EP3628416B1 - Process and system for continuously casting a metal product - Google Patents

Process and system for continuously casting a metal product Download PDF

Info

Publication number
EP3628416B1
EP3628416B1 EP19197237.1A EP19197237A EP3628416B1 EP 3628416 B1 EP3628416 B1 EP 3628416B1 EP 19197237 A EP19197237 A EP 19197237A EP 3628416 B1 EP3628416 B1 EP 3628416B1
Authority
EP
European Patent Office
Prior art keywords
strip
strand
comparison value
guide
supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19197237.1A
Other languages
German (de)
French (fr)
Other versions
EP3628416A1 (en
Inventor
Thomas Heimann
Uwe Plociennik
Jürgen Müller
André Stuhlsatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=67956535&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3628416(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Publication of EP3628416A1 publication Critical patent/EP3628416A1/en
Application granted granted Critical
Publication of EP3628416B1 publication Critical patent/EP3628416B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/142Plants for continuous casting for curved casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/144Plants for continuous casting with a rotating mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/18Controlling or regulating processes or operations for pouring
    • B22D11/188Controlling or regulating processes or operations for pouring responsive to thickness of solidified shell

Definitions

  • the invention relates to a method for continuously casting a metallic product according to the preamble of claim 1, and to a continuous casting installation according to the preamble of claim 10.
  • the liquid metal is continuously cast in a mold, where a first strand shell is formed.
  • the strand emerges downwards from the mold, the strand then being transported along a supporting strand guide.
  • the strand is then moved along a further strand guide with a straightening area, through which the strand is deflected in the horizontal direction.
  • further processing stations for the strand or partial products formed therefrom can be provided along the strand guide, for example in the form of rolling mills through which the strand is passed.
  • the strand hardens or solidifies completely within the supporting strand guide in order to prevent the liquid metal core from breaking out and to enable the strand to be processed further.
  • the cooling capacity in the area of the supporting strand guide and the casting speed are set in such a way that, with an optimal operating sequence, the sump tip of the strand is always in front of or upstream of the last pair of supporting rollers at the end of the supporting strand guide.
  • the strand can bulge , because the hydrostatic pressure of the liquid melt now lacks a counterpressure due to a pair of supporting rollers. This can cause the Strand in a non-area of the strand guide, which does not contribute to the support of the strand and - seen in a conveying direction of the strand - is located downstream of the supporting strand guide, bulges develop due to an increase in the thickness of the strand.
  • the measuring principle according to DE 1 558 345 A with which dents or an increase in thickness on the surface of a moving strand after exiting a supporting strand guide is determined in a mechanical way with a contact measuring roller, is subject to various disadvantages, e.g. wear of the wheels of the mechanical sensors due to the high temperatures of the strand . Furthermore, measurement errors can result if these wheels do not roll cleanly on the broad sides of the strand.
  • JP H02 55652 A It is known to change the casting speed during the production of a strand as a function of the measured strand shell thickness in order to thereby achieve a desired position for the sump tip of the strand.
  • An ultrasonic measuring device is used to measure a strand shell thickness.
  • a precise indication of the point at which such an ultrasonic measuring device is arranged relative to a supporting strand guide is given in FIG JP H02 55652 A not known.
  • EP 2 422 900 A1 an arrangement for measuring physical parameters in continuous casting molds is known.
  • the invention is based on the object of optimizing the continuous casting of a metallic product with regard to quality improvement and at the same time increasing operational reliability, also with regard to preventing undesired bulging following the supporting strand guidance.
  • a method according to the present invention is for making a metallic product.
  • a strand of the metallic product emerges continuously from a mold, in particular vertically downwards, and is then transported along a supporting strand guide in a conveying direction, the strand being deflected in a straightening area in the horizontal direction.
  • a thickness of the strand is measured by a radar measuring device at a measuring position where the strand immediately leaves the supporting strand guide, and then in a step (ii) the measured strand thickness is compared with a first predetermined comparison value .
  • a step (iii) if the measured strand thickness is greater than the first predetermined comparison value, at least one casting parameter is changed in such a way that the sump tip of the strand migrates in the direction of the mold.
  • the invention provides a continuous caster for producing a metallic product.
  • a system comprises a mold and a supporting strand guide which adjoins the mold and along which a strand emerging from the mold, in particular vertically downwards, can be transported in a conveying direction.
  • another strand guide is provided with a straightening area through which the strand can be deflected in the horizontal direction.
  • a radar measuring device with which a thickness of the strand can be measured at a measuring position located directly at the end of the supporting strand guide, and a control device with a computing unit connected to the radar measuring device for signaling purposes, with which the measured strand thickness with a first predetermined comparison value can be compared.
  • the radar measuring device is arranged at a position where the strand emerges from the supporting strand guide.
  • the control device is programmed in such a way that, if the measured strand thickness is greater than the first predetermined comparison value, then a control signal can be generated with which at least one casting parameter is changed in such a way that the sump tip of the strand moves in the direction of the mold.
  • the invention is based on the essential knowledge that the measurement of a thickness of the strand at a measuring position where the strand leaves the supporting strand guide directly is carried out by means of radar technology.
  • a radar measuring device is arranged directly at the end of the supporting strand guide, namely where the strand emerges from the supporting strand guide.
  • radar measurement technology has the advantages that temperature radiation in the near IR range, which emanates from the hot strand, does not affect the radar measurement, and that in the measurement environment water vapor emanating from the Strand cooling by means of water is created without falsifying the measurement from the radar beams penetrating to the strand.
  • a radar measurement is (more) insensitive to contamination compared to an optical measurement using a laser and a mechanical measurement using a touching measuring roller.
  • the radar measuring device With regard to the positioning of the radar measuring device in the continuous caster, it is recommended that a relatively large distance from the hot strand is maintained. This is possible thanks to the non-contact radar measurement. Such a sufficiently large distance between the radar measuring device and the hot line ensures good protection of the radar electronics against the radiant heat emanating from the line.
  • the radar measuring device is arranged relative to the supporting strand guide and the strand emerging therefrom such that the radar beams or waves are directed essentially perpendicularly onto a surface of the strand, namely on its broad side (s). In this way, the radar beams are directed or transmitted perpendicularly by the radar measuring device onto the surface of at least one broad side of the strand.
  • the radar beams are directed, starting from the radar measuring device, from both sides of the strand perpendicular to its broad sides. This ensures a uniform and complete measurement of the thickness of the strand immediately after it has emerged from the supporting strand guide, in connection with the detection of possible "bumps" on the surfaces of the broad sides.
  • Such monitoring of the string from both sides can be achieved in that the radar measuring device has separate transmitting / receiving modules which are arranged on both sides of the broad sides of the string and emit their radar beams or waves essentially perpendicular to the broad sides of the string .
  • the radar measuring device can also have separate parabolic elements which are arranged on both sides of the broad sides of the string and align the radar beams essentially perpendicularly to the broad sides of the string. By deflecting the radar beams in this way by means of the parabolic elements, the actual radar measuring device, with its sensitive transmitter / receiver unit, can be positioned at a sufficient distance from the hot strand and related components of the continuous caster.
  • a further improved protection of the radar measuring device against the high temperatures of the strand can be achieved by thermal insulation layers in which the radar measuring device is encapsulated. This is possible because radar rays penetrate such dielectric materials in the form of thermal insulation layers.
  • An important feature of the method according to the invention, and in the same way of a control device of the continuous casting plant according to the invention set up accordingly in terms of programming, is that, in the event that the strand thickness measured by the radar measuring device should be greater than the first predetermined comparison value, then at least one casting parameter in is changed in such a way that the sump tip of the strand migrates in the direction of the mold.
  • the sump tip - viewed in the direction of conveyance of the strand - is then displaced upstream and thus "migrates" back into the supporting strand guide.
  • Said change of at least one casting parameter is expediently that the casting speed is reduced, but not set lower than a minimum casting speed at which the sump tip of the strand is below LiquidCoreReduction (LCR) segments of the supported strand guide.
  • LCR LiquidCoreReduction
  • the cooling capacity in the area of the supporting strand guide can also be increased.
  • the first predetermined comparison value with which the strand thickness measured by the radar measuring device is compared in step (ii) is a distance between the last two support rollers at the end of the supporting strand guide, ie at its exit area, where the moving strand leaves the supporting strand guide.
  • the deflection is also taken into account, which can occur when the strand is passed through between these opposite support rollers.
  • a reduction in the casting speed has a direct effect on the entire length of the strand, and thus also on the position of the sump tip of the strand, which is hereby shifted upstream, ie against the conveying direction of the strand in the direction of the mold.
  • the present invention it is achieved that by means of a radar measurement the thickness of the strand after it has emerged from the supporting strand guide is measured exactly. In this way, possible bulges of the strand as it emerges from the supporting strand guide can be recognized precisely and reliably, in connection with the initiation of an immediate "countermeasure", preferably in the form of reducing the casting speed.
  • the continuous casting installation 10 comprises a mold 12, which is followed by a supporting strand guide 13 with a total of four segments 13.1-13.4.
  • a mold 12 which is followed by a supporting strand guide 13 with a total of four segments 13.1-13.4.
  • liquid metal is poured into the mold 12 in the region of a melt inlet 6, with a strand S with an initially still liquid core 7 then entering downward from the mold 12 into the supporting strand guide 13.
  • the segments 13.1-13.4 of the supporting strand guide 13 there are each oppositely arranged pairs of supporting rollers 14, 14 ', between which the strand is moved in the conveying direction F.
  • the continuous caster 10 comprises, as evidenced by the side view of FIG Fig. 1 , a further strand guide 19 with a straightening area I, in which the strand S is deflected by bending rollers 22 in the horizontal direction. Following the straightening area I, a pair of scissors 23 is arranged in the strand guide 19, followed by at least one rolling mill 24 and a furnace 26 arranged in front of it.
  • the continuous casting plant 10 comprises a radar measuring device 16 with which a thickness of the strand S is measured at a measuring position 18, namely immediately where the strand leaves the supporting strand guide 13 after passing through the last pair of supporting rollers 14L, 14L ' exit.
  • This measurement position 18 is indicated by an arrow in Fig. 1 illustrated.
  • the radar measuring device 16 has separate transmitting / receiving modules 16.1, 16.2, which are each arranged on both sides of the broad sides of the strand S, and with which radar beams are then each directed perpendicularly onto the surface of a broad side of the strand.
  • transmitting / receiving modules 16.1, 16.2 which are each arranged on both sides of the broad sides of the strand S, and with which radar beams are then each directed perpendicularly onto the surface of a broad side of the strand.
  • a distance between these transmit / receive modules 16.1, 16.2 from the supporting strand guide 13 and the hot strand S guided therein is sufficiently large so that these modules are not damaged by the thermal radiation emanating from the strand S.
  • the continuous casting plant 10 comprises a control device 20 with a computing unit 21, which is connected for signaling purposes to the radar measuring device 16, the bending rollers 22 in the region of the strand guide 19 and the at least one rolling mill 24, in Fig. 1 each symbolized by dotted lines.
  • a control device 20 with a computing unit 21, which is connected for signaling purposes to the radar measuring device 16, the bending rollers 22 in the region of the strand guide 19 and the at least one rolling mill 24, in Fig. 1 each symbolized by dotted lines.
  • the arithmetic unit 21 also provides information regarding both a distance between the bending rollers 22 and the distance from (not shown) Work rolls of the rolling mill 24 receives.
  • a minimum casting speed V min is determined on the basis of the current process values (chemical analysis of the material, strand thickness, set cooling capacity for the segments 13.1-13.4 of the supporting strand guide 13), at which the sump tip SP below the two LCR segments 13.1, 13.2 (see illustration in Fig. 4 ).
  • the radar measuring device 16 continuously measures a thickness of the strand S, as explained above at the measuring position 18, ie immediately where the strand S emerges from the end 15 of the supporting strand guide 13. This corresponds to a step (i) of a method according to the present invention, the measured strand thickness being transmitted to the computing unit 21 of the control device 20.
  • the measured strand thickness is compared with a first compared with a predetermined comparison value, which corresponds to a distance between the two last support rollers 14L, 14L '.
  • the control device 20 immediately generates a control signal with which, for example, the casting speed is set to a reduced value V red .
  • a query is carried out in the arithmetic unit 21 for the further course of the continuous casting process as to whether the strand thickness measured by the radar measuring device 16 in step (i) is less than a predetermined second comparison value , which corresponds to a distance from oppositely arranged bending rollers 22. If a "No" is determined in this query, meaning that the strand thickening of the strand S can no longer be transported through the bending rollers 22, the control device 20 emits a control signal for an immediate interruption of casting in order to avoid further damage to the strand guide 19 the continuous caster 12 to avoid.
  • a further query takes place in the computing unit 21 as to whether the strand thickness measured by the radar measuring device 16 in step (i) is less than a predetermined third comparison value, which corresponds to a distance between oppositely arranged work rolls in the rolling mill 24. If a "No" is determined in this query, this is synonymous with the fact that the existing strand thickening in the rolling mill 24 cannot be brought to a desired final dimension. Therefore, the control device 20 then generates a control signal for the scissors 23, by means of which the thickened section of the strand S is separated from the strand guide 19 and shredded accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Stranggießen eines metallischen Produkts nach dem Oberbegriff von Anspruch 1, und eine Stranggießanlage nach dem Oberbegriff von Anspruch 10.The invention relates to a method for continuously casting a metallic product according to the preamble of claim 1, and to a continuous casting installation according to the preamble of claim 10.

Bei der Herstellung von metallischen Produkten in einer Stranggießanlage wird das flüssige Metall kontinuierlich in einer Kokille vergossen, wobei sich dort eine erste Strangschale ausbildet. In der Regel tritt der Strang nach unten aus der Kokille aus, wobei der Strang anschließend entlang einer stützenden Strangführung transportiert wird. Nach dem Austreten aus der stützenden Strangführung wird der Strang dann entlang einer weiteren Strangführung mit einem Richtbereich bewegt, durch den der Strang in die horizontale Richtung umgelenkt wird. Im Anschluss hieran können entlang der Strangführung weitere Bearbeitungsstationen für den Strang, oder daraus gebildeter Teilprodukte, vorgesehen sein, zum Beispiel in Form von Walzwerken, durch die der Strang hindurchgeleitet wird.During the production of metallic products in a continuous casting plant, the liquid metal is continuously cast in a mold, where a first strand shell is formed. As a rule, the strand emerges downwards from the mold, the strand then being transported along a supporting strand guide. After exiting the supporting strand guide, the strand is then moved along a further strand guide with a straightening area, through which the strand is deflected in the horizontal direction. Following this, further processing stations for the strand or partial products formed therefrom can be provided along the strand guide, for example in the form of rolling mills through which the strand is passed.

Beim Stranggießprozess ist von großer Bedeutung, dass der Strang bereits innerhalb der stützenden Strangführung vollkommen erhärtet bzw. durcherstarrt, um das Ausbrechen des flüssigen Metallkernes zu verhindern und die weitere Bearbeitung des Strangs zu ermöglichen. Zu diesem Zweck werden die Kühlleistung im Bereich der stützenden Strangführung als auch die Gießgeschwindigkeit, derart eingestellt, dass bei einem optimalen Betriebsablauf sich die Sumpfspitze des Strangs stets vor bzw. stromaufwärts des letzten Stützrollen-Paars am Ende der stützenden Strangführung befindet.In the continuous casting process, it is of great importance that the strand hardens or solidifies completely within the supporting strand guide in order to prevent the liquid metal core from breaking out and to enable the strand to be processed further. For this purpose, the cooling capacity in the area of the supporting strand guide and the casting speed are set in such a way that, with an optimal operating sequence, the sump tip of the strand is always in front of or upstream of the last pair of supporting rollers at the end of the supporting strand guide.

Falls beim Stranggießprozess, z.B. in Folge einer zu hohen Gießgeschwindigkeit, die Sumpfspitze des Stranges hinter bzw. stromabwärts des letzten Stützrollen-Paars der stützenden Strangführung liegt und somit aus der stützenden Strangführung "herausgewandert" ist, tritt das Problem auf, dass der Strang ausbauchen kann, weil nun dem hydrostatischen Druck der flüssigen Schmelze ein Gegendruck durch ein Stützrollenpaar-Paar fehlt. Hierdurch können sich während der Bewegung des Stranges in einem nicht Bereich der Strangführung, der nicht zur Stützung des Stranges beiträgt und sich - in einer Förderrichtung des Strangs gesehen - stromabwärts von der stützenden Strangführung befindet, durch eine Dickenzunahme des Strangs Beulen entwickeln.If during the continuous casting process, e.g. as a result of a too high casting speed, the sump tip of the strand is behind or downstream of the last pair of supporting rollers of the supporting strand guide and has thus "wandered out" of the supporting strand guide, the problem arises that the strand can bulge , because the hydrostatic pressure of the liquid melt now lacks a counterpressure due to a pair of supporting rollers. This can cause the Strand in a non-area of the strand guide, which does not contribute to the support of the strand and - seen in a conveying direction of the strand - is located downstream of the supporting strand guide, bulges develop due to an increase in the thickness of the strand.

Nach dem Stand der Technik ist es aus DE 1 558 345 A bekannt, im kontinuierlichen Stranggussverfahren Beulen auf nicht gestützten Bereichen von Metallsträngen abzufühlen bzw. abzutasten, nämlich durch Verwendung von mechanischen Fühlern mit drehbaren und hitzebeständigen Rädern, die auf den Breitseiten des sich bewegenden Stranges abrollen. Indem diese mechanischen Fühler hin- und herbewegbar sind, in einer Richtung senkrecht zur Förderrichtung des Stranges, können Beulen abgetastet werden, die sich beim Ausbauchen des Stranges an mindestens einer Breitseite davon bilden. Für diesen Fall kann vorgesehen sein, die Gießgeschwindigkeit zu ändern oder die Wassermenge, die im Bereich der stützenden Strangführung auf den bewegten Strang gespritzt wird, zu verstellen.According to the state of the art, it is over DE 1 558 345 A known to sense or scan bumps on unsupported areas of metal strands in the continuous casting process, namely by using mechanical sensors with rotatable and heat-resistant wheels that roll on the broad sides of the moving strand. Since these mechanical sensors can be moved to and fro, in a direction perpendicular to the direction of conveyance of the strand, bulges can be scanned which form when the strand bulges on at least one broad side thereof. In this case it can be provided to change the casting speed or to adjust the amount of water that is sprayed onto the moving strand in the area of the supporting strand guide.

Das Messprinzip gemäß DE 1 558 345 A , mit dem an der Oberfläche eines sich bewegenden Stranges nach dem Austreten aus einer stützenden Strangführung Beulen bzw. eine Dickenzunahme in mechanischer Weise mit einer berührenden Messrolle ermittelt wird, unterliegt diversen Nachteilen, z.B. einer Abnutzung der Räder der mechanischen Fühler wegen der hohen Temperaturen des Strangs. Des Weiteren können sich Messfehler ergeben, wenn diese Räder nicht sauber auf den Breitseiten des Stranges abrollen.The measuring principle according to DE 1 558 345 A , with which dents or an increase in thickness on the surface of a moving strand after exiting a supporting strand guide is determined in a mechanical way with a contact measuring roller, is subject to various disadvantages, e.g. wear of the wheels of the mechanical sensors due to the high temperatures of the strand . Furthermore, measurement errors can result if these wheels do not roll cleanly on the broad sides of the strand.

Nach dem Stand der Technik ist es ferner bekannt, eine Dickenmessung des Strangs durch Verwendung von Laserstrahlen durchzuführen. Jedoch unterliegt ein solches optisches Verfahren dem Nachteil, dass Wasserdampf, der sich in der Messumgebung wegen der Kühlung des Stranges mit Wasser bilden kann, dann die Laserstrahlen entweder blockiert oder zumindest ablenkt, was zu verfälschten Messergebnissen führt. Des Weiteren unterliegt der Einsatz von Laserstrahlen ebenfalls dem Nachteil einer möglichen Verschmutzung der Apertur.According to the prior art, it is also known to measure the thickness of the strand by using laser beams. However, such an optical method is subject to the disadvantage that water vapor, which can form in the measurement environment due to the cooling of the strand with water, then either blocks or at least deflects the laser beams, which leads to incorrect measurement results. Furthermore, the use of laser beams is also subject to the disadvantage of possible contamination of the aperture.

Beim Stranggießprozess wird die Position der Sumpfspitze des Stranges in der Regel mit mathematisch-physikalischen Modellen überwacht. Dennoch gibt es Gründe dafür, dass die Sumpfspitze den Bereich der stützenden Strangführung verlässt bzw. daraus herausläuft. Diese Gründe können sein:

  • eine Überhitzung, die im tatsächlichen Gießprozess höher ist als dem mathematisch-physikalischen Modell zugeführt wurde,
  • zu große Maulweiten der Segmente der stützenden Strangführung, die im tatsächlichen Gießprozess höher sind als dem mathematisch-physikalischen Modell zugeführt wurde,
  • reduzierte Sekundärkühlung, die im tatsächlichen Gießprozess geringer ist als dem mathematisch-physikalischen Modell zugeführt wurde,
  • geänderte chemische Zusammensetzung des Werkstoffs, aus dem der Strang vergossen wird, wobei diese geänderte chemischen Zusammensetzung dem mathematisch-physikalischen Modell nicht zugeführt wurde, und/oder
  • Modellfehler in dem mathematisch-physikalischen Modell.
In the continuous casting process, the position of the sump tip of the strand is usually monitored with mathematical-physical models. Still there is Reasons for the fact that the sump tip leaves the area of the supporting strand guide or runs out of it. These reasons can be:
  • overheating that is higher in the actual casting process than was added to the mathematical-physical model,
  • Too large mouth widths of the segments of the supporting strand guide, which are higher in the actual casting process than was added to the mathematical-physical model,
  • Reduced secondary cooling, which is lower in the actual casting process than was added to the mathematical-physical model,
  • changed chemical composition of the material from which the strand is cast, this changed chemical composition not being added to the mathematical-physical model, and / or
  • Model error in the mathematical-physical model.

Aus JP H02 55652 A ist bekannt, die Gießgeschwindigkeit bei der Herstellung eines Strangs in Abhängigkeit von der gemessenen Strangschalendicke zu verändern, um dadurch eine gewünschte Position für die Sumpfspitze des Strangs zu erreichen. Zur Messung einer Strangschalendicke des Strangs kommt ein Ultraschall-Messgerät zum Einsatz. Eine genaue Angabe dafür, an welcher Stelle ein solches Ultraschall-Messgerät relativ zu einer stützenden Strangführung angeordnet ist, ist in JP H02 55652 A nicht genannt. Des Weiteren ist aus EP 2 422 900 A1 eine Anordnung zur Messung physikalischer Parameter in Stranggusskokillen bekannt.Out JP H02 55652 A It is known to change the casting speed during the production of a strand as a function of the measured strand shell thickness in order to thereby achieve a desired position for the sump tip of the strand. An ultrasonic measuring device is used to measure a strand shell thickness. A precise indication of the point at which such an ultrasonic measuring device is arranged relative to a supporting strand guide is given in FIG JP H02 55652 A not known. Furthermore it is off EP 2 422 900 A1 an arrangement for measuring physical parameters in continuous casting molds is known.

Der Erfindung liegt die Aufgabe zugrunde, das Stranggießen eines metallischen Produkts hinsichtlich einer Qualitätsverbesserung zu optimieren und gleichzeitig die Betriebssicherheit zu erhöhen, auch in Bezug auf die Verhinderung einer unerwünschten Ausbauchung im Anschluss an die stützende Strangführung.The invention is based on the object of optimizing the continuous casting of a metallic product with regard to quality improvement and at the same time increasing operational reliability, also with regard to preventing undesired bulging following the supporting strand guidance.

Diese Aufgabe wird durch ein Verfahren nach Anspruch 1 und durch eine Stranggießanlage mit den Merkmalen von Anspruch 10 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.This object is achieved by a method according to claim 1 and by a continuous casting plant with the features of claim 10. Advantageous developments of the invention are defined in the dependent claims.

Ein Verfahren nach der vorliegenden Erfindung dient zum Herstellen eines metallischen Produkts. Hierbei tritt in einer Stranggießanlage ein Strang des metallischen Produkts kontinuierlich aus einer Kokille insbesondere senkrecht nach unten aus und wird anschließend entlang einer stützenden Strangführung in einer Förderrichtung transportiert, wobei der Strang in einem Richtbereich in die horizontale Richtung umgelenkt wird. Bei diesem Verfahren wird in einem Schritt (i) eine Dicke des Strangs durch eine Radar-Messeinrichtung an einer Messposition gemessen, wo der Strang die stützende Strangführung unmittelbar verlässt, und anschließend in einem Schritt (ii) die gemessene Strangdicke mit einem ersten vorbestimmten Vergleichswert verglichen. Hiernach wird dann in einem Schritt (iii), falls die gemessene Strangdicke größer ist als der erste vorbestimmte Vergleichswert, zumindest ein Gießparameter derart verändert, dass die Sumpfspitze des Strangs in Richtung der Kokille wandert.A method according to the present invention is for making a metallic product. In a continuous caster, a strand of the metallic product emerges continuously from a mold, in particular vertically downwards, and is then transported along a supporting strand guide in a conveying direction, the strand being deflected in a straightening area in the horizontal direction. In this method, in a step (i) a thickness of the strand is measured by a radar measuring device at a measuring position where the strand immediately leaves the supporting strand guide, and then in a step (ii) the measured strand thickness is compared with a first predetermined comparison value . Thereafter, in a step (iii), if the measured strand thickness is greater than the first predetermined comparison value, at least one casting parameter is changed in such a way that the sump tip of the strand migrates in the direction of the mold.

In gleicher Weise sieht die Erfindung eine Stranggießanlage zur Herstellung eines metallischen Produkts vor. Eine solche Anlage umfasst eine Kokille, und eine sich an die Kokille anschließende stützende Strangführung, entlang der ein aus der Kokille insbesondere senkrecht nach unten austretender Strang in einer Förderrichtung transportiert werden kann. Im Anschluss an die stützende Strangführung ist eine weitere Strangführung mit einem Richtbereich vorgesehen, durch den der Strang in die horizontale Richtung umgelenkt werden kann. Des Weiteren sind eine Radar-Messeinrichtung, mit der eine Dicke des Strangs an einer unmittelbar am Ende der stützenden Strangführung liegenden Messposition gemessen werden kann, und eine mit der Radar-Messeinrichtung signaltechnisch verbundene Steuereinrichtung mit einer Recheneinheit vorgesehen, mit der die gemessene Strangdicke mit einem ersten vorbestimmten Vergleichswert verglichen werden kann. Die Radar-Messeinrichtung ist an einer Position angeordnet, wo der Strang aus der stützenden Strangführung austritt. Die Steuereinrichtung ist programmtechnisch derart eingerichtet, dass, falls die gemessene Strangdicke größer ist als der erste vorbestimmte Vergleichswert ist, dann ein Steuersignal werden kann, mit dem zumindest ein Gießparameter derart verändert wird, dass die Sumpfspitze des Strangs in Richtung der Kokille wandert.In the same way, the invention provides a continuous caster for producing a metallic product. Such a system comprises a mold and a supporting strand guide which adjoins the mold and along which a strand emerging from the mold, in particular vertically downwards, can be transported in a conveying direction. Following the supporting strand guide, another strand guide is provided with a straightening area through which the strand can be deflected in the horizontal direction. Furthermore, a radar measuring device with which a thickness of the strand can be measured at a measuring position located directly at the end of the supporting strand guide, and a control device with a computing unit connected to the radar measuring device for signaling purposes, with which the measured strand thickness with a first predetermined comparison value can be compared. The radar measuring device is arranged at a position where the strand emerges from the supporting strand guide. The control device is programmed in such a way that, if the measured strand thickness is greater than the first predetermined comparison value, then a control signal can be generated with which at least one casting parameter is changed in such a way that the sump tip of the strand moves in the direction of the mold.

Der Erfindung liegt die wesentliche Erkenntnis zugrunde, dass die Vermessung einer Dicke des Strangs an einer Messposition, wo der Strang die stützende Strangführung unmittelbar verlässt, mittels Radartechnologie durchgeführt wird. Zu diesem Zweck ist eine Radar-Messeinrichtung unmittelbar am Ende der stützenden Strangführung angeordnet, nämlich dort, wo der Strang aus der stützenden Strangführung austritt. Die Radar-Messtechnik hat im Vergleich zu den eingangs genannten Messmethoden nach dem Stand der Technik die Vorteile, dass eine Temperaturstrahlung im nahen IR-Bereich, die vom heißen Strang ausgeht, die Radarmessung nicht beeinflusst, und dass in der Messumgebung Wasserdampf, der aus der Strangkühlung mittels Wasser entsteht, ohne Verfälschung der Messung von den Radarstrahlen bis zum Strang durchdrungen wird. Darüber hinaus ist eine Radarmessung gegenüber einer optischen Messung mittels Laser als auch einer mechanischen Messung mittels einer berührenden Messrolle unempfindlich(er) gegenüber einer Verschmutzung.The invention is based on the essential knowledge that the measurement of a thickness of the strand at a measuring position where the strand leaves the supporting strand guide directly is carried out by means of radar technology. For this purpose, a radar measuring device is arranged directly at the end of the supporting strand guide, namely where the strand emerges from the supporting strand guide. Compared to the prior art measurement methods mentioned at the beginning, radar measurement technology has the advantages that temperature radiation in the near IR range, which emanates from the hot strand, does not affect the radar measurement, and that in the measurement environment water vapor emanating from the Strand cooling by means of water is created without falsifying the measurement from the radar beams penetrating to the strand. In addition, a radar measurement is (more) insensitive to contamination compared to an optical measurement using a laser and a mechanical measurement using a touching measuring roller.

Hinsichtlich der Positionierung der Radar-Messeinrichtung in der Stranggießanlage empfiehlt sich, dass hierbei ein relativ großer Abstand zum heißen Strang eingehalten wird. Dies ist dank der berührungslosen Radarmessung möglich. Durch einen solch ausreichend großen Abstand der Radar-Messeinrichtung von dem heißen Strang ist ein guter Schutz der Radarelektronik gegenüber der dem Strang ausgehenden Strahlungshitze gewährleistet.With regard to the positioning of the radar measuring device in the continuous caster, it is recommended that a relatively large distance from the hot strand is maintained. This is possible thanks to the non-contact radar measurement. Such a sufficiently large distance between the radar measuring device and the hot line ensures good protection of the radar electronics against the radiant heat emanating from the line.

Eine Anordnung der Radar-Messeinrichtung relativ zu der stützenden Strangführung und dem daraus austretenden Strang erfolgt derart, dass die Radarstrahlen bzw. -wellen im Wesentlichen senkrecht auf eine Oberfläche des Strangs, nämlich auf dessen Breitseite(n) gerichtet sind. In dieser Weise werden die Radarstrahlen durch die Radar-Messeinrichtung senkrecht auf die Oberfläche von zumindest einer Breitseite des Strangs gerichtet bzw. gesendet.The radar measuring device is arranged relative to the supporting strand guide and the strand emerging therefrom such that the radar beams or waves are directed essentially perpendicularly onto a surface of the strand, namely on its broad side (s). In this way, the radar beams are directed or transmitted perpendicularly by the radar measuring device onto the surface of at least one broad side of the strand.

In vorteilhafter Weiterbildung der Erfindung werden die Radarstrahlen ausgehend von der Radar-Messeinrichtung von beiden Seiten des Strangs her senkrecht auf dessen Breitseiten gerichtet. Dies gewährleistet eine gleichmäßige und lückenlose Messung der Dicke des Strangs, unmittelbar nachdem dieser aus der stützenden Strangführung ausgetreten ist, in Verbindung mit einer Erkennung von möglichen "Beulen" an den Oberflächen der Breitseiten. Eine solche Überwachung des Strangs von beiden Seiten her kann dadurch erreicht werden, dass die Radar-Messeinrichtung separate Sende-/Empfangsmodule aufweist, die beiderseits der Breitseiten des Strangs angeordnet sind und ihre Radarstrahlen bzw. -wellen im Wesentlichen senkrecht auf die Breitseiten des Strangs aussenden. Ergänzend und/oder alternativ hierzu kann die Radar-Messeinrichtung auch separate Parabol-Elemente, die beiderseits der Breitseiten des Strangs angeordnet sind und die Radarstrahlen im Wesentlichen senkrecht auf die Breitseiten des Strangs ausrichten. Durch eine solche Umlenkung der Radarstrahlen mittels der Parabol-Elemente kann die eigentliche Radar-Messeinrichtung, mit ihrer empfindlichen Sende-/Empfangseinheit, in einer ausreichenden Entfernung von dem heißen Strang und damit in Verbindung stehenden Komponenten der Stranggießanlage positioniert werden.In an advantageous further development of the invention, the radar beams are directed, starting from the radar measuring device, from both sides of the strand perpendicular to its broad sides. This ensures a uniform and complete measurement of the thickness of the strand immediately after it has emerged from the supporting strand guide, in connection with the detection of possible "bumps" on the surfaces of the broad sides. Such monitoring of the string from both sides can be achieved in that the radar measuring device has separate transmitting / receiving modules which are arranged on both sides of the broad sides of the string and emit their radar beams or waves essentially perpendicular to the broad sides of the string . In addition and / or as an alternative to this, the radar measuring device can also have separate parabolic elements which are arranged on both sides of the broad sides of the string and align the radar beams essentially perpendicularly to the broad sides of the string. By deflecting the radar beams in this way by means of the parabolic elements, the actual radar measuring device, with its sensitive transmitter / receiver unit, can be positioned at a sufficient distance from the hot strand and related components of the continuous caster.

Ein weiter verbesserter Schutz der Radar-Messeinrichtung gegenüber den hohen Temperaturen des Strangs kann durch thermische Isolationsschichten erreicht werden, in denen die Radar-Messeinrichtung gekapselt aufgenommen ist. Dies ist deshalb möglich, weil Radarstrahlen solchen dielektrischen Materialien in Form er thermischen Isolationsschichten durchdringen.A further improved protection of the radar measuring device against the high temperatures of the strand can be achieved by thermal insulation layers in which the radar measuring device is encapsulated. This is possible because radar rays penetrate such dielectric materials in the form of thermal insulation layers.

Ein wichtiges Merkmal des erfindungsgemäßen Verfahrens, und in gleicher Weise einer programmtechnisch entsprechend eingerichteten Steuereinrichtung der erfindungsgemäßen Stranggießanlage, besteht darin, dass für den Fall, sollte die von der Radar-Messeinrichtung gemessene Strangdicke größer sein als der erste vorbestimmte Vergleichswert, dann zumindest ein Gießparameter in der Weise verändert wird, dass die Sumpfspitze des Strangs in Richtung der Kokille wandert.An important feature of the method according to the invention, and in the same way of a control device of the continuous casting plant according to the invention set up accordingly in terms of programming, is that, in the event that the strand thickness measured by the radar measuring device should be greater than the first predetermined comparison value, then at least one casting parameter in is changed in such a way that the sump tip of the strand migrates in the direction of the mold.

Dies bedeutet, dass sich durch die geeignete Veränderung von zumindest einem Gießparameter dann die Sumpfspitze - in Förderrichtung des Strangs gesehen - stromaufwärts verlagert, und dadurch zurück in die stützende Strangführung hinein "wandert". Die besagte Veränderung von zumindest einem Gießparameter besteht zweckmäßigerweise darin, dass die Gießgeschwindigkeit reduziert wird, jedoch dabei nicht kleiner als eine minimalen Gießgeschwindigkeit eingestellt wird, bei der sich die Sumpfspitze des Strangs unterhalb von LiquidCoreReduction (LCR-) Segmenten der gestützen Strangführung befindet. Ergänzend und/oder alternativ kann im Zuge der Veränderung von zumindest einem Gießparameter auch die Kühlleistung im Bereich der stützenden Strangführung vergrößert werden.This means that by suitably changing at least one casting parameter, the sump tip - viewed in the direction of conveyance of the strand - is then displaced upstream and thus "migrates" back into the supporting strand guide. Said change of at least one casting parameter is expediently that the casting speed is reduced, but not set lower than a minimum casting speed at which the sump tip of the strand is below LiquidCoreReduction (LCR) segments of the supported strand guide. Additionally and / or alternatively, in the course of changing at least one casting parameter, the cooling capacity in the area of the supporting strand guide can also be increased.

Im Sinne der vorliegenden Erfindung handelt es sich bei dem ersten vorbestimmten Vergleichswert, mit dem in Schritt (ii) die von der Radar-Messeinrichtung gemessene Strangdicke verglichen wird, um einen Abstand der beiden letzten Stützrollen am Ende der stützenden Strangführung, d.h. an deren Austrittsbereich, wo der bewegte Strang die stützende Strangführung verlässt. Diesbezüglich darf gesondert darauf hingewiesen werden, dass bei diesem Abstand der beiden letzten Stützrollen zueinander auch deren Durchbiegung berücksichtigt wird, die beim Hindurchführen des Strangs zwischen diesen gegenüberliegenden Stützrollen auftreten kann.For the purposes of the present invention, the first predetermined comparison value with which the strand thickness measured by the radar measuring device is compared in step (ii) is a distance between the last two support rollers at the end of the supporting strand guide, ie at its exit area, where the moving strand leaves the supporting strand guide. In this regard, it should be pointed out separately that at this distance between the two last support rollers, their deflection is also taken into account, which can occur when the strand is passed through between these opposite support rollers.

Wie vorstehend erläutert, kann in Abhängigkeit von der durch die Radar-Messeinrichtung gemessenen Strangdicke und für den Fall, dass diese Strangdicke größer ist als der erste vorbestimmte Vergleichswert (=Abstand zwischen den beiden letzten Stützrollen am Ende der stützenden Strangführung), dann die Gießgeschwindigkeit reduziert werden. Diesbezüglich ist hervorzuheben, dass eine Reduzierung der Gießgeschwindigkeit sich unmittelbar auf die gesamte Länge des Stranges auswirkt, und somit auch auf die Position der Sumpfspitze des Stranges, die hiermit stromaufwärts, d.h. entgegen der Förderrichtung des Stranges in Richtung der Kokille verlagert wird.As explained above, depending on the strand thickness measured by the radar measuring device and in the event that this strand thickness is greater than the first predetermined comparison value (= distance between the last two support rollers at the end of the supporting strand guide), the casting speed can then be reduced become. In this regard, it should be emphasized that a reduction in the casting speed has a direct effect on the entire length of the strand, and thus also on the position of the sump tip of the strand, which is hereby shifted upstream, ie against the conveying direction of the strand in the direction of the mold.

Mit der vorliegenden Erfindung wird erreicht, dass mittels einer Radarmessung die Dicke des Strangs, nachdem dieser aus der stützenden Strangführung ausgetreten ist, exakt vermessen wird. Hierdurch können mögliche Ausbauchungen des Strangs beim Austreten aus der stützenden Strangführung präzise und zuverlässig erkannt werden, in Verbindung mit Einleitung einer sofortigen "Gegenmaßnahme", vorzugsweise in Form der Reduzierung der Gießgeschwindigkeit.With the present invention it is achieved that by means of a radar measurement the thickness of the strand after it has emerged from the supporting strand guide is measured exactly. In this way, possible bulges of the strand as it emerges from the supporting strand guide can be recognized precisely and reliably, in connection with the initiation of an immediate "countermeasure", preferably in the form of reducing the casting speed.

Nachstehend sind Ausführungsformen der Erfindung anhand einer schematisch vereinfachten Zeichnung im Detail beschrieben. Es zeigen:

Fig. 1
eine schematisch vereinfachte Seitenansicht einer erfindungsgemäßen Stranggießanlage,
Fig. 2a
eine Seitenansicht einer stützenden Strangführung, die Teil der Stranggießanlage von Fig. 1 ist, in Verbindung mit einer RadarMesseinrichtung nach einer Ausführungsform der Erfindung,
Fig. 2b
eine Querschnittsansicht des Strangs an der Messposition der Stranggießanlage von Fig. 1, in Verbindung mit einer Radar-Messeinrichtung nach einer weiteren Ausführungsform der Erfindung,
Fig. 3, 4
jeweils schematisch vereinfachte Seitenansichten von verschiedene Betriebstellungen einer stützenden Strangführung, die Teil der Stranggießanlage von Fig. 1 ist, und
Fig. 5
ein Flussdiagramm zur Erläuterung des Ablaufs eines erfindungsgemäßen Verfahrens, das z.B. mit einer Stranggießanlage von Fig. 1 durchgeführt werden kann.
Embodiments of the invention are described in detail below with reference to a schematically simplified drawing. Show it:
Fig. 1
a schematically simplified side view of a continuous caster according to the invention,
Fig. 2a
a side view of a supporting strand guide that is part of the continuous caster of Fig. 1 is, in connection with a radar measuring device according to an embodiment of the invention,
Figure 2b
a cross-sectional view of the strand at the measuring position of the continuous caster of FIG Fig. 1 , in connection with a radar measuring device according to a further embodiment of the invention,
Fig. 3, 4
each schematically simplified side views of different operating positions of a supporting strand guide, which are part of the continuous caster of Fig. 1 is and
Fig. 5
a flow chart to explain the sequence of a method according to the invention, which is carried out, for example, with a continuous caster from FIG Fig. 1 can be carried out.

Nachstehend sind unter Bezugnahme auf die Fig. 1 bis 5 bevorzugte Ausführungsformen einer erfindungsgemäßen Stranggießanlage 10 und eines entsprechenden Verfahrens zum Herstellen eines metallischen Produkts erläutert. Gleiche Merkmale in der Zeichnung sind jeweils mit gleichen Bezugszeichen versehen. An dieser Stelle wird gesondert darauf hingewiesen, dass die Zeichnung lediglich vereinfacht und insbesondere ohne Maßstab dargestellt ist.With reference to the Figs. 1 to 5 preferred embodiments of a continuous caster 10 according to the invention and a corresponding method for producing a metallic product are explained. The same features in the drawing are each given the same reference symbols Mistake. At this point, it is pointed out separately that the drawing is only shown in a simplified manner and, in particular, without a scale.

Die erfindungsgemäße Stranggießanlage 10 umfasst eine Kokille 12, an die sich eine stützende Strangführung 13 mit insgesamt vier Segmenten 13.1-13.4 anschließt. Ausweislich der Darstellungen in Fig. 3 bzw. Fig. 4 wird flüssiges Metall im Bereich eines Schmelzeeinlaufs 6 in die Kokille 12 eingefüllt, wobei dann ein Strang S mit einem zunächst noch flüssigen Kern 7 nach unten aus der Kokille 12 in die stützende Strangführung 13 eintritt. In den Segmenten 13.1 - 13.4 der stützenden Strangführung 13 sind jeweils gegenüberliegend angeordnete Stützrollen-Paare 14, 14' angeordnet, zwischen denen der Strang in der Förderrichtung F hindurchbewegt wird. Diese Stützrollen-Paare 14, 14' sind jeweils von weg- bzw. positionsgeregelten, nicht näher gezeigten Hydraulikzylindern beaufschlagt, so dass sie die hydrostatischen Drücke der Schmelze 8 überwinden und dadurch eine örtliche Dickenreduktion im Strang verursachen können. Dies gilt insbesondere für die beiden ersten Segmente 13.1, 13.2 der stützenden Strangführung 13, wo der Strang S mit seinem flüssigen Kern 7 durch Zusammendrücken der Segmente in seiner Dicke reduziert werden kann, was auch als LiquidCoreReduction (=LCR) bezeichnet wird.The continuous casting installation 10 according to the invention comprises a mold 12, which is followed by a supporting strand guide 13 with a total of four segments 13.1-13.4. As evidenced by the representations in Fig. 3 or. Fig. 4 liquid metal is poured into the mold 12 in the region of a melt inlet 6, with a strand S with an initially still liquid core 7 then entering downward from the mold 12 into the supporting strand guide 13. In the segments 13.1-13.4 of the supporting strand guide 13 there are each oppositely arranged pairs of supporting rollers 14, 14 ', between which the strand is moved in the conveying direction F. These pairs of supporting rollers 14, 14 'are each acted upon by displacement or position-controlled hydraulic cylinders, not shown in detail, so that they can overcome the hydrostatic pressures of the melt 8 and thereby cause a local thickness reduction in the strand. This applies in particular to the first two segments 13.1, 13.2 of the supporting strand guide 13, where the strand S with its liquid core 7 can be reduced in thickness by compressing the segments, which is also referred to as LiquidCoreReduction (= LCR).

An einem Ende 15 der stützenden Strangführung 13, d.h. dort, wo der Strang S in der Förderrichtung F aus der stützenden Strangführung 13 austritt, ist ein letztes Stützrollen-Paar 14L, 14L' (vgl. Fig. 3, Fig. 4) vorgesehen. Von großer Bedeutung für den Stranggießprozess ist, dass der Strang, bevor er durch dieses letzte Stützrollen-Paar 14L, 14L am Ende 15 der stützenden Strangführung 13 hindurchtritt, bereits vollständig durcherstarrt ist. Dies wird dadurch gewährleistet, dass sich eine Sumpfspitze SP des Strangs S noch innerhalb der stützenden Strangführung 13 befindet, wie es in der Fig. 4 veranschaulicht ist. Damit kann dann eine Ausbauchung des Strangs S im Anschluss an die stützende Strangführung 13, auch als "Walbildung" bezeichnet, wirksam verhindert werden.At one end 15 of the supporting strand guide 13, ie where the strand S emerges from the supporting strand guide 13 in the conveying direction F, there is a last pair of supporting rollers 14L, 14L '(cf. Fig. 3 , Fig. 4 ) intended. It is of great importance for the continuous casting process that the strand is already completely solidified before it passes through this last pair of supporting rollers 14L, 14L at the end 15 of the supporting strand guide 13. This is ensured by the fact that a sump tip SP of the strand S is still located within the supporting strand guide 13, as shown in FIG Fig. 4 is illustrated. In this way, a bulging of the strand S following the supporting strand guide 13, also referred to as "whale formation", can be effectively prevented.

Die Stranggießanlage 10 umfasst, ausweislich der Seitenansicht von Fig. 1, eine weitere Strangführung 19 mit einem Richtbereich I, in dem der Strang S durch Biegerollen 22 in die horizontale Richtung umgelenkt wird. Im Anschluss an den Richtbereich I ist in der Strangführung 19 eine Schere 23 angeordnet, gefolgt von zumindest einem Walzwerk 24 und einem davor angeordneten Ofen 26.The continuous caster 10 comprises, as evidenced by the side view of FIG Fig. 1 , a further strand guide 19 with a straightening area I, in which the strand S is deflected by bending rollers 22 in the horizontal direction. Following the straightening area I, a pair of scissors 23 is arranged in the strand guide 19, followed by at least one rolling mill 24 and a furnace 26 arranged in front of it.

Des Weiteren umfasst die Stranggießanlage 10 eine Radar-Messeinrichtung 16, mit der eine Dicke des Strangs S an einer Messposition 18 gemessen wird, nämlich unmittelbar dort, wo der Strang nach dem Durchlaufen des letzten Stützrollen-Paars 14L, 14L' aus der stützenden Strangführung 13 austritt. Diese Messposition 18 ist durch einen Pfeil in der Fig. 1 veranschaulicht.Furthermore, the continuous casting plant 10 comprises a radar measuring device 16 with which a thickness of the strand S is measured at a measuring position 18, namely immediately where the strand leaves the supporting strand guide 13 after passing through the last pair of supporting rollers 14L, 14L ' exit. This measurement position 18 is indicated by an arrow in Fig. 1 illustrated.

Bei einer Ausführungsform der Radar-Messeinrichtung 16 werden - ausweislich der Seitenansicht gemäß Fig. 2a - Radarstrahlen im Wesentlichen senkrecht auf die beiden Breitseiten des Strangs S gerichtet. Hierzu weist die Radar-Messeinrichtung 16 separate Sende-/Empfangsmodule 16.1, 16.2 auf, die jeweils beiderseits der Breitseiten des Strangs S angeordnet sind, und mit denen dann Radarstrahlen jeweils senkrecht auf die Oberfläche einer Breitseite des Strangs gerichtet werden. Diesbezüglich wird darauf hingewiesen, dass ein Abstand dieser Sende-/Empfangsmodule 16.1, 16.2 von der stützenden Strangführung 13 und dem hierin geführten heißen Strang S ausreichend groß ist, so dass diese Module durch die von dem Strang S ausgehende thermische Strahlung keinen Schaden nehmen.In one embodiment of the radar measuring device 16 - as evidenced by the side view according to FIG Fig. 2a - Radar beams directed essentially perpendicularly to the two broad sides of the strand S. For this purpose, the radar measuring device 16 has separate transmitting / receiving modules 16.1, 16.2, which are each arranged on both sides of the broad sides of the strand S, and with which radar beams are then each directed perpendicularly onto the surface of a broad side of the strand. In this regard, it is pointed out that a distance between these transmit / receive modules 16.1, 16.2 from the supporting strand guide 13 and the hot strand S guided therein is sufficiently large so that these modules are not damaged by the thermal radiation emanating from the strand S.

Bei einer weiteren Ausführungsform der Radar-Messeinrichtung 16 gemäß Fig. 2b sind separate Parabol-Elemente 17. 1, 17.2 vorgesehen, die beiderseits der Breitseiten B1, B2 des Strangs S angeordnet sind, um dadurch die Radarstrahlen im Wesentlichen senkrecht auf die Breitseiten B1, B2 zu richten. Hierdurch ist es möglich, die eigentliche Radar-Messeinrichtung 16 im Strahlungsschatten anzuordnen, wodurch ein weiter verbesserter Schutz gegenüber der Wärmestrahlung des Strangs S gewährleistet ist.In a further embodiment of the radar measuring device 16 according to FIG Figure 2b Separate parabolic elements 17.1, 17.2 are provided, which are arranged on both sides of the broad sides B1, B2 of the strand S in order to thereby direct the radar beams essentially perpendicularly onto the broad sides B1, B2. This makes it possible to arrange the actual radar measuring device 16 in the radiation shadow, whereby a further improved protection against the thermal radiation of the string S is guaranteed.

Die Stranggießanlage 10 umfasst eine Steuereinrichtung 20 mit einer Recheneinheit 21, die mit der Radar-Messeinrichtung 16, den Biegerollen 22 im Bereich der Strangführung 19 und dem zumindest einen Walzwerk 24 signaltechnisch verbunden ist, in Fig. 1 jeweils durch punkierte Linien symbolisiert. Hierdurch wird erreicht, dass einerseits die von der Radar-Messeinrichtung 16 gemessene Strangdicke an die Recheneinheit 21 übermittelt wird, und dass die Recheneinheit 21 andererseits auch Informationen in Bezug sowohl auf einen Abstand zwischen den Biegerollen 22 als auch auf den Abstand von (nicht gezeigten) Arbeitswalzen des Walzwerks 24 erhält. Des Weiteren ist durch die Pfeile, die in der Fig. 1 von der Steuereinrichtung 20 sowohl auf die Kokille 20 als auch auf die Schere 23 gerichtet sind, symbolisiert, dass durch die Steuereinrichtung 20 geeignete Steuersignale erzeugt werden können, um damit sowohl eine Gießgeschwindigkeit in der Kokille 12 zu verändern als auch die Schere 23 - bei Bedarf - zu betätigen, wie nachstehend noch gesondert erläutert.The continuous casting plant 10 comprises a control device 20 with a computing unit 21, which is connected for signaling purposes to the radar measuring device 16, the bending rollers 22 in the region of the strand guide 19 and the at least one rolling mill 24, in Fig. 1 each symbolized by dotted lines. This ensures that, on the one hand, the strand thickness measured by the radar measuring device 16 is transmitted to the arithmetic unit 21 and, on the other hand, the arithmetic unit 21 also provides information regarding both a distance between the bending rollers 22 and the distance from (not shown) Work rolls of the rolling mill 24 receives. Furthermore, the arrows in the Fig. 1 from the control device 20 to both the mold 20 and the shears 23, symbolizes that suitable control signals can be generated by the control device 20 in order to change both a casting speed in the mold 12 and the shears 23 - if necessary - to be operated as explained separately below.

Die Erfindung funktioniert nun wie folgt:The invention now works as follows:

Im laufenden Stranggießprozess wird auf Grundlage der aktuellen Prozesswerte (chemische Analyse des Werkstoffs, Strangdicke, eingestellte Kühlleistung für die Segmente 13.1-13.4 der stützenden Strangführung 13) eine minimale Gießgeschwindigkeit Vmin bestimmt, bei der die Sumpfspitze SP unterhalb der beiden LCR-Segmente 13.1, 13.2 liegt (vgl. Darstellung in Fig. 4). Durch die Radar-Messeinrichtung 16 wird fortwährend eine Dicke des Strangs S gemessen, wie vorstehend erläutert an der Messposition 18, d.h. unmittelbar dort, wo der Strang S aus dem Ende 15 der stützenden Strangführung 13 austritt. Dies entspricht einem Schritt (i) eines Verfahrens gemäß der vorliegenden Erfindung, wobei die gemessene Strangdicke an die Recheneinheit 21 der Steuereinrichtung 20 übertragen wird. Im Anschluss daran, nämlich in einem Schritt (ii) des erfindungsgemäßen Verfahrens, wird die gemessene Strangdicke mit einem ersten vorbestimmten Vergleichswert verglichen, der einem Abstand der beiden letzten Stützrollen 14L, 14L' zueinander entspricht. In the ongoing continuous casting process, a minimum casting speed V min is determined on the basis of the current process values (chemical analysis of the material, strand thickness, set cooling capacity for the segments 13.1-13.4 of the supporting strand guide 13), at which the sump tip SP below the two LCR segments 13.1, 13.2 (see illustration in Fig. 4 ). The radar measuring device 16 continuously measures a thickness of the strand S, as explained above at the measuring position 18, ie immediately where the strand S emerges from the end 15 of the supporting strand guide 13. This corresponds to a step (i) of a method according to the present invention, the measured strand thickness being transmitted to the computing unit 21 of the control device 20. Following this, namely in a step (ii) of the method according to the invention, the measured strand thickness is compared with a first compared with a predetermined comparison value, which corresponds to a distance between the two last support rollers 14L, 14L '.

Falls dann in einem Schritt (iii) des erfindungsgemäßen Verfahrens durch die Recheneinheit 21 festgestellt werden sollte, dass die mit der Radar-Messeinrichtung 16 gemessene Strangdicke des Strangs S größer als der erste vorbestimmte Vergleichswert (= Abstand der beiden letzten Stützrollen 14L, 14L' zueinander) ist, besteht die Gefahr, dass die Sumpfspitze SP des Strangs S entweder bereits außerhalb (bzw. unterhalb, in Förderrichtung F des Strangs S gesehen) der stützenden Strangführung 13 liegt, wie es in der Fig. 3 veranschaulicht ist, oder zumindest die Tendenz besteht, dass sich die Sumpfspitze SP dorthin verlagert. Für diesen Fall wird nun durch die Steuereinrichtung 20 sofort ein Steuersignal erzeugt, mit dem z.B. die Gießgeschwindigkeit auf einen reduzierten Wert Vred eingestellt wird. Hierbei ist zu beachten, dass die reduzierte Gießgeschwindigkeit Vred stets größer als die vorstehend erläuterte minimale Gießgeschwindigkeit Vmin bleibt. Durch Einhaltung dieser Bedingung wird erreicht, dass die Sumpfspitze SP des Strangs S nicht zu weit "nach oben" wandert, d.h. in den Bereich der beiden LCR-Segmente 13.1, 13.2 gelangt.If then in a step (iii) of the method according to the invention it should be determined by the computing unit 21 that the strand thickness of the strand S measured with the radar measuring device 16 is greater than the first predetermined comparison value (= distance between the two last support rollers 14L, 14L 'from one another ), there is a risk that the sump tip SP of the strand S is either already outside (or below, viewed in the conveying direction F of the strand S) of the supporting strand guide 13, as in FIG Fig. 3 is illustrated, or at least there is a tendency for the sump tip SP to shift there. In this case, the control device 20 immediately generates a control signal with which, for example, the casting speed is set to a reduced value V red . It should be noted here that the reduced casting speed V red always remains greater than the minimum casting speed V min explained above. Compliance with this condition ensures that the sump tip SP of the strand S does not migrate too far "upwards", that is to say it reaches the area of the two LCR segments 13.1, 13.2.

Nachdem die Gießgeschwindigkeit auf den reduzierten Wert Vred eingestellt worden ist, wird für den weiteren Verlauf des Stranggießprozesses in der Recheneinheit 21 eine Abfrage durchgeführt, ob die von der Radar-Messeinrichtung 16 im Schritt (i) gemessene Strangdicke kleiner ist als ein vorbestimmter zweiter Vergleichswert, der einem Abstand von gegenüberliegend angeordneten Biegerollen 22 entspricht. Falls bei dieser Abfrage ein "Nein" ermittelt wird, gleichbedeutend damit, dass die Strangverdickung des Strangs S nicht mehr durch die Biegerollen 22 hindurch transportiert werden kann, erfolgt durch die Steuereinrichtung 20 ein Steuersignal für einen sofortigen Gießabbruch, um weiteren Schaden an der Strangführung 19 der Stranggießanlage 12 zu vermeiden.After the casting speed has been set to the reduced value V red , a query is carried out in the arithmetic unit 21 for the further course of the continuous casting process as to whether the strand thickness measured by the radar measuring device 16 in step (i) is less than a predetermined second comparison value , which corresponds to a distance from oppositely arranged bending rollers 22. If a "No" is determined in this query, meaning that the strand thickening of the strand S can no longer be transported through the bending rollers 22, the control device 20 emits a control signal for an immediate interruption of casting in order to avoid further damage to the strand guide 19 the continuous caster 12 to avoid.

Andernfalls erfolgt in der Recheneinheit 21 eine weitere Abfrage dafür, ob die von der Radar-Messeinrichtung 16 im Schritt (i) gemessene Strangdicke kleiner ist als ein vorbestimmter dritter Vergleichswert, der einem Abstand von gegenüberliegend angeordneten Arbeitswalzen in dem Walzwerk 24 entspricht. Falls bei dieser Abfrage ein "Nein" ermittelt wird, ist dies gleichbedeutend damit, dass die vorliegende Strangverdickung in dem Walzwerk 24 nicht auf eine gewünschte Endabmessung gebracht werden kann. Deshalb wird dann durch die Steuereinrichtung 20 ein Steuersignal für die Schere 23 erzeugt, mittels der der verdickte Abschnitt des Strangs S aus der Strangführung 19 herausgetrennt und entsprechend geschreddert wird.Otherwise, a further query takes place in the computing unit 21 as to whether the strand thickness measured by the radar measuring device 16 in step (i) is less than a predetermined third comparison value, which corresponds to a distance between oppositely arranged work rolls in the rolling mill 24. If a "No" is determined in this query, this is synonymous with the fact that the existing strand thickening in the rolling mill 24 cannot be brought to a desired final dimension. Therefore, the control device 20 then generates a control signal for the scissors 23, by means of which the thickened section of the strand S is separated from the strand guide 19 and shredded accordingly.

Die vorstehend genannten Schrittabfolgen für das erfindungsgemäße Verfahren sind auch in dem Flussdiagramm von Fig. 5 entsprechend gezeigt.The above-mentioned step sequences for the method according to the invention are also shown in the flowchart from FIG Fig. 5 shown accordingly.

BezugszeichenlisteList of reference symbols

66th
SchmelzeeinlaufMelt inlet
77th
flüssiger Kernliquid core
88th
Schmelzemelt
1010
StranggießanlageContinuous caster
1111
metallisches Produktmetallic product
1212th
KokilleMold
1313th
stützende Strangführungsupporting strand guide
13.1-13.413.1-13.4
Segmente (der stützenden Strangführung 14)Segments (of the supporting strand guide 14)
14, 14'14, 14 '
Rollenpaare (eines jeweiligen Segments 14.1-14.4)Role pairs (of a respective segment 14.1-14.4)
1515th
Ende (der stützenden Strangführung 13)End (of the supporting strand guide 13)
1616
Radar-MesseinrichtungRadar measuring device
16.1, 16.216.1, 16.2
Sende -/Empfangsmodule (der Radar-Messeinrichtung 16)Transmit / receive modules (of the radar measuring device 16)
17.1, 17.217.1, 17.2
Parabol-Elemente (der Radar-Messeinrichtung 16)Parabolic elements (of the radar measuring device 16)
1818th
MesspositionMeasuring position
1919th
Strangführung (nicht gestützt)Strand guide (not supported)
2020th
SteuereinrichtungControl device
2121
RecheneinheitArithmetic unit
2222nd
BiegerollenBending rolls
2323
Scherescissors
2424
WalzwerkRolling mill
2626th
Ofenoven
B1, B2B1, B2
Breitseiten (des Strangs S)Broad sides (of strand S)
FF.
FörderrichtungConveying direction
II.
RichtbereichStraightening area
SS.
Strangstrand
SPSP
SumpfspitzeSwamp tip
VredVred
reduzierte Gießgeschwindigkeitreduced casting speed
VminVmin
minimale Gießgeschwindigkeitminimum casting speed

Claims (14)

  1. Method for continuous casting of a metallic product (11), in which in a continuous casting plant (10) a strip (S) of the metallic product (11) exits continuously from a mould (12), in particular vertically downwardly, and is subsequently transported along a supporting strip guide (13) in a conveying direction (F), wherein the strip (S) is deflected in a straightening region (I) into the horizontal direction,
    characterised by
    (i) measuring a thickness of the strip (S) by a radar measuring device (16) at a measuring position (18) where the strip (S) directly leaves the supporting strip guide (13),
    ii) comparing the measured strip thickness with a first predetermined comparison value and
    iii) if the measured strip thickness is larger than the first predetermined comparison value: changing at least one casting parameter in such a way that the end (SP) of liquid phase of the strip (S) migrates in the direction of the mould (12).
  2. Method according to claim 1, characterised in that the casting speed is reduced in step iii).
  3. Method according to claim 2, characterised in that on the basis of instantaneous process values for the ongoing casting process a minimum casting speed (Vmin) is determined in which the end (SP) of liquid phase of the strip (S) lies below LCR segments (13.1, 13.2) of the supporting strip guide (13), wherein the reduced casting speed (Vred) is selected to be higher than the minimum casting speed (Vmin).
  4. Method according to any one of the preceding claims, characterised in that the first predetermined comparison value corresponds with a spacing of the two last backing rollers (14L, 14L') at the end (15) of the supporting strip guide (13).
  5. Method according to any one of the preceding claims, characterised in that the cooling output in the region of the supporting strip guide (13) is increased in step iii).
  6. Method according to any one of the preceding claims, characterised in that the strip thickness measured in step (i) is compared with a second predetermined comparison value, wherein if the measured strip thickness is larger than the second predetermined comparison value the casting process is then interrupted.
  7. Method according to claim 6, characterised in that the second predetermined comparison value corresponds with a spacing from bending rollers (22) of the further strip guide (19), the bending rollers being arranged opposite one another particularly in the straightening region (I).
  8. Method according to any one of the preceding claims, characterised in that the strip thickness measured in step (i) is compared with a third predetermined comparison value, wherein if the measured strip thickness is larger than the third predetermined comparison value then a region of the strip (S) having a strip thickness greater than the third predetermined comparison value is separated out from the strip guide by means of shears (23).
  9. Method according to claim 8, characterised in that the third predetermined comparison value corresponds with a spacing of work rolls in a rolling mill (24) in which the hardened strip (S) is further processed.
  10. Continuous casting plant (10) for producing a metallic product (11), comprising a mould (12), and
    a supporting strip guide (13) which is connected with the mould (12) and along which a strip (S) exiting, in particular vertically downwardly, from the mould (12) is transportable in a conveying direction (F),
    a further strip guide (19), which is connected with the supporting strip guide (13), with a straightening region (I) by which the strip (S) can be diverted into the horizontal direction, characterised by
    a radar measuring device (16) which is arranged at a position (18) where the strip (S) exits the supporting strip guide (13), so that a thickness of the strip (S) at a measuring position (18) lying directly at the end (15) of the supporting strip guide (13) can be measured by the radar measuring device (16),
    a control device (20), which is in signal connection with the radar measuring device (16), with a computing unit (21) by which the measured strip thickness can be compared with a first predetermined comparison value, wherein the control device (20) is arranged to be programmed in such a way that if the measured strip thickness is larger than the first predetermined comparison value then a control signal can be generated by which at least one casting parameter is varied in such a way that the end (SP) of liquid phase of the strip (S) migrates in the direction of the mould (12).
  11. Continuous casting plant (10) according to claim 10, characterised in that the radar measuring device (16) is so arranged that radar beams are directed perpendicularly from both sides onto the wide sides (B1, B2) of the strip (S).
  12. Continuous casting plant (10) according to claim 11, characterised in that the radar measuring device (16) comprises separate transmitting/receiving modules (16.1, 16.2) which are arranged on either side of the wide sides (B1, B2) of the strip (S).
  13. Continuous casting plant (10) according to claim 12, characterised in that the radar measuring device (16) comprises separate parabola elements (17.1, 17.2) which are arranged on either side of the wide sides (B1, B2) of the strip (S).
  14. Continuous casting plant (10) according to any one of claim 10 to 13, characterised in that shears (23) in signal connection with the control device (20) are arranged in the further strip guide (19), wherein the shears (23) are activatable by the control device (20) if the strip thickness measured by the radar measuring device (16) is larger than a spacing of work rolls in a rolling mill (24) arranged downstream of the shears (23) as seen in the conveying direction (F) of the strip (S).
EP19197237.1A 2018-09-27 2019-09-13 Process and system for continuously casting a metal product Active EP3628416B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018216529.7A DE102018216529A1 (en) 2018-09-27 2018-09-27 Process and plant for the continuous casting of a metallic product

Publications (2)

Publication Number Publication Date
EP3628416A1 EP3628416A1 (en) 2020-04-01
EP3628416B1 true EP3628416B1 (en) 2021-06-30

Family

ID=67956535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19197237.1A Active EP3628416B1 (en) 2018-09-27 2019-09-13 Process and system for continuously casting a metal product

Country Status (2)

Country Link
EP (1) EP3628416B1 (en)
DE (1) DE102018216529A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922378A1 (en) * 2020-06-11 2021-12-15 Mecorad GmbH Method and apparatus for the contactless determination of at least one property of an at least partially melted continuous strand

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255652A (en) 1988-08-22 1990-02-26 Nippon Steel Corp Method for controlling crater end position in cast slab
EP0734800A1 (en) 1995-03-25 1996-10-02 Sms Schloemann-Siemag Aktiengesellschaft Strand guide in a continuous casting plant for thin slabs
WO2007137739A2 (en) 2006-05-26 2007-12-06 Sms Demag Ag Method and device for producing a metal strip by continuous casting
WO2008110330A1 (en) 2007-03-09 2008-09-18 Sms Siemag Ag Device for thickness measurement and method therefor
US20140116639A1 (en) 2007-05-07 2014-05-01 Board Of Trustees Of The University Of Illinois Cooling control system for continuous casting of metal
WO2017201059A1 (en) 2016-05-16 2017-11-23 Golden Aluminum Company System and method for adjusting continuous casting components

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH430066A (en) * 1965-12-30 1967-02-15 Concast Ag Method and device for controlling a continuous casting plant
DE1558345B2 (en) 1966-03-25 1976-09-16 United States Steel Corp., Pittsburgh, Pa. (V.St.A.) DEVICE FOR MEASURING THE THICKNESS OF A CAST STRAND IN THE SECONDARY COOLING ZONE OF AN ARC-SHAPED STRANDING FRAME
DE19931331A1 (en) * 1999-07-07 2001-01-18 Siemens Ag Method and device for producing a strand of metal
EP2090387A1 (en) * 2008-01-18 2009-08-19 Corus Staal BV Method and apparatus for monitoring the surfaces of slag and molten metal in a mould
EP2422900A1 (en) * 2010-08-26 2012-02-29 SMS Concast AG Arrangement for measuring physical parameters in continuous casting moulds

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0255652A (en) 1988-08-22 1990-02-26 Nippon Steel Corp Method for controlling crater end position in cast slab
EP0734800A1 (en) 1995-03-25 1996-10-02 Sms Schloemann-Siemag Aktiengesellschaft Strand guide in a continuous casting plant for thin slabs
WO2007137739A2 (en) 2006-05-26 2007-12-06 Sms Demag Ag Method and device for producing a metal strip by continuous casting
WO2008110330A1 (en) 2007-03-09 2008-09-18 Sms Siemag Ag Device for thickness measurement and method therefor
US20140116639A1 (en) 2007-05-07 2014-05-01 Board Of Trustees Of The University Of Illinois Cooling control system for continuous casting of metal
WO2017201059A1 (en) 2016-05-16 2017-11-23 Golden Aluminum Company System and method for adjusting continuous casting components

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BRYAN PETRUS; KAI ZHENG; X. ZHOU; BRIAN G. THOMAS; JOSEPH BENTSMAN: "Real-Time, Model-Based Spray-Cooling Control System for Steel Continuous Casting", METALLURGICAL AND MATERIALS TRANSACTIONS, vol. 42, no. 1, 7 December 2010 (2010-12-07), New York , pages 87 - 103, XP019879301, ISSN: 1543-1916, DOI: 10.1007/s11663-010-9452-7
FISCHER BETTINA ET AL: "Radar Solutions for Harsh Environmental Conditions", BHM. BERG UND HUETTENMAENNISCHE MONATSHEFTE, vol. 163, no. 3, 5 February 2018 (2018-02-05), AU , pages 84 - 89, XP036459983, ISSN: 0005-8912, DOI: 10.1007/s00501-018-0716-x
GUTGEMANN SABINE; KREBS CHRISTIAN; KUTER ANDRIES; NUSLER DIRK; FISCHER BETTINA; KRAUTHAUSER HORST: "Radar-Based High Precision Thickness Measurement for Rolling Mills", 2018 15TH EUROPEAN RADAR CONFERENCE (EURAD), 26 September 2018 (2018-09-26), pages 122 - 125, XP033453469, DOI: 10.23919/EuRAD.2018.8546618
MANN SEBASTIAN; WILL CHRISTOPH; REISSLAND TORSTEN; LURZ FABIAN; LINDNER STEFAN; LINZ SARAH; WEIGEL ROBERT; KOELPIN ALEXANDER: "High-Precision Interferometric Radar for Sheet Thickness Monitoring", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 66, no. 6, 1 June 2018 (2018-06-01), USA, pages 3153 - 3166, XP011684679, ISSN: 0018-9480, DOI: 10.1109/TMTT.2018.2825328
OUYANG QI; HU MENGXUE; ZHANG XINGLAN; WEI SIMING; PENG WENQIANG: "Study on electromagnetic ultrasonic testing method for determining solidified shell thickness during continuous casting", 2018 CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 9 June 2018 (2018-06-09), pages 913 - 918, XP033370355, DOI: 10.1109/CCDC.2018.8407260
SHIRAIWA T, ET AL: "Automatic Control of Casting Speed in Ingot Casting", AUTOMATICA, vol. 17, no. 4, 1 January 1981 (1981-01-01), pages 613 - 618, XP055911729
SVIZELOVA JANA, ET AL: "Influence of Casting Speed on Centerline Porosity Formation in Continuously Cast Round Steel Billets", METAL 2017 MAY 27-26 2017, BRNO, CZECH REPUBLIC, 1 January 2017 (2017-01-01), pages 235 - 240, XP055911735

Also Published As

Publication number Publication date
EP3628416A1 (en) 2020-04-01
DE102018216529A1 (en) 2020-04-02

Similar Documents

Publication Publication Date Title
DE2909848C2 (en) Device for continuous casting of strips, billets or wires made of metal
DE3002903C2 (en) Method for controlling the film thickness on a blown film extruder
EP3535069B1 (en) Method for operating a combined casting and rolling installation
DE60113657T2 (en) ROLLING OF BELT MATERIAL
EP3628416B1 (en) Process and system for continuously casting a metal product
DE102013220657A1 (en) Method and device for producing a metallic strip in a continuous casting-rolling process
EP2132526B1 (en) Device for thickness measurement and method therefor
EP3441157B1 (en) Method and apparatus for cintinuous casting of a metallic product
EP3173166B1 (en) Method and device for setting the width of a continuously cast metal strand
EP1385656B1 (en) Method for continuously casting ingots, slabs or thin slabs
EP1827735B1 (en) Method and device for continuous casting of metals
EP3223979B1 (en) Continuous casting installation for thin slabs
EP3135402B1 (en) Mould and method for monitoring a mould
EP4164824B1 (en) Method and apparatus for the contactless determination of at least one property of an at least partially melted continuous strand
EP0775537A2 (en) Method of controlling the cross section of rolled stock
AT518450B1 (en) Method and cooling device for cooling a metallic strand
EP0161475B1 (en) Apparatus for closing off the sides of a shaping cavity of substantially rectangular cross-section in a continuous casting installation
EP3877145B1 (en) Method and device for controlling the nozzle gap of the outlet nozzle of a flat film machine
EP3623075B1 (en) Adjusting device for the narrow side of a continuous casting mould and method for adjusting the narrow side of a continuous casting mould
EP4122615B1 (en) Method and device for producing a metallic strip
DE2408855C3 (en) Method for avoiding damage to the support rollers in the flame cutting area of a continuous metal caster
DE69000282T2 (en) METHOD AND DEVICE FOR THE PRODUCTION OF THICK METAL PRODUCTS BY MEANS OF CONTINUOUS CASTING.
DE102022200939A1 (en) Method for cutting a metal strip to length and rolling installation with shears for cutting a metal strip to length
CH665370A5 (en) METHOD AND DEVICE FOR CONTINUOUSLY POURING METAL IN A MOLDING CAVITY WITH COOLED TURNS MOVING IN A CIRCUIT.
WO1987000461A1 (en) Process and device for casting crystalline metal strip

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20190913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1405877

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019001717

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210930

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211102

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502019001717

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

26 Opposition filed

Opponent name: WBH WACHENHAUSEN PATENTANWAELTE PARTG MBB

Effective date: 20220330

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210913

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210913

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210930

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190913

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230707

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230920

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230927

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230913