EP3626971B1 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
EP3626971B1
EP3626971B1 EP19194646.6A EP19194646A EP3626971B1 EP 3626971 B1 EP3626971 B1 EP 3626971B1 EP 19194646 A EP19194646 A EP 19194646A EP 3626971 B1 EP3626971 B1 EP 3626971B1
Authority
EP
European Patent Office
Prior art keywords
pump
vacuum
circuit board
gas barrier
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19194646.6A
Other languages
German (de)
French (fr)
Other versions
EP3626971A1 (en
Inventor
Jinou Wang
Dirk Hopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP19194646.6A priority Critical patent/EP3626971B1/en
Publication of EP3626971A1 publication Critical patent/EP3626971A1/en
Priority to JP2020085580A priority patent/JP7092825B2/en
Application granted granted Critical
Publication of EP3626971B1 publication Critical patent/EP3626971B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/068Mechanical details of the pump control unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D25/0693Details or arrangements of the wiring

Definitions

  • the invention relates to a vacuum pump, in particular a turbomolecular pump, with a vacuum chamber which is separated from a pressure chamber in a vacuum-tight manner by a plate, and a method for producing a vacuum pump.
  • Vacuum pumps are known from the prior art which have a glass feedthrough with insulated soldered connections for the passage of signals from a vacuum space into a pressure space. With a large number of signals to be fed through, however, a circuit board as a vacuum feedthrough is much cheaper. A vacuum pump with such a circuit board is also known, but cannot be used when pumping corrosive gases since corrosive process gas could damage the circuit board. For such applications, such as those relevant in the semiconductor industry, a more complex glass feedthrough with soldered connections must be used.
  • the EP 3 431 769 A1 discloses a vacuum pump with a vacuum chamber which is sealed against a pressure chamber in a vacuum-tight manner by means of a connection board.
  • connection conductors that are connected to the connection board on the vacuum side and their connection points as well as a motor stator of the vacuum pump are surrounded by a casting compound.
  • this object is achieved by a vacuum pump having the features of claim 1 and a method for producing a vacuum pump having the features of claim 14.
  • a vacuum pump according to the invention in particular a turbomolecular pump, comprises a vacuum space delimited by a pump housing and a Circuit board, wherein the pump housing has a connection opening which is closed in a vacuum-tight manner by the circuit board, so that the circuit board separates the vacuum space from a pressure space, the circuit board being preceded on the vacuum side by a gas barrier spaced apart from the circuit board.
  • the invention is based on the general idea of keeping the process gas away from the circuit board. This has the advantage that corrosive process gas can be pumped without it coming into contact with and damaging the circuit board. As a result, the vacuum pump according to the invention has more flexible application options.
  • the circuit board can also be used as a vacuum feedthrough when pumping corrosive process gases, which is a simpler and cheaper solution than a glass feedthrough with soldered connections. The vacuum pump according to the invention can thus be produced more economically.
  • the gas barrier is at least approximately gas-tight and at least essentially prevents the pumped gas from passing through. It is arranged in the vacuum chamber of the vacuum pump in such a way that the process gas is kept away from the circuit board. So that the circuit board and possibly its electrical connection connections are not impaired by the gas barrier, the gas barrier is not in direct contact with the circuit board and/or the connection connections. This also has the advantage that the circuit board and terminal connections are accessible for maintenance, modification and/or repair even in the presence of the gas barrier, so that the circuit board can be easily replaced, for example.
  • the circuit board While in the vacuum space in the operating state of the vacuum pump there can be a negative pressure generated by at least one pump stage, the circuit board separates the vacuum space from a pressure space in which For example, atmospheric pressure can prevail.
  • a leakage rate of the circuit board as a vacuum feedthrough can be at least essentially negligible.
  • the gas barrier of the vacuum pump has a potting compound. This can advantageously be used to encapsulate at least one section of the vacuum space with any desired geometry and with any components included therein.
  • a casting compound as a gas barrier can fill the vacuum space or a section thereof at least approximately gas-tight without the use of additional sealing means.
  • the gas barrier can be formed in various ways, depending on the material. For example, a potting compound in a free-flowing state can be poured into an area of the vacuum space provided for receiving the gas barrier, where the potting compound then hardens. Gas barriers of a different design can be introduced into the vacuum chamber of the vacuum pump in a suitable manner.
  • the gas barrier of the vacuum pump can have a self-expanding material property.
  • the gas barrier can be introduced as a solid body into a section of the vacuum space and expanded there. The solid body can have shape-memory properties and can be compressed for introduction into the vacuum space in order to enable later independent, passive expansion, or an aid or substance can be used to carry out a forced expansion.
  • the vacuum pump preferably has at least one connecting conductor which extends through the gas barrier and which is connected to the circuit board, in particular to a side of the circuit board which faces the gas barrier.
  • the other end of the Electrical connection conductor can be connected to a motor, actuators and / or sensors of the vacuum pump, so that signals can be transmitted through the gas barrier between the circuit board and the motor, actuators and / or sensors of the vacuum pump.
  • connection between the connecting conductor and the circuit board is a plug-in connection.
  • This is cheap, especially when there are a large number of connection conductors, and at the same time more convenient to use than soldered connections.
  • plug-in connections are advantageous with regard to assembly, repair and/or maintenance of the vacuum pump, since they can be detached and reconnected without being destroyed.
  • the connection conductor can also be permanently attached to the circuit board, in particular it can be soldered on.
  • connection conductor can have an at least approximately gas-tight covering in the area of the gas barrier, at least in sections, in particular in an end area of the gas barrier.
  • the connecting conductor can be surrounded by a material in some areas along its circumference, which prevents gas from penetrating into the insulation of the connecting conductor or into the interior of the connecting conductor.
  • gas exchange through the gas barrier via the surface of the connecting conductor or possibly via the inside or outside of the insulation of the connecting conductor can be prevented even more effectively.
  • Shrink tubing for example, is suitable as the covering, in particular with an internal adhesive, or else other sealants. These can be used in particular in an end region of the gas barrier, i. H. in the areas of the gas barrier that are in direct contact with the board-side or pump-side area of the vacuum space and possibly the gases located therein.
  • the gas barrier is arranged in a first pump part of the pump and is not in contact with a second pump part Pump defining a pumping area of the vacuum space.
  • the gas barrier does not touch a part of the pump housing of the second pump part.
  • the pump parts can in particular be separate components of the vacuum pump which are connected to one another, for example screwed, in the assembled vacuum pump.
  • the first pump part can be, for example, a lower pump part, and the second pump part can be an upper pump part.
  • the pump area of the vacuum chamber can contain one or more pump stages of the vacuum pump, and also at least partially include a motor, actuators and/or sensors of the vacuum pump.
  • the gas barrier is only arranged in the first pump part, without being in contact with the second pump part, this can facilitate the introduction of the gas barrier on the one hand, and on the other hand also the assembly and/or disassembly of the vacuum pump and thus maintenance, modification and/or repair of the pump facilitate, as a separate handling of the pump parts and a simplified replacement of defective assemblies can be done.
  • the gas barrier is arranged in a channel which is formed in the pump housing and communicates with the vacuum space.
  • the channel can extend through the pump housing from the connection opening to a pumping area of the vacuum pump.
  • the channel can be dimensioned in such a way that, in addition to the gas barrier, it can accommodate one or more connection conductors for connecting the circuit board to a motor, an actuator system and/or a sensor system.
  • the channel can have dimensions that also allow a plug connector of a connection conductor to be passed through for connection to the circuit board.
  • the channel can be so wide that the diagonal dimensions of the largest mating board connector required can be carried out.
  • the channel may have an angled or curved area filled by the gas barrier. Such channeling is advantageous in keeping the gas barrier away from the circuit board and/or terminal connections.
  • the angled or curved portion of the duct may act siphon-like in that the gas barrier fills only the curved or angled portion while the portions of the duct or vacuum space adjacent to the gas barrier remain free of the gas barrier material.
  • a duct may have a V-shaped or U-shaped section that is filled with the gas barrier to a certain level, leaving the areas of the duct before and/or behind the gas barrier free.
  • the pump part which includes the channel
  • the pump part can be oriented in a casting alignment for the casting operation in such a way that the casting compound only reaches the siphon-like angled or curved area until the channel is completely filled with the gas barrier is.
  • the pump part with the gas barrier can be positioned as desired when the pump is in operation.
  • the angled area of the channel is formed by at least two crossing bores, in particular blind bores, and/or millings in at least one part of the pump.
  • the angled channel can be easily formed in a pump part.
  • the different bores, blind bores and/or millings can emanate from the same surface or from different surfaces of the pump part, with the resultant channel being able to extend from the connection opening adjacent to the pressure chamber to a pump area of the vacuum pump.
  • Additional bores, blind bores and/or millings can advantageously supplement the course of the channel, so that connection conductors and/or plug connectors can be accommodated in the channel.
  • the channel can be formed by introducing separate components, for example by means of angle pieces or other elements.
  • the angled area of the channel can be angled multiple times like a labyrinth.
  • the channel can run in such a way that the direction has to be changed significantly several times when walking through it.
  • the directions can be at right angles to one another, with other angles being possible within the framework of the structural conditions.
  • the channel can in turn have a trough-like or siphon-like design in some areas, which allows the connection conductor to be fed through from the circuit board to the pump area of the vacuum pump and the channel or a channel section to be filled in a gas-tight manner with a gas barrier.
  • the angled portion of the channel may be defined by a surface of the pump housing and an elbow attached to the pump housing.
  • the elbow can be a separate component which is attached to the pump housing and which has at least two sections whose surfaces extend at an angle to one another.
  • the surfaces can form a right angle with one another, although other angles are also possible.
  • an open channel can be arranged in the pump housing, which is developed into a channel with an angled geometry by installing a separate component, in particular an angle piece.
  • a separate component in particular an angle piece.
  • further bores, blind bores and/or millings can be arranged in the pump housing in addition to the open channel.
  • An open channel also provides easy access to any edges created within the channel during fabrication for easy deburring and/or rounding be able. As a result, damage to the connecting conductor or its insulation can advantageously be avoided.
  • a sealing element is advantageously arranged between the angle piece and the pump housing.
  • the sealing element can be an O-ring or a sealing cord, for example.
  • the angled channel can also be sealed in the area of the separately attached angle piece, so that escaping of the sealing compound during the sealing is prevented, particularly when using a sealing compound as a gas barrier.
  • the sealing element can be omitted when using other types of gas barriers or when using high-viscosity potting compound.
  • a volume of space in the vacuum area that remains between the gas barrier and the circuit board can, for example, be at least approximately connected neither to a pump area of the vacuum area nor to the pressure area in a gas-carrying manner and is therefore also referred to below as a dead space.
  • a pressure difference between the dead space and the adjacent pump area of the vacuum space separated by the gas barrier and/or a pressure difference between the dead space and the adjacent pressure space separated by the plate does not result in any direct pressure equalization between the dead space and the pump area of the vacuum space and /or the print room.
  • a remaining leakage gas flow which can be determined on the basis of a leakage rate between the pumping area of the vacuum space and the dead space or between the pressure space and the dead space, can lead to a gradual pressure equalization, which, however, at low leak rates lasts for several hours or even several months can take place.
  • a portion of the vacuum space defined by the gas barrier and the circuit board is connected to a secondary gas source.
  • the secondary gas source advantageously provides, for example, barrier gas, protective gas, inert gas or flood gas in order to create a defined atmosphere within the dead space that is free from corrosive components.
  • a protective gas atmosphere can be used to effectively prevent undesired gas diffusion from the pumping area of the vacuum space through the gas barrier into the dead space, even if the gas barrier should have a non-negligible leak rate.
  • the pressure in the dead space could equalize that of the pump area of the vacuum space during operation of the vacuum pump, with a gas that is under a higher pressure in the dead space being able to slowly diffuse into the pump area of the vacuum space, for example. If the vacuum pump is then switched off and the pump area of the vacuum space is flooded, gas can, for example, again diffuse back out of the pump area of the vacuum space into the dead space in accordance with the leakage rate of the gas barrier. If the gas diffusing into the dead space still contains traces of corrosive process gases, these could damage the circuit board as a vacuum feedthrough. A protective gas atmosphere generated by means of a secondary gas source can advantageously prevent this.
  • the secondary gas source can be connected to the dead space in various ways, for example by a cross-connection in the form of a bore or a covered channel to another gas inlet of a secondary gas source that already exists in the vacuum pump and/or through a cross connection to another area that can be flooded by a secondary gas source and/or through a separate connection of the dead space to the secondary gas source.
  • Another object of the invention is a method for producing a vacuum pump.
  • This provides for a vacuum space delimited by a pump housing and a circuit board to be provided, for a connection opening to be formed in the pump housing, for the connection opening to be closed in a vacuum-tight manner by the circuit board so that the circuit board separates the vacuum space from a pressure space, and for a gas barrier to be formed on the vacuum side in front of the circuit board, which is spaced from the board.
  • a duct with an angled or curved portion can be formed in the pump housing, at least one lead routed through the duct, a gas barrier formed in the angled or curved portion of the duct, the lead leads connected to the circuit board, and the circuit board must be attached to the pump housing in a vacuum-tight manner.
  • the channel can be formed in one piece by the pump housing or in multiple pieces by the pump housing and/or additional components, for example angle pieces, sleeve elements or the like.
  • connection conductor can first be routed through the open duct before the angle piece is installed angled channel is formed.
  • the turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient, not shown, can be connected in a manner known per se.
  • the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.
  • the inlet flange 113 forms when the vacuum pump is aligned according to FIG 1 the upper end of the pump housing 119 of the vacuum pump 111.
  • the pump housing 119 comprises a lower pump part 121 on which an electronics housing 123 is arranged laterally. Electrical and/or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump. A plurality of connections 127 for accessories are provided on the electronics housing 123.
  • a data interface 129 for example according to the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
  • a flooding inlet 133 in particular in the form of a flooding valve, is provided on the pump housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be flooded.
  • a sealing gas connection 135, which is also referred to as a flushing gas connection through which flushing gas to protect the electric motor 125 (see e.g 3 ) before the pumped gas in the engine compartment 137, in which the electric motor 125 is housed in the vacuum pump 111, can be brought.
  • the lower pump part 121 there are also two coolant connections 139, with one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant which can be fed into the vacuum pump for cooling purposes.
  • the lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141 .
  • the vacuum pump 111 can also be fastened to a recipient via the inlet flange 113 and can thus be operated in a suspended manner, as it were.
  • the vacuum pump 111 can be designed in such a way that it can also be operated when it is oriented in a different way than in FIG 1 is shown. It is also possible to realize embodiments of the vacuum pump in which the underside 141 cannot be arranged facing downwards but to the side or directed upwards.
  • various screws 143 are also arranged, by means of which components of the vacuum pump that are not further specified here are fastened to one another.
  • a bearing cap 145 is attached to the underside 141 .
  • fastening bores 147 are arranged on the underside 141, via which the pump 111 can be fastened, for example, to a support surface.
  • a coolant line 148 is shown, in which the coolant fed in and out via the coolant connections 139 can circulate.
  • the vacuum pump comprises several process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
  • a rotor 149 is arranged in the pump housing 119 and has a rotor shaft 153 which can be rotated about an axis of rotation 151 .
  • the turbomolecular pump 111 comprises a plurality of turbomolecular pump stages connected in series with one another for pumping purposes, with a plurality of radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the pump housing 119.
  • a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular pump stage.
  • the stator discs 157 are held at a desired axial distance from one another by spacer rings 159 .
  • the vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and are connected in series with one another for pumping purposes.
  • the rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two Holweck rotor sleeves 163, 165 in the shape of a cylinder jacket, fastened to the rotor hub 161 and carried by it, which are oriented coaxially to the axis of rotation 151 and are nested in one another in the radial direction.
  • two cylinder jacket-shaped Holweck stator sleeves 167, 169 which are also oriented coaxially with respect to the axis of rotation 151 and are nested in one another when viewed in the radial direction.
  • the pumping-active surfaces of the Holweck pump stages are formed by the lateral surfaces, ie by the radial inner and/or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169.
  • the radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163, forming a radial Holweck gap 171 and forming with it the first Holweck pump stage following the turbomolecular pumps.
  • the radially inner surface of the outer Holweck rotor sleeve 163 faces the radially outer surface of the inner Holweck stator sleeve 169 opposite to form a radial Holweck gap 173 and forms with this a second Holweck pump stage.
  • the radially inner surface of the inner Holweck stator sleeve 169 faces the radially outer surface of the inner Holweck rotor sleeve 165 to form a radial Holweck gap 175 and therewith forms the third Holweck pumping stage.
  • a radially running channel can be provided, via which the radially outer Holweck gap 171 is connected to the middle Holweck gap 173.
  • a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175.
  • a connecting channel 179 to the outlet 117 can be provided at the lower end of the radially inner Holweck rotor sleeve 165 .
  • the above-mentioned pumping-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running in a spiral shape around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas for operating the Advance vacuum pump 111 in the Holweck grooves.
  • a roller bearing 181 in the region of the pump outlet 117 and a permanent magnet bearing 183 in the region of the pump inlet 115 are provided for the rotatable mounting of the rotor shaft 153 .
  • a conical spray nut 185 is provided on the rotor shaft 153 with an outer diameter that increases toward the roller bearing 181 .
  • the injection nut 185 is in sliding contact with at least one stripper of an operating fluid store.
  • the resource storage includes a plurality of absorbent discs 187 stacked on top of one another, which are impregnated with an operating medium for the roller bearing 181, for example with a lubricant.
  • the operating fluid is transferred by capillary action from the operating fluid reservoir to the rotating spray nut 185 via the scraper and, as a result of the centrifugal force, is conveyed along the spray nut 185 in the direction of the increasing outer diameter of the spray nut 185 to the roller bearing 181, where it e.g. fulfills a lubricating function.
  • the roller bearing 181 and the operating fluid reservoir are surrounded by a trough-shaped insert 189 and the bearing cover 145 in the vacuum pump.
  • the permanent magnet bearing 183 comprises a bearing half 191 on the rotor side and a bearing half 193 on the stator side, which each comprise a ring stack of a plurality of permanent magnetic rings 195, 197 stacked on top of one another in the axial direction.
  • the ring magnets 195, 197 lie opposite one another, forming a radial bearing gap 199, the ring magnets 195 on the rotor side being arranged radially on the outside and the ring magnets 197 on the stator side being arranged radially on the inside.
  • the magnetic field present in the bearing gap 199 produces magnetic repulsive forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially.
  • the ring magnets 195 on the rotor side are carried by a support section 201 of the rotor shaft 153, which radially surrounds the ring magnets 195 on the outside.
  • the ring magnets 197 on the stator are carried by a support section 203 on the stator, which extends through the ring magnets 197 and is suspended on radial struts 205 of the pump housing 119 .
  • the ring magnets 195 on the rotor side are fixed parallel to the axis of rotation 151 by a cover element 207 coupled to the carrier section 203 .
  • the stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the support section 203 and a fastening ring 211 connected to the support section 203 . Between the mounting ring 211 and the ring magnet 197, a plate spring 213 can also be provided.
  • An emergency or safety bearing 215 is provided within the magnetic bearing, which runs idle without contact during normal operation of the vacuum pump 111 and only engages in the event of an excessive radial deflection of the rotor 149 relative to the stator, in order to create a radial stop for the rotor 149 to form since collision of the rotor-side structures with the stator-side structures is prevented.
  • the backup bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and/or the stator, which causes the backup bearing 215 to be disengaged during normal pumping operation.
  • the radial deflection at which the backup bearing 215 engages is dimensioned large enough so that the backup bearing 215 does not engage during normal operation of the vacuum pump, and at the same time small enough so that the rotor-side structures collide with the stator-side structures under all circumstances is prevented.
  • the vacuum pump 111 includes the electric motor 125 for rotating the rotor 149.
  • the armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217.
  • a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 that extends through the motor stator 217 .
  • the motor stator 217 is fixed in the pump housing inside the motor room 137 provided for the electric motor 125 .
  • a sealing gas which is also referred to as purge gas and which can be air or nitrogen, for example, can get into the engine compartment 137.
  • the electric motor 125 can be protected against process gas, for example against corrosive components of the process gas, via the sealing gas.
  • the engine compartment 137 can also be evacuated via the pump outlet 117 , ie the vacuum pressure produced by the backing pump connected to the pump outlet 117 prevails in the engine compartment 137 at least approximately.
  • a labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the motor compartment 137, in particular in order to achieve better sealing of the motor compartment 217 in relation to the Holweck pump stages located radially outside.
  • FIG. 6 shows a first embodiment of a pump lower part 121 of the turbomolecular pump 111 in an assembled operating state.
  • the turbomolecular pump 111 has a vacuum chamber V delimited by the pump housing 119, which is separated from a pressure chamber D by means of a circuit board 241 as a vacuum passage.
  • the circuit board 241 is attached to the pump housing 119 in a vacuum-tight manner in the area of a connection opening 225 using an O-ring 243 .
  • the vacuum chamber V includes an angled channel 224 in which a gas barrier 231 is arranged, which is upstream of the circuit board 241 on the vacuum side and keeps the process gas away from the circuit board 241 and the connection connections of the circuit board 241 .
  • the gas barrier 231 is a potting compound which has a siphon-like angled area 229 ( Figure 7B ) of the channel 224 in a gas-tight manner.
  • the board 241 is connected to leads 233 which extend through the gas barrier 231 to an opening 239 to a pumping area 240 ( 8 ) of the turbomolecular pump 111 extend.
  • the connection conductors 233 have plug connectors 235 which are connected to the circuit board 241 .
  • the plug-in connector 235 and the sections of the connecting conductors 233 adjoining it are received in a receiving space 226 of the angled channel 224 .
  • the connection conductors 233 can be connected to a motor, an actuator system and/or a sensor system of the turbomolecular pump 111 .
  • the casting compound 231 is not in contact with the circuit board 241 or the plug connectors 235, so that the contacts cannot be impaired by the gas barrier 231, in particular by the casting compound.
  • the gas barrier 231 and the circuit board 241 thus define a region of the vacuum space V referred to as a dead space T, which is at least essentially not connected to the pump region 240 and the pressure space D in a gas-conducting manner.
  • a secondary gas source (not shown) can be connected to the dead space T, which can allow the dead space T to be flooded with a protective gas in order to keep corrosive process gas away from the circuit board 241 even more effectively.
  • the lower pump part 121 is aligned as required or can be arranged in any orientation as required, since the hardened casting compound 231 remains effective as a gas barrier in all orientations.
  • the casting compound 231 is arranged exclusively in the pump lower part 121 and is not in contact with a pump upper part 249 ( 8 ) that defines the pumping region 240 of the vacuum space. Therefore, the lower pump part 121 can advantageously be dismantled in an uncomplicated manner and handled separately for service, maintenance and repair purposes. Additional flexibility in the assembly and disassembly of the turbomolecular pump 111 results from the fact that the connection connections of the circuit board 241 are designed to be pluggable, which enables the circuit board 241 to be easily replaced, for example.
  • FIGS 7A to 7C outline the production of the first embodiment of the pump lower part 121 6 .
  • FIGS 7A to 7C outline the production of the first embodiment of the pump lower part 121 6 .
  • other components of the turbomolecular pump 111 arranged in the pump lower part 121 are not shown.
  • Figure 7A shows that the section of the channel 224 provided for receiving the gas barrier 231 is made of two intersecting blind bores 227a and 227b, which emanate from opposite sides of the lower pump part 121 and intersect at an angle of 90° in the exemplary embodiment shown. It goes without saying that, depending on the structural boundary conditions, other angles can also be considered.
  • a first blind hole 227a starts in the pump housing 119 from the side of the designated pressure chamber D and defines the connection opening 225.
  • a second blind hole 227b defines the opening 239 to the pumping area 240 of the turbomolecular pump 111.
  • the pump housing 119 has a third blind hole in the area of the connection opening 225 227c, which expands the channel 224 by a receiving space 226 for receiving electrical or electronic connection components.
  • the third and first blind bores 227c, 227a intersect at an angle of 45°, although other angles are also possible here.
  • Figure 7B shows the overall cross section of the resulting channel 224.
  • the channel 224 In the area of the intersecting first and second blind bores 227a, 227b, the channel 224 has an area with an angled contour 229, which is oriented to the right in the orientation of the lower pump part 121 shown.
  • the Figure 7C shows the lower pump part 121 during the introduction of the gas barrier 231 in a casting orientation, which in the exemplary embodiment shown involves a rotation of the lower pump part 121 compared to the operating state 6 corresponds to 90° to the right.
  • the channel 224 Through the channel 224 are first Connection conductors 233 are laid, which have plug connectors 235 for connection to the circuit board 241 on the part of the connection opening 225 .
  • the dimension of the channel 224 is chosen so that the connection conductor 233 and the plug connector 235 can be passed through.
  • a sealing groove 237 is provided for receiving the O-ring 243 for vacuum-tight mounting of the circuit board 241.
  • the gas barrier 231 is in the form of a casting compound which is initially sufficiently free-flowing to be introduced into the channel 224 by casting and which then hardens there.
  • the lower pump part 121 is positioned, as shown, in such a way that the angled area 229 forms the lowest point of the channel 224 in the manner of a siphon.
  • the sealing compound 231 is introduced into the siphon-like area 229 of the channel 224 through the connection opening 225 and/or the opening 239 to the pumping area 240 until the channel 224 is sealed gas-tight.
  • the connection conductors 233 are cast in the casting compound 231 .
  • the areas in front of and behind the potting compound remain free of the gas barrier 231, so that the potting compound does not come into contact with the circuit board 241 or its connections.
  • the lower pump part 121 remains in the orientation shown until the sealing compound 231 has hardened.
  • FIG. 8 shows a second embodiment of a pump base 121 of a turbomolecular pump 111 in an assembled operating state and Figures 9A to 9C outline the production of the second embodiment.
  • the second embodiment is the in 6
  • the first embodiment shown is largely similar, which is why the differences between the embodiments will be discussed in particular below.
  • FIG. 8 shows the lower pump part 121, which has a circuit board 241 as a vacuum passage and an angled channel 224 in which a gas barrier 231 is arranged.
  • Another pump part, here a pump shell 249, the Defined pumping area 240 of the turbomolecular pump 111 is mounted on the pump base 121 and sealed with an O-ring arranged in a sealing groove 247 .
  • the channel 224 is made of two blind bores 227a and 227b, which intersect at an angle of 90°, with other angles also being able to be selected taking into account the structural conditions.
  • Both blind bores 227a, 227b are executed from the same side of the lower pump part 121, here from the side of the pump area 240, so that the bores define an opening 239 to the pump area 240 and a further bore opening 251 in the pump housing 119.
  • a milling 245 on the opposite side of the pump base 121 completes the implementation of the angled channel 224 to the side of the connection opening 225.
  • the connection opening 225 for the circuit board 241 as a vacuum passage can be made smaller here, since the milling 245 is at a right angle to the surface of the pump housing 119.
  • Figure 9B shows the overall cross section of the resulting channel 224.
  • the crossing blind bores 227a and 227b form a siphon-like angled region 229 of the channel 224.
  • Figure 9C 12 shows the pump base 121 in an orientation during the introduction of a potting compound as a gas barrier 231 in a potting orientation. Since both blind holes 227a, 227b in Figure 9A are carried out from the same side of the pump housing 119, the pump upper part 249 must already be installed during the casting in order to seal the bore opening 251 with the casting compound 231.
  • the opening 239 establishes the communication of the channel 224 with the pumping area 240 of the turbomolecular pump 111 .
  • the lower pump part 121 and the upper pump part 249 with the connecting conductors 233 passed through are placed in such a way that the siphon-like angled region 229 can be filled with sealing compound 231 from the connection opening 225.
  • the drilled opening 251 is also filled with the casting compound 231 and sealed by contact with the pump upper part 249 .
  • the circuit board 241 can be connected to the plug connectors 235 of the connection conductors 233 and mounted in a vacuum-tight manner over the connection opening 225 of the lower pump part 121, so that the circuit board separates the vacuum space V from the pressure space D.
  • the lower pump part 121 and the upper pump part 249 can then be aligned as intended for the operation of the turbomolecular pump 111; in particular, the lower pump part 121 can be aligned downwards and the upper pump part 249 can be aligned upwards ( 8 ).
  • a third embodiment of a pump base 121 is in 10 shown in cross section, the steps for manufacturing such a lower pump part 121 are in Figures 11A to 11C sketched.
  • the embodiment shown has a channel 224 which is labyrinthine multiple angles.
  • the angled area is partially delimited by the surface of the pump housing 119, partially by an angle piece 259 fastened to the pump housing 119.
  • Figure 11A shows the lower pump part 121 in a top view viewed from the side of the pumping area 240 of the turbomolecular pump 111, as well as the angle piece 259 before assembly.
  • the lower pump part 121 has an open channel 253 drilled through it and, adjoining it, also has a first cutout 255a and a second cutout 255b for accommodating connection conductors 233 .
  • a sealing groove 257 surrounds the open channel 253 and the recesses 255a, 255b so that a sealing element 261 can be arranged between the elbow 259 and the pump housing 119.
  • Figure 11B shows a cross section through the pump base 121 with the open channel 253 and the recesses 255a, 255b. Due to the open design, all edges 262 are easily accessible for processing. In particular, they can be deburred or rounded off so that the connection conductors 233 or their insulation are not damaged.
  • the open channel 253 and the recesses 255a, 255b and the mounted angle piece 259 form a labyrinthine channel 224, the walls of which are formed by the pump housing 119 and the angle piece 259 attached thereto.
  • the channel 224 has an angled portion 229 intended to receive a gas barrier 231, such as a potting compound.
  • a gas barrier 231, such as a potting compound is a gas barrier 231, such as a potting compound.
  • the open channel 253 does not have to have a dimension over its entire extension that allows the connector 235 to be passed through. Rather, the angled area 229 only has to provide space for the connecting conductors 233, which allows the channel to have compact dimensions.
  • a sealing cord 261 guided in the sealing groove 257 between the angle piece 259 and the pump housing 119 seals the channel 224 .
  • the lower pump part 121 For potting with a potting compound as a gas barrier 231, the lower pump part 121 is positioned in a potting orientation after the connection conductor 233 has been passed through the open channel 253 and the angle piece 259 has been installed to form the labyrinthine channel 224, so that the potting of the angled area 229 starts from the connection opening 225 can be done ( Figure 11D ).
  • the sealing cord 261 seals the area 229 when using a less viscous cord Potting compound from, but can be omitted for a higher viscosity potting compound.
  • the connecting conductors 233 can be connected to the circuit board 241 by means of the plug connector 235, the circuit board 241 can be mounted in a vacuum-tight manner on the pump housing 119 via the connection opening 225 and the lower pump part 121 can be aligned as intended for the operation of the turbomolecular pump 111 and connected to a pump head 249 of the pump.
  • a gas-tight cover 265 prevents gas from entering the surface or insulation of the connection conductor 233 and thus a possible gas passage through the Casting compound 231 along the connection conductor 233.
  • a gas-tight envelope 265 can be achieved by shrink tubing, in particular shrink tubing with internal adhesive.
  • connection points 267 to a motor, an actuator system and/or a sensor system of the turbomolecular pump 111 can also be embedded in a casting compound 269 at the end of the connecting conductors 233 facing away from the circuit board 241, as in 12 is shown.

Description

Die Erfindung betrifft eine Vakuumpumpe, insbesondere eine Turbomolekularpumpe, mit einem Vakuumraum, der durch eine Platine vakuumdicht von einem Druckraum abgetrennt ist, sowie ein Verfahren zur Herstellung einer Vakuumpumpe.The invention relates to a vacuum pump, in particular a turbomolecular pump, with a vacuum chamber which is separated from a pressure chamber in a vacuum-tight manner by a plate, and a method for producing a vacuum pump.

Aus dem Stand der Technik sind Vakuumpumpen bekannt, die eine Glasdurchführung mit isolierten Lötverbindungen für die Durchführung von Signalen aus einem Vakuumraum in einen Druckraum aufweisen. Bei einer Vielzahl an durchzuführenden Signalen ist jedoch eine Platine als Vakuumdurchführung wesentlich günstiger. Eine Vakuumpumpe mit einer solchen Platine ist ebenfalls bekannt, kann beim Pumpen von Korrosivgasen jedoch nicht eingesetzt werden, da korrosives Prozessgas die Platine beschädigen könnte. Für derartige Anwendungen, wie sie z.B. in der Halbleiterindustrie relevant sind, muss daher auf eine aufwändigere Glasdurchführung mit Lötverbindungen zurückgegriffen werden.Vacuum pumps are known from the prior art which have a glass feedthrough with insulated soldered connections for the passage of signals from a vacuum space into a pressure space. With a large number of signals to be fed through, however, a circuit board as a vacuum feedthrough is much cheaper. A vacuum pump with such a circuit board is also known, but cannot be used when pumping corrosive gases since corrosive process gas could damage the circuit board. For such applications, such as those relevant in the semiconductor industry, a more complex glass feedthrough with soldered connections must be used.

Die EP 3 431 769 A1 offenbart eine Vakuumpumpe mit einem Vakuumraum, der mittels einer Anschlussplatine vakuumdicht gegen einen Druckraum verschlossen ist. Zur Vermeidung von elektrischen Überschlägen sind Anschlussleiter, die vakuumseitig an der Anschlussplatine angeschlossen sind, und deren Anschlusspunkte sowie auch ein Motorstator der Vakuumpumpe von einer Vergussmasse umgeben.the EP 3 431 769 A1 discloses a vacuum pump with a vacuum chamber which is sealed against a pressure chamber in a vacuum-tight manner by means of a connection board. To avoid electrical flashovers, connection conductors that are connected to the connection board on the vacuum side and their connection points as well as a motor stator of the vacuum pump are surrounded by a casting compound.

Ausgehend von diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, eine Vakuumpumpe bereitzustellen, die wirtschaftlicher herstellbar sowie flexibler einsetzbar ist.Proceeding from this state of the art, it is an object of the present invention to provide a vacuum pump that can be manufactured more economically and used more flexibly.

Erfindungsgemäß wird diese Aufgabe gelöst durch eine Vakuumpumpe mit den Merkmalen des Anspruchs 1 und ein Verfahren zur Herstellung einer Vakuumpumpe mit den Merkmalen des Anspruchs 14.According to the invention, this object is achieved by a vacuum pump having the features of claim 1 and a method for producing a vacuum pump having the features of claim 14.

Eine erfindungsgemäße Vakuumpumpe, insbesondere Turbomolekularpumpe, umfasst einen durch ein Pumpengehäuse begrenzten Vakuumraum sowie eine Platine, wobei das Pumpengehäuse eine Anschlussöffnung aufweist, die durch die Platine vakuumdicht verschlossen ist, sodass die Platine den Vakuumraum von einem Druckraum trennt, wobei der Platine vakuumseitig eine zu der Platine beabstandete Gassperre vorgelagert ist.A vacuum pump according to the invention, in particular a turbomolecular pump, comprises a vacuum space delimited by a pump housing and a Circuit board, wherein the pump housing has a connection opening which is closed in a vacuum-tight manner by the circuit board, so that the circuit board separates the vacuum space from a pressure space, the circuit board being preceded on the vacuum side by a gas barrier spaced apart from the circuit board.

Der Erfindung liegt der allgemeine Gedanke zugrunde, das Prozessgas von der Platine fernzuhalten. Dies hat den Vorteil, dass korrosives Prozessgas gepumpt werden kann, ohne dass es in Kontakt mit der Platine kommt und diese beschädigt. Dadurch weist die erfindungsgemäße Vakuumpumpe flexiblere Einsatzmöglichkeiten auf. In der erfindungsgemäßen Vakuumpumpe kann auch beim Pumpen von korrosiven Prozessgasen die Platine als Vakuumdurchführung eingesetzt werden, was eine einfachere und günstigere Lösung ist als eine Glasdurchführung mit Lötverbindungen. Somit ist die erfindungsgemäße Vakuumpumpe wirtschaftlicher herstellbar.The invention is based on the general idea of keeping the process gas away from the circuit board. This has the advantage that corrosive process gas can be pumped without it coming into contact with and damaging the circuit board. As a result, the vacuum pump according to the invention has more flexible application options. In the vacuum pump according to the invention, the circuit board can also be used as a vacuum feedthrough when pumping corrosive process gases, which is a simpler and cheaper solution than a glass feedthrough with soldered connections. The vacuum pump according to the invention can thus be produced more economically.

Die Gassperre ist zumindest annähernd gasdicht und verhindert zumindest im Wesentlichen das Hindurchtreten des gepumpten Gases. Sie ist in dem Vakuumraum der Vakuumpumpe so angeordnet, dass das Prozessgas von der Platine ferngehalten wird. Damit die Platine und gegebenenfalls deren elektrische Anschlussverbindungen nicht durch die Gassperre beeinträchtigt werden, steht die Gassperre nicht in direktem Kontakt mit der Platine und/oder den Anschlussverbindungen. Dies hat zudem den Vorteil, dass Platine und Anschlussverbindungen auch in Gegenwart der Gassperre für Wartung, Modifikation und/oder Reparatur zugänglich sind, sodass beispielsweise die Platine einfach ausgetauscht werden kann.The gas barrier is at least approximately gas-tight and at least essentially prevents the pumped gas from passing through. It is arranged in the vacuum chamber of the vacuum pump in such a way that the process gas is kept away from the circuit board. So that the circuit board and possibly its electrical connection connections are not impaired by the gas barrier, the gas barrier is not in direct contact with the circuit board and/or the connection connections. This also has the advantage that the circuit board and terminal connections are accessible for maintenance, modification and/or repair even in the presence of the gas barrier, so that the circuit board can be easily replaced, for example.

Während in dem Vakuumraum im Betriebszustand der Vakuumpumpe ein durch mindestens eine Pumpstufe erzeugter Unterdruck vorliegen kann, trennt die Platine als Vakuumdurchführung den Vakuumraum von einem Druckraum ab, in dem beispielsweise Atmosphärendruck herrschen kann. Eine Leckrate der Platine als Vakuumdurchführung kann zumindest im Wesentlichen vernachlässigbar sein.While in the vacuum space in the operating state of the vacuum pump there can be a negative pressure generated by at least one pump stage, the circuit board separates the vacuum space from a pressure space in which For example, atmospheric pressure can prevail. A leakage rate of the circuit board as a vacuum feedthrough can be at least essentially negligible.

Vorteilhafte Ausbildungen der Erfindung sind den Unteransprüchen, der Beschreibung und der Zeichnung zu entnehmen.Advantageous developments of the invention can be found in the dependent claims, the description and the drawing.

Gemäß einer Ausführungsform weist die Gassperre der Vakuumpumpe eine Vergussmasse auf. Diese kann vorteilhaft zum Vergießen zumindest eines Abschnitts des Vakuumraums mit beliebiger Geometrie und mit gegebenenfalls darin umfassten Bauteilen verwendet werden. Eine Vergussmasse als Gassperre kann den Vakuumraum oder einen Abschnitt davon ohne den Einsatz zusätzlicher Dichtmittel zumindest annähernd gasdicht ausfüllen.According to one embodiment, the gas barrier of the vacuum pump has a potting compound. This can advantageously be used to encapsulate at least one section of the vacuum space with any desired geometry and with any components included therein. A casting compound as a gas barrier can fill the vacuum space or a section thereof at least approximately gas-tight without the use of additional sealing means.

Das Ausbilden der Gassperre kann materialabhängig auf verschiedene Arten erfolgen. Beispielsweise kann eine Vergussmasse in einem fließfähigen Zustand in einen zur Aufnahme der Gassperre vorgesehenen Bereich des Vakuumraums eingegossen werden, wo die Vergussmasse anschließend aushärtet. Anders ausgebildete Gassperren können auf jeweils geeignete Weise in den Vakuumraum der Vakuumpumpe eingebracht werden. Beispielsweise kann die Gassperre der Vakuumpumpe eine selbstexpandierende Materialeigenschaft aufweisen. Weiterhin kann die Gassperre als Festkörper in einen Abschnitt des Vakuumraums eingebracht und dort expandiert werden. Dabei kann sowohl der Festkörper Formgedächtniseigenschaften aufweisen und zum Einbringen in den Vakuumraum komprimiert werden, um eine spätere eigenständige, passive Expansion zu ermöglichen, als auch ein Hilfsmittel oder -stoff eingesetzt werden, um eine erzwungene Expansion auszuführen.The gas barrier can be formed in various ways, depending on the material. For example, a potting compound in a free-flowing state can be poured into an area of the vacuum space provided for receiving the gas barrier, where the potting compound then hardens. Gas barriers of a different design can be introduced into the vacuum chamber of the vacuum pump in a suitable manner. For example, the gas barrier of the vacuum pump can have a self-expanding material property. Furthermore, the gas barrier can be introduced as a solid body into a section of the vacuum space and expanded there. The solid body can have shape-memory properties and can be compressed for introduction into the vacuum space in order to enable later independent, passive expansion, or an aid or substance can be used to carry out a forced expansion.

Bevorzugt weist die Vakuumpumpe zumindest einen Anschlussleiter auf, der sich durch die Gassperre erstreckt und der mit der Platine verbunden ist, insbesondere mit einer der Gassperre zugewandten Seite der Platine. Das andere Ende des elektrischen Anschlussleiters kann an einen Motor, eine Aktorik und/oder eine Sensorik der Vakuumpumpe angeschlossen sein, sodass Signale durch die Gassperre zwischen der Platine und dem Motor, der Aktorik und/oder der Sensorik der Vakuumpumpe übermittelt werden können.The vacuum pump preferably has at least one connecting conductor which extends through the gas barrier and which is connected to the circuit board, in particular to a side of the circuit board which faces the gas barrier. The other end of the Electrical connection conductor can be connected to a motor, actuators and / or sensors of the vacuum pump, so that signals can be transmitted through the gas barrier between the circuit board and the motor, actuators and / or sensors of the vacuum pump.

Vorteilhafterweise ist die Verbindung des Anschlussleiters mit der Platine eine Steckverbindung. Dies ist, insbesondere bei einer Vielzahl von Anschlussleitern, günstig und zugleich komfortabler in der Handhabung als Lötverbindungen. Zudem sind Steckverbindungen vorteilhaft in Hinblick auf Montage, Reparatur und/oder Wartung der Vakuumpumpe, da sie zerstörungsfrei lösbar und wieder verbindbar sein können. Alternativ kann der Anschlussleiter auch unlösbar an der Platine angebracht sein, insbesondere kann er angelötet sein.Advantageously, the connection between the connecting conductor and the circuit board is a plug-in connection. This is cheap, especially when there are a large number of connection conductors, and at the same time more convenient to use than soldered connections. In addition, plug-in connections are advantageous with regard to assembly, repair and/or maintenance of the vacuum pump, since they can be detached and reconnected without being destroyed. Alternatively, the connection conductor can also be permanently attached to the circuit board, in particular it can be soldered on.

Der Anschlussleiter kann im Bereich der Gassperre zumindest abschnittsweise, insbesondere in einem Endbereich der Gassperre, eine zumindest annähernd gasdichte Umhüllung aufweisen. Insbesondere kann der Anschlussleiter bereichsweise entlang seines Umfangs von einem Material umgeben sein, das ein Eindringen von Gas in die Isolierung des Anschlussleiters oder ins Innere des Anschlussleiters verhindert. Dadurch kann ein Gasaustausch durch die Gassperre hindurch über die Oberfläche des Anschlussleiters bzw. gegebenenfalls über die Innen- oder Außenseite der Isolierung des Anschlussleiters noch wirksamer verhindert werden. Geeignet sind als Umhüllung beispielsweise Schrumpfschläuche, insbesondere mit Innenkleber oder auch andere Dichtmittel. Diese können insbesondere in einem Endbereich der Gassperre eingesetzt werden, d. h. in den Bereichen der Gassperre, die direkt mit dem platinenseitigen oder pumpbereichseitigen Bereich des Vakuumraums und gegebenenfalls den darin befindlichen Gasen in Kontakt stehen.The connection conductor can have an at least approximately gas-tight covering in the area of the gas barrier, at least in sections, in particular in an end area of the gas barrier. In particular, the connecting conductor can be surrounded by a material in some areas along its circumference, which prevents gas from penetrating into the insulation of the connecting conductor or into the interior of the connecting conductor. As a result, gas exchange through the gas barrier via the surface of the connecting conductor or possibly via the inside or outside of the insulation of the connecting conductor can be prevented even more effectively. Shrink tubing, for example, is suitable as the covering, in particular with an internal adhesive, or else other sealants. These can be used in particular in an end region of the gas barrier, i. H. in the areas of the gas barrier that are in direct contact with the board-side or pump-side area of the vacuum space and possibly the gases located therein.

Die Gassperre ist gemäß einer Ausführungsform in einem ersten Pumpenteil der Pumpe angeordnet und steht nicht in Kontakt zu einem zweiten Pumpenteil der Pumpe, welcher einen Pumpbereich des Vakuumraums definiert. Insbesondere berührt die Gassperre gemäß dieser Ausführungsform nicht einen Teil des Pumpengehäuses des zweiten Pumpenteils. Die Pumpenteile können hierbei insbesondere separate Bauteile der Vakuumpumpe sein, die in der montierten Vakuumpumpe miteinander verbunden, beispielsweise verschraubt, sind. Der erste Pumpenteil kann beispielsweise ein Pumpenunterteil sein, der zweite Pumpenteil ein Pumpenoberteil. Der Pumpbereich des Vakuumraums kann eine oder mehrere Pumpstufen der Vakuumpumpe beinhalten, sowie auch einen Motor, eine Aktorik und/oder eine Sensorik der Vakuumpumpe zumindest teilweise umfassen.According to one embodiment, the gas barrier is arranged in a first pump part of the pump and is not in contact with a second pump part Pump defining a pumping area of the vacuum space. In particular, according to this embodiment, the gas barrier does not touch a part of the pump housing of the second pump part. In this case, the pump parts can in particular be separate components of the vacuum pump which are connected to one another, for example screwed, in the assembled vacuum pump. The first pump part can be, for example, a lower pump part, and the second pump part can be an upper pump part. The pump area of the vacuum chamber can contain one or more pump stages of the vacuum pump, and also at least partially include a motor, actuators and/or sensors of the vacuum pump.

Ist die Gassperre nur in dem ersten Pumpenteil angeordnet, ohne in Kontakt mit dem zweiten Pumpenteil zu stehen, kann das einerseits das Einbringen der Gassperre erleichtern, andererseits auch die Montage und/oder Demontage der Vakuumpumpe und somit Wartung, Modifikation und/oder Reparatur der Pumpe erleichtern, da eine separate Handhabung der Pumpenteile sowie ein vereinfachter Austausch defekter Baugruppen erfolgen kann.If the gas barrier is only arranged in the first pump part, without being in contact with the second pump part, this can facilitate the introduction of the gas barrier on the one hand, and on the other hand also the assembly and/or disassembly of the vacuum pump and thus maintenance, modification and/or repair of the pump facilitate, as a separate handling of the pump parts and a simplified replacement of defective assemblies can be done.

Gemäß einer Ausführungsform ist die Gassperre in einem Kanal angeordnet, der in dem Pumpengehäuse ausgebildet ist und mit dem Vakuumraum kommuniziert. Insbesondere kann der Kanal sich von der Anschlussöffnung bis zu einem Pumpbereich der Vakuumpumpe durch das Pumpengehäuse erstrecken. Der Kanal kann so bemessen sein, dass er zusätzlich zu der Gassperre einen oder mehrere Anschlussleiter zur Verbindung der Platine mit einem Motor, einer Aktorik und/oder einer Sensorik aufnehmen kann. Der Kanal kann Abmessungen aufweisen, die auch ein Durchführen eines Steckverbinders eines Anschlussleiters zur Verbindung mit der Platine erlauben. Insbesondere kann der Kanal so weit sein, dass die Diagonalmaße der größten benötigten Platinen-Gegenstecker durchführbar sind.According to one embodiment, the gas barrier is arranged in a channel which is formed in the pump housing and communicates with the vacuum space. In particular, the channel can extend through the pump housing from the connection opening to a pumping area of the vacuum pump. The channel can be dimensioned in such a way that, in addition to the gas barrier, it can accommodate one or more connection conductors for connecting the circuit board to a motor, an actuator system and/or a sensor system. The channel can have dimensions that also allow a plug connector of a connection conductor to be passed through for connection to the circuit board. In particular, the channel can be so wide that the diagonal dimensions of the largest mating board connector required can be carried out.

Der Kanal kann einen abgewinkelten oder gekrümmten Bereich aufweisen, der durch die Gassperre ausgefüllt ist. Eine derartige Kanalanordnung ist vorteilhaft, um die Gassperre von der Platine und/oder den Anschlussverbindungen fernzuhalten. Der abgewinkelte oder gekrümmte Bereich des Kanals kann siphonartig wirken, indem die Gassperre nur den gekrümmten oder abgewinkelten Bereich ausfüllt, während die an die Gassperre angrenzenden Bereiche des Kanals bzw. des Vakuumraums frei von dem Material der Gassperre bleiben. Beispielsweise kann ein Kanal einen V-förmigen oder U-förmigen Abschnitt aufweisen, der mit der Gassperre bis zu einem bestimmten Niveau aufgefüllt ist, wobei die Bereiche des Kanals vor und/oder hinter der Gassperre frei bleiben. Insbesondere wenn eine Vergussmasse zum Einsatz kommt, kann für den Arbeitsgang des Vergießens der Pumpenteil, der den Kanal umfasst, so in einer Vergießausrichtung orientiert werden, dass die Vergussmasse ausschließlich in den siphonartig abgewinkelten oder gekrümmten Bereich gelangt, bis der Kanal vollumfänglich mit der Gassperre ausgefüllt ist. Nach dem Aushärten der Vergussmasse kann der Pumpenteil mit der Gassperre im Betriebszustand der Pumpe beliebig positioniert werden.The channel may have an angled or curved area filled by the gas barrier. Such channeling is advantageous in keeping the gas barrier away from the circuit board and/or terminal connections. The angled or curved portion of the duct may act siphon-like in that the gas barrier fills only the curved or angled portion while the portions of the duct or vacuum space adjacent to the gas barrier remain free of the gas barrier material. For example, a duct may have a V-shaped or U-shaped section that is filled with the gas barrier to a certain level, leaving the areas of the duct before and/or behind the gas barrier free. In particular, if a casting compound is used, the pump part, which includes the channel, can be oriented in a casting alignment for the casting operation in such a way that the casting compound only reaches the siphon-like angled or curved area until the channel is completely filled with the gas barrier is. After the casting compound has hardened, the pump part with the gas barrier can be positioned as desired when the pump is in operation.

Gemäß einer Ausführungsform ist der abgewinkelte Bereich des Kanals durch zumindest zwei sich kreuzende Bohrungen, insbesondere Sackbohrungen, und/oder Fräsungen in mindestens einem Teil der Pumpe gebildet. Auf diese Art kann der abgewinkelte Kanal auf einfache Weise in einem Pumpenteil ausgebildet werden. Die unterschiedlichen Bohrungen, Sackbohrungen und/oder Fräsungen können von derselben Oberfläche oder von verschiedenen Oberflächen des Pumpenteils ausgehen, wobei sich der resultierende Kanal von der an den Druckraum angrenzenden Anschlussöffnung zu einem Pumpbereich der Vakuumpumpe erstrecken kann. Zusätzliche Bohrungen, Sackbohrungen und/oder Fräsungen können den Verlauf des Kanals vorteilhaft ergänzen, sodass Anschlussleiter und/oder Steckverbinder in dem Kanal aufgenommen werden können. Alternativ oder zusätzlich kann der Kanal durch das Einbringen von separaten Bauelementen ausgeformt werden, beispielsweise mittels Winkelstücken oder anderen Elementen.According to one embodiment, the angled area of the channel is formed by at least two crossing bores, in particular blind bores, and/or millings in at least one part of the pump. In this way, the angled channel can be easily formed in a pump part. The different bores, blind bores and/or millings can emanate from the same surface or from different surfaces of the pump part, with the resultant channel being able to extend from the connection opening adjacent to the pressure chamber to a pump area of the vacuum pump. Additional bores, blind bores and/or millings can advantageously supplement the course of the channel, so that connection conductors and/or plug connectors can be accommodated in the channel. Alternatively or additionally, the channel can be formed by introducing separate components, for example by means of angle pieces or other elements.

Der abgewinkelte Bereich des Kanals kann labyrinthartig mehrfach abgewinkelt sein. Insbesondere kann der Kanal derart verlaufen, dass bei einem gedachten Durchschreiten mehrfach die Richtung wesentlich geändert werden muss. Dabei können beispielsweise die Richtungen in jeweils rechten Winkeln zueinander stehen, wobei andere Winkel im Rahmen der konstruktiven Gegebenheiten möglich sind. Dadurch kann der Kanal wiederum bereichsweise wannenartig bzw. siphonartig ausgebildet sein, was das Durchführen des Anschlussleiters von der Platine zum Pumpbereich der Vakuumpumpe und ein gasdichtes Ausfüllen des Kanals oder eines Kanalabschnitts mit einer Gassperre erlaubt.The angled area of the channel can be angled multiple times like a labyrinth. In particular, the channel can run in such a way that the direction has to be changed significantly several times when walking through it. In this case, for example, the directions can be at right angles to one another, with other angles being possible within the framework of the structural conditions. As a result, the channel can in turn have a trough-like or siphon-like design in some areas, which allows the connection conductor to be fed through from the circuit board to the pump area of the vacuum pump and the channel or a channel section to be filled in a gas-tight manner with a gas barrier.

Der abgewinkelte Bereich des Kanals kann durch eine Oberfläche des Pumpengehäuses und ein an dem Pumpengehäuse befestigtes Winkelstück definiert sein. Insbesondere kann das Winkelstück ein separates Bauteil sein, das an dem Pumpengehäuse angebracht ist und das zumindest zwei Abschnitte aufweist, deren Oberflächen sich winklig zueinander erstrecken. Insbesondere können die Oberflächen einen rechten Winkel miteinander einschließen, wobei auch andere Winkel möglich sind.The angled portion of the channel may be defined by a surface of the pump housing and an elbow attached to the pump housing. In particular, the elbow can be a separate component which is attached to the pump housing and which has at least two sections whose surfaces extend at an angle to one another. In particular, the surfaces can form a right angle with one another, although other angles are also possible.

Beispielsweise kann ein offener Kanal in dem Pumpengehäuse angeordnet sein, der durch die Montage eines separaten Bauteils, insbesondere eines Winkelstücks, zu einem Kanal mit abgewinkelter Geometrie weitergebildet ist. Zur Aufnahme einer abgewinkelten Oberfläche des Winkelstücks können zusätzlich zu dem offenen Kanal weitere Bohrungen, Sackbohrungen und/oder Fräsungen in dem Pumpengehäuse angeordnet sein. Dadurch kann vorteilhaft ein kompakterer Kanal Anwendung finden, da nur die Abmessungen des offenen Kanals gegebenenfalls groß genug zum Durchführen eines Steckverbinders eines Anschlussleiters sein müssen, während der abgewinkelte Bereich des Kanals nur den Anschlussleiter selbst, nicht aber den Stecker aufnehmen muss. Ein offener Kanal bietet zudem einfachen Zugang zu allen Kanten, die bei der Herstellung innerhalb des Kanals entstehen, sodass diese leicht entgratet und/oder abgerundet werden können. Dadurch kann vorteilhaft eine Beschädigung des Anschlussleiters bzw. dessen Isolierung vermieden werden.For example, an open channel can be arranged in the pump housing, which is developed into a channel with an angled geometry by installing a separate component, in particular an angle piece. To accommodate an angled surface of the angle piece, further bores, blind bores and/or millings can be arranged in the pump housing in addition to the open channel. As a result, a more compact channel can advantageously be used, since only the dimensions of the open channel may have to be large enough to pass through a connector of a connecting conductor, while the angled area of the channel only has to accommodate the connecting conductor itself, but not the plug. An open channel also provides easy access to any edges created within the channel during fabrication for easy deburring and/or rounding be able. As a result, damage to the connecting conductor or its insulation can advantageously be avoided.

Vorteilhafterweise ist ein Dichtelement zwischen dem Winkelstück und dem Pumpengehäuse angeordnet. Das Dichtelement kann beispielsweise ein O-Ring oder eine Dichtschnur sein. Hierdurch kann der abgewinkelte Kanal auch im Bereich des separat angebrachten Winkelstücks abgedichtet werden, sodass insbesondere bei Anwendung einer Vergussmasse als Gassperre ein Ausdringen der Vergussmasse während des Vergießens verhindert wird. Das Dichtelement kann bei Verwendung andersartiger Gassperren oder bei Verwendung hoch viskoser Vergussmasse weggelassen werden.A sealing element is advantageously arranged between the angle piece and the pump housing. The sealing element can be an O-ring or a sealing cord, for example. As a result, the angled channel can also be sealed in the area of the separately attached angle piece, so that escaping of the sealing compound during the sealing is prevented, particularly when using a sealing compound as a gas barrier. The sealing element can be omitted when using other types of gas barriers or when using high-viscosity potting compound.

Ein zwischen Gassperre und Platine verbleibendes Raumvolumen des Vakuumbereichs kann beispielsweise zumindest annähernd weder mit einem Pumpbereich des Vakuumraums noch mit dem Druckraum gasführend verbunden sein und wird daher im Folgenden auch als Totraum bezeichnet. Ein Druckunterschied zwischen dem Totraum und dem durch die Gassperre getrennten, daran angrenzenden Pumpbereich des Vakuumraums und/oder ein Druckunterschied zwischen dem Totraum und dem durch die Platine getrennten, daran angrenzenden Druckraum führt entsprechend zu keiner unmittelbaren Druckangleichung zwischen dem Totraum und dem Pumpbereich des Vakuumraums und/oder dem Druckraum. Unter Umständen kann ein verbleibender Leckgasstrom, der auf Basis einer Leckrate zwischen dem Pumpbereich des Vakuumraums und dem Totraum bzw. zwischen dem Druckraum und dem Totraum bestimmbar ist, zu einem schleichenden Druckausgleich führen, der jedoch bei niedrigen Leckraten beispielsweise über mehrere Stunden oder auch mehrere Monate hinweg erfolgen kann.A volume of space in the vacuum area that remains between the gas barrier and the circuit board can, for example, be at least approximately connected neither to a pump area of the vacuum area nor to the pressure area in a gas-carrying manner and is therefore also referred to below as a dead space. A pressure difference between the dead space and the adjacent pump area of the vacuum space separated by the gas barrier and/or a pressure difference between the dead space and the adjacent pressure space separated by the plate does not result in any direct pressure equalization between the dead space and the pump area of the vacuum space and /or the print room. Under certain circumstances, a remaining leakage gas flow, which can be determined on the basis of a leakage rate between the pumping area of the vacuum space and the dead space or between the pressure space and the dead space, can lead to a gradual pressure equalization, which, however, at low leak rates lasts for several hours or even several months can take place.

Gemäß einer Ausführungsform ist ein durch die Gassperre und die Platine begrenzter Bereich des Vakuumraums an eine sekundäre Gasquelle angeschlossen.In one embodiment, a portion of the vacuum space defined by the gas barrier and the circuit board is connected to a secondary gas source.

Vorteilhafterweise stellt die sekundäre Gasquelle beispielsweise Sperrgas, Schutzgas, Inertgas oder Flutgas bereit, um eine definierte Atmosphäre innerhalb des Totraums zu schaffen, die frei von korrosiven Bestandteilen ist. Mittels einer solchen Schutzgasatmosphäre kann unerwünschte Gasdiffusion aus dem Pumpbereich des Vakuumraums durch die Gassperre hindurch in den Totraum wirksam verhindert werden, selbst wenn die Gassperre eine nicht vernachlässigbare Leckrate aufweisen sollte.The secondary gas source advantageously provides, for example, barrier gas, protective gas, inert gas or flood gas in order to create a defined atmosphere within the dead space that is free from corrosive components. Such a protective gas atmosphere can be used to effectively prevent undesired gas diffusion from the pumping area of the vacuum space through the gas barrier into the dead space, even if the gas barrier should have a non-negligible leak rate.

In diesem Fall könnte sich der Druck in dem Totraum während des Betriebs der Vakuumpumpe dem des Pumpbereichs des Vakuumraums angleichen, wobei beispielsweise ein in dem Totraum unter einem höheren Druck stehendes Gas langsam in den Pumpbereich des Vakuumraums diffundieren kann. Bei einer anschließenden Abschaltung der Vakuumpumpe und einem Fluten des Pumpbereichs des Vakuumraums kann beispielsweise erneut Gas entsprechend der Leckrate der Gassperre zurück aus dem Pumpbereich des Vakuumraums in den Totraum diffundieren. Falls das in den Totraum diffundierende Gas noch Spuren von korrosiven Prozessgasen enthält, könnten diese eine Beschädigung der Platine als Vakuumdurchführung verursachen. Eine mittels einer sekundären Gasquelle erzeugte Schutzgasatmosphäre kann dies vorteilhafterweise verhindern.In this case, the pressure in the dead space could equalize that of the pump area of the vacuum space during operation of the vacuum pump, with a gas that is under a higher pressure in the dead space being able to slowly diffuse into the pump area of the vacuum space, for example. If the vacuum pump is then switched off and the pump area of the vacuum space is flooded, gas can, for example, again diffuse back out of the pump area of the vacuum space into the dead space in accordance with the leakage rate of the gas barrier. If the gas diffusing into the dead space still contains traces of corrosive process gases, these could damage the circuit board as a vacuum feedthrough. A protective gas atmosphere generated by means of a secondary gas source can advantageously prevent this.

Ohne Gassperre würden entlang der Kabelverbindungen große Mengen Schutzgas kontinuierlich während und nach dem Betrieb der Vakuumpumpe in Richtung des Pumpbereichs des Vakuumraums strömen müssen, um einen ausreichenden Schutz der Platine zu gewährleisten. In Kombination mit der zumindest annähernd gasdichten Gassperre beläuft sich der Mehrverbrauch des Schutzgases für die Herstellung einer definierten Atmosphäre in dem Totraum auf sehr geringe bis vernachlässigbare Mengen.Without a gas barrier, large amounts of shielding gas would have to flow continuously along the cable connections during and after the operation of the vacuum pump in the direction of the pumping area of the vacuum space in order to ensure adequate protection of the circuit board. In combination with the at least approximately gas-tight gas barrier, the additional consumption of protective gas for the production of a defined atmosphere in the dead space amounts to very small to negligible amounts.

Die sekundäre Gasquelle kann auf verschiedene Arten an den Totraum angeschlossen sein, beispielsweise durch eine Querverbindung in Form einer Bohrung oder eines abgedeckten Kanals zu einem anderen, bereits in der Vakuumpumpe existierenden Gaseinlass einer sekundären Gasquelle und/oder durch eine Querverbindung zu einem anderen durch eine sekundäre Gasquelle flutbaren Bereich und/oder durch einen separaten Anschluss des Totraums an die sekundäre Gasquelle.The secondary gas source can be connected to the dead space in various ways, for example by a cross-connection in the form of a bore or a covered channel to another gas inlet of a secondary gas source that already exists in the vacuum pump and/or through a cross connection to another area that can be flooded by a secondary gas source and/or through a separate connection of the dead space to the secondary gas source.

Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer Vakuumpumpe. Dieses sieht vor, einen durch ein Pumpengehäuse begrenzten Vakuumraum sowie eine Platine bereitzustellen, eine Anschlussöffnung in dem Pumpengehäuse auszubilden, die Anschlussöffnung durch die Platine vakuumdicht zu verschließen, sodass die Platine den Vakuumraum von einem Druckraum trennt, und eine der Platine vakuumseitig vorgelagerte Gassperre auszubilden, die zu der Platine beabstandet ist. Durch die so hergestellte Vakuumpumpe lassen sich die voranstehend genannten Vorteile entsprechend erreichen.Another object of the invention is a method for producing a vacuum pump. This provides for a vacuum space delimited by a pump housing and a circuit board to be provided, for a connection opening to be formed in the pump housing, for the connection opening to be closed in a vacuum-tight manner by the circuit board so that the circuit board separates the vacuum space from a pressure space, and for a gas barrier to be formed on the vacuum side in front of the circuit board, which is spaced from the board. The advantages mentioned above can be achieved accordingly by the vacuum pump produced in this way.

Gemäß einer Ausführungsform kann ein Kanal mit einem abgewinkelten oder gekrümmten Bereich in dem Pumpengehäuse ausgebildet werden, zumindest ein Anschlussleiter durch den Kanal hindurch verlegt werden, eine Gassperre in dem abgewinkelten oder gekrümmten Bereich des Kanals ausgebildet werden, der Anschlussleiter mit der Platine verbunden werden, und die Platine vakuumdicht an dem Pumpengehäuse angebracht werden.According to one embodiment, a duct with an angled or curved portion can be formed in the pump housing, at least one lead routed through the duct, a gas barrier formed in the angled or curved portion of the duct, the lead leads connected to the circuit board, and the circuit board must be attached to the pump housing in a vacuum-tight manner.

Dabei kann der Kanal einteilig durch das Pumpengehäuse oder mehrteilig durch das Pumpengehäuse und/oder zusätzliche Bauelemente, beispielsweise Winkelstücke, Hülsenelemente, oder ähnliches, ausgebildet werden.The channel can be formed in one piece by the pump housing or in multiple pieces by the pump housing and/or additional components, for example angle pieces, sleeve elements or the like.

Je nach konkreter Ausgestaltung des Kanals und der anderen Komponenten kann die Reihenfolge der Verfahrensschritte variiert werden. Bei Verwendung eines offenen Kanals mit Winkelstück kann beispielsweise erst der Anschlussleiter durch den offenen Kanal verlegt werden, bevor durch die Montage des Winkelstücks ein abgewinkelter Kanal ausgebildet wird. Entsprechendes gilt für alternativ oder zusätzlich für die anderen Verfahrensschritte.Depending on the specific configuration of the channel and the other components, the sequence of the method steps can be varied. When using an open duct with an angle piece, for example, the connection conductor can first be routed through the open duct before the angle piece is installed angled channel is formed. The same applies to the other process steps as an alternative or in addition.

Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Die Zeichnungen, die Zeichnungsbeschreibung und die Ansprüche zeigen zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen. Es zeigen, jeweils schematisch:

Fig. 1
eine perspektivische Ansicht einer Turbomolekularpumpe;
Fig. 2
eine Ansicht der Unterseite der Turbomolekularpumpe von Fig. 1;
Fig. 3
einen Querschnitt der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie A-A;
Fig. 4
eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie B-B;
Fig. 5
eine Querschnittsansicht der Turbomolekularpumpe längs der in Fig. 2 gezeigten Schnittlinie C-C;
Fig. 6
eine Querschnittsansicht eines Pumpenunterteils mit einem abgewinkelten Kanal, einer Gassperre sowie einer Platine als Vakuumdurchführung gemäß einer ersten Ausführungsform;
Fig. 7A
eine Fertigungsskizze zur Herstellung des Kanals von Fig. 6;
Fig. 7B
eine Querschnittsansicht des abgewinkelten Kanals von Fig. 6;
Fig. 7C
eine Querschnittsansicht des Pumpenunterteils von Fig. 6 in einer Vergießausrichtung;
Fig. 8
eine Querschnittsansicht eines Pumpenunterteils mit einem abgewinkelten Kanal, einer Gassperre sowie einer Platine als Vakuumdurchführung gemäß einer zweiten Ausführungsform;
Fig. 9A
eine Fertigungsskizze zur Herstellung des Kanals von Fig. 8;
Fig. 9B
eine Querschnittsansicht des abgewinkelten Kanals von Fig. 8;
Fig. 9C
eine Querschnittsansicht des Pumpenunterteils von Fig. 8 in einer Vergießausrichtung;
Fig. 10
eine Querschnittsansicht eines Pumpenunterteils mit einem abgewinkelten Kanal mit einem Winkelstück, einer Gassperre sowie einer Platine als Vakuumdurchführung gemäß einer dritten Ausführungsform;
Fig. 11A
eine Draufsicht auf das Pumpenunterteil und das Winkelstück aus Fig. 10;
Fig. 11
B eine Fertigungsskizze zur Herstellung des offenen Kanals von Fig. 10;
Fig. 11C
eine Querschnittsansicht des abgewinkelten Kanals mit Winkelstück von Fig. 10;
Fig. 11
D eine Querschnittsansicht des Pumpenunterteils von Fig. 10 in einer Vergießausrichtung;
Fig. 12
eine Querschnittsansicht einer Vakuumpumpe mit einem Pumpenunterteil der dritten Ausführungsform.
The invention is described below by way of example using advantageous embodiments with reference to the attached figures. The drawings, the drawing description and the claims show numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into further meaningful combinations. They show, each schematically:
1
a perspective view of a turbomolecular pump;
2
a view of the bottom of the turbo molecular pump from 1 ;
3
a cross-section of the turbomolecular pump along the in 2 section line AA shown;
4
a cross-sectional view of the turbomolecular pump along the in 2 shown cutting line BB;
figure 5
a cross-sectional view of the turbomolecular pump along the in 2 shown cutting line CC;
6
a cross-sectional view of a pump base with an angled channel, a gas barrier and a circuit board as a vacuum feedthrough according to a first embodiment;
Figure 7A
a manufacturing sketch for the manufacture of the channel from 6 ;
Figure 7B
FIG. 12 is a cross-sectional view of the angled duct of FIG 6 ;
Figure 7C
a cross-sectional view of the pump base of FIG 6 in a potting orientation;
8
a cross-sectional view of a pump base with an angled channel, a gas barrier and a circuit board as a vacuum feedthrough according to a second embodiment;
Figure 9A
a manufacturing sketch for the manufacture of the channel from 8 ;
Figure 9B
FIG. 12 is a cross-sectional view of the angled duct of FIG 8 ;
Figure 9C
a cross-sectional view of the pump base of FIG 8 in a potting orientation;
10
a cross-sectional view of a pump base with an angled channel with an elbow, a gas barrier and a circuit board as a vacuum feedthrough according to a third embodiment;
Figure 11A
shows a top view of the pump base and elbow 10 ;
11
B a manufacturing sketch for the production of the open channel of 10 ;
Figure 11C
FIG. 12 is a cross-sectional view of the angled duct with elbow of FIG 10 ;
11
D is a cross-sectional view of the pump base of FIG 10 in a potting orientation;
12
a cross-sectional view of a vacuum pump with a pump base of the third embodiment.

Die in Fig. 1 gezeigte Turbomolekularpumpe 111 umfasst einen von einem Einlassflansch 113 umgebenen Pumpeneinlass 115, an welchen in an sich bekannter Weise ein nicht dargestellter Rezipient angeschlossen werden kann. Das Gas aus dem Rezipienten kann über den Pumpeneinlass 115 aus dem Rezipienten gesaugt und durch die Pumpe hindurch zu einem Pumpenauslass 117 gefördert werden, an den eine Vorvakuumpumpe, wie etwa eine Drehschieberpumpe, angeschlossen sein kann.In the 1 The turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient, not shown, can be connected in a manner known per se. The gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117 to which a backing pump, such as a rotary vane pump, can be connected.

Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß Fig. 1 das obere Ende des Pumpengehäuses 119 der Vakuumpumpe 111. Das Pumpengehäuse 119 umfasst ein Pumpenunterteil 121, an welchem seitlich ein Elektronikgehäuse 123 angeordnet ist. In dem Elektronikgehäuse 123 sind elektrische und/oder elektronische Komponenten der Vakuumpumpe 111 untergebracht, z.B. zum Betreiben eines in der Vakuumpumpe angeordneten Elektromotors 125. Am Elektronikgehäuse 123 sind mehrere Anschlüsse 127 für Zubehör vorgesehen. Außerdem sind eine Datenschnittstelle 129, z.B. gemäß dem RS485-Standard, und ein Stromversorgungsanschluss 131 am Elektronikgehäuse 123 angeordnet.The inlet flange 113 forms when the vacuum pump is aligned according to FIG 1 the upper end of the pump housing 119 of the vacuum pump 111. The pump housing 119 comprises a lower pump part 121 on which an electronics housing 123 is arranged laterally. Electrical and/or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump. A plurality of connections 127 for accessories are provided on the electronics housing 123. In addition, a data interface 129, for example according to the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.

Am Pumpengehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Pumpenunterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 (siehe z.B. Fig. 3) vor dem von der Pumpe geförderten Gas in den Motorraum 137, in welchem der Elektromotor 125 in der Vakuumpumpe 111 untergebracht ist, gebracht werden kann. Im Pumpenunterteil 121 sind ferner noch zwei Kühlmittelanschlüsse 139 angeordnet, wobei einer der Kühlmittelanschlüsse als Einlass und der andere Kühlmittelanschluss als Auslass für Kühlmittel vorgesehen ist, das zu Kühlzwecken in die Vakuumpumpe geleitet werden kann.A flooding inlet 133, in particular in the form of a flooding valve, is provided on the pump housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be flooded. In the area of the lower pump part 121 there is also a sealing gas connection 135, which is also referred to as a flushing gas connection, through which flushing gas to protect the electric motor 125 (see e.g 3 ) before the pumped gas in the engine compartment 137, in which the electric motor 125 is housed in the vacuum pump 111, can be brought. In the lower pump part 121 there are also two coolant connections 139, with one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant which can be fed into the vacuum pump for cooling purposes.

Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in Fig. 1 gezeigt ist. Es lassen sich auch Ausführungsformen der Vakuumpumpe realisieren, bei der die Unterseite 141 nicht nach unten, sondern zur Seite gewandt oder nach oben gerichtet angeordnet werden kann.The lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141 . However, the vacuum pump 111 can also be fastened to a recipient via the inlet flange 113 and can thus be operated in a suspended manner, as it were. In addition, the vacuum pump 111 can be designed in such a way that it can also be operated when it is oriented in a different way than in FIG 1 is shown. It is also possible to realize embodiments of the vacuum pump in which the underside 141 cannot be arranged facing downwards but to the side or directed upwards.

An der Unterseite 141, die in Fig. 2 dargestellt ist, sind noch diverse Schrauben 143 angeordnet, mittels denen hier nicht weiter spezifizierte Bauteile der Vakuumpumpe aneinander befestigt sind. Beispielsweise ist ein Lagerdeckel 145 an der Unterseite 141 befestigt.At the bottom 141, the in 2 shown, various screws 143 are also arranged, by means of which components of the vacuum pump that are not further specified here are fastened to one another. For example, a bearing cap 145 is attached to the underside 141 .

An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann.In addition, fastening bores 147 are arranged on the underside 141, via which the pump 111 can be fastened, for example, to a support surface.

In den Figuren 2 bis 5 ist eine Kühlmittelleitung 148 dargestellt, in welcher das über die Kühlmittelanschlüsse 139 ein- und ausgeleitete Kühlmittel zirkulieren kann.In the Figures 2 to 5 a coolant line 148 is shown, in which the coolant fed in and out via the coolant connections 139 can circulate.

Wie die Schnittdarstellungen der Figuren 3 bis 5 zeigen, umfasst die Vakuumpumpe mehrere Prozessgaspumpstufen zur Förderung des an dem Pumpeneinlass 115 anstehenden Prozessgases zu dem Pumpenauslass 117.Like the sectional views of the Figures 3 to 5 show, the vacuum pump comprises several process gas pump stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.

In dem Pumpengehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.A rotor 149 is arranged in the pump housing 119 and has a rotor shaft 153 which can be rotated about an axis of rotation 151 .

Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Pumpengehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.The turbomolecular pump 111 comprises a plurality of turbomolecular pump stages connected in series with one another for pumping purposes, with a plurality of radial rotor disks 155 fastened to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the pump housing 119. A rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular pump stage. The stator discs 157 are held at a desired axial distance from one another by spacer rings 159 .

Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind. Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.The vacuum pump also comprises Holweck pump stages which are arranged one inside the other in the radial direction and are connected in series with one another for pumping purposes. The rotor of the Holweck pump stages comprises a rotor hub 161 arranged on the rotor shaft 153 and two Holweck rotor sleeves 163, 165 in the shape of a cylinder jacket, fastened to the rotor hub 161 and carried by it, which are oriented coaxially to the axis of rotation 151 and are nested in one another in the radial direction. Also provided are two cylinder jacket-shaped Holweck stator sleeves 167, 169, which are also oriented coaxially with respect to the axis of rotation 151 and are nested in one another when viewed in the radial direction.

Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.The pumping-active surfaces of the Holweck pump stages are formed by the lateral surfaces, ie by the radial inner and/or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169. The radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163, forming a radial Holweck gap 171 and forming with it the first Holweck pump stage following the turbomolecular pumps. The radially inner surface of the outer Holweck rotor sleeve 163 faces the radially outer surface of the inner Holweck stator sleeve 169 opposite to form a radial Holweck gap 173 and forms with this a second Holweck pump stage. The radially inner surface of the inner Holweck stator sleeve 169 faces the radially outer surface of the inner Holweck rotor sleeve 165 to form a radial Holweck gap 175 and therewith forms the third Holweck pumping stage.

Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.At the lower end of the Holweck rotor sleeve 163, a radially running channel can be provided, via which the radially outer Holweck gap 171 is connected to the middle Holweck gap 173. In addition, a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175. As a result, the nested Holweck pump stages are connected in series with one another. Furthermore, a connecting channel 179 to the outlet 117 can be provided at the lower end of the radially inner Holweck rotor sleeve 165 .

Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 163, 165 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.The above-mentioned pumping-active surfaces of the Holweck stator sleeves 163, 165 each have a plurality of Holweck grooves running in a spiral shape around the axis of rotation 151 in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and the gas for operating the Advance vacuum pump 111 in the Holweck grooves.

Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.A roller bearing 181 in the region of the pump outlet 117 and a permanent magnet bearing 183 in the region of the pump inlet 115 are provided for the rotatable mounting of the rotor shaft 153 .

Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.In the area of the roller bearing 181 , a conical spray nut 185 is provided on the rotor shaft 153 with an outer diameter that increases toward the roller bearing 181 . The injection nut 185 is in sliding contact with at least one stripper of an operating fluid store. The resource storage includes a plurality of absorbent discs 187 stacked on top of one another, which are impregnated with an operating medium for the roller bearing 181, for example with a lubricant.

Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.During operation of vacuum pump 111, the operating fluid is transferred by capillary action from the operating fluid reservoir to the rotating spray nut 185 via the scraper and, as a result of the centrifugal force, is conveyed along the spray nut 185 in the direction of the increasing outer diameter of the spray nut 185 to the roller bearing 181, where it e.g. fulfills a lubricating function. The roller bearing 181 and the operating fluid reservoir are surrounded by a trough-shaped insert 189 and the bearing cover 145 in the vacuum pump.

Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Pumpengehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 203 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.The permanent magnet bearing 183 comprises a bearing half 191 on the rotor side and a bearing half 193 on the stator side, which each comprise a ring stack of a plurality of permanent magnetic rings 195, 197 stacked on top of one another in the axial direction. The ring magnets 195, 197 lie opposite one another, forming a radial bearing gap 199, the ring magnets 195 on the rotor side being arranged radially on the outside and the ring magnets 197 on the stator side being arranged radially on the inside. The magnetic field present in the bearing gap 199 produces magnetic repulsive forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially. The ring magnets 195 on the rotor side are carried by a support section 201 of the rotor shaft 153, which radially surrounds the ring magnets 195 on the outside. The ring magnets 197 on the stator are carried by a support section 203 on the stator, which extends through the ring magnets 197 and is suspended on radial struts 205 of the pump housing 119 . The ring magnets 195 on the rotor side are fixed parallel to the axis of rotation 151 by a cover element 207 coupled to the carrier section 203 . The stator-side ring magnets 197 are fixed parallel to the axis of rotation 151 in one direction by a fastening ring 209 connected to the support section 203 and a fastening ring 211 connected to the support section 203 . Between the mounting ring 211 and the ring magnet 197, a plate spring 213 can also be provided.

Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, da eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.An emergency or safety bearing 215 is provided within the magnetic bearing, which runs idle without contact during normal operation of the vacuum pump 111 and only engages in the event of an excessive radial deflection of the rotor 149 relative to the stator, in order to create a radial stop for the rotor 149 to form since collision of the rotor-side structures with the stator-side structures is prevented. The backup bearing 215 is designed as an unlubricated roller bearing and forms a radial gap with the rotor 149 and/or the stator, which causes the backup bearing 215 to be disengaged during normal pumping operation. The radial deflection at which the backup bearing 215 engages is dimensioned large enough so that the backup bearing 215 does not engage during normal operation of the vacuum pump, and at the same time small enough so that the rotor-side structures collide with the stator-side structures under all circumstances is prevented.

Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.The vacuum pump 111 includes the electric motor 125 for rotating the rotor 149. The armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217. A permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 that extends through the motor stator 217 . Between the motor stator 217 and the section of the rotor 149 extending through the motor stator 217 there is an intermediate space 219 which comprises a radial motor gap via which the motor stator 217 and the permanent magnet arrangement can influence each other magnetically for the transmission of the drive torque.

Der Motorstator 217 ist in dem Pumpengehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.The motor stator 217 is fixed in the pump housing inside the motor room 137 provided for the electric motor 125 . Via the sealing gas connection 135, a sealing gas, which is also referred to as purge gas and which can be air or nitrogen, for example, can get into the engine compartment 137. The electric motor 125 can be protected against process gas, for example against corrosive components of the process gas, via the sealing gas. The engine compartment 137 can also be evacuated via the pump outlet 117 , ie the vacuum pressure produced by the backing pump connected to the pump outlet 117 prevails in the engine compartment 137 at least approximately.

Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.What is known as a labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the motor compartment 137, in particular in order to achieve better sealing of the motor compartment 217 in relation to the Holweck pump stages located radially outside.

Fig. 6 zeigt eine erste Ausführungsform eines Pumpenunterteils 121 der Turbomolekularpumpe 111 in einem montierten Betriebszustand. Die Turbomolekularpumpe 111 weist einen durch das Pumpengehäuse 119 begrenzten Vakuumraum V auf, der mittels einer Platine 241 als Vakuumdurchführung von einem Druckraum D getrennt ist. Die Platine 241 ist im Bereich einer Anschlussöffnung 225 unter Verwendung eines O-Rings 243 vakuumdicht an dem Pumpengehäuse 119 angebracht. 6 shows a first embodiment of a pump lower part 121 of the turbomolecular pump 111 in an assembled operating state. The turbomolecular pump 111 has a vacuum chamber V delimited by the pump housing 119, which is separated from a pressure chamber D by means of a circuit board 241 as a vacuum passage. The circuit board 241 is attached to the pump housing 119 in a vacuum-tight manner in the area of a connection opening 225 using an O-ring 243 .

Der Vakuumraum V umfasst einen abgewinkelten Kanal 224, in dem eine Gassperre 231 angeordnet ist, die der Platine 241 vakuumseitig vorgelagert ist und das Prozessgas von der Platine 241 und den Anschlussverbindungen der Platine 241 fernhält. Im gezeigten Ausführungsbeispiel ist die Gassperre 231 eine Vergussmasse, die einen siphonartig abgewinkelten Bereich 229 (Fig. 7B) des Kanals 224 gasdicht ausfüllt.The vacuum chamber V includes an angled channel 224 in which a gas barrier 231 is arranged, which is upstream of the circuit board 241 on the vacuum side and keeps the process gas away from the circuit board 241 and the connection connections of the circuit board 241 . In the exemplary embodiment shown, the gas barrier 231 is a potting compound which has a siphon-like angled area 229 ( Figure 7B ) of the channel 224 in a gas-tight manner.

Die Platine 241 ist mit Anschlussleitern 233 verbunden, die sich durch die Gassperre 231 hindurch bis zu einer Öffnung 239 zu einem Pumpbereich 240 (Fig. 8) der Turbomolekularpumpe 111 erstrecken. Die Anschlussleiter 233 weisen Steckverbinder 235 auf, die mit der Platine 241 verbunden sind. Die Steckverbinder 235 und die daran anschließenden Abschnitte der Anschlussleiter 233 sind in einem Aufnahmeraum 226 des abgewinkelten Kanals 224 aufgenommen. An ihrem dem Pumpbereich 240 zugewandten Ende können die Anschlussleiter 233 mit einem Motor, einer Aktorik und/oder einer Sensorik der Turbomolekularpumpe 111 verbunden sein.The board 241 is connected to leads 233 which extend through the gas barrier 231 to an opening 239 to a pumping area 240 ( 8 ) of the turbomolecular pump 111 extend. The connection conductors 233 have plug connectors 235 which are connected to the circuit board 241 . The plug-in connector 235 and the sections of the connecting conductors 233 adjoining it are received in a receiving space 226 of the angled channel 224 . At their end facing the pump area 240 , the connection conductors 233 can be connected to a motor, an actuator system and/or a sensor system of the turbomolecular pump 111 .

Die Vergussmasse 231 steht nicht in Kontakt mit der Platine 241 oder den Steckverbindern 235, sodass keine Beeinträchtigung der Kontakte durch die Gassperre 231, insbesondere durch die Vergussmasse, entstehen kann. Die Gassperre 231 und die Platine 241 definieren somit einen als Totraum T bezeichneten Bereich des Vakuumraums V, der zumindest im Wesentlichen nicht gasführend mit dem Pumpbereich 240 und dem Druckraum D verbunden ist. An den Totraum T kann eine sekundäre Gasquelle (nicht gezeigt) angeschlossen werden, die ein Fluten des Totraums T mit einem Schutzgas ermöglichen kann, um korrosives Prozessgas noch wirksamer von der Platine 241 fernzuhalten. Das Pumpenunterteil 121 ist im Betriebszustand bedarfsgemäß ausgerichtet bzw. kann bedarfsgemäß in beliebiger Orientierung angeordnet werden, da die ausgehärtete Vergussmasse 231 als Gassperre unter allen Orientierungen wirksam bleibt.The casting compound 231 is not in contact with the circuit board 241 or the plug connectors 235, so that the contacts cannot be impaired by the gas barrier 231, in particular by the casting compound. The gas barrier 231 and the circuit board 241 thus define a region of the vacuum space V referred to as a dead space T, which is at least essentially not connected to the pump region 240 and the pressure space D in a gas-conducting manner. A secondary gas source (not shown) can be connected to the dead space T, which can allow the dead space T to be flooded with a protective gas in order to keep corrosive process gas away from the circuit board 241 even more effectively. In the operating state, the lower pump part 121 is aligned as required or can be arranged in any orientation as required, since the hardened casting compound 231 remains effective as a gas barrier in all orientations.

Die Vergussmasse 231 ist in der gezeigten Ausführungsform ausschließlich im Pumpenunterteil 121 angeordnet und steht nicht in Kontakt mit einem Pumpenoberteil 249 (Fig. 8), das den Pumpbereich 240 des Vakuumraums definiert. Daher kann das Pumpenunterteil 121 vorteilhaft zu Service-, Wartungs- und Reparaturzwecken unkompliziert demontiert und separat gehandhabt werden. Zusätzliche Flexibilität bei der Montage und Demontage der Turbomolekularpumpe 111 ergibt sich dadurch, dass die Anschlussverbindungen der Platine 241 steckbar ausgeführt sind, was beispielsweise ein einfaches Austauschen der Platine 241 ermöglicht.In the embodiment shown, the casting compound 231 is arranged exclusively in the pump lower part 121 and is not in contact with a pump upper part 249 ( 8 ) that defines the pumping region 240 of the vacuum space. Therefore, the lower pump part 121 can advantageously be dismantled in an uncomplicated manner and handled separately for service, maintenance and repair purposes. Additional flexibility in the assembly and disassembly of the turbomolecular pump 111 results from the fact that the connection connections of the circuit board 241 are designed to be pluggable, which enables the circuit board 241 to be easily replaced, for example.

Fig. 7A bis 7C skizzieren die Fertigung der ersten Ausführungsform des Pumpenunterteils 121 aus Fig. 6. Aus Gründen der Übersichtlichkeit sind andere im Pumpenunterteil 121 angeordnete Komponenten der Turbomolekularpumpe 111 nicht gezeigt. Figures 7A to 7C outline the production of the first embodiment of the pump lower part 121 6 . For reasons of clarity, other components of the turbomolecular pump 111 arranged in the pump lower part 121 are not shown.

Fig. 7A zeigt, dass der zur Aufnahme der Gassperre 231 vorgesehene Abschnitt des Kanals 224 aus zwei sich kreuzenden Sackbohrungen 227a und 227b gefertigt ist, die von gegenüberliegenden Seiten des Pumpenunterteils 121 ausgehen und sich im gezeigten Ausführungsbeispiel unter einem Winkel von 90° schneiden. Es versteht sich, dass je nach den konstruktiven Randbedingungen grundsätzlich auch andere Winkel in Betracht kommen. Eine erste Sackbohrung 227a geht im Pumpengehäuse 119 von der Seite des designierten Druckraums D aus und definiert die Anschlussöffnung 225. Eine zweite Sackbohrung 227b definiert die Öffnung 239 zu dem Pumpbereich 240 der Turbomolekularpumpe 111. Das Pumpengehäuse 119 weist im Bereich der Anschlussöffnung 225 eine dritte Sackbohrung 227c auf, die den Kanal 224 um einen Aufnahmeraum 226 zur Aufnahme von elektrischen oder elektronischen Anschlusskomponenten erweitert. Im gezeigten Ausführungsbeispiel schneiden sich die dritte und erste Sackbohrung 227c, 227a unter einem Winkel von 45°, wobei auch hier andere Winkel möglich sind. Figure 7A shows that the section of the channel 224 provided for receiving the gas barrier 231 is made of two intersecting blind bores 227a and 227b, which emanate from opposite sides of the lower pump part 121 and intersect at an angle of 90° in the exemplary embodiment shown. It goes without saying that, depending on the structural boundary conditions, other angles can also be considered. A first blind hole 227a starts in the pump housing 119 from the side of the designated pressure chamber D and defines the connection opening 225. A second blind hole 227b defines the opening 239 to the pumping area 240 of the turbomolecular pump 111. The pump housing 119 has a third blind hole in the area of the connection opening 225 227c, which expands the channel 224 by a receiving space 226 for receiving electrical or electronic connection components. In the exemplary embodiment shown, the third and first blind bores 227c, 227a intersect at an angle of 45°, although other angles are also possible here.

Fig. 7B zeigt den Gesamtquerschnitt des resultierenden Kanals 224. Im Bereich der sich kreuzenden ersten und zweiten Sackbohrung 227a, 227b weist der Kanal 224 einen Bereich mit abgewinkelter Kontur 229 auf, der in der gezeigten Orientierung des Pumpenunterteils 121 nach rechts orientiert ist. Figure 7B shows the overall cross section of the resulting channel 224. In the area of the intersecting first and second blind bores 227a, 227b, the channel 224 has an area with an angled contour 229, which is oriented to the right in the orientation of the lower pump part 121 shown.

Die Fig. 7C zeigt das Pumpenunterteil 121 während des Einbringens der Gassperre 231 in einer Vergießausrichtung, welche im gezeigten Ausführungsbeispiel einer Drehung des Pumpenunterteils 121 im Vergleich zum Betriebszustand aus Fig. 6 um 90° nach rechts entspricht. Durch den Kanal 224 hindurch werden zuerst Anschlussleiter 233 verlegt, die seitens der Anschlussöffnung 225 Steckverbinder 235 zum Anschließen an die Platine 241 aufweisen. Die Abmessung des Kanals 224 ist hierbei so gewählt, dass die Anschlussleiter 233 und die Steckverbinder 235 durchgeführt werden können. Eine Dichtungsnut 237 ist zur Aufnahme des O-Rings 243 zur vakuumdichten Montage der Platine 241 vorgesehen.the Figure 7C shows the lower pump part 121 during the introduction of the gas barrier 231 in a casting orientation, which in the exemplary embodiment shown involves a rotation of the lower pump part 121 compared to the operating state 6 corresponds to 90° to the right. Through the channel 224 are first Connection conductors 233 are laid, which have plug connectors 235 for connection to the circuit board 241 on the part of the connection opening 225 . The dimension of the channel 224 is chosen so that the connection conductor 233 and the plug connector 235 can be passed through. A sealing groove 237 is provided for receiving the O-ring 243 for vacuum-tight mounting of the circuit board 241.

Im gezeigten Ausführungsbeispiel ist die Gassperre 231 als Vergussmasse ausgebildet, die vorerst ausreichend fließfähig ist, um durch Vergießen in den Kanal 224 eingebracht zu werden, und die anschließend dort aushärtet. Zum Vergießen wird das Pumpenunterteil 121 wie gezeigt derart positioniert, dass der abgewinkelte Bereich 229 nach Art eines Siphons den tiefsten Punkt des Kanals 224 bildet. Durch die Anschlussöffnung 225 und/oder die Öffnung 239 zum Pumpbereich 240 wird die Vergussmasse 231 in den siphonartigen Bereich 229 des Kanals 224 eingebracht, bis der Kanal 224 gasdicht verschlossen ist. Dabei werden die Anschlussleiter 233 in der Vergussmasse 231 eingegossen. Die Bereiche vor und hinter der Vergussmasse bleiben frei von der Gassperre 231, sodass die Vergussmasse nicht in Kontakt mit der Platine 241 oder deren Anschlussverbindungen kommt. Bis zum Aushärten der Vergussmasse 231 verbleibt das Pumpenunterteil 121 in der gezeigten Orientierung.In the exemplary embodiment shown, the gas barrier 231 is in the form of a casting compound which is initially sufficiently free-flowing to be introduced into the channel 224 by casting and which then hardens there. For potting, the lower pump part 121 is positioned, as shown, in such a way that the angled area 229 forms the lowest point of the channel 224 in the manner of a siphon. The sealing compound 231 is introduced into the siphon-like area 229 of the channel 224 through the connection opening 225 and/or the opening 239 to the pumping area 240 until the channel 224 is sealed gas-tight. In this case, the connection conductors 233 are cast in the casting compound 231 . The areas in front of and behind the potting compound remain free of the gas barrier 231, so that the potting compound does not come into contact with the circuit board 241 or its connections. The lower pump part 121 remains in the orientation shown until the sealing compound 231 has hardened.

Fig. 8 zeigt eine zweite Ausführungsform eines Pumpenunterteils 121 einer Turbomolekularpumpe 111 in einem montierten Betriebszustand und Fig. 9A bis 9C skizzieren die Fertigung der zweiten Ausführungsform. Die zweite Ausführungsform ist der in Fig. 6 gezeigten ersten Ausführungsform weitgehend ähnlich, weshalb im Folgenden insbesondere auf die Unterschiede zwischen den Ausführungsformen eingegangen wird. 8 shows a second embodiment of a pump base 121 of a turbomolecular pump 111 in an assembled operating state and Figures 9A to 9C outline the production of the second embodiment. The second embodiment is the in 6 The first embodiment shown is largely similar, which is why the differences between the embodiments will be discussed in particular below.

Fig. 8 zeigt das Pumpenunterteil 121, das eine Platine 241 als Vakuumdurchführung und einen abgewinkelten Kanal 224 aufweist, in dem eine Gassperre 231 angeordnet ist. Ein weiterer Pumpenteil, hier ein Pumpenoberteil 249, das den Pumpbereich 240 der Turbomolekularpumpe 111 definiert, ist auf dem Pumpenunterteil 121 montiert und mit einem in einer Dichtungsnut 247 angeordneten O-Ring abgedichtet. 8 shows the lower pump part 121, which has a circuit board 241 as a vacuum passage and an angled channel 224 in which a gas barrier 231 is arranged. Another pump part, here a pump shell 249, the Defined pumping area 240 of the turbomolecular pump 111 is mounted on the pump base 121 and sealed with an O-ring arranged in a sealing groove 247 .

Wie Fig. 9A zeigt, ist der Kanal 224 aus zwei Sackbohrungen 227a und 227b gefertigt, die sich unter einem Winkel von 90° schneiden, wobei unter Berücksichtigung der konstruktiven Gegebenheiten auch andere Winkel gewählt werden können. Beide Sackbohrungen 227a, 227b sind von derselben Seite des Pumpenunterteils 121 her ausgeführt, hier von der Seite des Pumpbereichs 240 her, sodass die Bohrungen eine Öffnung 239 zum Pumpbereich 240 sowie eine weitere Bohröffnung 251 im Pumpengehäuse 119 definieren. Eine Fräsung 245 an der gegenüberliegenden Seite des Pumpenunterteils 121 vervollständigt die Durchführung des abgewinkelten Kanals 224 zur Seite der Anschlussöffnung 225. Im Vergleich zum Kanal 224 von Fig. 6 kann hier die Anschlussöffnung 225 für die Platine 241 als Vakuumdurchführung kleiner ausgeführt werden, da die Fräsung 245 in einem rechten Winkel zu der Oberfläche des Pumpengehäuses 119 steht.As Figure 9A shows, the channel 224 is made of two blind bores 227a and 227b, which intersect at an angle of 90°, with other angles also being able to be selected taking into account the structural conditions. Both blind bores 227a, 227b are executed from the same side of the lower pump part 121, here from the side of the pump area 240, so that the bores define an opening 239 to the pump area 240 and a further bore opening 251 in the pump housing 119. A milling 245 on the opposite side of the pump base 121 completes the implementation of the angled channel 224 to the side of the connection opening 225. Compared to the channel 224 of FIG 6 the connection opening 225 for the circuit board 241 as a vacuum passage can be made smaller here, since the milling 245 is at a right angle to the surface of the pump housing 119.

Fig. 9B zeigt den Gesamtquerschnitt des resultierenden Kanals 224. Die sich kreuzenden Sackbohrungen 227a und 227b bilden einen siphonartig gewinkelten Bereich 229 des Kanals 224 aus. Figure 9B shows the overall cross section of the resulting channel 224. The crossing blind bores 227a and 227b form a siphon-like angled region 229 of the channel 224.

Fig. 9C zeigt das Pumpenunterteil 121 in einer Orientierung während des Einbringens einer Vergussmasse als Gassperre 231 in einer Vergießausrichtung. Da beide Sackbohrungen 227a, 227b in Fig. 9A von derselben Seite des Pumpengehäuses 119 her ausgeführt sind, muss das Pumpenoberteil 249 bereits beim Vergießen montiert sein, um die Bohröffnung 251 mit der Vergussmasse 231 abzudichten. Die Öffnung 239 stellt die Kommunikation des Kanals 224 mit dem Pumpbereich 240 der Turbomolekularpumpe 111 her. Figure 9C 12 shows the pump base 121 in an orientation during the introduction of a potting compound as a gas barrier 231 in a potting orientation. Since both blind holes 227a, 227b in Figure 9A are carried out from the same side of the pump housing 119, the pump upper part 249 must already be installed during the casting in order to seal the bore opening 251 with the casting compound 231. The opening 239 establishes the communication of the channel 224 with the pumping area 240 of the turbomolecular pump 111 .

Zum Vergießen des Kanals 224 mit einer Gassperre 231 werden das Pumpenunterteil 121 und das Pumpenoberteil 249 mit den durchgeführten Anschlussleitern 233 derart platziert, dass der siphonartig abgewinkelte Bereich 229 von der Anschlussöffnung 225 her mit Vergussmasse 231 befüllt werden kann. Dabei wird die Bohröffnung 251 ebenfalls mit der Vergussmasse 231 aufgefüllt und durch den Kontakt mit dem Pumpenoberteil 249 abgedichtet.To encapsulate the channel 224 with a gas barrier 231, the lower pump part 121 and the upper pump part 249 with the connecting conductors 233 passed through are placed in such a way that the siphon-like angled region 229 can be filled with sealing compound 231 from the connection opening 225. The drilled opening 251 is also filled with the casting compound 231 and sealed by contact with the pump upper part 249 .

Nach dem Aushärten der Vergussmasse 231 kann die Platine 241 mit den Steckverbindern 235 der Anschlussleiter 233 verbunden werden und vakuumdicht über der Anschlussöffnung 225 des Pumpenunterteils 121 montiert werden, sodass die Platine den Vakuumraum V von dem Druckraum D trennt. Das Pumpenunterteil 121 und das Pumpenoberteil 249 können dann für den Betrieb der Turbomolekularpumpe 111 bestimmungsgemäß ausgerichtet werden, insbesondere kann das Pumpenunterteil 121 nach unten und das Pumpenoberteil 249 nach oben ausgerichtet sein (Fig. 8).After the casting compound 231 has hardened, the circuit board 241 can be connected to the plug connectors 235 of the connection conductors 233 and mounted in a vacuum-tight manner over the connection opening 225 of the lower pump part 121, so that the circuit board separates the vacuum space V from the pressure space D. The lower pump part 121 and the upper pump part 249 can then be aligned as intended for the operation of the turbomolecular pump 111; in particular, the lower pump part 121 can be aligned downwards and the upper pump part 249 can be aligned upwards ( 8 ).

Eine dritte Ausführungsform eines Pumpenunterteils 121 ist in Fig. 10 im Querschnitt gezeigt, die Schritte zur Fertigung eines derartigen Pumpenunterteils 121 sind in Fig. 11A bis 11C skizziert. Die gezeigte Ausführungsform weist einen Kanal 224 auf, der labyrinthartig mehrfach abgewinkelt ist. Der abgewinkelte Bereich wird dabei bereichsweise durch die Oberfläche des Pumpengehäuses 119 begrenzt, bereichsweise durch ein an dem Pumpengehäuse 119 befestigtes Winkelstück 259.A third embodiment of a pump base 121 is in 10 shown in cross section, the steps for manufacturing such a lower pump part 121 are in Figures 11A to 11C sketched. The embodiment shown has a channel 224 which is labyrinthine multiple angles. The angled area is partially delimited by the surface of the pump housing 119, partially by an angle piece 259 fastened to the pump housing 119.

Fig. 11A zeigt das Pumpenunterteil 121 in Draufsicht vonseiten des Pumpbereichs 240 der Turbomolekularpumpe 111 her betrachtet sowie das Winkelstück 259 vor der Montage. Das Pumpenunterteil 121 ist mit einem offenen Kanal 253 durchbohrt und weist daran angrenzend zusätzlich eine erste Aussparung 255a und eine zweite Aussparung 255b zur Aufnahme von Anschlussleitern 233 auf. Zur Montage des Winkelstücks 259 am Pumpenunterteil 121 ist ein Befestigungsbereich 260 vorgesehen. Eine Dichtungsnut 257 umgibt den offenen Kanal 253 und die Aussparungen 255a, 255b, sodass ein Dichtelement 261 zwischen dem Winkelstück 259 und dem Pumpengehäuse 119 angeordnet werden kann. Figure 11A shows the lower pump part 121 in a top view viewed from the side of the pumping area 240 of the turbomolecular pump 111, as well as the angle piece 259 before assembly. The lower pump part 121 has an open channel 253 drilled through it and, adjoining it, also has a first cutout 255a and a second cutout 255b for accommodating connection conductors 233 . There is a fastening area for mounting the angle piece 259 on the lower pump part 121 260 provided. A sealing groove 257 surrounds the open channel 253 and the recesses 255a, 255b so that a sealing element 261 can be arranged between the elbow 259 and the pump housing 119.

Fig. 11B zeigt einen Querschnitt durch das Pumpenunterteil 121 mit dem offenen Kanal 253 und den Aussparungen 255a, 255b. Durch die offene Bauweise sind alle Kanten 262 gut zugänglich für eine Bearbeitung. Insbesondere können sie entgratet oder abgerundet werden, sodass die Anschlussleiter 233 bzw. deren Isolierung nicht beschädigt werden. Figure 11B shows a cross section through the pump base 121 with the open channel 253 and the recesses 255a, 255b. Due to the open design, all edges 262 are easily accessible for processing. In particular, they can be deburred or rounded off so that the connection conductors 233 or their insulation are not damaged.

Wie in Fig. 11C gezeigt, bilden der offene Kanal 253 sowie die Aussparungen 255a, 255b und das montierte Winkelstück 259 einen labyrinthartigen Kanal 224 aus, dessen Wandungen durch das Pumpengehäuse 119 und das daran befestigte Winkelstück 259 gebildet werden. Der Kanal 224 weist einen abgewinkelten Bereich 229 auf, der dazu vorgesehen ist, eine Gassperre 231, beispielsweise eine Vergussmasse, aufzunehmen. Im Vergleich zu der in Fig. 6 bzw. Fig. 8 gezeigten ersten und zweiten Ausführungsform des Kanals 224 muss der offen ausgestaltete Kanal 253 nicht über seine Gesamterstreckung hinweg eine Abmessung aufweisen, die das Durchführen der Steckverbinder 235 erlaubt. Vielmehr muss der abgewinkelte Bereich 229 lediglich Platz für die Anschlussleiter 233 bieten, was eine kompakte Abmessung des Kanals erlaubt. Eine in der Dichtungsnut 257 zwischen Winkelstück 259 und Pumpengehäuse 119 geführte Dichtschnur 261 dichtet den Kanal 224 ab.As in Figure 11C shown, the open channel 253 and the recesses 255a, 255b and the mounted angle piece 259 form a labyrinthine channel 224, the walls of which are formed by the pump housing 119 and the angle piece 259 attached thereto. The channel 224 has an angled portion 229 intended to receive a gas barrier 231, such as a potting compound. Compared to the in 6 respectively. 8 In the first and second embodiment of the channel 224 shown, the open channel 253 does not have to have a dimension over its entire extension that allows the connector 235 to be passed through. Rather, the angled area 229 only has to provide space for the connecting conductors 233, which allows the channel to have compact dimensions. A sealing cord 261 guided in the sealing groove 257 between the angle piece 259 and the pump housing 119 seals the channel 224 .

Zum Vergießen mit einer Vergussmasse als Gassperre 231 wird das Pumpenunterteil 121 nach Durchführen der Anschlussleiter 233 durch den offenen Kanal 253 und Montage des Winkelstücks 259 zur Ausbildung des labyrinthartigen Kanals 224 in einer Vergießausrichtung positioniert, sodass ein Vergießen des abgewinkelten Bereichs 229 von der Anschlussöffnung 225 her erfolgen kann (Fig. 11D). Die Dichtschnur 261 dichtet den Bereich 229 bei Verwendung einer geringer viskosen Vergussmasse ab, kann für eine höher viskose Vergussmasse aber weggelassen werden.For potting with a potting compound as a gas barrier 231, the lower pump part 121 is positioned in a potting orientation after the connection conductor 233 has been passed through the open channel 253 and the angle piece 259 has been installed to form the labyrinthine channel 224, so that the potting of the angled area 229 starts from the connection opening 225 can be done ( Figure 11D ). The sealing cord 261 seals the area 229 when using a less viscous cord Potting compound from, but can be omitted for a higher viscosity potting compound.

Nach dem Aushärten der Vergussmasse 231 können die Anschlussleiter 233 mittels der Steckverbinder 235 mit der Platine 241 verbunden werden, die Platine 241 kann vakuumdicht an dem Pumpengehäuse 119 über der Anschlussöffnung 225 montiert werden und das Pumpenunterteil 121 kann für den Betrieb der Turbomolekularpumpe 111 bestimmungsgemäß ausgerichtet werden und mit einem Pumpenoberteil 249 der Pumpe verbunden werden.After the casting compound 231 has hardened, the connecting conductors 233 can be connected to the circuit board 241 by means of the plug connector 235, the circuit board 241 can be mounted in a vacuum-tight manner on the pump housing 119 via the connection opening 225 and the lower pump part 121 can be aligned as intended for the operation of the turbomolecular pump 111 and connected to a pump head 249 of the pump.

Um einen Gasaustausch über die innere und/oder äußere Oberfläche der Isolierung der Anschlussleiter 233 durch die Vergussmasse 231 hindurch zwischen dem Pumpbereich 240 der Turbomolekularpumpe 111 und der Platine 241 zu vermeiden, weisen die Anschlussleiter 233 in Fig. 12 im Bereich der Gassperre 231 zumindest abschnittsweise eine zumindest annähernd gasdichte Umhüllung 265 auf. Insbesondere in den Endbereichen der Gassperre 231, die in direktem Kontakt mit dem Vakuumbereich V aufseiten des Pumpbereichs 240 oder aufseiten der Platine 241 stehen, verhindert eine gasdichte Umhüllung 265 einen Gaseintritt in die Oberfläche bzw. Isolierung der Anschlussleiter 233 und damit einen möglichen Gasdurchtritt durch die Vergussmasse 231 entlang der Anschlussleiter 233. Wie hier gezeigt, kann eine gasdichte Umhüllung 265 durch Schrumpfschläuche, insbesondere Schrumpfschläuche mit Innenkleber erzielt werden.In order to avoid gas exchange via the inner and/or outer surface of the insulation of the connecting conductors 233 through the potting compound 231 between the pumping region 240 of the turbomolecular pump 111 and the circuit board 241, the connecting conductors 233 in 12 in the area of the gas barrier 231, at least in sections, an at least approximately gas-tight casing 265. Particularly in the end areas of the gas barrier 231, which are in direct contact with the vacuum area V on the side of the pump area 240 or on the side of the circuit board 241, a gas-tight cover 265 prevents gas from entering the surface or insulation of the connection conductor 233 and thus a possible gas passage through the Casting compound 231 along the connection conductor 233. As shown here, a gas-tight envelope 265 can be achieved by shrink tubing, in particular shrink tubing with internal adhesive.

Um einen Gasaustausch über das Innere der Anschlussleiter 233 zu verhindern, können an dem der Platine 241 abgewandten Ende der Anschlussleiter 233 die Verbindungsstellen 267 zu einem Motor, einer Aktorik und/oder einer Sensorik der Turbomolekularpumpe 111 ebenfalls in eine Vergussmasse 269 eingebettet werden, wie in Fig. 12 gezeigt ist.In order to prevent gas exchange via the interior of the connecting conductors 233, the connection points 267 to a motor, an actuator system and/or a sensor system of the turbomolecular pump 111 can also be embedded in a casting compound 269 at the end of the connecting conductors 233 facing away from the circuit board 241, as in 12 is shown.

BezugszeichenlisteReference List

111111
Turbomolekularpumpeturbomolecular pump
113113
Einlassflanschinlet flange
115115
Pumpeneinlasspump inlet
117117
Pumpenauslasspump outlet
119119
Pumpengehäusepump housing
121121
Pumpenunterteilpump base
123123
Elektronikgehäuseelectronics housing
125125
Elektromotorelectric motor
127127
Zubehöranschlussaccessory port
129129
Datenschnittstelledata interface
131131
Stromversorgungsanschlusspower connector
133133
Fluteinlassflood inlet
135135
Sperrgasanschlusssealing gas connection
137137
Motorraumengine compartment
139139
Kühlmittelanschlusscoolant connection
141141
Unterseitebottom
143143
Schraubescrew
145145
Lagerdeckelbearing cap
147147
Befestigungsbohrungmounting hole
148148
Kühlmittelleitungcoolant line
149149
Rotorrotor
151151
Rotationsachseaxis of rotation
153153
Rotorwellerotor shaft
155155
Rotorscheiberotor disc
157157
Statorscheibestator disc
159159
Abstandsringspacer ring
161161
Rotornaberotor hub
163163
Holweck-RotorhülseHolweck rotor sleeve
165165
Holweck-RotorhülseHolweck rotor sleeve
167167
Holweck-StatorhülseHolweck stator sleeve
169169
Holweck-StatorhülseHolweck stator sleeve
171171
Holweck-SpaltHolweck fissure
173173
Holweck-SpaltHolweck fissure
175175
Holweck-SpaltHolweck fissure
179179
Verbindungskanalconnecting channel
181181
Wälzlagerroller bearing
183183
Permanentmagnetlagerpermanent magnet bearing
185185
Spritzmutterinjection nut
187187
Scheibedisc
189189
Einsatzmission
191191
rotorseitige Lagerhälfterotor-side bearing half
193193
statorseitige Lagerhälftestator bearing half
195195
Ringmagnetring magnet
197197
Ringmagnetring magnet
199199
Lagerspaltbearing gap
201201
Trägerabschnittcarrier section
203203
Trägerabschnittcarrier section
205205
radiale Streberadial strut
207207
Deckelelementcover element
209209
Stützringsupport ring
211211
Befestigungsringmounting ring
213213
Tellerfederdisc spring
215215
Not- bzw. FanglagerEmergency or catch camp
217217
Motorstatormotor stator
219219
Zwischenraumspace
221221
Wandungwall
223223
Labyrinthdichtunglabyrinth seal
224224
Kanalchannel
225225
Anschlussöffnungport opening
226226
Aufnahmeraumrecording room
227a227a
erste Sackbohrungfirst blind hole
227b227b
zweite Sackbohrungsecond blind hole
227c227c
dritte Sackbohrungthird blind hole
229229
siphonartig abgewinkelter Bereichsiphon-like angled area
231231
Gassperregas lock
233233
Anschlussleiterconnection conductor
235235
Steckverbinderconnector
237237
Dichtungsnut für PlatineSealing groove for circuit board
239239
Öffnung zum PumpbereichOpening to pump area
240240
Pumpbereichpump area
241241
Platinecircuit board
243243
O-RingO ring
245245
Fräsungmilling
247247
Dichtungsnut für das PumpenoberteilSealing groove for the upper part of the pump
249249
Pumpenoberteilpump top
251251
Bohröffnungdrill hole
253253
offener Kanalopen channel
255a255a
erste Aussparungfirst recess
255b255b
zweite Aussparungsecond recess
257257
Dichtungsnut für WinkelstückSealing groove for elbow
259259
Winkelstückelbow
260260
Befestigungsbereichmounting area
261261
Dichtschnursealing cord
262262
Kantenedge
265265
gasdichte Umhüllunggas-tight envelope
267267
Verbindungsstellen mit Motor, Aktorik und/oder SensorikConnection points with motor, actuators and/or sensors
269269
Vergussmasse der Verbindungsstellensealing compound of the connection points
VV
Vakuumraumvacuum space
DD
Druckraumpressure room
TT
Totraumdead space

Claims (15)

  1. A vacuum pump, in particular a turbomolecular pump (111), comprising
    a vacuum space (V) bounded by a pump housing (119); and
    a circuit board (241),
    wherein the pump housing (119) has a connection opening (225) which is closed in a vacuum-tight manner by the circuit board (241) so that the circuit board (241) separates the vacuum space (V) from a pressure space (D),
    wherein the vacuum pump is characterized in that a gas barrier (231) spaced apart from the circuit board (241) is arranged in front of the circuit board (241) at the vacuum side.
  2. A vacuum pump (111) in accordance with claim 1,
    characterized in that
    the gas barrier (231) has a casting compound.
  3. A vacuum pump (111) in accordance with claim 1 or claim 2, characterized in that
    at least one connection conductor (233) extends through the gas barrier (231) and is connected to the circuit board (241).
  4. A vacuum pump (111) in accordance with claim 3,
    characterized in that
    the connection of the connection conductor (233) to the circuit board (241) is a plug-in connection.
  5. A vacuum pump (111) in accordance with claim 3 or claim 4, characterized in that
    the connection conductor (233) has an at least approximately gas-tight sleeve (265) in the region of the gas barrier (231) at least in sections, in particular in an end region of the gas barrier (231).
  6. A vacuum pump (111) in accordance with at least one of the preceding claims,
    characterized in that
    the gas barrier (231) is arranged in a first pump part (121) of the vacuum pump (111) and is not in contact with a second pump part (249) of the vacuum pump (111) which defines a pump region (240) of the vacuum space (V).
  7. A vacuum pump (111) in accordance with at least one of the preceding claims,
    characterized in that
    the gas barrier (231) is arranged in a channel (224) which is formed in the pump housing (119) and which communicates with the vacuum space (V).
  8. A vacuum pump (111) in accordance with claim 7,
    characterized in that
    the channel (224) has an angled or curved region (229) which is filled by the gas barrier (231).
  9. A vacuum pump (111) in accordance with claim 8,
    characterized in that
    the angled region (229) of the channel (224) is formed by at least two intersecting bores, in particular blind bores (227a, 227b, 227c), and/or milled portions (245).
  10. A vacuum pump (111) in accordance with claim 8 or claim 9, characterized in that
    the angled region (229) of the channel (224) is angled a multiple of times in a labyrinthine manner.
  11. A vacuum pump (111) in accordance with claim 10,
    characterized in that
    the angled region (229) of the channel (224) is defined by a surface of the pump housing (119) and by an angular piece (259) fastened to the pump housing (119).
  12. A vacuum pump (111) in accordance with claim 11,
    characterized in that
    a sealing element (261) is arranged between the angular piece (259) and the pump housing (119).
  13. A vacuum pump (111) in accordance with at least one of the preceding claims,
    characterized in that
    a region of the vacuum space (V) bounded by the gas barrier (231) and the circuit board (241) is connected to a secondary gas source.
  14. A method of manufacturing a vacuum pump (111), in which a vacuum space (V) bounded by a pump housing (119) and a circuit board (241) are provided,
    a connection opening (225) is formed in the pump housing (119),
    the connection opening (225) is closed in a vacuum-tight manner by the circuit board (241) so that the circuit board (241) separates the vacuum space (V) from a pressure space (D), and
    a gas barrier (231) is formed which is arranged in front of the circuit board (241) at the vacuum side and which is spaced apart from the circuit board (241).
  15. A method of manufacturing a vacuum pump (111) in accordance with claim 14, characterized in that
    a channel (224) having an angled or curved region (249) is formed in the pump housing (119),
    at least one connection conductor (233) is laid through the channel (224), a gas barrier (231) is formed in the angled or curved portion (229) of the channel (224),
    the connection conductor (233) is connected to a circuit board (241), and the circuit board (241) is attached in a vacuum-tight manner to the pump housing (119).
EP19194646.6A 2019-08-30 2019-08-30 Vacuum pump Active EP3626971B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19194646.6A EP3626971B1 (en) 2019-08-30 2019-08-30 Vacuum pump
JP2020085580A JP7092825B2 (en) 2019-08-30 2020-05-15 Vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP19194646.6A EP3626971B1 (en) 2019-08-30 2019-08-30 Vacuum pump

Publications (2)

Publication Number Publication Date
EP3626971A1 EP3626971A1 (en) 2020-03-25
EP3626971B1 true EP3626971B1 (en) 2022-05-11

Family

ID=67810495

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19194646.6A Active EP3626971B1 (en) 2019-08-30 2019-08-30 Vacuum pump

Country Status (2)

Country Link
EP (1) EP3626971B1 (en)
JP (1) JP7092825B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016405A1 (en) * 2006-04-07 2007-10-11 Pfeiffer Vacuum Gmbh Vacuum pump with drive unit
DE202007012070U1 (en) * 2007-08-30 2009-01-08 Oerlikon Leybold Vacuum Gmbh Electric feedthrough of a vacuum pump
JP2014011120A (en) * 2012-07-02 2014-01-20 Shimadzu Corp Electrical feedthrough, vacuum pump and printed circuit board
JP6758865B2 (en) * 2016-03-04 2020-09-23 エドワーズ株式会社 Vacuum pump
EP3431769B1 (en) * 2017-07-21 2022-05-04 Pfeiffer Vacuum Gmbh Vacuum pump

Also Published As

Publication number Publication date
JP2021038745A (en) 2021-03-11
JP7092825B2 (en) 2022-06-28
EP3626971A1 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
EP3657021B1 (en) Vacuum pump
EP3626971B1 (en) Vacuum pump
EP2039941B1 (en) Vacuum pump
EP3431769B1 (en) Vacuum pump
EP4108932A1 (en) Recipient and high vacuum pump
DE102012219982A1 (en) vacuum pump
EP3540237A1 (en) Easily useable flange connection for vacuum device
EP3196471B1 (en) Vacuum pump
EP3327293B1 (en) Vacuum pump having multiple inlets
EP3339651B1 (en) Vacuum pump
EP3564538B1 (en) Vacuum system and method for manufacturing the same
DE102020116770B4 (en) VACUUM PUMP WITH INTEGRATED MINIATURE VALVE
EP3318763B1 (en) Vacuum seal, dual seal, vacuum system and vacuum pump
DE102015113821A1 (en) vacuum pump
EP3683447B1 (en) Vacuum pump
EP3135932B1 (en) Vacuum pump and permanent magnet bearing
EP3611381B1 (en) Method for producing a vacuum pump
EP3760872B1 (en) Vacuum pump with attachment means for mounting the pump to a mounting structure and pump stand with such a mounted vacuum pump
EP3333429B1 (en) Vacuum device
EP3561306B1 (en) Vacuum pump
EP3536966A1 (en) Vacuum device
EP3660319B1 (en) Vacuum pump with insulation displacement connectors
EP3561307B1 (en) Vacuum pump with an inlet flange and a bearing support in the inlet
EP3462036B1 (en) Turbomolecular vacuum pump
EP4108931A1 (en) Molecular vacuum pump with improved suction capacity and method for operating a molecular vacuum pump to achieve improved suction capacity

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200827

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211103

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1491623

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019004327

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220912

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220812

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019004327

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20230214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220830

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220830

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230825

Year of fee payment: 5

Ref country code: GB

Payment date: 20230822

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230821

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231027

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190830