 68 is arranged in a first vacuum chamber 42, the first vacuum chamber 42 being connected to an intermediate inlet of the vacuum pump 44.
- a second quadrupole 70 is arranged in a second vacuum chamber 42 on the low-pressure side.
- An ion stream to be analyzed runs first through the first and then through the second quadrupole 68, 70, a deflection device (not shown) being provided for the ion stream between the quadrupoles. After passing through the second quadrupole 70, the ion stream hits a detector 72. The quadrupoles and the detector 72 form functional elements in the vacuum chambers 42.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Description
Die vorliegende Erfindung betrifft ein Vakuumsystem, insbesondere Massenspektrometriesystem, umfassend eine Vakuumpumpe, insbesondere Turbomolekular- und/oder Splitflow-Vakuumpumpe, mit einem Pumpenrotor, der in einem Rotorgehäuse angeordnet ist, und eine mittels der Vakuumpumpe evakuierbare Vakuumkammer, die von einem Kammergehäuse umgeben ist.The present invention relates to a vacuum system, in particular a mass spectrometry system, comprising a vacuum pump, in particular a turbo-molecular and / or split-flow vacuum pump, with a pump rotor which is arranged in a rotor housing, and a vacuum chamber which can be evacuated by means of the vacuum pump and which is surrounded by a chamber housing.
Die Erfindung betrifft auch ein Verfahren zur Herstellung eines Vakuumsystems, insbesondere Massenspektrometriesystems, wobei das Vakuumsystem eine Vakuumpumpe, insbesondere Turbomolekular- und/oder Splitflow-Vakuumpumpe, mit einem Pumpenrotor, der in einem Rotorgehäuse angeordnet ist, und eine mittels der Vakuumpumpe evakuierbare Vakuumkammer, die von einem Kammergehäuse umgeben ist, umfasst.The invention also relates to a method for producing a vacuum system, in particular a mass spectrometry system, the vacuum system being a vacuum pump, in particular a turbo-molecular and / or split-flow vacuum pump, with a pump rotor which is arranged in a rotor housing, and a vacuum chamber which can be evacuated by means of the vacuum pump, which is surrounded by a chamber housing, includes.
Bei aktuellen Auslegungen von Mehrkammer-Vakuumsystemen stellt sich die Frage, wie eine Splitflow-Pumpe am besten mit der oder den Vakuumkammern verbunden werden kann. Bauraum, Anzahl der Bauteile, Herstellkosten, Prüfaufwand, Abmessungen und auch Gewicht, letzteres insbesondere im Hinblick auf Transport, stellen hier wichtige Entscheidungsgrößen im Zuge der Optimierung dar. Es ist grundsätzlich bekannt, eine Splitflowpumpe mit einem als Strangpressteil ausgebildeten Rotorgehäuse auszustatten, so etwa in der
Die
Es ist eine Aufgabe der Erfindung, die Herstellung und/oder Montage eines Vakuumsystems der eingangs genannten Art zu vereinfachen und/oder die hiermit verbundenen Kosten zu reduzieren.It is an object of the invention to simplify the production and / or assembly of a vacuum system of the type mentioned at the beginning and / or to reduce the costs associated therewith.
Diese Aufgabe wird durch ein Vakuumsystem nach Anspruch 1 gelöst, und insbesondere dadurch, dass das Rotorgehäuse und das Kammergehäuse einteilig von einem Gehäusekörper gebildet sind, und wobei der Gehäusekörper ein Strangpressteil ist.This object is achieved by a vacuum system according to claim 1, and in particular in that the rotor housing and the chamber housing are formed in one piece by a housing body, and the housing body is an extruded part.
Der erfindungsgemäße Gehäusekörper ist besonders einfach und kostengünstig herzustellen und Rotor- und Kammergehäuse brauchen nicht separat hergestellt und dann aufwendig verbunden und abgedichtet zu werden. Hierdurch lässt sich nicht nur der Montageaufwand reduzieren. Auch müssen für Rotorgehäuse und Kammergehäuse nicht wie im Stand der Technik separate Leckagetests durchgeführt werden.The housing body according to the invention is particularly simple and inexpensive to manufacture and the rotor and chamber housings do not need to be manufactured separately and then connected and sealed in a complex manner. This not only allows the assembly effort to be reduced. Also, separate leak tests do not have to be carried out for the rotor housing and chamber housing, as in the prior art.
Zudem lassen sich dünne Wandstärken im Verbindungsbereich zwischen Rotorgehäuse und Kammergehäuse realisieren, wohingegen eine bekannte Flanschverbindung zwischen den beiden einen großen Bauraum einnimmt. Anders ausgedrückt lassen sich durch die Erfindung der Pumpenrotor und die Vakuumkammer bzw. hierin angeordnete Funktionselemente nah beieinander anordnen. Generell sind im Verbindungsbereich dünne Wandstärken möglich, was den nötigen Bauraum weiter verkleinert. Insbesondere ist die Größe der Kammer nun weitgehend unabhängig von der Größe des Pumpenrotors und/oder von der Größe einer Flanschverbindung. Die Kammer lässt sich somit beispielsweise besonders klein und nah beim Pumpenrotor ausbilden, so dass das zu evakuierende Volumen und die zur Evakuierung nötige Abpumpzeit entsprechend klein sind. Grundsätzlich kann das Kammergehäuse aber somit auch größer und/oder breiter ausgeführt werden als das Rotorgehäuse. Grundsätzlich ist es auch denkbar, dass sich die Kammer zumindest bereichsweise um den Pumpenrotor herum erstreckt.In addition, thin wall thicknesses can be realized in the connection area between the rotor housing and the chamber housing, whereas a known flange connection between the two takes up a large amount of space. In other words, the invention allows the pump rotor and the vacuum chamber or functional elements arranged therein to be arranged close to one another. In general, thin wall thicknesses are possible in the connection area, which further reduces the space required. In particular, the size of the chamber is now largely independent of the size of the pump rotor and / or of the size of a flange connection. The chamber can thus be designed to be particularly small and close to the pump rotor, for example, so that the volume to be evacuated and the pumping time required for evacuation are correspondingly short. In principle, however, the chamber housing can also be made larger and / or wider are called the rotor housing. In principle, it is also conceivable that the chamber extends around the pump rotor at least in some areas.
Nicht zuletzt bietet die Erfindung auch eine hohe Prozesssicherheit sowie besonders geringen Materialauschuss und somit wiederum Kostenvorteile.Last but not least, the invention also offers a high level of process reliability and particularly low material waste and thus, in turn, cost advantages.
Zum Zwecke etwaiger separater Beanspruchung zu einem späteren Zeitpunkt wird hiermit zur Lösung der Aufgabe ferner ein Vakuumsystem offenbart, insbesondere Massenspektrometriesystem, umfassend eine Vakuumpumpe, insbesondere Turbomolekular- und/oder Splitflow-Vakuumpumpe, mit einem Pumpenrotor, der in einem Rotorgehäuse angeordnet ist, und eine Vakuumkammer, die von einem Kammergehäuse umgeben ist, wobei das Rotorgehäuse und das Kammergehäuse einteilig von einem Gehäusekörper gebildet sind, und wobei der Gehäusekörper als ein Profilbauteil, Zylinderkörper und/oder ein Strangpressteil ausgebildet ist. Der Begriff "Zylinder" beschränkt sich hierin nicht auf einen Kreiszylinder. Insbesondere weist das Profilbauteil eine Profilachse, der Zylinderkörper eine Zylinderachse und/oder das Strangpressteil eine Strangachse auf, die parallel zum Pumpenrotor verläuft.For the purpose of any separate stress at a later point in time, a vacuum system is hereby also disclosed to solve the problem, in particular a mass spectrometry system, comprising a vacuum pump, in particular turbo-molecular and / or split-flow vacuum pump, with a pump rotor which is arranged in a rotor housing, and a Vacuum chamber which is surrounded by a chamber housing, the rotor housing and the chamber housing being formed in one piece by a housing body, and the housing body being designed as a profile component, cylinder body and / or an extruded part. The term “cylinder” is not restricted to a circular cylinder here. In particular, the profile component has a profile axis, the cylinder body has a cylinder axis and / or the extruded part has a strand axis which runs parallel to the pump rotor.
Insbesondere kann der Gehäusekörper als Doppelstrangpressprofil ausgebildet sein und/oder wenigstens zwei Teilstränge aufweisen, von denen einer das Rotorgehäuse und ein anderer das Kammergehäuse bildet. Grundsätzlich ist es auch denkbar, mehr als zwei Teilstränge vorzusehen. So können beispielsweise auch wenigstens zwei Kammern um den Pumpenrotor herum versetzt angeordnet sein.In particular, the housing body can be designed as a double extruded profile and / or have at least two partial strands, one of which forms the rotor housing and another of which forms the chamber housing. In principle, it is also conceivable to provide more than two partial strands. For example, at least two chambers can also be arranged offset around the pump rotor.
Insoweit sich hier auf eine radiale, axiale oder Querrichtung bezogen wird, beziehen sich diese Begriffe auf den Pumpenrotor und/oder eine Strang- oder Profilachse des Gehäusekörpers, wobei Pumpenrotor und Strang- bzw. Profilachse insbesondere parallel zueinander ausgerichtet sind.Insofar as a radial, axial or transverse direction is referred to here, these terms refer to the pump rotor and / or a strand or profile axis of the housing body, the pump rotor and the strand or profile axis in particular being aligned parallel to one another.
Insbesondere ist vorgesehen, dass im Gehäusekörper eine Öffnung zwischen Pumpenrotor und Vakuumkammer ausgebildet ist. Durch die Öffnung kann die Vakuumkammer abgepumpt werden. Diese Öffnung kann auch als Port bezeichnet werden, da sie die Verbindung zwischen Vakuumkammer und Pumpenrotor herstellt. Der Port ist somit im Gehäusekörper integriert.In particular, it is provided that an opening is formed between the pump rotor and the vacuum chamber in the housing body. The vacuum chamber can be pumped out through the opening. This opening can also be referred to as a port, as it establishes the connection between the vacuum chamber and the pump rotor. The port is thus integrated in the housing body.
Der Gehäusekörper kann insbesondere wenigstens zwei parallel ausgerichtete, zylindrische Hohlräume aufweisen, wobei bevorzugt der Pumpenrotor in einem ersten der Hohlräume angeordnet ist und die Vakuumkammer in einem zweiten der Hohlräume gebildet ist. Die Hohlräume können insbesondere in parallel ausgerichteten Teilsträngen und/oder Teilprofilen des Gehäusekörpers ausgebildet sein. Der Gehäusekörper kann beispielsweise auch einen dritten zylindrischen Hohlraum umfassen, insbesondere wobei im dritten zylindrischen Hohlraum ein weiterer Pumpenrotor und/oder eine weitere Vakuumkammer vorgesehen ist bzw. sind. Grundsätzlich können beispielsweise zwei Pumpenrotoren in getrennten zylindrischen Hohlräumen, insbesondere im ersten und dritten zylindrischen Hohlraum, vorgesehen sein, mittels denen gemeinsam wenigstens eine Vakuumkammer, insbesondere im zweiten zylindrischen Hohlraum, evakuiert werden kann. So kann für die Vakuumkammer ein besonders hohes Saugvermögen bereitgestellt werden. Grundsätzlich kann auch ein Pumpenrotor zwei in getrennten zylindrischen Hohlräumen vorgesehene Vakuumkammern evakuieren. Grundsätzlich kann der Gehäusekörper auch mehr als drei parallel ausgerichtete zylindrische Hohlräume umfassen.The housing body can in particular have at least two parallel, cylindrical cavities, the pump rotor preferably being arranged in a first of the cavities and the vacuum chamber being formed in a second of the cavities. The cavities can in particular be formed in parallel aligned partial strands and / or partial profiles of the housing body. The housing body can for example also comprise a third cylindrical cavity, in particular a further pump rotor and / or a further vacuum chamber being or are provided in the third cylindrical cavity. In principle, for example, two pump rotors can be provided in separate cylindrical cavities, in particular in the first and third cylindrical cavity, by means of which at least one vacuum chamber, in particular in the second cylindrical cavity, can be evacuated together. A particularly high pumping speed can thus be provided for the vacuum chamber. In principle, a pump rotor can also evacuate two vacuum chambers provided in separate cylindrical cavities. In principle, the housing body can also comprise more than three parallel aligned cylindrical cavities.
Bei einer Ausführungsform ist der Pumpenrotor im Rotorgehäuse eingesteckt angeordnet. Dies ermöglicht eine besonders einfache Montage des Systems. Außerdem lässt sich somit die Pumpe warten, ohne die Vakuumkammer und hierin vorhandene Funktionselemente zu beeinflussen. Insbesondere ist der Rotor unmittelbar in das Rotorgehäuse eingesteckt, d.h. es ist insbesondere keine Zwischenhülle zwischen Pumpenrotor und Rotorgehäuse vorgesehen. Im Fall einer Turbomolekularpumpe können aber beispielsweise auch Statorscheiben und gegebenenfalls Distanzstücke für die Statorscheiben mit eingesteckt sein. Insbesondere ist der Pumpenrotor also höchstens durch Statorscheiben und gegebenfalls Distanzhülsen von einer Innenwand des Rotorgehäuses getrennt. Grundsätzlich kann aber alternativ auch eine zusätzliche Hülse für den Rotor und gegebenenfalls Statorscheiben vorgesehen sein. Grundsätzlich kann ein Lagerelement, insbesondere zusammen mit einem hierfür vorgesehen Träger, insbesondere einem sogenannten Stern, in das Rotorgehäuse eingesteckt sein.In one embodiment, the pump rotor is arranged inserted in the rotor housing. This enables a particularly simple assembly of the system. In addition, the pump can be serviced without influencing the vacuum chamber and the functional elements present therein. In particular, the rotor is plugged directly into the rotor housing, ie in particular no intermediate sleeve is provided between the pump rotor and the rotor housing. In the case of a turbo molecular pump but, for example, stator disks and possibly spacers for the stator disks can also be inserted. In particular, the pump rotor is separated from an inner wall of the rotor housing by at most stator disks and, if necessary, spacer sleeves. In principle, however, an additional sleeve for the rotor and, if necessary, stator disks can also be provided as an alternative. In principle, a bearing element, in particular together with a carrier provided for this purpose, in particular a so-called star, can be inserted into the rotor housing.
Bei einer weiteren Ausführungsform weist die Pumpe ein Pumpenbasiselement auf, welches am Gehäusekörper befestigt ist, insbesondere mittels wenigstens eines Befestigungselements. Beispielsweise kann das Pumpenbasiselement mit dem Gehäusekörper verschraubt sein. Bei einem weiteren Beispiel kann das Pumpenbasiselement am Gehäusekörper durch Schrauben befestigt sein, die in den Gehäusekörper eingeschraubt sind. Das Pumpenbasiselement kann beispielsweise einen Antrieb, eine Steuerung und/oder eine Lagerung für den Pumpenrotor umfassen.In a further embodiment, the pump has a pump base element which is fastened to the housing body, in particular by means of at least one fastening element. For example, the pump base element can be screwed to the housing body. In another example, the pump base member may be attached to the case body by screws that are screwed into the case body. The pump base element can for example comprise a drive, a control and / or a bearing for the pump rotor.
Gemäß einer Weiterbildung weist der Gehäusekörper wenigstens einen Vorsprung, insbesondere Befestigungsvorsprung auf, an dem irgendein Funktionsteil, insbesondere das Pumpenbasiselement befestigt sein kann. Hierdurch kann das Funktionsteil bzw. Pumpenbasiselement auf besonders einfache und zuverlässige Weise befestigt werden. Insbesondere kann der Vorsprung am Rotorgehäuse ausgebildet, insbesondere angeformt und/oder einteilig mit diesem ausgebildet, sein. Beispielsweise kann der Vorsprung radial und/oder quer zur Rotorachse vorspringend ausgebildet sein. Bevorzugt erstreckt sich der Vorsprung mit im Wesentlichen konstanten Querschnitt und/oder entlang der gesamten axialen Länge des Rotorgehäuses, des Kammergehäuses und/oder des Gehäusekörpers. Der Vorsprung kann z.B. als in axialer Richtung erstreckte Materialsäule ausgebildet sein.According to a further development, the housing body has at least one projection, in particular a fastening projection, to which any functional part, in particular the pump base element, can be fastened. As a result, the functional part or the pump base element can be fastened in a particularly simple and reliable manner. In particular, the projection can be formed on the rotor housing, in particular molded on and / or formed in one piece with it. For example, the projection can be designed to protrude radially and / or transversely to the rotor axis. The projection preferably extends with a substantially constant cross section and / or along the entire axial length of the rotor housing, the chamber housing and / or the housing body. The projection can be designed, for example, as a column of material extending in the axial direction.
Beispielsweise kann das Pumpenbasiselement mittels wenigstens einer Befestigungsschraube in den Vorsprung eingeschraubt sein. Bevorzugt weist das Pumpenbasiselement wenigstens einen zum Vorsprung am Gehäusekörper korrespondierenden Befestigungsvorsprung, beispielsweise mit Durchgangsbohrungen, auf.For example, the pump base element can be screwed into the projection by means of at least one fastening screw. The pump base element preferably has at least one fastening projection that corresponds to the projection on the housing body, for example with through bores.
Es kann beispielsweise vorgesehen sein, dass in der Vakuumkammer ein Funktionselement angeordnet ist, wobei bevorzugt der Gehäusekörper, insbesondere das Kammergehäuse, eine Montageöffnung für das Funktionselement aufweisen kann. Hierdurch kann das Funktionselement auf besonders einfache Weise in die Vakuumkammer eingebracht werden. Das Funktionselement kann, insbesondere in einem Massenspektrometriesystem, beispielsweise eine lonenoptik, ein Quadrupol oder ähnliches sein. Die Montageöffnung kann insbesondere quer und/oder radial angeordnet sein, was ein besonders einfaches Einbauen des Funktionselements ermöglicht. Grundsätzlich kann die Montageöffnung auch als Axialöffnung ausgebildet sein. Insbesondere kann auch eine Öffnung im axialen Ende des Gehäusekörpers bzw. Strangpressprofils, insbesondere die Öffnung eines die Vakuumkammer definierenden zylindrischen Hohlraumes, als Montageöffnung verwendet werden. Im Stand der Technik war es häufig nötig, das Funktionselement durch den offenen Port in die Vakuumkammer einzubringen, wobei dann die Befestigung des Funktionselements an einer vom Port abgewandten Seite stattfinden musste, die aber vom Kammergehäuse weitgehend versperrt war. Daher war die Montage mühsam oder erforderte ein besonderes Montagesystem. Bei der vorliegenden Ausführungsform kann das Funktionselement hingegen beispielsweise einfach an einem Träger, insbesondere einem Deckel, befestigt sein, welcher bei der Montageöffnung angebracht wird, insbesondere die Montageöffnung überspannt. Die Befestigung des Funktionselements am Träger oder Deckel kann außerhalb des Systems, insbesondere in einer ergonomischen Arbeitsumgebung erfolgen. Der Deckel braucht anschließend lediglich zur Abdeckung der Montageöffnung befestigt zu werden. Die Befestigung kann dabei bevorzugt durch von außen betätigbare Schrauben erfolgen, sodass sie für den Monteur einfach durchführbar ist. Generell ist der Gehäusekörper in einem die Montageöffnung einfassenden Bereich bevorzugt bearbeitet und weist insbesondere eine geringe Rauigkeit auf, damit eine Abdichtung effektiv erfolgen kann.It can be provided, for example, that a functional element is arranged in the vacuum chamber, wherein the housing body, in particular the chamber housing, can preferably have a mounting opening for the functional element. As a result, the functional element can be introduced into the vacuum chamber in a particularly simple manner. The functional element can, in particular in a mass spectrometry system, be, for example, ion optics, a quadrupole or the like. The assembly opening can in particular be arranged transversely and / or radially, which enables a particularly simple installation of the functional element. In principle, the assembly opening can also be designed as an axial opening. In particular, an opening in the axial end of the housing body or extruded profile, in particular the opening of a cylindrical cavity defining the vacuum chamber, can also be used as an assembly opening. In the prior art, it was often necessary to introduce the functional element through the open port into the vacuum chamber, the functional element then having to be fastened on a side facing away from the port, which, however, was largely blocked by the chamber housing. Therefore, assembly was cumbersome or required a special assembly system. In the present embodiment, on the other hand, the functional element can, for example, simply be attached to a carrier, in particular a cover, which is attached to the assembly opening, in particular spans the assembly opening. The fastening of the functional element on the carrier or cover can take place outside the system, in particular in an ergonomic work environment. The cover then only needs to cover the Mounting opening to be attached. The fastening can preferably be done by externally actuatable screws, so that it can be carried out easily for the fitter. In general, the housing body is preferably machined in an area enclosing the assembly opening and, in particular, has a low roughness so that a seal can be carried out effectively.
Das Vakuumsystem kann gemäß einem weiteren Ausführungsbeispiel wenigstens eine zweite Vakuumkammer aufweisen, die bevorzugt ebenfalls in dem Gehäusekörper, insbesondere im gleichen Teilstrang wie die erste Vakuumkammer und/oder wie der Pumpenrotor, gebildet ist. Somit lässt sich auf einfache Weise ein Mehrkammersystem realisieren. Die Vakuumkammern können beispielsweise axial hintereinander angeordnet und parallel zum Pumpenrotor ausgerichtet sein und/oder durch denselben zylindrischen Hohlraum des Strangpressteils gebildet sein. Grundsätzlich kann eine oder die Vakuumkammer auch in axialer Verlängerung des Rotorgehäuses und/oder im selben zylindrischen Hohlraum wie der Pumpenrotor angeordnet sein.According to a further exemplary embodiment, the vacuum system can have at least one second vacuum chamber, which is preferably also formed in the housing body, in particular in the same partial line as the first vacuum chamber and / or as the pump rotor. A multi-chamber system can thus be implemented in a simple manner. The vacuum chambers can, for example, be arranged axially one behind the other and aligned parallel to the pump rotor and / or be formed by the same cylindrical cavity of the extruded part. In principle, one or the vacuum chamber can also be arranged in an axial extension of the rotor housing and / or in the same cylindrical cavity as the pump rotor.
Die Vakuumkammer kann beispielsweise in Bezug auf den Pumpenrotor radial und/oder axial benachbart zu diesem angeordnet sein. Insbesondere kann sowohl eine Vakuumkammer radial benachbart als auch eine Vakuumkammer axial benachbart angeordnet sein. Dies ermöglicht eine platzsparende Konstruktion. Weiterhin vorteilhaft, insbesondere in Bezug auf erreichbaren Bauraum, kann die zum Pumpenrotor axial benachbarte Vakuumkammer zumindest teilweise von einem zylindrischen Hohlraum gebildet sein, der auch den Pumpenrotor beinhaltet. Insbesondere kann also beispielsweise eine Vakuumkammer in einer Fortsetzung eines Rotorgehäusestranges ausgebildet sein. Die axial benachbarte Vakuumkammer kann bevorzugt aber zusätzlich von einem Strang bzw. zylindrischen Hohlraum des Kammergehäuses gebildet sein, wobei beispielsweise eine Durchgangsöffnung zwischen der Fortsetzung des Rotorgehäuses und dem Kammergehäuse vorgesehen sein kann.The vacuum chamber can, for example, be arranged radially and / or axially adjacent to the pump rotor with respect to the latter. In particular, both a vacuum chamber can be arranged radially adjacent and a vacuum chamber can be arranged axially adjacent. This enables a space-saving construction. Furthermore, advantageously, in particular with regard to the installation space that can be achieved, the vacuum chamber axially adjacent to the pump rotor can be formed at least partially by a cylindrical cavity which also contains the pump rotor. In particular, for example, a vacuum chamber can be formed in a continuation of a rotor housing string. The axially adjacent vacuum chamber can, however, preferably also be formed by a strand or cylindrical cavity of the chamber housing, wherein, for example, a through opening can be provided between the continuation of the rotor housing and the chamber housing.
Es kann beispielsweise vorgesehen sein, dass zwei Teilstränge des Gehäusekörpers und/oder ein zylindrischer Hohlraum für den Pumpenrotor und ein zylindrischer Hohlraum für die Vakuumkammer durch einen gemeinsamen, insbesondere einteiligen, Deckel verschlossen sind. Hierdurch wird die Montage weiter vereinfacht. Insbesondere können das Kammergehäuse und das Rotorgehäuse axial durch einen gemeinsamen, insbesondere einteiligen, Deckel verschlossen sein. Der Deckel kann beispielsweise als Platte ausgebildet sein, beispielsweise auf einer einem Pumpenbasiselement abgewandten Seite. Der Deckel kann aber auch an dem Pumpenbasiselement angeordnet und/oder angeformt sein.It can be provided, for example, that two partial strands of the housing body and / or a cylindrical cavity for the pump rotor and a cylindrical cavity for the vacuum chamber are closed by a common, in particular one-piece, cover. This further simplifies assembly. In particular, the chamber housing and the rotor housing can be axially closed by a common, in particular one-piece, cover. The cover can for example be designed as a plate, for example on a side facing away from a pump base element. However, the cover can also be arranged and / or molded onto the pump base element.
Allgemein können Rotorgehäuse und Kammergehäuse beispielsweise axial auf gleicher Höhe abschließen oder auch nicht, was sowohl für ein Niederdruckende als auch für ein Druckende, wie etwa ein Vorvakuumende, des Systems gilt.In general, the rotor housing and chamber housing can, for example, terminate axially at the same height or not, which applies both to a low-pressure end and to a pressure end, such as a fore-vacuum end, of the system.
Es kann beispielsweise vorgesehen sein, dass das Rotorgehäuse und das Kammergehäuse und/oder hierin jeweils vorgesehene zylindrische Hohlräume in ihren Querschnittsflächen, bevorzugt deutlich, unterschiedlich groß sind, beispielsweise mit wenigstens 20%, insbesondere wenigstens 40%, insbesondere wenigstens 60% Größenunterschied. Die Querschnittsfläche erstreckt sich dabei insbesondere senkrecht zur Rotorachse. Beispielsweise kann ein relativ großer Pumpenrotor mit einer relativ kleinen Vakuumkammer verwendet werden und umgekehrt. Somit lässt sich das Vakuumsystem besonders einfach bedarfsgerecht auslegen, ohne dass ein zwischengeschalteter Verbindungsflansch die Größen vorgibt oder zumindest beeinflusst.It can be provided, for example, that the rotor housing and the chamber housing and / or the cylindrical cavities provided therein are preferably of significantly different sizes in their cross-sectional areas, for example with at least 20%, in particular at least 40%, in particular at least 60% size difference. The cross-sectional area extends in particular perpendicular to the rotor axis. For example, a relatively large pump rotor with a relatively small vacuum chamber can be used, and vice versa. In this way, the vacuum system can be designed in a particularly simple manner as required, without an interposed connecting flange specifying or at least influencing the sizes.
Die Aufgabe wird auch durch ein Verfahren nach dem unabhängigen Verfahrensanspruch gelöst, und zwar insbesondere dadurch, dass das Rotorgehäuse und das Kammergehäuse einteilig von einem Gehäusekörper gebildet werden, der durch Strangpressen hergestellt wird.The object is also achieved by a method according to the independent method claim, in particular in that the rotor housing and the chamber housing are formed in one piece by a housing body which is produced by extrusion.
Grundsätzlich ist nach dem Strangpressen eine, insbesondere spanende, Bearbeitung möglich, beispielsweise um Öffnungen und/oder Anlage- und/oder Dichtflächen auszubilden.In principle, machining, in particular machining, is possible after extrusion, for example to form openings and / or contact and / or sealing surfaces.
Der Gehäusekörper kann beispielsweise als Doppelstrangpressprofil mit wenigstens zwei Teilsträngen ausgebildet sein, insbesondere jeweils einem für das Rotorgehäuse und für das Kammergehäuse. Allgemein wird der Gehäusekörper bevorzugt mit einer gemeinsamen Matrize für die Teilstränge stranggepresst.The housing body can be designed, for example, as a double extruded profile with at least two partial strands, in particular one each for the rotor housing and for the chamber housing. In general, the housing body is preferably extruded with a common die for the partial strands.
Bei einer Ausführungsform mit einfacher Montage wird der Pumpenrotor in das Rotorgehäuse eingesteckt.In an embodiment with simple assembly, the pump rotor is inserted into the rotor housing.
Gemäß einer Weiterbildung ist vorgesehen, dass eine Öffnung, insbesondere Montageöffnung, in den Gehäusekörper, insbesondere in das Kammergehäuse, eingebracht wird, wobei insbesondere ein Funktionselement durch diese Öffnung hindurch in die Vakuumkammer eingebracht wird. Die Öffnung kann beispielsweise nach außen gerichtet sein, also beispielsweise eine Montage eines Funktionselements von außen ermöglichen. Die Montage eines Funktionselements ist grundsätzlich beispielsweise auch durch eine Öffnung zwischen Vakuumkammer und Pumpenrotor denkbar, insbesondere bevor der Pumpenrotor eingesteckt ist.According to a further development, it is provided that an opening, in particular an assembly opening, is made in the housing body, in particular in the chamber housing, wherein in particular a functional element is introduced through this opening into the vacuum chamber. The opening can, for example, be directed outwards, that is to say, for example, enable a functional element to be assembled from the outside. The assembly of a functional element is basically also conceivable, for example, through an opening between the vacuum chamber and the pump rotor, in particular before the pump rotor is inserted.
Ein weiteres Beispiel sieht vor, dass eine das Innere des Rotorgehäuses, insbesondere den Pumpenrotor, mit der Vakuumkammer verbindende Öffnung in den Gehäusekörper eingebracht wird.Another example provides that an opening connecting the interior of the rotor housing, in particular the pump rotor, to the vacuum chamber is made in the housing body.
Generell können Öffnungen beispielsweise mittels eines hintergreifenden Spanwerkzeugs, insbesondere eines T-Nutenfräsers, auf einfache Weise eingebracht werden. Beispielsweise wird hierfür das Spanwerkzeug axial in das Rotorgehäuse, insbesondere in einen zylindrischen Hohlraum für den Pumpenrotor, und/oder das Kammergehäuse, insbesondere in einen zylindrischen Hohlraum für die Vakuumkammer, eingeführt und, insbesondere anschließend, in Querrichtung gegen das zu spanende Material zugestellt.In general, openings can be made in a simple manner, for example by means of a cutting tool that engages behind, in particular a T-slot cutter. For example, for this purpose, the cutting tool is axially inserted into the rotor housing, in particular into a cylindrical cavity for the pump rotor, and / or the Chamber housing, in particular introduced into a cylindrical cavity for the vacuum chamber and, in particular then, advanced in the transverse direction against the material to be machined.
Die hierin beschriebenen Ausführungsformen und Merkmale des Vakuumsystems können entsprechend zur Weiterbildung des beschriebenen Verfahrens herangezogen werden und umgekehrt.The embodiments and features of the vacuum system described herein can be used accordingly to develop the described method and vice versa.
Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen, zum Teil schematisch:
- Fig. 1
- eine perspektivische Ansicht einer Turbomolekularpumpe,
- Fig. 2
- eine Ansicht der Unterseite der Turbomolekularpumpe von
Fig. 1 , - Fig. 3
- einen Querschnitt der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie A-A, - Fig. 4
- eine Querschnittsansicht der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie B-B, - Fig. 5
- eine Querschnittsansicht der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie C-C, - Fig. 6
- einen gemeinsamen Gehäusekörper für ein Rotorgehäuse und ein Kammergehäuse einer Splitflow-Vakuumpumpe in perspektivischer Ansicht,
- Fig. 7
- eine weitere Ausführungsform eines Gehäusekörpers in einer Seitenansicht,
- Fig. 1
- a perspective view of a turbo molecular pump,
- Fig. 2
- a view of the underside of the turbo molecular pump of FIG
Fig. 1 , - Fig. 3
- a cross section of the turbo molecular pump along the in
Fig. 2 shown section line AA, - Fig. 4
- a cross-sectional view of the turbo molecular pump along the line in FIG
Fig. 2 shown section line BB, - Fig. 5
- a cross-sectional view of the turbo molecular pump along the line in FIG
Fig. 2 shown section line CC, - Fig. 6
- a common housing body for a rotor housing and a chamber housing of a split-flow vacuum pump in a perspective view,
- Fig. 7
- a further embodiment of a housing body in a side view,
Die in
Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß
Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 (siehe z.B.
Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in
An der Unterseite 141, die in
An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann.Fastening bores 147 are also arranged on the
In den
Wie die Schnittdarstellungen der
In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.A
Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.The turbo-
Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.The vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and are connected in series with one another for effective pumping. The rotor of the Holweck pump stages comprises a
Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.The active pumping surfaces of the Holweck pump stages are formed by the jacket surfaces, that is to say by the radial inner and / or outer surfaces, of the
Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.At the lower end of the
Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 163, 165 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.The aforementioned pump-active surfaces of the
Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.For the rotatable mounting of the
Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.In the area of the
Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.During operation of the
Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 203 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.The permanent
Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, da eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.An emergency or
Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.The
Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.The
Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.A so-called and known
Die vorstehend beschriebene Turbomolekular-Vakuumpumpe weist genau einen Einlass für eine Vakuumkammer auf, nämlich am Einlassflansch 113. Nachfolgend werden Beispiele von Vakuumpumpen mit mehreren Einlässen für mehrere Vakuumkammern, sogenannte Splitflow-Vakuumpumpen, beschrieben. Es versteht sich, dass der generelle Aufbau der vorstehend beschriebenen Turbomolekularpumpe und auch beliebige Detailmerkmale zur Konstruktion der in den weiteren Figuren lediglich schematisch gezeigten Splitflow-Vakuumpumpen herangezogen werden können.The turbo-molecular vacuum pump described above has exactly one inlet for a vacuum chamber, namely on the
In
In
Der Gehäusekörper 20 der
Der zylindrische Hohlraum 30 für den Pumpenrotor ist in diesem Ausführungsbeispiel kreiszylindrisch ausgebildet. Seine endgültige Form und Oberflächengüte der Innenwand kann beispielsweise auch spanend ausgebildet sein, wobei beim Strangpressen bevorzugt bereits ein entsprechender zylindrischer Hohlraum vorgesehen ist.The
Bei beiden Ausführungsformen der
Mit den Vorsprüngen 34 sind hier zusätzliche Funktionsstrukturen im Strangpressteil, also dem Gehäusekörper 20, realisiert. Diese können mit nur geringen Zusatzkosten vorgesehen werden. In ähnlicher Weise können auch andere Funktionsstrukturen vorgesehen werden, wie etwa Ausnehmungen oder Nuten, z.B. als Kabelkanäle, oder Temperierungsstrukturen, wie etwa Rippen oder Fluidleitungen.With the
Im Kammergehäuse 28 sind bevorzugt Montageöffnungen vorgesehen, damit hier nicht dargestellte Funktionselemente in die Vakuumkammern besonders einfach eingebracht werden können. Beispielsweise kann eine Montageöffnung in Querrichtung ausgerichtet sein, was in
Grundsätzlich können Funktionselemente aber beispielsweise auch durch eine axiale Öffnung eingebracht werden, wie beispielsweise durch die in
In der zwischen den beiden Hohlräumen 30 und 32 vorgesehenen Wand des Strangpressprofils bzw. des Gehäusekörpers 20 sind bevorzugt ebenfalls mehrere Öffnungen angeordnet, welche in axialer Richtung, in
In
Die Vakuumkammern 42 sind durch Wände 50 axial voneinander getrennt, aber in diesem Beispiel durch kleine Öffnungen in den Wänden 50 so miteinander verbunden, dass ein kleiner Fluidstrom dennoch möglich ist. Für jede der Vakuumkammern 42 ist eine Montageöffnung 36 für Funktionselemente vorgesehen, wobei je nach Anwendungsfall auch mehrere Montageöffnungen 36 für eine Vakuumkammer vorgesehen sein können und/oder eine Vakuumkammer keine gesonderte Montageöffnung in Querrichtung aufweist, sondern beispielsweise durch eine axiale Öffnung mit einem Funktionselement bestückt wird.The
Der Pumpenrotor 48 umfasst in diesem Beispiel zwei beabstandete Turbostufen 52 sowie eine Holweck-Stufe 54. Abgesehen von der in
Der Pumpenrotor 48 ist in einem Rotorgehäuse 26 eingesteckt angeordnet. Die Vakuumkammern 42 sind in einem Kammergehäuse 28 ausgebildet. Rotorgehäuse 26 und Kammergehäuse 28 sind durch einen gemeinsamen Gehäusekörper 20 gebildet, der durch Strangpressen hergestellt ist.The
Die Öffnungen 46 sind in einer Wand des Gehäusekörpers 20 zwischen den Vakuumkammern 42 und dem Pumpenrotor 48 vorgesehen. Die Öffnungen können beispielsweise durch ein hintergreifendes Spanwerkzeug, beispielsweise einen T-Nutenfräser, in das Strangpressprofil eingebracht werden. Beispielsweise kann das Spanwerkzeug hierfür axial, in
Ein Pumpenbasiselement 56 ist am in
In einem dem Pumpenbasiselement 56 entsprechenden Axialbereich ist benachbart zum Pumpenbasiselement 56 und in Verlängerung der Vakuumkammern 42 in diesem Beispiel keine Vakuumkammer, sondern ein anderweitiger Funktionsabschnitt 58 vorgesehen, der beispielsweise eine Steuerung für die in die Vakuumkammern 42 eingebrachten Funktionselemente oder beispielsweise auch eine Steuerung für die Vakuumpumpe 44 umfassen kann. Alternativ könnte die in
Das Pumpenbasiselement 56 und der Funktionsabschnitt 58 sind hier an einem druckseitigen Ende des Vakuumsystems 40 angeordnet. Am Niederdruckende, in
Gleichwohl kann ein von der Vakuumpumpe 44 und/oder dem Pumpenrotor 48 nicht eingenommener Axialbereich anderweitig genutzt werten, beispielsweise um den gesamten Bauraum optimal auszunutzen. So illustriert
Die Vakuumpumpe 44 umfasst in diesem Beispiel eine Turbostufe 52 und eine kombinierte Pumpstufe 60 mit Turbo- und Holweckeinheiten.In this example, the
Die Vakuumpumpe 44 umfasst einen Auslassanschluss, insbesondere Vorvakuumanschluss 62. Am selben Druckniveau ist eine Öffnung 64 zu einer weiteren Vakuumkammer 42 vorgesehen. Die Öffnung 64 ist in diesem Beispiel ebenfalls im Strangpressprofil bzw. dem Gehäusekörper 20 eingebracht.The
Die Teilstränge 22 und 24 sind durch einen gemeinsamen Deckel 66 verschlossen. In dieser Ausführungsform verschließt der Deckel 66 axial nur die Vakuumkammern 42. Der Deckel 66 kann aber bei axial gemeinsam endenden Rotor- und Kammergehäusen 26, 28 auch diese beiden verschließen.The
Die
In
- 111111
- TurbomolekularpumpeTurbo molecular pump
- 113113
- EinlassflanschInlet flange
- 115115
- PumpeneinlassPump inlet
- 117117
- PumpenauslassPump outlet
- 119119
- Gehäusecasing
- 121121
- UnterteilLower part
- 123123
- ElektronikgehäuseElectronics housing
- 125125
- ElektromotorElectric motor
- 127127
- ZubehöranschlussAccessory connection
- 129129
- DatenschnittstelleData interface
- 131131
- StromversorgungsanschlussPower supply connection
- 133133
- FluteinlassFlood inlet
- 135135
- SperrgasanschlussSealing gas connection
- 137137
- MotorraumEngine compartment
- 139139
- KühlmittelanschlussCoolant connection
- 141141
- Unterseitebottom
- 143143
- Schraubescrew
- 145145
- LagerdeckelBearing cap
- 147147
- BefestigungsbohrungMounting hole
- 148148
- KühlmittelleitungCoolant line
- 149149
- Rotorrotor
- 151151
- RotationsachseAxis of rotation
- 153153
- RotorwelleRotor shaft
- 155155
- RotorscheibeRotor disk
- 157157
- StatorscheibeStator disk
- 159159
- AbstandsringSpacer ring
- 161161
- RotornabeRotor hub
- 163163
- Holweck-RotorhülseHolweck rotor sleeve
- 165165
- Holweck-RotorhülseHolweck rotor sleeve
- 167167
- Holweck-StatorhülseHolweck stator sleeve
- 169169
- Holweck-StatorhülseHolweck stator sleeve
- 171171
- Holweck-SpaltHolweck gap
- 173173
- Holweck-SpaltHolweck gap
- 175175
- Holweck-SpaltHolweck gap
- 179179
- VerbindungskanalConnection channel
- 181181
- Wälzlagerroller bearing
- 183183
- PermanentmagnetlagerPermanent magnet bearings
- 185185
- SpritzmutterInjection nut
- 187187
- Scheibedisc
- 189189
- Einsatzcommitment
- 191191
- rotorseitige Lagerhälftebearing half on the rotor side
- 193193
- statorseitige Lagerhälftestator-side bearing half
- 195195
- RingmagnetRing magnet
- 197197
- RingmagnetRing magnet
- 199199
- LagerspaltBearing gap
- 201201
- TrägerabschnittBeam section
- 203203
- TrägerabschnittBeam section
- 205205
- radiale Streberadial strut
- 207207
- DeckelelementCover element
- 209209
- StützringSupport ring
- 211211
- BefestigungsringFastening ring
- 213213
- TellerfederDisc spring
- 215215
- Not- bzw. FanglagerEmergency or fishing camp
- 217217
- MotorstatorMotor stator
- 219219
- ZwischenraumSpace
- 221221
- WandungWall
- 223223
- LabyrinthdichtungLabyrinth seal
- 2020th
- GehäusekörperHousing body
- 2222nd
- TeilstrangBranch
- 2424
- TeilstrangBranch
- 2626th
- RotorgehäuseRotor housing
- 2828
- KammergehäuseChamber housing
- 3030th
- zylindrischer Hohlraumcylindrical cavity
- 3232
- zylindrischer Hohlraumcylindrical cavity
- 3434
- Vorsprunghead Start
- 3636
- MontageöffnungAssembly opening
- 4040
- VakuumsystemVacuum system
- 4242
- VakuumkammerVacuum chamber
- 4444
- Splitflow-VakuumpumpeSplitflow vacuum pump
- 4646
- Öffnungopening
- 4848
- PumpenrotorPump rotor
- 5050
- Wandwall
- 5252
- TurbostufeTurbo level
- 5454
- Holweck-StufeHolweck level
- 5656
- PumpenbasiselementPump base element
- 5858
- FunktionsabschnittFunctional section
- 6060
- kombinierte Pumpstufecombined pumping stage
- 6262
- VorvakuumanschlussForevacuum connection
- 6464
- Öffnungopening
- 6666
- Deckelcover
- 6868
- QuadrupolQuadrupole
- 7070
- QuadrupolQuadrupole
- 7272
- Detektordetector
Claims (15)
- A vacuum system (40), in particular a mass spectrometry system, comprising:a vacuum pump (44), in particular a turbomolecular vacuum pump and/or a split-flow vacuum pump, having a pump rotor (48) which is arranged in a rotor housing (26); anda vacuum chamber (42) which can be evacuated by means of the vacuum pump and which is surrounded by a chamber housing (28),wherein the rotor housing (26) and the chamber housing (28) are formed in one part by a housing body (20),characterized in thatthe housing body (20) is an extruded part.
- A vacuum system (40) in accordance with claim 1,
wherein an opening (46) is formed in the housing body (20) between the pump rotor (48) and the vacuum chamber (42). - A vacuum system (40) in accordance with claim 1 or claim 2,
wherein at least two cylindrical hollow spaces (30, 32), in particular circular cylindrical hollow spaces (30, 32), aligned in parallel are formed in the housing body (20), wherein the pump rotor (30) is arranged in a first of the hollow spaces (30) and the vacuum chamber (42) is formed in a second of the hollow spaces (32), in particular wherein the housing body comprises a third cylindrical hollow space, in particular a circular cylindrical hollow space, wherein a further pump rotor and/or a further vacuum chamber is/are provided in the third cylindrical hollow space. - A vacuum system (40) in accordance with at least one of the preceding claims,
wherein the pump rotor (48) is arranged plugged into the rotor housing (26). - A vacuum system (40) in accordance with at least one of the preceding claims,
wherein the pump (44) has a pump base element (56) which is fastened to the housing body (20). - A vacuum system (40) in accordance with at least one of the preceding claims,
wherein the housing body (20) has at least one projection (34) to which a pump base element (56) of the pump (44) is fastened. - A vacuum system (40) in accordance with at least one of the preceding claims,
wherein a functional element (68, 70) is arranged in the vacuum chamber (42), and wherein the housing body (20) has an installation opening (36) for the functional element. - A vacuum system (40) in accordance with at least one of the preceding claims,
wherein the vacuum system (40) comprises at least a second vacuum chamber (42) which is likewise formed in the housing body (20). - A vacuum system (40) in accordance with at least one of the preceding claims,
wherein, with respect to the pump rotor (48), the vacuum chamber (42) is arranged radially and/or axially adjacent thereto, and/or
wherein the rotor housing and the chamber housing and/or cylindrical hollow spaces, in particular circular cylindrical hollow spaces, respectively provided therein are of different sizes in their cross-sectional surfaces, preferably with a size difference of at least 20%. - A vacuum system (40) in accordance with at least one of the preceding claims,
wherein a cylindrical hollow space (30), in particular a circular cylindrical hollow space (30), for the pump rotor (48) and a cylindrical hollow space (32), in particular a circular cylindrical hollow space (32), for the vacuum chamber (42) are closed by a common cover (66). - A method of manufacturing a vacuum system (40), in particular a mass spectrometry system, and/or a vacuum system in accordance with any one of the preceding claims,
wherein the vacuum system (40) comprises a vacuum pump (44), in particular a turbomolecular vacuum pump and/or a split-flow vacuum pump, comprising a pump rotor (48) which is arranged in a rotor housing (26); and a vacuum chamber (42) which can be evacuated by means of the vacuum pump and which is surrounded by a chamber housing (28),
wherein the rotor housing (26) and the chamber housing (28) are formed in one part by a housing body (20),
characterized in that the housing body (20) is manufactured by extrusion. - A method in accordance with claim 11,
wherein the pump rotor (48) is plugged into the rotor housing (26). - A method in accordance with claim 11 or claim 12,
wherein an opening (36) is formed in the chamber housing (28), and
wherein a functional element is introduced into the vacuum chamber (42) through this opening (36). - A method in accordance with at least one of the claims 11 to 13,
wherein an opening (46) connecting the interior of the rotor housing (26) to the vacuum chamber (42) is formed in the housing body (20). - A method in accordance with claim 14,
wherein the opening (46) is formed by means of a cutting tool engaging from behind.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19158341.8A EP3564538B1 (en) | 2019-02-20 | 2019-02-20 | Vacuum system and method for manufacturing the same |
JP2020021459A JP7221891B2 (en) | 2019-02-20 | 2020-02-12 | Vacuum system and method for manufacturing such vacuum system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19158341.8A EP3564538B1 (en) | 2019-02-20 | 2019-02-20 | Vacuum system and method for manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3564538A1 EP3564538A1 (en) | 2019-11-06 |
EP3564538B1 true EP3564538B1 (en) | 2021-04-07 |
Family
ID=65529419
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19158341.8A Active EP3564538B1 (en) | 2019-02-20 | 2019-02-20 | Vacuum system and method for manufacturing the same |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3564538B1 (en) |
JP (1) | JP7221891B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007027352A1 (en) * | 2007-06-11 | 2008-12-18 | Oerlikon Leybold Vacuum Gmbh | Mass Spectrometer arrangement |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19901340B4 (en) | 1998-05-26 | 2016-03-24 | Leybold Vakuum Gmbh | Friction vacuum pump with chassis, rotor and housing and device equipped with a friction vacuum pump of this type |
JP4520636B2 (en) * | 1998-05-26 | 2010-08-11 | ライボルト ヴァークウム ゲゼルシャフト ミット ベシュレンクテル ハフツング | Friction vacuum pump with chassis, rotor and casing, and apparatus with this type of friction vacuum pump |
US6182851B1 (en) * | 1998-09-10 | 2001-02-06 | Applied Materials Inc. | Vacuum processing chambers and method for producing |
FR2784184B1 (en) * | 1998-10-01 | 2000-12-15 | Cit Alcatel | COMPACT LEAK DETECTOR |
DE10055057A1 (en) * | 2000-11-07 | 2002-05-08 | Pfeiffer Vacuum Gmbh | Leak detector pump has high vacuum pump, gas analyzer, test object connector, gas outlet opening, gas inlet opening, valve bodies and gas connections in or forming parts of housing |
US20120027583A1 (en) * | 2006-05-04 | 2012-02-02 | Bernd Hofmann | Vacuum pump |
DE102014213942B4 (en) * | 2014-07-17 | 2016-01-28 | Christof-Herbert Diener | Vacuum system, in particular plasma system, with a completely closed chamber extruded profile |
EP3067565B1 (en) * | 2015-03-13 | 2020-07-22 | Pfeiffer Vacuum Gmbh | Vacuum pump |
GB2538962B (en) * | 2015-06-01 | 2019-06-26 | Edwards Ltd | Vacuum pump |
EP3296571B1 (en) * | 2017-07-21 | 2021-11-03 | Pfeiffer Vacuum Gmbh | Vacuum pump |
-
2019
- 2019-02-20 EP EP19158341.8A patent/EP3564538B1/en active Active
-
2020
- 2020-02-12 JP JP2020021459A patent/JP7221891B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007027352A1 (en) * | 2007-06-11 | 2008-12-18 | Oerlikon Leybold Vacuum Gmbh | Mass Spectrometer arrangement |
Also Published As
Publication number | Publication date |
---|---|
JP7221891B2 (en) | 2023-02-14 |
EP3564538A1 (en) | 2019-11-06 |
JP2020133631A (en) | 2020-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3657021B1 (en) | Vacuum pump | |
EP3112688B1 (en) | Split flow vacuum pump and vacuum system with a split flow vacuum pump | |
EP2039941B1 (en) | Vacuum pump | |
EP3693610B1 (en) | Molecular vacuum pump | |
EP4108932A1 (en) | Recipient and high vacuum pump | |
EP3564538B1 (en) | Vacuum system and method for manufacturing the same | |
EP3617523A1 (en) | Vacuum device and vacuum system | |
EP3196471B1 (en) | Vacuum pump | |
DE102020116770B4 (en) | VACUUM PUMP WITH INTEGRATED MINIATURE VALVE | |
EP3670924B1 (en) | Vacuum pump and method for producing same | |
EP3628883B1 (en) | Vacuum pump | |
EP3327293A1 (en) | Vacuum pump having multiple inlets | |
EP3135932B1 (en) | Vacuum pump and permanent magnet bearing | |
EP3734078A2 (en) | Turbomolecular pump and method of manufacturing a stator disc for such a pump | |
EP3267040B1 (en) | Turbomolecular pump | |
EP3767109B1 (en) | Vacuum system | |
DE102015113821A1 (en) | vacuum pump | |
EP3845764B1 (en) | Vacuum pump and vacuum pump system | |
EP4155549B1 (en) | Vacuum pump with improved suction capacity of the holweck pump stage | |
EP3561306B1 (en) | Vacuum pump | |
EP4293232A1 (en) | Pump | |
EP4194700A1 (en) | Vacuum pump with a holweck pump stage with variable holweck geometry | |
EP3626971B1 (en) | Vacuum pump | |
EP3907406B1 (en) | Vacuum pump | |
EP4273405A1 (en) | Vacuum pump with a holweck pumping stage with a varying holweck geometry |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191002 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20191219 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20201015 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1380039 Country of ref document: AT Kind code of ref document: T Effective date: 20210415 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502019001144 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210708 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210707 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210809 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502019001144 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20220110 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210807 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220220 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240209 Year of fee payment: 6 Ref country code: GB Payment date: 20240219 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20190220 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240228 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240426 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210407 |