EP3611381B1 - Method for producing a vacuum pump - Google Patents
Method for producing a vacuum pump Download PDFInfo
- Publication number
- EP3611381B1 EP3611381B1 EP18188711.8A EP18188711A EP3611381B1 EP 3611381 B1 EP3611381 B1 EP 3611381B1 EP 18188711 A EP18188711 A EP 18188711A EP 3611381 B1 EP3611381 B1 EP 3611381B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- holweck
- pump
- rotor
- adhesive
- accordance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000853 adhesive Substances 0.000 claims description 78
- 230000001070 adhesive effect Effects 0.000 claims description 78
- 238000000034 method Methods 0.000 claims description 30
- 239000002131 composite material Substances 0.000 claims description 15
- 238000009832 plasma treatment Methods 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 10
- 239000007769 metal material Substances 0.000 claims description 2
- 230000002093 peripheral effect Effects 0.000 claims 1
- 239000007789 gas Substances 0.000 description 21
- 239000002826 coolant Substances 0.000 description 9
- 230000005291 magnetic effect Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910017135 Fe—O Inorganic materials 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 238000011010 flushing procedure Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910001172 neodymium magnet Inorganic materials 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000007788 roughening Methods 0.000 description 2
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229920002748 Basalt fiber Polymers 0.000 description 1
- 229910002772 Ba‐Fe‐O Inorganic materials 0.000 description 1
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000001513 hot isostatic pressing Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000004413 injection moulding compound Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004311 natamycin Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/044—Holweck-type pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/02—Selection of particular materials
- F04D29/023—Selection of particular materials especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/23—Manufacture essentially without removing material by permanently joining parts together
Definitions
- the present invention relates to a method for producing a vacuum pump, in particular a turbomolecular pump, in which a first element is connected to a second element by means of an adhesive, the first and second elements each having a first and second adhesive area intended for the adhesive.
- the invention also relates to a vacuum pump, in particular a turbomolecular pump, comprising a first element and a second element, which are connected by means of an adhesive, the first and second elements each having a first and second adhesive area provided for the adhesive.
- An exemplary prior art vacuum pump includes a Holweck stage which has a cylindrical rotor sleeve.
- the rotor sleeve rotates during operation of the pump in order to convey a gas to be conveyed along a screw path, which is usually formed in a standing cylinder body which encloses the rotor sleeve and/or is enclosed by it.
- the rotor sleeve is attached to a rotor hub using an adhesive.
- Turbomolecular pumps in particular are known to rotate at high speeds, which is why there is generally high stress on all the elements involved and their connections.
- a manufacturing method for a vacuum pump according to claim 1 and in particular in that at least one of the adhesive areas is at least partially, in particular completely, treated by means of plasma before joining.
- the adhesive area is understood to be a surface that does not necessarily have to be flat and which is intended to be wetted with the adhesive.
- the plasma treatment activates the adhesive area so that the adhesive can bond better to the element in question. This significantly increases the adhesive strength of the adhesive on the treated adhesive area, so that an overall firm and resilient connection is achieved.
- a particular advantage of plasma treatment is that it not only activates the adhesive area, but also degreases and cleans it and causes a roughening and enlargement of the surface. All of these effects also improve the bonding of the adhesive to the adhesive area.
- conventional treatments to improve adhesion can preferably be dispensed with. For example, manual degreasing is no longer necessary, which saves personnel costs.
- a grinding process can be dispensed with, which also simplifies the process. This applies in particular in the case that the adhesive area to be treated is formed on an inner surface of the, for example, cylindrical element, since grinding treatment is often particularly complex or even impossible here.
- these effects can also be brought about individually or in combination in a conventional manner during production, for example by providing additional process steps comprising degreasing, cleaning, roughening and/or enlarging the surface of the adhesive area.
- a washing process in particular a mechanical one, can be provided before the plasma treatment.
- the plasma treatment also brings about the effects mentioned particularly uniformly and reproducibly in relation to the treated surface. This significantly increases process reliability and significantly reduces production waste. No cleaning products are necessary in the workplace. Eliminating manual cleaning also reduces the risk of injury and chemical exposure for production personnel. Decontamination of the element to be bonded by cleaning tools that may be dirty is also avoided. And even if a conventional pretreatment, such as washing, in particular to remove dust particles, is also provided and contamination should occur, for example due to residual contamination in a washing machine, this is reduced or removed by the plasma treatment.
- Another advantage of plasma treatment is that its effects, especially the activation of the surface, last for a relatively long time. Intermediate storage of the elements is therefore possible, which makes the manufacturing process additionally flexible.
- the invention makes it possible to reduce the likelihood of adhesion or adhesion breaks between the element in question and the adhesive. This strengthens the connection overall.
- the vacuum pump is designed, for example, using previous calculations, for example using the finite element method.
- Material parameters of the adhesive regarding, among other things, its strength are required. These are usually provided by the adhesive supplier.
- the strengths calculated from this deviated from those that were determined in tests on vacuum pump parts, in particular because the parameters are specified for standardized test conditions, which cannot easily be met in the production of vacuum pumps. This made development difficult.
- the manufacturing process according to the invention on the other hand, almost or actually the strengths specified by the supplier are achieved in a particularly reliable but simple manner. This enables a more precise design and thus improved development of the vacuum pump.
- the plasma treatment is carried out at a pressure below atmospheric pressure. In this way, good activation of the surface can be achieved in particular. Alternatively, treatment at atmospheric or higher pressure is also possible.
- the plasma is generated from air as a plasma process gas.
- a plasma process gas This enables a particularly simple manufacturing process, as special plasma process gases do not have to be kept available.
- another gas or gas mixture can also be used as the plasma process gas.
- the first and/or second element is treated as a whole with plasma. This means that essentially the entire surface of the element is treated. This happens, for example, in a chamber that is filled with plasma. This means the entire surface is exposed to the plasma. This has the advantage that the element can be easily inserted into the chamber without the need for precise alignment of the element. The manufacturing process is thus further simplified.
- any reference made herein to the first or second element is for illustrative purposes only. It goes without saying that the embodiments described in each case can also be transferred to the other element. In principle, more than two elements can be glued together.
- the plasma treatment is carried out for at least 1 minute, in particular at least 3 minutes, and/or at most 10 minutes, in particular at most 7 minutes. About 5 minutes is particularly advantageous.
- the plasma can be generated, for example, using direct current, alternating current, which is particularly low or high frequency, and/or microwaves.
- the first and/or the second element are provided or produced with a macroscopically defined surface roughness, in particular in addition to a microscopic roughness achieved by the plasma treatment.
- the average roughness depth Rz in ⁇ m, at least in the adhesive area can advantageously be, for example, at least 0.8, in particular at least 1.6, in particular at least 3.2, in particular at least 6.3, and / or at most 50, in particular at most 25, in particular at most 20, in particular at most 17.5.
- the first and second elements are intended for rotation during operation of the vacuum pump. So these are rotor parts.
- the process is particularly advantageous here because of the high forces during rotation.
- the vacuum pump has a Holweck stage, wherein the first element comprises a pump-active element of the Holweck stage, namely a Holweck rotor sleeve.
- the vacuum pump can, for example, have a permanent magnet electric motor, wherein one or the first element can in particular comprise an electromagnetically drivable rotor motor magnet, a permanent magnet, a load-bearing sleeve and/or a return ring.
- the first element can be a plastic and/or composite material, in particular carbon fiber composite material, aramid fiber composite material, glass fiber composite material, basalt fiber composite material, hybrid fabric composite material with thread or fiber components of several of the aforementioned composite materials and/or a layered combination of the aforementioned fabric types in multi-layer composite. These offer high strength with low weight.
- the first element comprises an at least essentially cylindrical section and in this section a fiber composite material, the fibers of which at least a significant proportion run at least essentially in the circumferential direction.
- This can also be referred to as a radial winding of the fibers, since they run in the radial plane.
- This causes temperature and/or centrifugal force expansion minimized in the radial direction, so that the pump can be designed with narrow gaps and therefore particularly effective, for example with regard to a high compression ratio. Contact between the elements, which could lead to pump failure, is effectively prevented.
- the second element can advantageously comprise a metal material, for example aluminum, in particular at least one of the alloys EN AW-6082, EN AW-7075, EN AW-7475, EN AW-2618, EN AW-2618A, titanium, in particular the alloy TiAl6V4 , cast steel, in particular at least one of the alloys EN-GJL-150, -200, -250, -300, -350, EN-GJS-400-15, EN-GJS-500-7, EN-GJS-600-3, Steel, in particular at least one of the alloys 1.0711, 1.0715, 1.0721, 1.0736, E235, H320B, and / or stainless steel, in particular at least one of the alloys 1.4301, 1.4305, 1.4401, 1.4429, 1.4435.
- a metal material for example aluminum, in particular at least one of the alloys EN AW-6082, EN AW-7075, EN AW-7475, EN AW-2618, EN AW-
- a recess is provided on the first and/or the second element and an area in the recess at least partially forms the adhesive area.
- This allows the adhesive to be applied particularly precisely and held in the adhesive area.
- the plasma treatment enables a relatively free design of this recess, since no conventional pretreatments, in particular no grinding or the like, are necessary.
- the recess can in particular be formed circumferentially, in particular as a groove and/or undercut, and/or as a circumferential set of individual recesses.
- an at least substantially cylindrical connection region can be defined between the first and second elements. This makes it possible, for example, to achieve good joining accuracy.
- the cylindrical connection region can, for example, be arranged coaxially to a rotation axis of a rotor of the vacuum pump.
- connection region can, for example, be arranged axially in a ring shape relative to an axis of rotation of a rotor of the vacuum pump.
- the alignment of the connection area is not limited to purely radial or axially extended areas coaxial to a rotation axis of a rotor of the vacuum pump, but can also represent a diagonal or freely shaped area, which is advantageously arranged in a ring shape coaxial to a rotation axis of a rotor of the vacuum pump.
- connection areas with the same or different orientation between two elements are also possible. Furthermore, several connection areas of the same and/or different orientation, in particular radially and axially, can merge into one another and define a common, multi-axial, complex connection area.
- connection area can comprise one, in particular two, three or many advantageously ring-shaped recesses for adhesive; these can each be designed with a predominantly rectangular or complex cross-section.
- the object of the invention is also achieved by a vacuum pump with the features of the independent device claim, and in particular in that at least one of the adhesive areas has been at least partially treated by means of plasma before joining.
- Turbomolecular pump 111 shown comprises a pump inlet 115 surrounded by an inlet flange 113, to which a recipient, not shown, can be connected in a manner known per se.
- the gas from the recipient can be sucked out of the recipient via the pump inlet 115 and conveyed through the pump to a pump outlet 117, to which a backing pump, such as a rotary vane pump, can be connected.
- the inlet flange 113 forms the alignment of the vacuum pump according to Fig. 1 the upper end of the housing 119 of the vacuum pump 111.
- the housing 119 comprises a lower part 121, on which an electronics housing 123 is arranged laterally. Electrical and/or electronic components of the vacuum pump 111 are accommodated in the electronics housing 123, for example for operating an electric motor 125 arranged in the vacuum pump. On the electronics housing 123 several connections 127 are provided for accessories.
- a data interface 129 for example according to the RS485 standard, and a power supply connection 131 are arranged on the electronics housing 123.
- a flood inlet 133 in particular in the form of a flood valve, is provided on the housing 119 of the turbomolecular pump 111, via which the vacuum pump 111 can be flooded.
- a sealing gas connection 135, which is also referred to as a flushing gas connection via which flushing gas to protect the electric motor 125 from the gas delivered by the pump into the engine compartment 137, in which the electric motor 125 in the vacuum pump 111 is accommodated, can be brought.
- Two coolant connections 139 are also arranged in the lower part 121, one of the coolant connections being provided as an inlet and the other coolant connection being provided as an outlet for coolant, which can be directed into the vacuum pump for cooling purposes.
- the lower side 141 of the vacuum pump can serve as a standing surface, so that the vacuum pump 111 can be operated standing on the underside 141.
- the vacuum pump 111 can also be attached to a recipient via the inlet flange 113 and can therefore be operated hanging, so to speak.
- the vacuum pump 111 can be designed so that it can be put into operation even if it is oriented in a different way than in Fig. 1 is shown.
- Embodiments of the vacuum pump can also be implemented in which the underside 141 can be arranged not facing downwards, but facing to the side or facing upwards.
- a bearing cover 145 is attached to the underside 141.
- Fastening holes 147 are also arranged on the underside 141, via which the pump 111 can be fastened to a support surface, for example.
- a coolant line 148 is shown, in which the coolant introduced and discharged via the coolant connections 139 can circulate.
- the vacuum pump comprises several process gas pumping stages for conveying the process gas present at the pump inlet 115 to the pump outlet 117.
- a rotor 149 is arranged in the housing 119 and has a rotor shaft 153 which can be rotated about a rotation axis 151.
- the turbomolecular pump 111 comprises a plurality of turbomolecular pump stages connected in series with one another and having a plurality of radial rotor disks 155 attached to the rotor shaft 153 and stator disks 157 arranged between the rotor disks 155 and fixed in the housing 119.
- a rotor disk 155 and an adjacent stator disk 157 each form a turbomolecular pump pump stage.
- the stator disks 157 are held at a desired axial distance from one another by spacer rings 159.
- the vacuum pump also includes Holweck pump stages that are arranged one inside the other in the radial direction and are effectively connected in series.
- the rotor of the Holweck pump stages includes a rotor hub 161 arranged on the rotor shaft 153 and two cylindrical jacket-shaped Holweck rotor sleeves 163, 165 which are fastened to the rotor hub 161 and supported by it, which are oriented coaxially to the axis of rotation 151 and nested in one another in the radial direction.
- two cylindrical jacket-shaped Holweck stator sleeves 167, 169 are provided, which are also oriented coaxially to the axis of rotation 151 and are nested within one another when viewed in the radial direction.
- the pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, i.e. by the radial inner and/or outer surfaces, of the Holweck rotor sleeves 163, 165 and the Holweck stator sleeves 167, 169.
- the radial inner surface of the outer Holweck stator sleeve 167 lies opposite the radial outer surface of the outer Holweck rotor sleeve 163, forming a radial Holweck gap 171 and with this forms the first Holweck pump stage following the turbomolecular pumps.
- the radial inner surface of the outer Holweck rotor sleeve 163 faces the radial outer surface of the inner Holweck stator sleeve 169 to form a radial Holweck gap 173 and forms a second Holweck pump stage with this.
- the radial inner surface of the inner Holweck stator sleeve 169 lies opposite the radial outer surface of the inner Holweck rotor sleeve 165, forming a radial Holweck gap 175 and with this forms the third Holweck pump stage.
- a radially extending channel can be provided, via which the radially outer Holweck gap 171 is connected to the middle Holweck gap 173.
- a radially extending channel can be provided at the upper end of the inner Holweck stator sleeve 169, via which the middle Holweck gap 173 is connected to the radially inner Holweck gap 175. This means that the nested Holweck pump stages are connected in series with one another.
- a connecting channel 179 to the outlet 117 can also be provided.
- the above-mentioned pump-active surfaces of the Holweck stator sleeves 167, 169 each have several spirals around the axis of rotation 151 Holweck grooves running in the axial direction, while the opposite lateral surfaces of the Holweck rotor sleeves 163, 165 are smooth and drive the gas to operate the vacuum pump 111 in the Holweck grooves.
- a rolling bearing 181 is provided in the area of the pump outlet 117 and a permanent magnet bearing 183 in the area of the pump inlet 115.
- a conical injection nut 185 with an outer diameter increasing towards the rolling bearing 181 is provided on the rotor shaft 153.
- the injection nut 185 is in sliding contact with at least one wiper of an operating medium storage.
- the operating medium storage comprises a plurality of absorbent disks 187 stacked on top of each other, which are soaked with an operating medium for the rolling bearing 181, for example with a lubricant.
- the operating fluid is transferred by capillary action from the operating fluid storage via the wiper to the rotating injection nut 185 and, as a result of the centrifugal force, is conveyed along the injection nut 185 in the direction of the increasing outer diameter of the injection nut 185 to the rolling bearing 181, where it e.g. fulfills a lubricating function.
- the rolling bearing 181 and the operating fluid storage are enclosed in the vacuum pump by a trough-shaped insert 189 and the bearing cover 145.
- the permanent magnet bearing 183 comprises a rotor-side bearing half 191 and a stator-side bearing half 193, each of which comprises a ring stack made up of a plurality of permanent magnetic rings 195, 197 stacked on top of one another in the axial direction.
- the ring magnets 195, 197 lie opposite one another to form a radial bearing gap 199, with the rotor-side ring magnets 195 being arranged radially on the outside and the stator-side ring magnets 197 being arranged radially on the inside.
- the magnetic field present in the bearing gap 199 calls magnetic Repulsion forces between the ring magnets 195, 197, which cause the rotor shaft 153 to be supported radially.
- the rotor-side ring magnets 195 are carried by a carrier section 201 of the rotor shaft 153, which surrounds the ring magnets 195 on the radial outside.
- the stator-side ring magnets 197 are supported by a stator-side support section 203, which extends through the ring magnets 197 and is suspended on radial struts 205 of the housing 119.
- the rotor-side ring magnets 195 are fixed parallel to the rotation axis 151 by a cover element 207 coupled to the carrier section 203.
- the stator-side ring magnets 197 are fixed parallel to the rotation axis 151 in one direction by a fastening ring 209 connected to the carrier section 203 and a fastening ring 211 connected to the carrier section 203.
- a disc spring 213 can also be provided between the fastening ring 211 and the ring magnets 197.
- An emergency or safety bearing 215 is provided within the magnetic bearing, which runs empty without contact during normal operation of the vacuum pump 111 and only comes into engagement when there is an excessive radial deflection of the rotor 149 relative to the stator to form a radial stop for the rotor 149 to form, since a collision of the rotor-side structures with the stator-side structures is prevented.
- the backup bearing 215 is designed as an unlubricated rolling bearing and forms a radial gap with the rotor 149 and/or the stator, which causes the backup bearing 215 to be disengaged during normal pumping operation.
- the radial deflection at which the backup bearing 215 comes into engagement is large enough so that the backup bearing 215 does not come into engagement during normal operation of the vacuum pump, and at the same time small enough so that a collision of the rotor-side structures with the stator-side structures occurs under all circumstances is prevented.
- the vacuum pump 111 includes the electric motor 125 for rotating the rotor 149.
- the armature of the electric motor 125 is formed by the rotor 149, the rotor shaft 153 of which extends through the motor stator 217.
- a permanent magnet arrangement can be arranged radially on the outside or embedded on the section of the rotor shaft 153 that extends through the motor stator 217.
- a gap 219 is arranged, which comprises a radial motor gap, via which the motor stator 217 and the permanent magnet arrangement can magnetically influence each other for transmitting the drive torque.
- the motor stator 217 is fixed in the housing within the engine compartment 137 provided for the electric motor 125.
- a sealing gas which is also referred to as purging gas and which can be, for example, air or nitrogen, can reach the engine compartment 137 via the sealing gas connection 135.
- the barrier gas can be used to protect the electric motor 125 from process gas, for example from corrosive components of the process gas.
- the engine compartment 137 can also be evacuated via the pump outlet 117, i.e. in the engine compartment 137 there is at least approximately the vacuum pressure caused by the backing vacuum pump connected to the pump outlet 117.
- a so-called and known labyrinth seal 223 can also be provided between the rotor hub 161 and a wall 221 delimiting the engine compartment 137, in particular in order to achieve a better sealing of the engine compartment 217 compared to the Holweck pump stages located radially outside.
- Fig. 6 is an enlarged section T of Fig. 3 shown, in which the connections between the rotor hub 161 and the Holweck rotor sleeves 163 and 165 are better visible.
- At least one of the adhesive areas 231 to 240 is at least partially pretreated with plasma.
- a material pairing of carbon fiber composite material is glued on the side of the Holweck rotor sleeves 163, 165 and metal on the side of the rotor hub 161.
- the fibers of the rotor sleeves 163 and 165 are advantageously wound radially, i.e. they run in the circumferential direction and perpendicular to the image plane Fig. 6 .
- a recess in particular a circumferential recess, in particular a groove
- the adhesive area 232 is formed by a circumferential recess, namely an undercut.
- the adhesive areas 234, 236, 238 and 240 are also circumferential, but are designed as grooves.
- the adhesive areas 233, 235, 237, 239, on the other hand, are flat, while the adhesive area 231 is designed as an edge.
- the adhesive area pairings 233 and 234, 235 and 236, 237 and 238 and 239 and 240 together with the adhesive therein form radial connections.
- the adhesive areas 231 and 232 form a connection with the adhesive that is aligned both radially and axially.
- other numbers, arrangements and combinations of adhesive areas are possible.
- FIG. 7 is a section U of Fig. 3 shown enlarged and essentially shows the structure and attachment of the electric motor 125.
- a permanent magnet arrangement on the rotor shaft 153 in the area of the electric motor 125 for the magnetic transmission of the drive torque comprises at least one or more, in particular regularly coaxially arranged and / or magnetized permanent magnets 241, which are different, in particular hard magnetic materials may include, in particular samarium cobalt (Sm-Co), neodymium iron boron (Nd-Fe-B) and/or ferrites (strontium ferrites Sr-Fe-O, barium ferrites Ba-Fe-O or cobalt- Ferrites Co-Fe-O).
- Sm-Co samarium cobalt
- Nd-Fe-B neodymium iron boron
- ferrites strontium ferrites Sr-Fe-O, barium ferrites Ba-Fe-O or cobalt- Ferrites Co-Fe-O
- powdery materials can be formed into permanent magnets in particular by tool-bound or hot isostatic pressing and a subsequent and/or integrated sintering process and/or in a plastic bond as an injection molding compound and then used to drive the rotor 149 (see. Fig. 3 ) be used.
- the arrangement of the permanent magnet(s) 241 on the rotor shaft 153 can in particular be carried out coaxially in a ring shape.
- Permanent magnets typically have only low mechanical strengths and/or low elongation values.
- the multi-axial, largely radial tensile stresses in the permanent magnets resulting from the operation of the pump and rotation of the rotor 149 due to temperature and/or centrifugal force expansion can be minimized by a load-receiving sleeve 242 which is at least partially, advantageously annular, in particular completely radially enclosing or covering the permanent magnet arrangement.
- the load-bearing sleeve 242 is advantageously connected to the internal permanent magnet(s) in a non-positive manner using a radial press or shrink connection and/or in particular an adhesive connection. That's how it is Fig. 7 an adhesive area 243 is provided, which is bonded to an adhesive area 244 of the permanent magnet 241, at least one of the adhesive areas 243 and 244 having been previously treated by plasma.
- the load-bearing sleeve 242 can comprise a non-magnetic metal, in particular stainless steel or titanium, or in particular a fiber composite material, the fibers of which advantageously extend to at least a significant proportion at least essentially in the circumferential direction in order to accommodate the radial forces that primarily occur when the rotor 149 rotates in the interior of the load-bearing sleeve 242 arranged permanent magnet arrangement to be able to advantageously accommodate it and support it accordingly.
- the load-receiving sleeve 242 can have additional functions in addition to supporting the permanent magnet arrangement, for example it can be extended radially on one or both sides beyond the permanent magnet(s) 241 in order to be able to with its radial inner or outer diameter and/or one or both axial End faces form further axial and/or radial centerings and/or connections to the rotor 149 or its elements, in particular the rotor shaft 153.
- the overall coaxial alignment of the load-receiving sleeve 240 with the permanent magnet arrangement 241 centered in its interior can be optimized via a radially and/or axially effective centering between the load-receiving sleeve 242 and the rotor shaft 153.
- the mechanical connection to the rotor shaft 153 takes place in a form-fitting manner as a press or shrink bond and/or advantageously in a cohesive manner, for example with an adhesive bond, for example one with plasma treatment of an adhesive area.
- the load-receiving sleeve 242 can have a vacuum technology function analogous to the Holweck sleeves 163, 165, as long as the gap 219 is designed to be advantageous in terms of vacuum technology, analogous to the Holweck columns 171, 173, 175, and the motor stator 217 and/or adjacent stator structures are designed analogously to the Holweck stators 167, 169.
- An improvement in the function of the electric motor 125 is possible by a radial arrangement of a ferromagnetic return element 245 in the radial interior of the permanent magnet arrangement or the permanent magnet(s) 241.
- This return element 245 can be either annular as an independent element that radially encloses the rotor shaft 153 or as a hollow or solid one Rotor shaft 153 can be executed. In both cases, the goal is to advantageously optimize the magnetic circuit of the electric motor by introducing one or more soft magnetic, in particular metallic, elements.
- connections between the return ring 245, permanent magnets 241, rotor shaft 153 and/or load-bearing sleeve 242 are, for example, form-fitting, as a press or shrink bond and/or advantageously cohesive, in particular with at least one adhesive bond.
- An adhesive bond can, for example, advantageously connect more than two of the aforementioned elements to one another and produce a reliable overall assembly.
- at least one, in particular several, adhesive areas can be provided per connection partner, of which at least one, in particular several or all of them are pretreated with plasma.
- the rotor shaft 153 here has an adhesive area 246, which is formed as a recess which has an additional recesses 247, which also forms the adhesive area 246.
- the adhesive area 246 is part of an adhesive connection with several other elements, namely the permanent magnet 241, the return element and even a small part of the load-bearing sleeve 242. They have their own adhesive areas 248, 249 and 250, respectively. At least one of the adhesive areas 246, 248, 249 and 250 is pretreated with plasma.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Description
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Vakuumpumpe, insbesondere Turbomolekularpumpe, bei dem ein erstes Element mit einem zweiten Element mittels eines Klebers verbunden wird, wobei das erste und das zweite Element jeweils einen für den Kleber vorgesehenen ersten bzw. zweiten Klebebereich aufweisen.The present invention relates to a method for producing a vacuum pump, in particular a turbomolecular pump, in which a first element is connected to a second element by means of an adhesive, the first and second elements each having a first and second adhesive area intended for the adhesive.
Die Erfindung betrifft auch eine Vakuumpumpe, insbesondere Turbomolekularpumpe, umfassend ein erstes Element und ein zweites Element, welche mittels eines Klebers verbunden sind, wobei das erste und das zweite Element jeweils einen für den Kleber vorgesehenen ersten bzw. zweiten Klebebereich aufweisen.The invention also relates to a vacuum pump, in particular a turbomolecular pump, comprising a first element and a second element, which are connected by means of an adhesive, the first and second elements each having a first and second adhesive area provided for the adhesive.
Eine beispielhafte Vakuumpumpe des Standes der Technik umfasst eine Holweckstufe, welche eine zylindrische Rotorhülse aufweist. Die Rotorhülse rotiert im Betrieb der Pumpe, um ein zu förderndes Gas entlang einer Schraubenbahn zu fördern, welche in der Regel in einem die Rotorhülse umschließenden und/oder von dieser umschlossenen, stehenden Zylinderkörper ausgebildet sind. Die Rotorhülse ist an einer Rotornabe mittels eines Klebers befestigt. Insbesondere Turbomolekularpumpen rotieren bekanntlich mit hohen Geschwindigkeiten, weshalb allgemein hohe Belastungen aller beteiligten Elemente und ihrer Verbindungen auftreten.An exemplary prior art vacuum pump includes a Holweck stage which has a cylindrical rotor sleeve. The rotor sleeve rotates during operation of the pump in order to convey a gas to be conveyed along a screw path, which is usually formed in a standing cylinder body which encloses the rotor sleeve and/or is enclosed by it. The rotor sleeve is attached to a rotor hub using an adhesive. Turbomolecular pumps in particular are known to rotate at high speeds, which is why there is generally high stress on all the elements involved and their connections.
Aus dem Stand der Technik bekannte Verfahren bzw. Vakuumpumpen sind den Dokumenten
Es ist eine Aufgabe der Erfindung, die Belastbarkeit einer Klebeverbindung in einer Vakuumpumpe zu verbessern.It is an object of the invention to improve the resilience of an adhesive connection in a vacuum pump.
Diese Aufgabe wird durch ein Herstellungsverfahren für eine Vakuumpumpe nach Anspruch 1 gelöst, und insbesondere dadurch, dass wenigstens einer der Klebebereiche zumindest teilweise, insbesondere vollständig, vor dem Verbinden mittels Plasma behandelt wird. Als Klebebereich ist dabei eine Oberfläche zu verstehen, die nicht notwendigerweise eben sein muss und welche zur Benetzung mit dem Kleber vorgesehen ist.This object is achieved by a manufacturing method for a vacuum pump according to
Die Plasmabehandlung führt zu einer Aktivierung des Klebebereichs, sodass der Kleber eine bessere Bindung zu dem betreffenden Element eingehen kann. Hierdurch wird die Haftkraft des Klebers an dem behandelten Klebebereich deutlich erhöht, sodass eine insgesamt feste und belastbare Verbindung erreicht wird.The plasma treatment activates the adhesive area so that the adhesive can bond better to the element in question. This significantly increases the adhesive strength of the adhesive on the treated adhesive area, so that an overall firm and resilient connection is achieved.
Eine derartige Behandlung ist einfach und kostengünstig durchführbar und handhabbar. Ein besonderer Vorteil der Plasmabehandlung ist außerdem, dass diese den Klebebereich nicht nur aktiviert, sondern insbesondere auch entfettet und reinigt sowie eine Aufrauhung und Oberflächenvergrößerung bewirkt. All diese Effekte verbessern zusätzlich die Bindung des Klebers an den Klebebereich. Es kann hierdurch bevorzugt auf konventionelle Behandlungen zur Haftungsverbesserung verzichtet werden. So kann etwa auf ein händisches Entfetten verzichtet werden, was Personalkosten einspart. Alternativ oder zusätzlich kann beispielsweise auf einen Schleifvorgang verzichtet werden, was das Verfahren ebenfalls vereinfacht. Dies gilt insbesondere für den Fall, dass der zu behandelnde Klebebereich an einer Innenfläche des beispielsweise zylindrischen Elements ausgebildet ist, da hier eine Schleifbehandlung häufig besonders aufwendig oder gar unmöglich ist. Gleichwohl können diese Effekte zur weiteren Verbesserung der Klebeverbindung auch zusätzlich einzeln oder in Kombination auf konventionellem Wege bei der Herstellung bewirkt werden, beispielsweile durch Vorsehen zusätzlicher Verfahrensschritte umfassend Entfetten, Reinigen, Aufrauhen und/oder Vergrößern der Oberfläche des Klebebereichs. Beispielsweise kann vor der Plasmabehandlung ein, insbesondere maschineller, Waschvorgang vorgesehen sein.Such a treatment can be carried out and handled simply and inexpensively. A particular advantage of plasma treatment is that it not only activates the adhesive area, but also degreases and cleans it and causes a roughening and enlargement of the surface. All of these effects also improve the bonding of the adhesive to the adhesive area. This means that conventional treatments to improve adhesion can preferably be dispensed with. For example, manual degreasing is no longer necessary, which saves personnel costs. Alternatively or additionally, for example, a grinding process can be dispensed with, which also simplifies the process. This applies in particular in the case that the adhesive area to be treated is formed on an inner surface of the, for example, cylindrical element, since grinding treatment is often particularly complex or even impossible here. Nevertheless, to further improve the adhesive connection, these effects can also be brought about individually or in combination in a conventional manner during production, for example by providing additional process steps comprising degreasing, cleaning, roughening and/or enlarging the surface of the adhesive area. For example, a washing process, in particular a mechanical one, can be provided before the plasma treatment.
Des Weiteren bewirkt die Plasmabehandlung die genannten Effekte auch besonders gleichmäßig bezogen auf die behandelte Oberfläche und reproduzierbar. Hierdurch wird die Prozesssicherheit deutlich erhöht und ein Produktionsausschuss deutlich verringert. Es sind keine Reinigungsmittel am Arbeitsplatz notwendig. Wenn die händische Reinigung entfällt, wird außerdem die Verletzungsgefahr sowie die chemische Belastung für das Produktionspersonal verringert. Auch wird eine Dekontamination des zu verklebenden Elements durch gegebenenfalls verschmutze Reinigungswerkzeuge vermieden. Und selbst wenn zusätzlich eine konventionelle Vorbehandlung, wie z.B. Waschen, insbesondere zum Entfernen von Staubpartikeln, vorgesehen wird und hierbei eine Kontamination, beispielsweise aufgrund von Verschmutzungsresten in einer Waschmaschine, auftreten sollte, wird diese durch die Plasmabehandlung verringert oder entfernt.Furthermore, the plasma treatment also brings about the effects mentioned particularly uniformly and reproducibly in relation to the treated surface. This significantly increases process reliability and significantly reduces production waste. No cleaning products are necessary in the workplace. Eliminating manual cleaning also reduces the risk of injury and chemical exposure for production personnel. Decontamination of the element to be bonded by cleaning tools that may be dirty is also avoided. And even if a conventional pretreatment, such as washing, in particular to remove dust particles, is also provided and contamination should occur, for example due to residual contamination in a washing machine, this is reduced or removed by the plasma treatment.
Ein weiterer Vorteil der Plasmabehandlung ist, dass deren Effekte, insbesondere die Aktivierung der Oberfläche, relativ lange bestehen bleiben. Eine Zwischenlagerung der Elemente ist somit möglich, was das Herstellungsverfahren zusätzlich flexibel macht.Another advantage of plasma treatment is that its effects, especially the activation of the surface, last for a relatively long time. Intermediate storage of the elements is therefore possible, which makes the manufacturing process additionally flexible.
Die Erfindung ermöglicht eine Reduzierung der Wahrscheinlichkeit von Haftungs- oder Adhäsionsbrüchen zwischen dem betreffenden Element und dem Kleber. Hierdurch wird die Verbindung insgesamt gestärkt.The invention makes it possible to reduce the likelihood of adhesion or adhesion breaks between the element in question and the adhesive. This strengthens the connection overall.
Ein weiterer Vorteil betrifft die Entwicklung der Vakuumpumpe. Hierbei erfolgt die Auslegung der Vakuumpumpe beispielsweise mittels vorheriger Berechnungen, beispielsweise mit der Finite-Elemente-Methode. Dabei werden Materialparameter des Klebstoffs betreffend unter anderem dessen Festigkeit benötigt. Diese werden üblicherweise vom Lieferanten des Klebers zur Verfügung gestellt. Vor Kenntnis der Erfindung wichen jedoch die hieraus berechneten Festigkeiten von denjenigen ab, die in Versuchen an Vakuumpumpenteilen ermittelt wurden, und zwar insbesondere deshalb, weil die Parameter für standardisierte Testbedingungen angegeben werden, welche sich in der Herstellung von Vakuumpumpen nicht ohne Weiteres erfüllen lassen. Dies erschwerte die Entwicklung. Beim erfindungsgemäßen Herstellungsverfahren werden dagegen nahezu oder tatsächlich die vom Lieferanten angegebenen Festigkeiten auf besonders zuverlässige aber einfache Weise erreicht. Dies ermöglicht eine genauere Auslegung und somit verbesserte Entwicklung der Vakuumpumpe.Another advantage relates to the development of the vacuum pump. The vacuum pump is designed, for example, using previous calculations, for example using the finite element method. Material parameters of the adhesive regarding, among other things, its strength are required. These are usually provided by the adhesive supplier. However, before knowledge of the invention, the strengths calculated from this deviated from those that were determined in tests on vacuum pump parts, in particular because the parameters are specified for standardized test conditions, which cannot easily be met in the production of vacuum pumps. This made development difficult. In the manufacturing process according to the invention, on the other hand, almost or actually the strengths specified by the supplier are achieved in a particularly reliable but simple manner. This enables a more precise design and thus improved development of the vacuum pump.
Nicht zuletzt weisen Mittel zu Plasmaerzeugung, wie z.B. Plasmaöfen oder -kammern, auch insbesondere geringe Anschaffungskosten auf, sind leicht zu bedienen, erfordern geringe Sicherheitsmaßnahmen und benötigen nur selten eine Wartung.Last but not least, means for generating plasma, such as plasma ovens or chambers, also have particularly low acquisition costs, are easy to operate, require few safety measures and rarely require maintenance.
Gemäß einer Ausführungsform der Erfindung ist vorgesehen, dass die Plasmabehandlung bei einem Druck unterhalb des atmosphärischen Drucks durchgeführt wird. Hierdurch lässt sich insbesondere eine gute Aktivierung der Oberfläche erreichen. Alternativ ist auch eine Behandlung bei atmosphärischem oder höherem Druck möglich.According to one embodiment of the invention, it is provided that the plasma treatment is carried out at a pressure below atmospheric pressure. In this way, good activation of the surface can be achieved in particular. Alternatively, treatment at atmospheric or higher pressure is also possible.
Ebenfalls vorteilhaft ist es, wenn gemäß einem Ausführungsbeispiel das Plasma aus Luft als Plasmaprozessgas erzeugt wird. Dies ermöglicht einen besonders einfachen Herstellungsprozess, da nicht zusätzlich besondere Plasmaprozessgase vorgehalten werden müssen. Alternativ ist aber auch als Plasmaprozessgas ein anderes Gas oder Gasgemisch verwendbar.It is also advantageous if, according to one exemplary embodiment, the plasma is generated from air as a plasma process gas. This enables a particularly simple manufacturing process, as special plasma process gases do not have to be kept available. Alternatively, another gas or gas mixture can also be used as the plasma process gas.
Bei einer Weiterbildung des erfindungsgemäßen Verfahrens wird das erste und/oder zweite Element im Ganzen mit Plasma behandelt. Das bedeutet, dass im Wesentlichen die gesamte Oberfläche des Elements behandelt wird. Dies geschieht beispielsweise in einer Kammer, die mit Plasma gefüllt wird. Somit wird die gesamte Oberfläche dem Plasma ausgesetzt. Dies hat den Vorteil, dass das Element einfach in die Kammer eingelegt werden kann, ohne dass eine genaue Ausrichtung des Elements nötig ist. Das Herstellungsverfahren wird somit weiter vereinfacht.In a further development of the method according to the invention, the first and/or second element is treated as a whole with plasma. This means that essentially the entire surface of the element is treated. This happens, for example, in a chamber that is filled with plasma. This means the entire surface is exposed to the plasma. This has the advantage that the element can be easily inserted into the chamber without the need for precise alignment of the element. The manufacturing process is thus further simplified.
Insoweit hierin Bezug auf das erste oder zweite Element genommen wird, geschieht dies lediglich zur Veranschaulichung. Es versteht sich, dass die jeweils beschriebenen Ausführungsformen auch auf das jeweils andere Element übertragbar sind. Grundsätzlich können auch mehr als zwei Elemente miteinander verklebt werden.Any reference made herein to the first or second element is for illustrative purposes only. It goes without saying that the embodiments described in each case can also be transferred to the other element. In principle, more than two elements can be glued together.
Bei einem weiteren Ausführungsbeispiel wird die Plasmabehandlung wenigstens 1 min, insbesondere wenigstens 3 min, und/oder höchstens 10 min, insbesondere höchstens 7 min, lang durchgeführt. Besonders vorteilhaft sind etwa 5 min.In a further exemplary embodiment, the plasma treatment is carried out for at least 1 minute, in particular at least 3 minutes, and/or at most 10 minutes, in particular at most 7 minutes. About 5 minutes is particularly advantageous.
Das Plasma kann beispielsweise mittels Gleichstrom, Wechselstrom, welcher insbesondere nieder- oder hochfrequent ist, und/oder Mikrowellen erzeugt werden.The plasma can be generated, for example, using direct current, alternating current, which is particularly low or high frequency, and/or microwaves.
Gemäß einer Weiterbildung werden das erste und/oder das zweite Element, insbesondere zusätzlich zu einer durch die Plasmabehandlung erzielten mikroskopischen Rauheit, mit einer makroskopisch definierten Oberflächenrauheit versehen oder hergestellt. Dabei kann die gemittelte Rautiefe Rz in µm, zumindest im Klebebereich, mit Vorteil z.B. wenigstens 0,8, insbesondere wenigstens 1,6, insbesondere wenigstens 3,2, insbesondere wenigstens 6,3, und/oder höchstens 50, insbesondere höchstens 25, insbesondere höchstens 20, insbesondere höchstens 17,5, betragen.According to a further development, the first and/or the second element are provided or produced with a macroscopically defined surface roughness, in particular in addition to a microscopic roughness achieved by the plasma treatment. The average roughness depth Rz in µm, at least in the adhesive area, can advantageously be, for example, at least 0.8, in particular at least 1.6, in particular at least 3.2, in particular at least 6.3, and / or at most 50, in particular at most 25, in particular at most 20, in particular at most 17.5.
Das erste und das zweite Element sind zur Rotation im Betrieb der Vakuumpumpe vorgesehen. Es handelt sich also um Rotorteile. Das Verfahren wirkt sich hier wegen der hohen Kräfte während der Rotation besonders vorteilhaft aus.The first and second elements are intended for rotation during operation of the vacuum pump. So these are rotor parts. The process is particularly advantageous here because of the high forces during rotation.
Erfindungsgemäß weist die Vakuumpumpe eine Holweck-Stufe auf, wobei das erste Element ein pumpaktives Element der Holweckstufe, nämlich eine Holweck-Rotorhülse, umfasst.According to the invention, the vacuum pump has a Holweck stage, wherein the first element comprises a pump-active element of the Holweck stage, namely a Holweck rotor sleeve.
In einer nicht beanspruchten Ausführungsform kann die Vakuumpumpe beispielsweise einen Permanentmagnet-Elektromotor aufweisen, wobei ein oder das erste Element insbesondere einen elektromagnetisch antreibbaren Rotor-Motormagneten, einen Permanentmagneten, eine Lastaufnahmehülse und/oder einen Rückschlussring umfassen kann.In an unclaimed embodiment, the vacuum pump can, for example, have a permanent magnet electric motor, wherein one or the first element can in particular comprise an electromagnetically drivable rotor motor magnet, a permanent magnet, a load-bearing sleeve and/or a return ring.
Bei einer Ausführungsform wird nur eines der Elemente mit Plasma behandelt, insbesondere eines, welches am Klebebereich einen Kunststoff umfasst. Hierdurch kann unter Kosteneinsparung dennoch eine gute Verbindung erreicht werden. Es können aber auch beide Elemente mit Plasma behandelt werden. Insbesondere kann das erste Element einen Kunststoff und/oder Verbundwerkstoff, insbesondere Kohlefaser-Verbundwerkstoff, Aramidfaser-Verbundwerkstoff, Glasfaser-Verbundwerkstoff, Basaltfaser-Verbundwerkstoff, Hybridgewebe-Verbundwerkstoff mit Faden- bzw. Faseranteilen mehrerer vorgenannter Verbundwerkstoffe und/oder eine lagenweise Kombination vorgenannter Gewebetypen im mehrlagigen Verbund, umfassen. Diese bieten hohe Festigkeit bei geringem Gewicht.In one embodiment, only one of the elements is treated with plasma, in particular one which comprises a plastic at the adhesive area. In this way, a good connection can still be achieved while saving costs. However, both elements can also be treated with plasma. In particular, the first element can be a plastic and/or composite material, in particular carbon fiber composite material, aramid fiber composite material, glass fiber composite material, basalt fiber composite material, hybrid fabric composite material with thread or fiber components of several of the aforementioned composite materials and/or a layered combination of the aforementioned fabric types in multi-layer composite. These offer high strength with low weight.
Bei einer Weiterbildung ist vorgesehen, dass das erste Element einen zumindest im Wesentlich zylindrischen Abschnitt und in diesem Abschnitt einen Faserverbundwerkstoff umfasst, dessen Fasern zu zumindest einem erheblichen Anteil zumindest im Wesentlichen in Umfangsrichtung verlaufen. Hierbei kann auch von einer radialen Wicklung der Fasern gesprochen werden, da diese in der radialen Ebene verlaufen. Hierdurch wird eine Temperatur- und/oder Fliehkraftausdehnung in radialer Richtung minimiert, sodass die Pumpe beispielsweise mit engen Spalten und somit besonders effektiv, z.B. im Hinblick auf ein hohes Verdichtungsverhältnis, ausgelegt werden kann. Ein Kontakt zwischen den Elementen, der zum Ausfall der Pumpe führen könnte, wird wirksam verhindert.In a further development it is provided that the first element comprises an at least essentially cylindrical section and in this section a fiber composite material, the fibers of which at least a significant proportion run at least essentially in the circumferential direction. This can also be referred to as a radial winding of the fibers, since they run in the radial plane. This causes temperature and/or centrifugal force expansion minimized in the radial direction, so that the pump can be designed with narrow gaps and therefore particularly effective, for example with regard to a high compression ratio. Contact between the elements, which could lead to pump failure, is effectively prevented.
Das zweite Element kann in vorteilhafter Weise einen Metallwerkstoff umfassen, beispielsweise Aluminium, insbesondere wenigstens eine der Legierungen EN AW-6082, EN AW-7075, EN AW-7475, EN AW-2618, EN AW-2618A, Titan, insbesondere die Legierung TiAl6V4, Gussstahl, insbesondere wenigstens eine der Legierungen EN-GJL-150, -200, -250, -300, -350, EN-GJS-400-15, EN-GJS-500-7, EN-GJS-600-3, Stahl, insbesondere wenigstens eine der Legierungen 1.0711, 1.0715, 1.0721, 1.0736, E235, H320B, und/oder Edelstahl, insbesondere wenigstens eine der Legierungen 1.4301, 1.4305, 1.4401, 1.4429, 1.4435.The second element can advantageously comprise a metal material, for example aluminum, in particular at least one of the alloys EN AW-6082, EN AW-7075, EN AW-7475, EN AW-2618, EN AW-2618A, titanium, in particular the alloy TiAl6V4 , cast steel, in particular at least one of the alloys EN-GJL-150, -200, -250, -300, -350, EN-GJS-400-15, EN-GJS-500-7, EN-GJS-600-3, Steel, in particular at least one of the alloys 1.0711, 1.0715, 1.0721, 1.0736, E235, H320B, and / or stainless steel, in particular at least one of the alloys 1.4301, 1.4305, 1.4401, 1.4429, 1.4435.
Gemäß einer Weiterbildung ist vorgesehen, dass an dem ersten und/oder dem zweiten Element eine Ausnehmung vorgesehen wird und ein Bereich in der Ausnehmung den Klebebereich zumindest teilweise bildet. Hierdurch kann der Kleber besonders zielgenau aufgebracht und im Klebebereich gehalten werden. Außerdem ermöglicht die Plasmabehandlung eine relativ freie Gestaltung dieser Ausnehmung, da keine konventionellen Vorbehandlungen, insbesondere kein Schleifen oder Ähnliches notwendig sind. Die Ausnehmung kann insbesondere umlaufend, insbesondere als Nut und/oder Freistich, und/oder als umlaufender Satz von Einzelausnehmungen gebildet sein.According to a further development, it is provided that a recess is provided on the first and/or the second element and an area in the recess at least partially forms the adhesive area. This allows the adhesive to be applied particularly precisely and held in the adhesive area. In addition, the plasma treatment enables a relatively free design of this recess, since no conventional pretreatments, in particular no grinding or the like, are necessary. The recess can in particular be formed circumferentially, in particular as a groove and/or undercut, and/or as a circumferential set of individual recesses.
Zwischen dem ersten und zweiten Element kann beispielsweise ein zumindest im Wesentlichen zylindrischer Verbindungsbereich definiert sein. Hierdurch lässt sich beispielsweise eine gute Fügegenauigkeit realisieren.For example, an at least substantially cylindrical connection region can be defined between the first and second elements. This makes it possible, for example, to achieve good joining accuracy.
Der zylindrische Verbindungsbereich kann beispielsweise koaxial zu einer Rotationsachse eines Rotors der Vakuumpumpe angeordnet sein.The cylindrical connection region can, for example, be arranged coaxially to a rotation axis of a rotor of the vacuum pump.
Weiterhin kann der Verbindungsbereich beispielsweise axial ringförmig zu einer Rotationsachse eines Rotors der Vakuumpumpe angeordnet sein. Die Ausrichtung des Verbindungsbereichs ist nicht auf rein radiale oder axial ausgedehnte Bereiche koaxial zu einer Rotationsachse eines Rotors der Vakuumpumpe beschränkt, sondern kann auch einen diagonalen oder beliebig freigeformten Bereich darstellen, der vorteilhaft ringförmig koaxial zu einer Rotationsachse eines Rotors der Vakuumpumpe angeordnet ist.Furthermore, the connection region can, for example, be arranged axially in a ring shape relative to an axis of rotation of a rotor of the vacuum pump. The alignment of the connection area is not limited to purely radial or axially extended areas coaxial to a rotation axis of a rotor of the vacuum pump, but can also represent a diagonal or freely shaped area, which is advantageously arranged in a ring shape coaxial to a rotation axis of a rotor of the vacuum pump.
Eine Kombination mehrerer Verbindungsbereiche gleicher oder verschiedener Ausrichtung zwischen zwei Elementen ist gleichfalls möglich. Weiterhin können mehrere Verbindungsbereiche gleicher und/oder verschiedener Ausrichtung, insbesondere radial und axial, ineinander übergehen und einen gemeinsamen, mehrachsigen, komplexen Verbindungsbereich definieren.A combination of several connection areas with the same or different orientation between two elements is also possible. Furthermore, several connection areas of the same and/or different orientation, in particular radially and axially, can merge into one another and define a common, multi-axial, complex connection area.
Jeder Verbindungsbereich kann eine, insbesondere zwei, drei oder viele vorteilhaft ringförmig ausgeführte Ausnehmungen für Kleber umfassen, diese können jeweils sowohl mit vorwiegend rechteckigem oder komplexem Querschnitt ausgeführt sein.Each connection area can comprise one, in particular two, three or many advantageously ring-shaped recesses for adhesive; these can each be designed with a predominantly rectangular or complex cross-section.
Die Aufgabe der Erfindung wird auch durch eine Vakuumpumpe mit den Merkmalen des unabhängigen Vorrichtungsanspruchs gelöst, und insbesondere dadurch, dass wenigstens einer der Klebebereiche zumindest teilweise vor dem Verbinden mittels Plasma behandelt worden ist.The object of the invention is also achieved by a vacuum pump with the features of the independent device claim, and in particular in that at least one of the adhesive areas has been at least partially treated by means of plasma before joining.
Nachfolgend wird die Erfindung beispielhaft anhand vorteilhafter Ausführungsformen unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen, jeweils schematisch:
- Fig. 1
- eine perspektivische Ansicht einer Turbomolekularpumpe,
- Fig. 2
- eine Ansicht der Unterseite der Turbomolekularpumpe von
Fig. 1 , - Fig. 3
- einen Querschnitt der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie A-A, - Fig. 4
- eine Querschnittsansicht der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie B-B, - Fig. 5
- eine Querschnittsansicht der Turbomolekularpumpe längs der in
Fig. 2 gezeigten Schnittlinie C-C, - Fig. 6
- einen Teilbereich T der
Fig. 3 in vergrößerter Darstellung. - Fig. 7
- einen Teilbereich U der
Fig. 3 in vergrößerter Darstellung.
- Fig. 1
- a perspective view of a turbomolecular pump,
- Fig. 2
- a view of the bottom of the turbomolecular pump of
Fig. 1 , - Fig. 3
- a cross section of the turbomolecular pump along the in
Fig. 2 shown section line AA, - Fig. 4
- a cross-sectional view of the turbomolecular pump along the in
Fig. 2 shown cutting line BB, - Fig. 5
- a cross-sectional view of the turbomolecular pump along the in
Fig. 2 shown cutting line CC, - Fig. 6
- a subarea T the
Fig. 3 in an enlarged view. - Fig. 7
- a subarea U the
Fig. 3 in an enlarged view.
Die in
Der Einlassflansch 113 bildet bei der Ausrichtung der Vakuumpumpe gemäß
Am Gehäuse 119 der Turbomolekularpumpe 111 ist ein Fluteinlass 133, insbesondere in Form eines Flutventils, vorgesehen, über den die Vakuumpumpe 111 geflutet werden kann. Im Bereich des Unterteils 121 ist ferner noch ein Sperrgasanschluss 135, der auch als Spülgasanschluss bezeichnet wird, angeordnet, über welchen Spülgas zum Schutz des Elektromotors 125 vor dem von der Pumpe geförderten Gas in den Motorraum 137, in welchem der Elektromotor 125 in der Vakuumpumpe 111 untergebracht ist, gebracht werden kann. Im Unterteil 121 sind ferner noch zwei Kühlmittelanschlüsse 139 angeordnet, wobei einer der Kühlmittelanschlüsse als Einlass und der andere Kühlmittelanschluss als Auslass für Kühlmittel vorgesehen ist, das zu Kühlzwecken in die Vakuumpumpe geleitet werden kann.A
Die untere Seite 141 der Vakuumpumpe kann als Standfläche dienen, sodass die Vakuumpumpe 111 auf der Unterseite 141 stehend betrieben werden kann. Die Vakuumpumpe 111 kann aber auch über den Einlassflansch 113 an einem Rezipienten befestigt werden und somit gewissermaßen hängend betrieben werden. Außerdem kann die Vakuumpumpe 111 so gestaltet sein, dass sie auch in Betrieb genommen werden kann, wenn sie auf andere Weise ausgerichtet ist als in
An der Unterseite 141, die in
An der Unterseite 141 sind außerdem Befestigungsbohrungen 147 angeordnet, über welche die Pumpe 111 beispielsweise an einer Auflagefläche befestigt werden kann.Fastening
In den
Wie die Schnittdarstellungen der
In dem Gehäuse 119 ist ein Rotor 149 angeordnet, der eine um eine Rotationsachse 151 drehbare Rotorwelle 153 aufweist.A
Die Turbomolekularpumpe 111 umfasst mehrere pumpwirksam miteinander in Serie geschaltete turbomolekulare Pumpstufen mit mehreren an der Rotorwelle 153 befestigten radialen Rotorscheiben 155 und zwischen den Rotorscheiben 155 angeordneten und in dem Gehäuse 119 festgelegten Statorscheiben 157. Dabei bilden eine Rotorscheibe 155 und eine benachbarte Statorscheibe 157 jeweils eine turbomolekulare Pumpstufe. Die Statorscheiben 157 sind durch Abstandsringe 159 in einem gewünschten axialen Abstand zueinander gehalten.The
Die Vakuumpumpe umfasst außerdem in radialer Richtung ineinander angeordnete und pumpwirksam miteinander in Serie geschaltete Holweck-Pumpstufen. Der Rotor der Holweck-Pumpstufen umfasst eine an der Rotorwelle 153 angeordnete Rotornabe 161 und zwei an der Rotornabe 161 befestigte und von dieser getragene zylindermantelförmige Holweck-Rotorhülsen 163, 165, die koaxial zur Rotationsachse 151 orientiert und in radialer Richtung ineinander geschachtelt sind.The vacuum pump also includes Holweck pump stages that are arranged one inside the other in the radial direction and are effectively connected in series. The rotor of the Holweck pump stages includes a
Ferner sind zwei zylindermantelförmige Holweck-Statorhülsen 167, 169 vorgesehen, die ebenfalls koaxial zu der Rotationsachse 151 orientiert und in radialer Richtung gesehen ineinander geschachtelt sind.Furthermore, two cylindrical jacket-shaped
Die pumpaktiven Oberflächen der Holweck-Pumpstufen sind durch die Mantelflächen, also durch die radialen Innen- und/oder Außenflächen, der Holweck-Rotorhülsen 163, 165 und der Holweck-Statorhülsen 167, 169 gebildet. Die radiale Innenfläche der äußeren Holweck-Statorhülse 167 liegt der radialen Außenfläche der äußeren Holweck-Rotorhülse 163 unter Ausbildung eines radialen Holweck-Spalts 171 gegenüber und bildet mit dieser die der Turbomolekularpumpen nachfolgende erste Holweck-Pumpstufe. Die radiale Innenfläche der äußeren Holweck-Rotorhülse 163 steht der radialen Außenfläche der inneren Holweck-Statorhülse 169 unter Ausbildung eines radialen Holweck-Spalts 173 gegenüber und bildet mit dieser eine zweite Holweck-Pumpstufe. Die radiale Innenfläche der inneren Holweck-Statorhülse 169 liegt der radialen Außenfläche der inneren Holweck-Rotorhülse 165 unter Ausbildung eines radialen Holweck-Spalts 175 gegenüber und bildet mit dieser die dritte Holweck-Pumpstufe.The pump-active surfaces of the Holweck pump stages are formed by the lateral surfaces, i.e. by the radial inner and/or outer surfaces, of the
Am unteren Ende der Holweck-Rotorhülse 163 kann ein radial verlaufender Kanal vorgesehen sein, über den der radial außenliegende Holweck-Spalt 171 mit dem mittleren Holweck-Spalt 173 verbunden ist. Außerdem kann am oberen Ende der inneren Holweck-Statorhülse 169 ein radial verlaufender Kanal vorgesehen sein, über den der mittlere Holweck-Spalt 173 mit dem radial innenliegenden Holweck-Spalt 175 verbunden ist. Dadurch werden die ineinander geschachtelten Holweck-Pumpstufen in Serie miteinander geschaltet. Am unteren Ende der radial innenliegenden Holweck-Rotorhülse 165 kann ferner ein Verbindungskanal 179 zum Auslass 117 vorgesehen sein.At the lower end of the
Die vorstehend genannten pumpaktiven Oberflächen der Holweck-Statorhülsen 167, 169 weisen jeweils mehrere spiralförmig um die Rotationsachse 151 herum in axialer Richtung verlaufende Holweck-Nuten auf, während die gegenüberliegenden Mantelflächen der Holweck-Rotorhülsen 163, 165 glatt ausgebildet sind und das Gas zum Betrieb der Vakuumpumpe 111 in den Holweck-Nuten vorantreiben.The above-mentioned pump-active surfaces of the
Zur drehbaren Lagerung der Rotorwelle 153 sind ein Wälzlager 181 im Bereich des Pumpenauslasses 117 und ein Permanentmagnetlager 183 im Bereich des Pumpeneinlasses 115 vorgesehen.To rotatably support the
Im Bereich des Wälzlagers 181 ist an der Rotorwelle 153 eine konische Spritzmutter 185 mit einem zu dem Wälzlager 181 hin zunehmenden Außendurchmesser vorgesehen. Die Spritzmutter 185 steht mit mindestens einem Abstreifer eines Betriebsmittelspeichers in gleitendem Kontakt. Der Betriebsmittelspeicher umfasst mehrere aufeinander gestapelte saugfähige Scheiben 187, die mit einem Betriebsmittel für das Wälzlager 181, z.B. mit einem Schmiermittel, getränkt sind.In the area of the rolling
Im Betrieb der Vakuumpumpe 111 wird das Betriebsmittel durch kapillare Wirkung von dem Betriebsmittelspeicher über den Abstreifer auf die rotierende Spritzmutter 185 übertragen und in Folge der Zentrifugalkraft entlang der Spritzmutter 185 in Richtung des größer werdenden Außendurchmessers der Spritzmutter 185 zu dem Wälzlager 181 hin gefördert, wo es z.B. eine schmierende Funktion erfüllt. Das Wälzlager 181 und der Betriebsmittelspeicher sind durch einen wannenförmigen Einsatz 189 und den Lagerdeckel 145 in der Vakuumpumpe eingefasst.During operation of the
Das Permanentmagnetlager 183 umfasst eine rotorseitige Lagerhälfte 191 und eine statorseitige Lagerhälfte 193, welche jeweils einen Ringstapel aus mehreren in axialer Richtung aufeinander gestapelten permanentmagnetischen Ringen 195, 197 umfassen. Die Ringmagnete 195, 197 liegen einander unter Ausbildung eines radialen Lagerspalts 199 gegenüber, wobei die rotorseitigen Ringmagnete 195 radial außen und die statorseitigen Ringmagnete 197 radial innen angeordnet sind. Das in dem Lagerspalt 199 vorhandene magnetische Feld ruft magnetische Abstoßungskräfte zwischen den Ringmagneten 195, 197 hervor, welche eine radiale Lagerung der Rotorwelle 153 bewirken. Die rotorseitigen Ringmagnete 195 sind von einem Trägerabschnitt 201 der Rotorwelle 153 getragen, welcher die Ringmagnete 195 radial außenseitig umgibt. Die statorseitigen Ringmagnete 197 sind von einem statorseitigen Trägerabschnitt 203 getragen, welcher sich durch die Ringmagnete 197 hindurch erstreckt und an radialen Streben 205 des Gehäuses 119 aufgehängt ist. Parallel zu der Rotationsachse 151 sind die rotorseitigen Ringmagnete 195 durch ein mit dem Trägerabschnitt 203 gekoppeltes Deckelelement 207 festgelegt. Die statorseitigen Ringmagnete 197 sind parallel zu der Rotationsachse 151 in der einen Richtung durch einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 209 sowie einen mit dem Trägerabschnitt 203 verbundenen Befestigungsring 211 festgelegt. Zwischen dem Befestigungsring 211 und den Ringmagneten 197 kann außerdem eine Tellerfeder 213 vorgesehen sein.The
Innerhalb des Magnetlagers ist ein Not- bzw. Fanglager 215 vorgesehen, welches im normalen Betrieb der Vakuumpumpe 111 ohne Berührung leer läuft und erst bei einer übermäßigen radialen Auslenkung des Rotors 149 relativ zu dem Stator in Eingriff gelangt, um einen radialen Anschlag für den Rotor 149 zu bilden, da eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen verhindert wird. Das Fanglager 215 ist als ungeschmiertes Wälzlager ausgebildet und bildet mit dem Rotor 149 und/oder dem Stator einen radialen Spalt, welcher bewirkt, dass das Fanglager 215 im normalen Pumpbetrieb außer Eingriff ist. Die radiale Auslenkung, bei der das Fanglager 215 in Eingriff gelangt, ist groß genug bemessen, sodass das Fanglager 215 im normalen Betrieb der Vakuumpumpe nicht in Eingriff gelangt, und gleichzeitig klein genug, sodass eine Kollision der rotorseitigen Strukturen mit den statorseitigen Strukturen unter allen Umständen verhindert wird.An emergency or
Die Vakuumpumpe 111 umfasst den Elektromotor 125 zum drehenden Antreiben des Rotors 149. Der Anker des Elektromotors 125 ist durch den Rotor 149 gebildet, dessen Rotorwelle 153 sich durch den Motorstator 217 hindurch erstreckt. Auf den sich durch den Motorstator 217 hindurch erstreckenden Abschnitt der Rotorwelle 153 kann radial außenseitig oder eingebettet eine Permanentmagnetanordnung angeordnet sein. Zwischen dem Motorstator 217 und dem sich durch den Motorstator 217 hindurch erstreckenden Abschnitt des Rotors 149 ist ein Zwischenraum 219 angeordnet, welcher einen radialen Motorspalt umfasst, über den sich der Motorstator 217 und die Permanentmagnetanordnung zur Übertragung des Antriebsmoments magnetisch beeinflussen können.The
Der Motorstator 217 ist in dem Gehäuse innerhalb des für den Elektromotor 125 vorgesehenen Motorraums 137 festgelegt. Über den Sperrgasanschluss 135 kann ein Sperrgas, das auch als Spülgas bezeichnet wird, und bei dem es sich beispielsweise um Luft oder um Stickstoff handeln kann, in den Motorraum 137 gelangen. Über das Sperrgas kann der Elektromotor 125 vor Prozessgas, z.B. vor korrosiv wirkenden Anteilen des Prozessgases, geschützt werden. Der Motorraum 137 kann auch über den Pumpenauslass 117 evakuiert werden, d.h. im Motorraum 137 herrscht zumindest annäherungsweise der von der am Pumpenauslass 117 angeschlossenen Vorvakuumpumpe bewirkte Vakuumdruck.The
Zwischen der Rotornabe 161 und einer den Motorraum 137 begrenzenden Wandung 221 kann außerdem eine sog. und an sich bekannte Labyrinthdichtung 223 vorgesehen sein, insbesondere um eine bessere Abdichtung des Motorraums 217 gegenüber den radial außerhalb liegenden Holweck-Pumpstufen zu erreichen.A so-called and known
In
Hier wird jeweils eine Werkstoffpaarung von Kohlefaser-Verbundwerkstoff auf Seiten der Holweck-Rotorhülsen 163, 165 und Metall auf Seiten der Rotornabe 161 verklebt. Die Fasern der Rotorhülsen 163 und 165 sind vorteilhaft radial gewickelt, verlaufen also in Umfangsrichtung und senkrecht zur Bildebene der
In einem oder beiden der jeweils verklebten Elemente, kann eine, insbesondere umlaufende, Ausnehmung, insbesondere Nut, für den Kleber vorgesehen sein. So ist beispielsweise der Klebebereich 232 durch eine umlaufende Ausnehmung, nämlich einen Freistich, gebildet. Die Klebebereiche 234, 236, 238 und 240 sind ebenfalls umlaufend, jedoch als Nuten ausgebildet. Die Klebebereiche 233, 235, 237, 239 sind dagegen flach ausgebildet, während der Klebebereich 231 als Kante ausgebildet ist. Die Klebebereichpaarungen 233 und 234, 235 und 236, 237 und 238 sowie 239 und 240 bilden zusammen mit dem darin befindlichen Kleber radiale Verbindungen. Die Klebebereiche 231 und 232 bilden hingegen mit dem Kleber eine Verbindung, die sowohl radial als auch axial ausgerichtet ist. Selbstverständlich sind andere Zahlen, Anordnungen und Kombinationen von Klebebereichen möglich.In one or both of the glued elements, a recess, in particular a circumferential recess, in particular a groove, can be provided for the adhesive. For example, the
In
Die Anordnung des/der Permanentmagneten 241 an der Rotorwelle 153 kann insbesondere ringförmig koaxial erfolgen. Permanentmagnete weisen typischerweise nur geringe mechanische Festigkeiten und/oder geringe Bruchdehnungswerte auf. Die bei Betrieb der Pumpe und Rotation des Rotors 149 entstehenden mehrachsigen, größtenteils radialen Zugspannungen in den Permanentmagneten durch Temperatur- und/oder Fliehkraftausdehnung können durch eine die Permanentmagnetanordnung zumindest teilweise, vorteilhaft ringförmige, insbesondere vollständig radial umschließende bzw. überdeckende Lastaufnahmehülse 242 minimiert werden.The arrangement of the permanent magnet(s) 241 on the
Vorteilhaft wird die Lastaufnahmehülse 242 kraftschlüssig mit einem radialen Press- oder Schrumpfverbund und/oder insbesondere einer Klebeverbindung stoffschlüssig mit dem/den innenliegenden Permanentmagneten verbunden. So ist in
Die Lastaufnahmehülse 242 kann ein nichtmagnetisches Metall, insbesondere Edelstahl oder Titan, oder insbesondere einen Faserverbundwerkstoff umfassen, dessen Fasern vorteilhaft zu zumindest einem erheblichen Anteil zumindest im Wesentlichen in Umfangsrichtung verlaufen, um die bei Rotation des Rotors 149 vornehmlich auftretenden Radialkräfte der im Inneren der Lastaufnahmehülse 242 angeordneten Permanentmagnetanordnung vorteilhaft aufnehmen und diese entsprechend stützen zu können.The load-
Die Lastaufnahmehülse 242 kann zusätzlich zur Stützung der Permanentmagnetanordnung weitere Funktionen aufweisen, beispielsweise kann sie ein- oder beidseitig über den bzw. die Permanentmagnete(n) 241 hinaus radial verlängert werden, um mit ihrem radialen Innen- oder Außendurchmesser und/oder einer oder beiden axialen Stirnflächen weitere axiale und/oder radiale Zentrierungen und/oder Verbindungen zum Rotor 149 oder seinen Elementen, insbesondere der Rotorwelle 153, einzugehen.The load-receiving
Vorteilhaft kann über eine radial und/oder axial wirksame Zentrierung zwischen Lastaufnahmehülse 242 und Rotorwelle 153 die koaxiale Gesamtausrichtung der Lastaufnahmehülse 240 mit der in ihrem Inneren zentrierten Permanentmagnetanordnung 241 optimiert ausgeführt werden. Die mechanische Verbindung mit der Rotorwelle 153 geschieht formschlüssig als Press- oder Schrumpfverbund und/oder vorteilhaft stoffschlüssig, beispielsweise mit einer Klebung, beispielsweise einer solchen mit Plasmabehandlung eines Klebebereichs.Advantageously, the overall coaxial alignment of the load-receiving
Weiterhin kann die Lastaufnahmehülse 242 eine vakuumtechnische Funktion analog den Holweckhülsen 163, 165 aufweisen, soweit der Zwischenraum 219 analog den Holweck-Spalten 171, 173, 175 und der Motorstator 217 und/oder angrenzende Statorstrukturen analog den Holweckstatoren 167, 169 vakuumtechnisch vorteilhaft ausgestaltet sind.Furthermore, the load-receiving
Eine Verbesserung der Funktion des Elektromotors 125 ist durch eine radiale Anordnung eines ferromagnetischen Rückschlusselements 245 im radialen Inneren der Permanentmagnetanordnung bzw. des/der Permanentmagnete 241 möglich. Dieses Rückschlusselement 245 kann sowohl ringförmig als eigenständiges Element die Rotorwelle 153 radial umschließend oder als hohl oder massiv ausgeführte Rotorwelle 153 ausgeführt werden. In beiden Fällen ist das Ziel, den magnetischen Kreis des Elektromotors vorteilhaft durch Einbringung eines/mehrerer weichmagnetischer, insbesondere metallischer Elemente zu optimieren.An improvement in the function of the
Die Verbindungen zwischen Rückschlussring 245, Permanentmagneten) 241, Rotorwelle 153 und/oder Lastaufnahmehülse 242 sind beispielsweise formschlüssig, als Press- oder Schrumpfverbund und/oder vorteilhaft stoffschlüssig, insbesondere mit mindestens einer Klebung ausgeführt. Eine Klebung kann z.B. mehr als zwei der vorgenannten Elemente vorteilhaft miteinander verbinden und einen betriebssicheren Gesamtverbund herstellen. Bei allen Klebeverbindungen kann beispielsweise wenigstens ein, insbesondere mehrere, Klebebereich je Verbindungspartner vorgesehen sein, von denen wenigstens einer, insbesondere mehrere oder alle mit Plasma vorbehandelt sind.The connections between the
Die Rotorwelle 153 weist hier einen Klebebereich 246 auf, der als Ausnehmung gebildet ist, die eine zusätzliche Ausnehmen 247 aufweist, welche ebenfalls den Klebebereich 246 bildet. Der Klebebereich 246 ist Teil einer Klebeverbindung mit mehreren weiteren Elementen, nämlich dem Permanentmagnet 241, dem Rückschlusselement und sogar zu einem kleinen Teil der Lastaufnahmehülse 242. Sie weisen eigene Klebebereiche 248, 249 bzw. 250 auf. Wenigstens einer der Klebebereiche 246, 248, 249 und 250 ist mit Plasma vorbehandelt.The
Hier wird insbesondere sowohl an den Klebebereichen 243 und 244 eine Werkstoffpaarung von Kohlefaser-Verbundwerkstoff auf Seiten der Lastaufnahmehülse 242 und Kunststoff auf Seiten des kunststoffgebundenen Compound-Permanentmagneten 241 als auch an den Klebebereichen 246 und 248 eine Werkstoffpaarung von ferromagnetischem Stahl auf Seiten des Rückschlussrings 245 und Aluminium auf Seiten der Rotorwelle 153 verklebt. An den Klebebereichen 246 und 248, nämlichen in einem axialen Endbereich derselben, nehmen zusätzlich die Werkstoffe von Permanentmagnet 241 und Lastaufnahmehülse 242 teil. Diese Klebung 246, 248 ist in einer komplexen Form ausgeführt und verbindet über mehrere Teilvolumen hinweg in einer mehrachsigen Anordnung alle vorgenannten Teile 153, 241, 242 und 245.Here, in particular, both on the
- 111111
- TurbomolekularpumpeTurbomolecular pump
- 113113
- Einlassflanschinlet flange
- 115115
- PumpeneinlassPump inlet
- 117117
- PumpenauslassPump outlet
- 119119
- GehäuseHousing
- 121121
- UnterteilBottom part
- 123123
- ElektronikgehäuseElectronics housing
- 125125
- ElektromotorElectric motor
- 127127
- ZubehöranschlussAccessory connection
- 129129
- DatenschnittstelleData interface
- 131131
- StromversorgungsanschlussPower supply connection
- 133133
- FluteinlassFlood inlet
- 135135
- SperrgasanschlussSealing gas connection
- 137137
- MotorraumEngine compartment
- 139139
- KühlmittelanschlussCoolant connection
- 141141
- Unterseitebottom
- 143143
- Schraubescrew
- 145145
- LagerdeckelBearing cap
- 147147
- Befestigungsbohrungmounting hole
- 148148
- KühlmittelleitungCoolant line
- 149149
- Rotorrotor
- 151151
- RotationsachseAxis of rotation
- 153153
- RotorwelleRotor shaft
- 155155
- RotorscheibeRotor disc
- 157157
- Statorscheibestator disk
- 159159
- AbstandsringSpacer ring
- 161161
- RotornabeRotor hub
- 163163
- Holweck-RotorhülseHolweck rotor sleeve
- 165165
- Holweck-RotorhülseHolweck rotor sleeve
- 167167
- Holweck-StatorhülseHolweck stator sleeve
- 169169
- Holweck-StatorhülseHolweck stator sleeve
- 171171
- Holweck-SpaltHolweck gap
- 173173
- Holweck-SpaltHolweck gap
- 175175
- Holweck-SpaltHolweck gap
- 179179
- Verbindungskanalconnection channel
- 181181
- Wälzlagerroller bearing
- 183183
- PermanentmagnetlagerPermanent magnet bearings
- 185185
- SpritzmutterInjection nut
- 187187
- Scheibedisc
- 189189
- EinsatzMission
- 191191
- rotorseitige Lagerhälfterotor side bearing half
- 193193
- statorseitige Lagerhälftestator side bearing half
- 195195
- RingmagnetRing magnet
- 197197
- RingmagnetRing magnet
- 199199
- LagerspaltBearing gap
- 201201
- TrägerabschnittSupport section
- 203203
- TrägerabschnittSupport section
- 205205
- radiale Streberadial strut
- 207207
- DeckelelementLid element
- 209209
- StützringSupport ring
- 211211
- BefestigungsringFastening ring
- 213213
- TellerfederDisc spring
- 215215
- Not- bzw. FanglagerEmergency or detention camp
- 217217
- MotorstatorMotor stator
- 219219
- Zwischenraumspace
- 221221
- Wandungwall
- 223223
- LabyrinthdichtungLabyrinth seal
- 231-240231-240
- KlebebereichAdhesive area
- 241241
- PermanentmagnetPermanent magnet
- 242242
- LastaufnahmehülseLoad-bearing sleeve
- 243243
- KlebebereichAdhesive area
- 244244
- KlebebereichAdhesive area
- 245245
- RückschlusselementInference element
- 246246
- KlebebereichAdhesive area
- 247247
- Ausnehmungrecess
- 248-250248-250
- KlebebereicheAdhesive areas
Claims (14)
- A method of manufacturing a vacuum pump (111), in particular a turbomolecular pump, in which a first element (163, 165) is connected to a second element (161) by means of an adhesive,wherein the first and the second element (163, 165, 161) each have a first or second adhesive region (231, 232, 233, 234) provided for the adhesive, wherein the vacuum pump (111) has a Holweck stage and the first element (163, 165) comprises a pump-active element of the Holweck stage, namely a Holweck rotor sleeve having a smooth pump-active jacket surface which is disposed opposite a pump-active surface of a Holweck stator sleeve, wherein the pump-active surface of the Holweck stator sleeve has a plurality of Holweck grooves extending helically around the rotation axis in the axial direction, and wherein the Holweck rotor sleeve is supported by a rotor hub which is arranged at a rotor shaft of a rotor of the Holweck stage, characterized in thatat least one of the adhesive regions (231, 232, 233, 234) is at least partly treated by means of plasma before the connection.
- A method in accordance with claim 1,
characterized in that
the plasma treatment is performed at a pressure below the atmospheric pressure or at atmospheric pressure. - A method in accordance with claim 1 or 2,
characterized in that
the plasma is generated from air as a plasma process gas. - A method in accordance with any one of the preceding claims,
characterized in that
the first and/or the second element (163, 165, 161) is/are treated with plasma as a whole. - A method in accordance with any one of the preceding claims,
characterized in that
the plasma treatment is carried out for at least 1 min and/or at most 10 min. - A method in accordance with any one of the preceding claims,
characterized in that
the plasma is generated by means of direct current, alternating current, which is in particular of low or high frequency, and/or microwaves. - A method in accordance with any one of the preceding claims,
characterized in that
the first and the second element (163, 165, 161) are provided for rotation during operation of the vacuum pump (111). - A method in accordance with any one of the preceding claims,
characterized in that
the first element (163, 165) comprises a composite material. - A method in accordance with any one of the preceding claims,
characterized in that
the first element (163, 165) comprises an at least substantially cylindrical section and a fiber composite material in this section, with in particular at least a considerable proportion of the fibers of the fiber composite material extending at least substantially in the peripheral direction. - A method in accordance with any one of the preceding claims,
characterized in that
the second element (161) comprises a metal material. - A method in accordance with any one of the preceding claims,
characterized in that
a recess is provided at the first and/or the second element (163, 165, 161) and a region in the recess at least partly forms the adhesive region. - A method in accordance with any one of the preceding claims,
characterized in that
an at least substantially cylindrical connection region is defined between the first and the second element. - A method in accordance with claim 12,
characterized in that
the cylindrical connection region is arranged coaxially to a rotation axis (151) of a rotor (149) of the vacuum pump (111). - A vacuum pump (111), in particular a turbomolecular pump, manufactured by a method in accordance with any one of the preceding claims,comprising a first element (163, 165) and a second element (161) which are connected by means of an adhesive,wherein the first and the second element (163, 165, 161) each have a first or second adhesive region (231, 232, 233, 234) provided for the adhesive, wherein the vacuum pump (111) has a Holweck stage and the first element (163, 165) comprises a pump-active element of the Holweck stage, namely a Holweck rotor sleeve having a smooth pump-active jacket surface which is disposed opposite a pump-active surface of a Holweck stator sleeve, wherein the pump-active surface of the Holweck stator sleeve has a plurality of Holweck grooves extending helically around the rotation axis in the axial direction, and wherein the Holweck rotor sleeve is supported by a rotor hub which is arranged at a rotor shaft of a rotor of the Holweck stage, characterized in thatat least one of the adhesive regions (231, 232, 233, 234) is at least partly treated by means of plasma before the connection.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18188711.8A EP3611381B1 (en) | 2018-08-13 | 2018-08-13 | Method for producing a vacuum pump |
JP2019143498A JP2020026794A (en) | 2018-08-13 | 2019-08-05 | Method of producing vacuum pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18188711.8A EP3611381B1 (en) | 2018-08-13 | 2018-08-13 | Method for producing a vacuum pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3611381A1 EP3611381A1 (en) | 2020-02-19 |
EP3611381B1 true EP3611381B1 (en) | 2023-10-04 |
Family
ID=63244479
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18188711.8A Active EP3611381B1 (en) | 2018-08-13 | 2018-08-13 | Method for producing a vacuum pump |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3611381B1 (en) |
JP (1) | JP2020026794A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7150565B2 (en) * | 2018-10-31 | 2022-10-11 | エドワーズ株式会社 | Vacuum pumps and vacuum pump components |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013160118A (en) * | 2012-02-03 | 2013-08-19 | Shimadzu Corp | Turbomolecular pump |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8702892B2 (en) * | 2005-02-11 | 2014-04-22 | Sika Technology Ag | Bonding of air-plasma treated thermoplastics |
DE102005008260A1 (en) * | 2005-02-22 | 2006-08-24 | Basf Ag | Article comprising polyurethane and polystyrene, useful e.g. as sealed coverings and housings, free of chemical adhesive, bonded by plasma treatment of the polystyrene surface |
US9540545B2 (en) * | 2011-09-02 | 2017-01-10 | Schlumberger Technology Corporation | Plasma treatment in fabricating directional drilling assemblies |
DE102011119506A1 (en) * | 2011-11-26 | 2013-05-29 | Pfeiffer Vacuum Gmbh | Fast rotating rotor for a vacuum pump |
DE102013209614A1 (en) * | 2013-05-23 | 2014-11-27 | Pfeiffer Vacuum Gmbh | Method for producing a structured component |
DE102013114576A1 (en) * | 2013-12-19 | 2015-06-25 | Pfeiffer Vacuum Gmbh | stator |
EP3333236B1 (en) * | 2016-12-09 | 2021-03-31 | tesa SE | Adhesive strips |
-
2018
- 2018-08-13 EP EP18188711.8A patent/EP3611381B1/en active Active
-
2019
- 2019-08-05 JP JP2019143498A patent/JP2020026794A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013160118A (en) * | 2012-02-03 | 2013-08-19 | Shimadzu Corp | Turbomolecular pump |
Non-Patent Citations (1)
Title |
---|
ANONYMOUS: "Plasma activation - Wikipedia", 21 April 2020 (2020-04-21), pages 1 - 7, XP055717631, Retrieved from the Internet <URL:https://en.wikipedia.org/wiki/Plasma_activation#> [retrieved on 20200723] * |
Also Published As
Publication number | Publication date |
---|---|
JP2020026794A (en) | 2020-02-20 |
EP3611381A1 (en) | 2020-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0408791B1 (en) | Drag pump with a bell-shaped rotor | |
DE3839731C2 (en) | ||
EP2017435A2 (en) | Turbo engine with electric machine and magnetic bearings | |
DE102012216450A1 (en) | Method for centering a vacuum pump or a rotation unit for a vacuum pump | |
EP3611381B1 (en) | Method for producing a vacuum pump | |
DE60319585T2 (en) | VACUUM PUMP | |
EP2728194B1 (en) | Vacuum pump and method of manufacturing the same | |
EP3034880A1 (en) | Rotor assembly for a vacuum pump and method for producing the same | |
EP3088745B1 (en) | Rotor assembly for a vacuum pump and vacuum pump | |
EP3051138B1 (en) | Vacuum pump housing, vacuum pump and method for producing a vacuum pump housing | |
EP3196471B1 (en) | Vacuum pump | |
EP3385961B1 (en) | Monolithic permanent magnet | |
EP3708843B1 (en) | Method for the manufacture of an electric motor or a vacuum apparatus with such a motor | |
EP3327293B1 (en) | Vacuum pump having multiple inlets | |
EP3683449B1 (en) | Magnetic bearing and vacuum apparatus | |
EP2913533B1 (en) | Stator disc | |
EP2933496B1 (en) | Vacuum pump | |
EP3318763B1 (en) | Vacuum seal, dual seal, vacuum system and vacuum pump | |
EP3135932B1 (en) | Vacuum pump and permanent magnet bearing | |
EP3628883B1 (en) | Vacuum pump | |
EP3462036B1 (en) | Turbomolecular vacuum pump | |
EP3536965A1 (en) | Vacuum pump wherein the support of a rolling bearing has an adjustable stiffness and/or damping property | |
EP3564538B1 (en) | Vacuum system and method for manufacturing the same | |
EP3633204B1 (en) | Vacuum pump | |
EP4325061A1 (en) | Turbomolecular vacuum pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20190918 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210728 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20230704 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018013362 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20231004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240204 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240105 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240104 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20240104 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018013362 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20231004 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20240705 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240826 Year of fee payment: 7 |