EP3618989A1 - Dispositif d'aspiration destiné à la fabrication additive - Google Patents

Dispositif d'aspiration destiné à la fabrication additive

Info

Publication number
EP3618989A1
EP3618989A1 EP18730302.9A EP18730302A EP3618989A1 EP 3618989 A1 EP3618989 A1 EP 3618989A1 EP 18730302 A EP18730302 A EP 18730302A EP 3618989 A1 EP3618989 A1 EP 3618989A1
Authority
EP
European Patent Office
Prior art keywords
protective gas
powder bed
gas
outlet opening
additive production
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18730302.9A
Other languages
German (de)
English (en)
Inventor
Michael Ott
David Rule
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3618989A1 publication Critical patent/EP3618989A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/70Gas flow means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/001Turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a device for Füh ⁇ ren a protective gas via a powder bed additive for the production of a component or to the corresponding aspirating the protective gas from a space. Furthermore, a method for guiding a protective gas flow is specified.
  • the device is preferably provided for use in a Strö ⁇ mung machine, preferably in a hot gas path of a gas turbine.
  • the component preferably consists of a Ni ⁇ ckelbasis- or superalloy, in particular a nickel- or cobalt-based superalloy.
  • the alloy may be precipitation hardened or precipitation hardenable.
  • Generative or additive manufacturing processes include, for example as powder bed processes, selective laser melting (SLM) or laser sintering (SLS), or electron beam melting (EBM).
  • SLM selective laser melting
  • SLS laser sintering
  • EBM electron beam melting
  • a method for selective laser melting is known, for example, from EP 2 601 006 B1.
  • Additive manufacturing process in English: "additive Manu- facturing" have proven to be designed to be particularly advantageous for complex or complicated or delicate components, for example labyrinth-like structures, cooling structures and / or lightweight construction structures
  • the additive Ferti ⁇ supply is through a.
  • Particularly short chain of process steps advantageous because a manufacturing or manufacturing step ei ⁇ nes component can be done directly on the basis of a corresponding CAD file.
  • the additive manufacturing is particularly advantageous for the development or production of prototypes, which, for example, for cost reasons by means of conventional sub- traction or machining process or casting technology can not or can not be efficiently produced.
  • the metallurgical quality of a product produced by means of SLM crucially depends on how well, among other things, products resulting from welding in the field of welding are produced
  • Melting bath can be removed. Particularly important is, in particular spatter and smoke from the
  • Said gas flow is preferably laminar keptstal ⁇ Tet, wherein a gas inlet and / or a gas outlet, be it with a contiguous or a plurality of series-arranged gas openings, strip-like configuration.
  • the need for an improved removal of excess moisture exists in particular, since a trend towards greater layer thicknesses for increasing the process efficiency in the powder-bed-based additive manufacturing is recognizable.
  • protective gas flow can be formed. This object is achieved by the subject matter of the independent Pa ⁇ tentments.
  • Advantageous embodiments are subject of the dependent claims ⁇ Ge.
  • One aspect of the present invention relates to a device for guiding a protective gas via a powder bed or suction from a construction space during the additive manufacturing of a component.
  • the device expediently comprises egg ⁇ NEN gas inlet for introducing the protective gas to the powder bed ⁇ and a stationary gas outlet for removing the
  • the apparatus is further preferably formed to lead the protective gas is laminar over the powder bed, wherein the apparatus for extracting the inert gas from the space currency rend the additive producing the component having a powder bed plane movably fitted in parallel and / or controllable at ⁇ outlet opening.
  • the term "Schmauch” can melt or combustion products, welding spatter or other, the metallurgical quality of the components to be produced substances influencing designate present.
  • a stolen or removed from the construction space and the Smoke residue containing inert gas can be a Ae ⁇ rosol.
  • the device described offers, as indicated above, the advantage of ensuring a discharge laminar protective gas in the additi ⁇ ven production advantageously over the entire space or the whole powder bed away and / or at the same time to adapt the suction to the irradiation conditions, such as the laser power.
  • smart or customized smoke removal especially for large powder layer thicknesses in the SLM or EBM process.
  • the movable outlet opening via a control relative to the powder bed, and preferably ⁇ parallel to this, ie in the XY direction, are moved.
  • a movement of the outlet opening is perpendicular to a guide direction or flow direction of the protective gas during the additive production with a
  • a protective gas discharge during the manufacturing process can be particularly suitably adapted to the resulting from the solidification by means of the energy beam ⁇ smoke.
  • a suction power for sucking the protective gas through the (movable) outlet opening to a layer thickness of the corresponding powder layer for the or during the additive production of the component is also set or adjusted.
  • the suction power of the device ie, for example, the volume flow extracted per unit length or area unit, can be increased, but preferably laminarity of the flow is preserved.
  • the stationary gas outlet part ei ⁇ ner squeegee may comprise a strip-like outlet opening or a plurality of individual outlet openings or slots arranged in rows.
  • the movable outlet opening is integrated into the suction strip.
  • a flow rate ie when ⁇ play, a volume flow of the sucked off by the movable From ⁇ outlet opening during the additive manufacturing Protective gas, as viewed over the length of the outlet opening, for example, greater than a flow rate of the corresponding protective gas to be removed by the stationary gas outlet.
  • the device has a movable inlet nozzle, which is coupled via a control to the movement of the outlet opening and / or to the movement of the energy beam or synchronized with it.
  • the device represents an upgrade kit for manufacturing equipment for the additive production of components.
  • One aspect of the present invention relates to a method for guiding a flow of protective gas across the powder bed such that the protective gas during the additive herstel ⁇ lung moved laminar across the powder bed and the powder bed, for example comprising a molten bath from damaging a ⁇ influences such as corrosion, Oxidation or mechanical effects by welding, such as welding spatter, protects, wherein a volume or mass flow of inert gas flow is adapted locally in areas in which the powder bed is exposed to an energy beam to an irradiation power.
  • the irradiation power is preferably present depen ⁇ gig, for example, proportional depending on the Schichtdi ⁇ blocks, since thicker layers to be melted to solidification will require more energy.
  • FIG. 1 shows a schematic perspective view of a device according to the invention.
  • FIG. 1 shows a device 100 for guiding or sucking off a protective gas SG in the additive production. Parts of the representation of FIG. 1 may not be explicitly part of the FIG
  • Device 100 It is shown in Figure 1, in particular a component 3, over which a layer S is arranged for solidification of further component material. Such a coating usually takes place by means of a coater (not explicitly indicated). According to his predetermined
  • the powder layer or a powder bed PB, wel ⁇ Che consists of a powder 5, irradiated at the corresponding positions with an energy beam 2.
  • the energy beam may be called a laser or electron beam, and, examples play by means of a scanner 1 and a corresponding ⁇ optics, guided over the powder bed PB or rasterized ⁇ the.
  • a melt pool 4 is formed locally by the introduction of energy. In this melting and / or welding process, furthermore, spatter, welding spatter or other undesired effects can occur.
  • the device 3 is preferably on a building platform 6 at ⁇ ordered or during the production of a material fit with this "welded" or bonded.
  • the method may, for example, be selective laser melting or electron beam melting.
  • the (laminar) Schutzgasströ ⁇ mung is presently indicated by the wavy patterns in the upper region of FIG. 1
  • the protective gas SG is preferably guided along a guide ⁇ direction FR on the powder bed. Above the powder ⁇ bed a space R for the component is arranged.
  • the device 100 has an inlet strip 13 for introducing protective gas SG into the installation space R.
  • the inlet plate 13 includes a gas inlet, which over to ⁇ least one edge of the component and / or the powder bed it preferably extends ⁇ .
  • the gas inlet may have a plurality of round or point-like inlet openings instead of an elongate one.
  • the apparatus 100 further comprises a suction bar or stationary gas outlet 12 for sucking off the protective gas containing the smoke or impurities.
  • the stationary gas outlet has a multiplicity of individual outlet openings 11. These outlet openings 11 are parallel to the powder bed PB and slightly above this in rows arranged ⁇ .
  • the subject of the present invention is that the device has a movable outlet opening 10.
  • the movable outlet opening 10 is expediently integrated into the described stationary gas outlet and arranged to be movable along a direction of movement BR.
  • a section of the suction strip or the outlet openings 11 is locally formed, for example by a corresponding flap design, corresponding to the length of the movable Chen outlet port 10 is replaced, so that locally a ent ⁇ speaking increased throughput or suction effect can be achieved.
  • the movement direction is preferably oriented perpendicular to the Füh ⁇ approach direction FR.
  • the movement direction BR and the guide direction FR can both designate lateral directions, for example the XY direction, that is to say, for example, directions perpendicular to a construction direction AR for the component 3.
  • the movement of the outlet opening BR during the additive production of the component 3 is coupled or synchronized with a movement of the energy beam 2 for powder solidification.
  • the movable outlet opening 10 is preferably integrated into the stationary gas outlet 12 in such a way that locally increased gas suction can take place, as indicated by the longer drawn waves of the protective gas at the level of the laser beam 2 in FIG.
  • the he ⁇ finderischen advantages can be implemented.
  • the movable outlet opening 10 along the direction of movement can be guided exactly simultaneously to the movement component of the laser along the direction of movement BR.
  • a corresponding tracking or a corresponding advance of the movement of the movable outlet opening 10 relative to the laser beam 2 (or vice versa) can be implemented.
  • a flow rate of the protective gas SG to be suctioned off by the movable outlet opening 10 during the additive production can be greater than a flow rate of the protective gas SG to be removed by the stationary gas outlet viewed along a length of the movable outlet opening 10 along the direction of movement BR.
  • a movable inlet nozzle 16 can be provided inside the gas inlet 14, so that also an increased and / or locally adapted gas inflow, preferably synchronized with the laser beam - can be done.
  • the means mentioned are preferably set up and dimensioned such that the protective gas flow can be used as a whole lami ⁇ nar and thus expedient for Schmauchab Entry and oxidation protection for the component 3.
  • Protective gas flow indicated by a powder bed PB such that the protective gas SG moves during the additive manufacturing laminar on the powder bed PB and this, insbesonde ⁇ re a molten bath 4 of the powder bed PB, from harmful In ⁇ flows, such as smoke, welding spray, corrosion and / or oxidation, wherein a volumetric flow or mass flow of the protective gas flow is adapted locally to a radiation power in areas in which the powder bed PB is exposed to an energy beam 2.
  • the invention is not limited by the description based on the embodiments of these, but includes each new feature and any combination of features. This includes in particular any combination of features in the Claims, even if this feature or combination itself is not explicitly stated in the claims or exemplary embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Automation & Control Theory (AREA)
  • Powder Metallurgy (AREA)

Abstract

L'invention concerne un dispositif (100) destiné à guider un gaz protecteur (SG) au-dessus d'un lit de poudre (PB) pour la fabrication additive. Le dispositif (100) comprend une entrée de gaz (14), destinée à introduire le gaz protecteur (SG) sur le lit de poudre (PB), et une sortie de gaz stationnaire (12), destinée à évacuer le gaz protecteur (SG), le dispositif (100) étant en outre conçu pour guider le gaz protecteur (SG) de façon laminaire au-dessus du lit de poudre (PB), et le dispositif (100) comportant en outre un orifice de sortie (10) agencé mobile parallèlement à un plan de lit de poudre, qui est destiné à aspirer le gaz protecteur hors d'un espace de montage (BR) pendant la fabrication additive d'une pièce (3). L'invention concerne en outre un procédé destiné à guider un flux de gaz protecteur.
EP18730302.9A 2017-06-26 2018-06-04 Dispositif d'aspiration destiné à la fabrication additive Withdrawn EP3618989A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017210718.9A DE102017210718A1 (de) 2017-06-26 2017-06-26 Absaugvorrichtung für die additive Fertigung
PCT/EP2018/064566 WO2019001900A1 (fr) 2017-06-26 2018-06-04 Dispositif d'aspiration destiné à la fabrication additive

Publications (1)

Publication Number Publication Date
EP3618989A1 true EP3618989A1 (fr) 2020-03-11

Family

ID=62567639

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18730302.9A Withdrawn EP3618989A1 (fr) 2017-06-26 2018-06-04 Dispositif d'aspiration destiné à la fabrication additive

Country Status (5)

Country Link
US (1) US20200114425A1 (fr)
EP (1) EP3618989A1 (fr)
CN (1) CN110799289A (fr)
DE (1) DE102017210718A1 (fr)
WO (1) WO2019001900A1 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3431256B1 (fr) * 2017-07-21 2021-09-29 CL Schutzrechtsverwaltungs GmbH Appareil de fabrication additive d'objets tridimensionnels
DE102018108833A1 (de) * 2018-04-13 2019-10-17 Eos Gmbh Electro Optical Systems Herstellvorrichtung und Verfahren für additive Herstellung mit mobiler Beströmung
CN109604598A (zh) * 2019-01-09 2019-04-12 深圳光韵达光电科技股份有限公司 一种增减材复合加工设备
JP6541206B1 (ja) * 2019-03-01 2019-07-10 株式会社松浦機械製作所 三次元造形物の製造方法
US11633917B2 (en) * 2019-11-25 2023-04-25 Robert Bosch Gmbh Laser additive manufacturing control system and method
FR3105067B1 (fr) * 2019-12-19 2022-05-06 Addup Machine de fabrication additive par dépôt de lit de poudre avec une rampe centrale d’aspiration de gaz et/ou de soufflage de gaz.
DE102020003888A1 (de) 2020-06-29 2021-12-30 Messer Group Gmbh Vorrichtung und Verfahren zur additiven Fertigung unter Schutzgas
EP4052819A1 (fr) 2021-03-01 2022-09-07 Siemens Energy Global GmbH & Co. KG Appareil comportant un élément de refroidissement pour la condensation de vapeur dans la fabrication additive
DE102022108136A1 (de) 2022-04-05 2023-10-05 Trumpf Laser- Und Systemtechnik Gmbh Absaugvorrichtung zum Absaugen von Prozessgas mit stationärem Gasförderkanal und Vorrichtung zur Herstellung von dreidimensionalen Objekten mit einer solchen Absaugvorrichtung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004031881B4 (de) * 2004-06-30 2007-11-22 Cl Schutzrechtsverwaltungs Gmbh Vorrichtung zum Absaugen von Gasen, Dämpfen und/oder Partikeln aus dem Arbeitsbereich einer Laserbearbeitungsmaschine
EP2415552A1 (fr) 2010-08-05 2012-02-08 Siemens Aktiengesellschaft Procédé de fabrication d'un composant par fusion laser sélective
GB201310398D0 (en) * 2013-06-11 2013-07-24 Renishaw Plc Additive manufacturing apparatus and method
EP3007881B1 (fr) * 2013-06-11 2020-04-29 Renishaw Plc. Appareil et procédé de fabrication additive
DE102013011676A1 (de) * 2013-07-11 2015-01-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung und Verfahren zur generativen Bauteilfertigung
DE102013215377A1 (de) * 2013-08-05 2015-02-05 Bayerische Motoren Werke Aktiengesellschaft Gasführungsvorrichtung, Vorrichtung zum Herstellen eines Bauteils mittels Auftragung von Pulverschichten sowie Verfahren zur Zuführung und Absaugung von Gas bei einer derartigen Vorrichtung
DE102014209161A1 (de) * 2014-05-14 2015-11-19 Eos Gmbh Electro Optical Systems Steuereinheit, Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objekts
US10751936B2 (en) * 2014-05-30 2020-08-25 Prima Industrie S.P.A. Laser operating machine for additive manufacturing by laser sintering and corresponding method
GB201410484D0 (en) * 2014-06-12 2014-07-30 Renishaw Plc Additive manufacturing apparatus and a flow device for use with such apparatus
ITUA20162543A1 (it) * 2016-04-13 2017-10-13 3D New Tech S R L Apparecchiatura per additive manufacturing e procedimento di additive manufacturing

Also Published As

Publication number Publication date
WO2019001900A1 (fr) 2019-01-03
CN110799289A (zh) 2020-02-14
US20200114425A1 (en) 2020-04-16
DE102017210718A1 (de) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2019001900A1 (fr) Dispositif d'aspiration destiné à la fabrication additive
EP3050648B1 (fr) Dispositif et procede de fabrication ou de reparation d'un objet tridimensionnel
EP3015197B1 (fr) Dispositif de fabrication ou de réparation d'un objet tridimensionnel
EP3174654B1 (fr) Dispositif et procédé de fabrication générative d'au moins une region d'un composant
EP3010672A2 (fr) Dispositif et procédé de fabrication additive d'au moins une partie d'une pièce
DE102013213260B4 (de) Verfahren zum Reparieren eines beschädigten Bauteils einer Gasturbine
EP1920873B1 (fr) Procédé de coupe au laser d'un élément de construction métallique
DE102014212100A1 (de) Generatives Herstellungsverfahren und Vorrichtung hierzu mit entgegengesetzt gerichteten Schutzgasströmen
DE102017211657A1 (de) Vorrichtung zur additiven Herstellung eines Bauteils mit Schutzgasführung und Verfahren
EP3914418B1 (fr) Procédé d'usinage par faisceau d'une pièce à usiner en forme de plaque ou de tube
DE102013215377A1 (de) Gasführungsvorrichtung, Vorrichtung zum Herstellen eines Bauteils mittels Auftragung von Pulverschichten sowie Verfahren zur Zuführung und Absaugung von Gas bei einer derartigen Vorrichtung
DE102014217786A1 (de) Verfahren, Vorrichtung und Steuereinheit zum Herstellen eines dreidimensionalen Objekts
EP3983168A1 (fr) Procédé d'usinage par faisceau d'une pièce de fabrication tabulaire ou tubulaire
EP3212354B1 (fr) Dispositif et procédé destinés à la fabrication générative d'au moins une zone de composant
WO2020125837A1 (fr) Système de construction par couches pour la fabrication additive d'au moins une partie d'une pièce, dispositif de guidage d'écoulement pour un système de construction par couches et procédé permettant de faire fonctionner un dispositif de construction par couches
DE102011106380A1 (de) Vorrichtung zur Herstellung von dreidimensionalen Objekten
EP3720633A1 (fr) Dispositif de construction de couches pour la fabrication additive d'une zone de composant d'un composant, équipement conducteur d'écoulement pour un dispositif de construction de couches et procédé de commande d'un dispositif de construction de couches
DE102016222564A1 (de) Verfahren zur additiven Herstellung mit selektivem Entfernen von Basismaterial
DE102018121136A1 (de) Schichtbauvorrichtung zur additiven Herstellung zumindest eines Bauteilbereichs eines Bauteils, Verfahren zum Betreiben einer solchen Schichtbauvorrichtung und Speichermedium
EP3624985B1 (fr) Procédé pour former une rugosité de surface définie dans une zone d'une pièce à fabriquer ou fabriquée de manière additive pour une turbomachine
DE102020210403A1 (de) Fertigungseinrichtung und Verfahren zum additiven Fertigen von Bauteilen aus einem Pulvermaterial
EP4106937A1 (fr) Stratégie d'exposition dépendante du centre laser
DE102019113841A1 (de) Verfahren zur additiven Fertigung dreidimensionaler Bauteile sowie entsprechende Vorrichtung
WO2020089087A1 (fr) Système de collecte pour un dispositif de construction par couches ainsi que procédé de construction par couches et dispositif de construction par couches pour la fabrication additive d'au moins une zone d'une pièce
DE102013010560A1 (de) Verfahren zum Fügen von Werkstücken aus zinkhaltigen Kupferlegierungen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210413

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230103