EP3622782B1 - Dispositif et procédé de fusion par lévitation au moyen d'unités d'induction disposées de manière inclinée - Google Patents

Dispositif et procédé de fusion par lévitation au moyen d'unités d'induction disposées de manière inclinée Download PDF

Info

Publication number
EP3622782B1
EP3622782B1 EP19739555.1A EP19739555A EP3622782B1 EP 3622782 B1 EP3622782 B1 EP 3622782B1 EP 19739555 A EP19739555 A EP 19739555A EP 3622782 B1 EP3622782 B1 EP 3622782B1
Authority
EP
European Patent Office
Prior art keywords
induction coils
melting
casting
batch
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19739555.1A
Other languages
German (de)
English (en)
Other versions
EP3622782A1 (fr
Inventor
Sergejs SPITANS
Henrik Franz
Björn SEHRING
Markus Holz
Andreas KRIEGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALD Vacuum Technologies GmbH
Original Assignee
ALD Vacuum Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALD Vacuum Technologies GmbH filed Critical ALD Vacuum Technologies GmbH
Priority to SI201930009T priority Critical patent/SI3622782T1/sl
Publication of EP3622782A1 publication Critical patent/EP3622782A1/fr
Application granted granted Critical
Publication of EP3622782B1 publication Critical patent/EP3622782B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/32Arrangements for simultaneous levitation and heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D39/00Equipment for supplying molten metal in rations
    • B22D39/003Equipment for supplying molten metal in rations using electromagnetic field
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/24Crucible furnaces
    • H05B6/26Crucible furnaces using vacuum or particular gas atmosphere
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/365Coil arrangements using supplementary conductive or ferromagnetic pieces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • H05B6/44Coil arrangements having more than one coil or coil segment

Definitions

  • This invention relates to a levitation melting process and an apparatus for producing castings with tilted induction units.
  • induction units are used in which the respective opposite ferrite poles with the induction coils are not designed to lie in one plane, but rather are tilted at a certain angle to the levitation plane.
  • the tilted arrangement increases the proportion of the induced magnetic field that effectively contributes to the holding force of the field for levitating the melt.
  • U.S. 2,686,864 A also describes a method in which a conductive melt z. B. is suspended in a vacuum under the influence of one or more coils without the use of a crucible.
  • two coaxial coils are used to stabilize the suspended material. After it has melted, the material is dropped or poured into a mold. With the method described there, a 60 g portion of aluminum could be kept in suspension. The molten metal is removed by reducing the field strength, so that the melt escapes downwards through the conical coil. If the field strength is reduced very quickly, the metal falls out of the device in a molten state. It has already been recognized that the "weak spot" of such coil arrangements lies in the center of the coils, so that the amount of material that can be melted in this way is limited.
  • U.S. 4,578,552 A discloses an apparatus and method for levitation melting.
  • the same coil is used both for heating and for holding the melt; the frequency of the alternating current applied is varied to regulate the heating power, while the current strength is kept constant.
  • a device for levitation melting in which at least two opposing horizontally aligned coils, each with a field compressor, are provided in order to achieve a field profile that is more favorable for levitation melting of a sample in a vacuum.
  • levitation melting contamination of the melt by a crucible material or other materials that are in contact with the melt in other processes is avoided.
  • the floating melt is only in contact with the surrounding atmosphere, which is z. B. can be a vacuum or inert gas. Since a chemical reaction with a crucible material is not to be feared, the melt can also be heated to very high temperatures.
  • the Lorentz force of the coil field must compensate for the weight of the charge in order to be able to keep it in suspension. It pushes the batch upwards out of the coil field.
  • the aim is usually to reduce the distance between the opposing ferrite poles. The reduction in the distance makes it possible to generate the same magnetic field with lower voltage that is required to hold a certain melt weight. In this way, the holding efficiency of the system can be improved so that a larger batch can be levitated.
  • the method should allow the use of larger batches through improved efficiency of the coil field.
  • it should enable a high throughput through shortened cycle times, whereby it is ensured that the casting process continues to take place safely without contact of the melt with the coils or their poles.
  • the volume of the molten charge is preferably sufficient to fill the casting mold to an extent sufficient for the production of a cast body (“filling volume”). After the casting mold has been filled, it is allowed to cool down or cooled with coolant so that the material solidifies in the mold. The cast body can then be removed from the mold.
  • a “conductive material” is understood to mean a material which has a suitable conductivity in order to inductively heat the material and to keep it in suspension.
  • a “state of suspension” is understood to mean a state of complete suspension, so that the batch being treated has no contact whatsoever with a crucible or a platform or the like.
  • ferrite pole is used synonymously with the term “core made of a ferromagnetic material”.
  • coil and “induction coil” are also used synonymously alongside one another.
  • the longitudinal axes of the induction coils with their cores in at least one pair are not arranged within a horizontal plane.
  • the induction coils are tilted downwards out of the plane of levitation.
  • the angle ⁇ between the longitudinal axes of the induction coils with their cores and the horizontal plane in at least one pair is preferably 0 ° ⁇ ⁇ 60 °, particularly preferably 10 ° ⁇ 45 °.
  • the magnetic flux in the absence of a charge in the magnetic field above and below the plane is identical.
  • the magnetic flux below the level makes almost no contribution to the holding force of the magnetic field during the levitation of a charge.
  • the ⁇ -shaped arrangement of the coil axes according to the invention makes it possible to increase the holding force of the field, since this increases the magnetic flux above the plane.
  • the induction coils and / or their cores made of a ferromagnetic material have, at least in parts, a frustoconical or conical one Shape on.
  • the special conical shape of the ferrite cores is designed in such a way that the concentration of the magnetic field in the space between the opposing pairs of coils is maximized, but the material still remains far from saturation.
  • a ferromagnetic element (ferrite ring), which is arranged around the cores made of ferromagnetic material and will be described in more detail below, separates the magnetic flux that would otherwise reduce the magnetic field in the space.
  • the induction coils are arranged in pairs that operate at the same frequency and generate a magnetic field in the same direction.
  • they are optimized on the one hand to minimize Joule heat losses in order to achieve an increase in efficiency.
  • they are designed for an optimal distribution of the magnetic field below the melt, which ensures levitation, and the magnetic fields above and to the side of the melt, which counteract the levitation but ensure the dimensional stability of the melt.
  • the induction coils can also be positioned even closer to one another, so that the distance between the opposite poles becomes smaller, which leads to a further increase in the magnetic field induction on the underside of the levitating charge and thus to a more efficient melting process.
  • the induction coils with their cores are movably mounted in at least one pair in a particularly preferred embodiment variant.
  • the coils of a pair move in opposite directions, centrosymmetrically, around the center point of the induction coil arrangement.
  • the coils are pushed together into the melting position. Once the batch has melted and is to be poured into the mold, the coils are not simply switched off, as is customary in the state of the art, or the current intensity is reduced, but instead, according to the invention, moved outwards into a pouring position. This increases the distance between the coils, which on the one hand results in a larger free diameter for the melt on its way into the mold and, on the other hand, the load-bearing capacity of the induced magnetic field is continuously and controlled reduced.
  • the melt is safely kept away from the induction coils and their cores as it passes through the coil plane and only slowly turns into the case because the field is already weakened in the center, but is still strong enough at the coils to generate the Prevent contact. This prevents contamination of the coils and ensures a clean casting in the mold without splashing.
  • the motion vectors of the induction coils in the induction coil pairs are not identical to their longitudinal axes.
  • the coils are not removed from one another along their longitudinal axis, but the tilted coils are shifted within the horizontal plane.
  • the magnetic field level for levitation also remains in the same vertical position when the batch is poured.
  • the current intensity in these induction coils is reduced simultaneously with the movement of the induction coils in the induction coil pairs from the melting position to the casting position. This makes it possible to reduce the required displacement path of the induction coils, since the induced magnetic field is no longer reduced only by the greater distance between the inducing coils. However, it is important to ensure that the reduction in the current strength is coordinated with the movement of the coils so that the field strength is always sufficiently high to be able to keep the melt away from the coils.
  • the distance between the induction coils in the induction coil pairs from the melting position to the casting position is increased by 5-100 mm, preferably 10-50 mm.
  • it must be taken into account for which batch weights the system is to be designed and how large the minimum distance between the coils and the field strength that can be generated with them is.
  • the electrically conductive material used according to the invention has at least one high-melting metal from the following group: titanium, zirconium, vanadium, tantalum, tungsten, hafnium, niobium, rhenium, molybdenum.
  • a metal with a lower melting point such as nickel, iron or aluminum can be used.
  • a mixture or alloy with one or more of the aforementioned metals can also be used as the conductive material.
  • the metal preferably has a proportion of at least 50% by weight, in particular at least 60% by weight or at least 70% by weight, of the conductive material. It has been shown that these metals are particularly advantageous benefit from the present invention.
  • the conductive material is titanium or a titanium alloy, in particular TiAl or TiAlV.
  • metals or alloys can be processed particularly advantageously, since they have a pronounced dependence of the viscosity on the temperature and, moreover, are particularly reactive, in particular with regard to the materials of the casting mold. Since the method according to the invention combines contactless melting in suspension with extremely fast filling of the casting mold, a particular advantage can be realized for such metals in particular. With the method according to the invention, cast bodies can be produced which have a particularly thin or even no oxide layer from the reaction of the melt with the material of the casting mold. And with refractory metals in particular, the improved utilization of the induced eddy current and the exorbitant reduction in heat losses due to thermal contact are noticeable in the cycle times. Furthermore, the load-bearing capacity of the generated magnetic field can be increased so that even heavier batches can be held in suspension.
  • the conductive material is superheated during melting to a temperature which is at least 10 ° C., at least 20 ° C. or at least 30 ° C. above the melting point of the material. Overheating prevents the material from solidifying instantly when it comes into contact with the casting mold, the temperature of which is below the melting temperature. The result is that the charge can be distributed in the mold before the viscosity of the material becomes too high. It is an advantage of levitation melting that there is no need to use a crucible that is in contact with the melt. This avoids the high material loss of the cold crucible process on the crucible wall as well as contamination of the melt by crucible components.
  • melt can be heated to a relatively high level, since operation in a vacuum or under protective gas is possible and there is no contact with reactive materials. However, most materials cannot be overheated at will, since otherwise a violent reaction with the mold is to be feared.
  • the overheating is therefore preferably limited to at most 300 ° C., in particular at most 200 ° C. and particularly preferably at most 100 ° C. above the melting point of the conductive material.
  • At least one ferromagnetic element is arranged horizontally around the area in which the charge is melted.
  • the ferromagnetic element can be arranged in a ring around the melting area, with "ring-shaped" not only being understood to mean circular elements, but also angular, in particular square or polygonal ring elements.
  • the ring elements are accordingly so that the induction coils can be moved according to the invention the number of coils is divided into subsegments, between which the respective induction coils move with their poles in a form-fitting manner.
  • the ferromagnetic element can also have a plurality of rod sections, which in particular protrude horizontally in the direction of the melting area.
  • the ferromagnetic element consists of a ferromagnetic material, preferably with an amplitude permeability ⁇ a > 10, more preferably ⁇ a > 50 and particularly preferably ⁇ a > 100.
  • the amplitude permeability relates in particular to the permeability in a temperature range between 25 ° C and 150 ° C and at a magnetic flux density between 0 and 500 mT.
  • the amplitude permeability is in particular at least one hundredth, in particular at least 10 hundredths or 25 hundredths of the amplitude permeability of soft magnetic ferrite (for example 3C92). Suitable materials are known to those skilled in the art.
  • a device for levitating an electrically conductive material comprising at least one pair of opposite induction coils with a core made of a ferromagnetic material for bringing about the levitation state of a charge by means of electromagnetic alternating fields, the longitudinal axes of the induction coils with their cores in at least one pair not are arranged within a horizontal plane.
  • Figure 1 shows a charge (1) of conductive material that is in the area of influence of alternating electromagnetic fields (melting area) that are generated with the help of the coils (3).
  • Below the batch (1) there is an empty casting mold (2) that is held by a holder (5) is kept in the fill area.
  • the casting mold (2) has a funnel-shaped filling section (6).
  • the holder (5) is suitable for lifting the casting mold (2) from a feed position into a casting position, which is symbolized by the arrow shown.
  • a ferromagnetic material (4) is arranged in the core of the coils (3).
  • the axes of the coil pair shown in dotted lines in the drawing are tilted downwards and aligned with the horizontal plane of levitation, with two opposing coils (3) forming a pair.
  • Figure 2 shows a side sectional view analogous to FIG Figure 1 of tilted coils (3) with their cores made of the ferromagnetic material (4).
  • the horizontal plane is drawn in dashed lines and the angles ⁇ are marked, by which the longitudinal axes of the coils (3) shown in dotted lines have tilted out of the horizontal plane.
  • Figure 3 shows a side sectional view of an embodiment variant with frustoconical coils and poles shown in black.
  • the cutting plane runs centrally through the longitudinal axis of a coil pair.
  • the induction coils (3) and their cores made of a ferromagnetic material (4) are each shaped like a truncated cone and are entirely surrounded by a ferrite ring.
  • the induction coils (3) are designed as waveguides, which also offers the option of internal cooling using a cooling fluid.
  • the longitudinal axes of the poles and coils tilted towards the levitation plane are clearly visible.
  • Figure 4 and Figure 5 show the coil arrangement of Figure 3 in plan or side perspective view.
  • the arrangement consists of two pairs of coils, which are oriented at a 90 ° angle to each other.
  • the induction coils (3) with their cores made of a ferromagnetic material (4) are positively movably mounted between four ferrite ring segments so that together an octagonal ferromagnetic element is created and they can be moved between a closely spaced melting position and a widely spaced casting position.
  • the Figures 4 and 5 both show the melting position of the coils. Especially in Figure 5 the displacement of the coils between the inside and outside of the ring can be clearly seen.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Induction Heating (AREA)
  • Continuous Casting (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)

Claims (13)

  1. Procédé de production de pièces moulées à partir d'un matériau électriquement conducteur utilisant un procédé de fusion en lévitation, dans lequel des champs électromagnétiques alternatifs, générés par au moins une paire de bobines d'induction (3) opposées et munies respectivement d'un noyau constitué d'un matériau ferromagnétique (4), sont utilisés pour induire l'état de lévitation d'un lot (1), comprenant les étapes ci-dessous consistant à :
    - introduire un lot (1) d'une matière de départ dans la zone d'influence d'au moins un champ électromagnétique alternatif, de sorte que le lot (1) est maintenu en état de lévitation,
    - faire fondre le lot (1),
    - positionner un moule de coulée (2) dans une zone de remplissage située en-dessous du lot (1) en lévitation,
    - verser l'ensemble du lot (1) dans le moule de coulée (2),
    - retirer la pièce moulée solidifiée du moule de coulée (2),
    caractérisé en ce que les axes longitudinaux des bobines d'induction (3) avec leurs noyaux (4) ne sont pas agencés dans un plan horizontal au sein d'au moins une paire.
  2. Procédé selon la revendication 1, caractérisé en ce qu'un angle β entre les axes longitudinaux des bobines d'induction (3) munies de leurs noyaux et le plan horizontal satisfait respectivement 0° < β ≤ 60°, de préférence 10°≤ β ≤ 45° au sein d'au moins une paire.
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que les bobines d'induction (3) et/ou leurs noyaux constitués d'un matériau ferromagnétique (4) présentent au moins partiellement une forme tronconique ou conique.
  4. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les bobines d'induction munies de leurs noyaux sont agencées mobiles l'une par rapport à l'autre au sein de chaque paire et se déplacent entre une position de fusion présentant un espacement faible et une position de coulée présentant un espacement important, le procédé comprend en tant que première étape supplémentaire un décalage des paires de bobines d'induction dans la position de fusion présentant un espacement faible, et la coulée de l'ensemble du lot (1) dans le moule de coulée (2) intervient grâce à un déplacement des bobines d'induction (3) de la position de fusion présentant un espacement faible jusqu'à la position de coulée présentant un espacement important au sein d'au moins une paire.
  5. Procédé selon la revendication 4, caractérisé en ce que, lors de la coulée du lot (1) l'intensité du courant dans ces bobines d'induction (3) est réduite en même temps que le déplacement des bobines d'induction (3) au sein des paires de bobines d'induction de la position de fusion jusqu'à la position de coulée.
  6. Procédé selon la revendication 4 ou 5, caractérisé en ce que l'espacement des bobines d'induction (3) au sein des paires de bobines d'induction entre la position de fusion et la position de coulée est augmenté de 5 à 100 mm, de préférence de 10 à 50 mm.
  7. Procédé selon l'une quelconque des revendications 4 à 6, caractérisé en ce que les vecteurs de déplacement des bobines d'induction (3) au sein des paires de bobines d'induction ne se confondent pas avec leurs axes longitudinaux.
  8. Dispositif de fusion en lévitation d'un matériau électriquement conducteur, comprenant au moins une paire de bobines d'induction (3) opposées et munies respectivement d'un noyau constitué d'un matériau ferromagnétique (4) afin d'induire l'état de lévitation d'un lot (1) au moyen de champs électromagnétiques alternatifs,
    caractérisé en ce que les axes longitudinaux des bobines d'induction (3) munies de leurs noyaux ne sont pas agencés dans un plan horizontal au sein d'au moins une paire.
  9. Dispositif selon la revendication 8, caractérisé en ce que l'angle β entre les axes longitudinaux des bobines d'induction (3) munies de leurs noyaux et le plan horizontal satisfait respectivement 0° < β ≤ 60°, de préférence 10°≤ β ≤ 45° au sein d'au moins une paire.
  10. Dispositif selon la revendication 8 ou 9, caractérisé en ce que les bobines d'induction (3) et/ou leurs noyaux constitués d'un matériau ferromagnétique (4) présentent au moins partiellement une forme tronconique ou conique.
  11. Dispositif selon l'une quelconque des revendications 8 à 10, caractérisé en ce que les bobines d'induction (3) munies de leurs noyaux sont agencées mobiles l'une par rapport à l'autre au sein de chaque paire et se déplacent entre une position de fusion présentant un espacement faible et une position de coulée présentant un espacement important.
  12. Dispositif selon la revendication 11, caractérisé en ce que l'espacement des bobines d'induction (3) au sein des paires de bobines d'induction entre la position de fusion et la position de coulée est augmenté de 5 à 100 mm, de préférence de 10 à 50 mm.
  13. Dispositif selon la revendication 11 ou 12, caractérisé en ce que les vecteurs de déplacement des bobines d'induction (3) au sein des paires de bobines d'induction ne se confondent pas avec leurs axes longitudinaux.
EP19739555.1A 2018-07-17 2019-07-09 Dispositif et procédé de fusion par lévitation au moyen d'unités d'induction disposées de manière inclinée Active EP3622782B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SI201930009T SI3622782T1 (sl) 2018-07-17 2019-07-09 Naprava in postopek za lebdilno taljenje z nagnjeno razmeščenimi indukcijskimi enotami

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018117304.0A DE102018117304A1 (de) 2018-07-17 2018-07-17 Vorrichtung und Verfahren zum Schwebeschmelzen mit gekippt angeordneten Induktionseinheiten
PCT/EP2019/068432 WO2020016063A1 (fr) 2018-07-17 2019-07-09 Dispositif et procédé de fusion par lévitation au moyen d'unités d'induction disposées de manière inclinée

Publications (2)

Publication Number Publication Date
EP3622782A1 EP3622782A1 (fr) 2020-03-18
EP3622782B1 true EP3622782B1 (fr) 2020-09-16

Family

ID=67262294

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19739555.1A Active EP3622782B1 (fr) 2018-07-17 2019-07-09 Dispositif et procédé de fusion par lévitation au moyen d'unités d'induction disposées de manière inclinée

Country Status (12)

Country Link
US (1) US11102850B1 (fr)
EP (1) EP3622782B1 (fr)
JP (1) JP6931748B1 (fr)
KR (1) KR102237272B1 (fr)
CN (1) CN111742616B (fr)
DE (1) DE102018117304A1 (fr)
ES (1) ES2825948T3 (fr)
PT (1) PT3622782T (fr)
RU (1) RU2737067C1 (fr)
SI (1) SI3622782T1 (fr)
TW (1) TWI736936B (fr)
WO (1) WO2020016063A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023122336A1 (fr) * 2021-12-24 2023-06-29 Build Beyond, Llc Système et procédé de génération d'un flux magnétique contrôlé

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE422004C (de) 1925-11-23 Otto Muck Dipl Ing Verfahren und Vorrichtung zum Schmelzen, insbesondere von Leitern u. dgl. durch elektrische Induktionsstroeme
US2686864A (en) 1951-01-17 1954-08-17 Westinghouse Electric Corp Magnetic levitation and heating of conductive materials
BE655473A (fr) * 1963-11-21 1900-01-01
US3354285A (en) * 1964-04-17 1967-11-21 Union Carbide Corp Electromagnetic flux concentrator for levitation and heating
US4578552A (en) 1985-08-01 1986-03-25 Inductotherm Corporation Levitation heating using single variable frequency power supply
US5150272A (en) * 1990-03-06 1992-09-22 Intersonics Incorporated Stabilized electromagnetic levitator and method
US5003551A (en) * 1990-05-22 1991-03-26 Inductotherm Corp. Induction melting of metals without a crucible
CN1046448C (zh) * 1994-08-23 1999-11-17 新日本制铁株式会社 熔融金属的连铸方法
SE9500684L (sv) * 1995-02-22 1996-07-08 Asea Brown Boveri Sätt och anordning för stränggjutning
TW297050B (fr) 1995-05-19 1997-02-01 Daido Steel Co Ltd
US6059015A (en) * 1997-06-26 2000-05-09 General Electric Company Method for directional solidification of a molten material and apparatus therefor
US20020005233A1 (en) * 1998-12-23 2002-01-17 John J. Schirra Die cast nickel base superalloy articles
KR100952904B1 (ko) 2008-12-30 2010-04-16 김차현 2단계 고주파 부양용해를 이용한 진공주조장치 및 주조방법
DE102011018675A1 (de) * 2011-04-18 2012-10-18 Technische Universität Ilmenau Vorrichtung und Verfahren zum aktiven Manipulieren einer elektrisch leitfähigen Substanz
DE102011082611A1 (de) 2011-09-13 2013-03-14 Franz Haimer Maschinenbau Kg Induktionsspuleneinheit
DE102017100836B4 (de) * 2017-01-17 2020-06-18 Ald Vacuum Technologies Gmbh Gießverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TWI736936B (zh) 2021-08-21
TW202007223A (zh) 2020-02-01
US20210251055A1 (en) 2021-08-12
KR102237272B1 (ko) 2021-04-07
EP3622782A1 (fr) 2020-03-18
RU2737067C1 (ru) 2020-11-24
CN111742616B (zh) 2021-06-18
SI3622782T1 (sl) 2020-11-30
US11102850B1 (en) 2021-08-24
CN111742616A (zh) 2020-10-02
JP6931748B1 (ja) 2021-09-08
PT3622782T (pt) 2020-10-19
KR20200116159A (ko) 2020-10-08
JP2021526300A (ja) 2021-09-30
DE102018117304A1 (de) 2020-01-23
ES2825948T3 (es) 2021-05-17
WO2020016063A1 (fr) 2020-01-23

Similar Documents

Publication Publication Date Title
EP3570993B1 (fr) Procédé de coulée
DE1025631B (de) Verfahren zur Raffination eines laenglichen Metallkoerpers nach dem Zonenschmelzverfahren
DE3529044A1 (de) Verfahren und vorrichtung zum giessen von leitenden und halbleitenden materialien
DE4207694A1 (de) Vorrichtung fuer die herstellung von metallen und metall-legierungen hoher reinheit
EP2400816A1 (fr) Dispositif destiné à la fonte de pièces en métal
EP3622782B1 (fr) Dispositif et procédé de fusion par lévitation au moyen d&#39;unités d&#39;induction disposées de manière inclinée
DE69735840T2 (de) Verfahren und vorrichtung zum induktiven schmelzen und affinieren von aluminium, kupfer, messing, blei, bronze und deren legierungen
EP3626028B1 (fr) Procédé de fusion par lévitation au moyen d&#39;unités d&#39;induction mobiles
DE2609949C3 (de) Verfahren und Vorrichtung zur Herstellung eines Gußstücks aus in einer Richtung erstarrter Metallegierung
EP3622781B1 (fr) Procédé de fusion par lévitation au moyen d&#39;un élément annulaire
EP3586568B1 (fr) Fusion en lévitation
DE1100887B (de) Verfahren und Vorrichtung zur Herstellung von Rohren aus durchsichtigem, reinem Quarz
DE102009045680B4 (de) Vorrichtung und Verfahren zur Herstellung von Siliziumblöcken aus der Schmelze durch gerichtete Erstarrung
EP1450974B1 (fr) Dispositif constitue d&#39;un cuve de coulee pouvant etre chauffee et d&#39;un four-poche
WO2017063811A1 (fr) Four à induction, installation d&#39;extrusion et procédé
DE102021125159A1 (de) Vorrichtung und ein Verfahren zum Herstellen eines Feingussbauteils
DE1191970B (de) Vorrichtung zur Schmelzbehandlung von Metallen
DE19617870A1 (de) Vorrichtung zum tiegelfreien Zonenschmelzen von Halbleiterstäben unter Magnetfeldeinfluß
DE1235463B (de) Verfahren zum Verdichten von bei Raumtemperatur elektrisch nicht oder schlecht leitenden chemischen Verbindungen
DE2143445A1 (de) Verfahren und vorrichtung zum herstellen von metallischen bloecken

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/36 20060101ALI20200616BHEP

Ipc: B22D 39/00 20060101ALN20200616BHEP

Ipc: H05B 6/32 20060101AFI20200616BHEP

Ipc: H05B 6/26 20060101ALN20200616BHEP

Ipc: H05B 6/44 20060101ALI20200616BHEP

INTG Intention to grant announced

Effective date: 20200707

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALD VACUUM TECHNOLOGIES GMBH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOLZ, MARKUS

Inventor name: FRANZ, HENRIK

Inventor name: SPITANS, SERGEJS

Inventor name: SEHRING, BJOERN

Inventor name: KRIEGER, ANDREAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOLZ, MARKUS

Inventor name: FRANZ, HENRIK

Inventor name: SPITANS, SERGEJS

Inventor name: SEHRING, BJOERN

Inventor name: KRIEGER, ANDREAS

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: VALIPAT S.A. C/O BOVARD SA NEUCHATEL, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000233

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1315383

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201015

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3622782

Country of ref document: PT

Date of ref document: 20201019

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20201013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201216

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2825948

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210116

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000233

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20220704

Year of fee payment: 4

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190709

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230626

Year of fee payment: 5

Ref country code: CZ

Payment date: 20230623

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230626

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 5

Ref country code: IE

Payment date: 20230726

Year of fee payment: 5

Ref country code: GB

Payment date: 20230724

Year of fee payment: 5

Ref country code: ES

Payment date: 20230821

Year of fee payment: 5

Ref country code: CH

Payment date: 20230801

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SI

Payment date: 20230626

Year of fee payment: 5

Ref country code: FR

Payment date: 20230724

Year of fee payment: 5

Ref country code: DE

Payment date: 20230720

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200916