EP3607604A1 - A battery charger for use in an electrical or hybrid vehicle - Google Patents

A battery charger for use in an electrical or hybrid vehicle

Info

Publication number
EP3607604A1
EP3607604A1 EP17904668.5A EP17904668A EP3607604A1 EP 3607604 A1 EP3607604 A1 EP 3607604A1 EP 17904668 A EP17904668 A EP 17904668A EP 3607604 A1 EP3607604 A1 EP 3607604A1
Authority
EP
European Patent Office
Prior art keywords
battery charger
heatsink module
wall
heatsink
conversion unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17904668.5A
Other languages
German (de)
French (fr)
Other versions
EP3607604A4 (en
Inventor
Ronghui Li
Chen HE
Hongzhou ZHOU
Gang Yang
Oyvind BOBERG
Erik Spangberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo eAutomotive Shenzhen Co Ltd
Original Assignee
Valeo Siemens eAutomotive Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens eAutomotive Shenzhen Co Ltd filed Critical Valeo Siemens eAutomotive Shenzhen Co Ltd
Publication of EP3607604A1 publication Critical patent/EP3607604A1/en
Publication of EP3607604A4 publication Critical patent/EP3607604A4/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Definitions

  • the present invention relates to a battery charger, in particular for use in an electrical or a hybrid vehicle, and relates more particularly to a heatsink module for a battery charger and a battery charger comprising such heatsink module.
  • the invention aims more precisely at providing a battery charger that is advantageously easily scalable in order to deliver different power levels depending on the intended use
  • the propulsion system comprises a high-voltage power supply battery that delivers a supply voltage to an electrical motor for the propulsion of the vehicle.
  • the propulsion system comprises a battery charger called “On-Board Charger” (OBC) that is configured to be connected to an Alternating Current (AC) electrical network, such as e.g. a local or a national power grid.
  • OBC On-Board Charger
  • AC Alternating Current
  • the On-Board Charger converts one or several alternating currents received from the AC electrical network into a direct current that allows charging the battery.
  • the On-Board Charger comprises a plurality of internal components such as e.g. one or several transformers, one or several inductors, some diodes, some transistors, etc. These internal components are mounted on a PCB which is placed into a housing equipped with an AC input connector and a DC output connector and which may further be mounted onboard a vehicle.
  • the charger may further comprise a heatsink module, which is arranged under said at least one transformer to cool the said at least one transformer down.
  • the On-Board Charger may be a single-phase or a three-phase charger for connecting respectively to a single-phase or a three-phase AC electrical power source. It is therefore necessary to design the charger, i.e. to select the number and type of internal components, depending on the power and the type of On-Board Charger (i.e. single-phase or three-phase) , prior to mounting the internal components onto the PCB. Such a charger may therefore be complex to design and costly as it is intended to work only with a specific predetermined type of AC electrical network. Furthermore, the heat generated by the internal components may not be evacuated properly, which may damage the On-Board Charger.
  • the present invention relates to a heatsink module, in particular for use in a battery charger, said heatsink module comprising a bottom wall, extending along a longitudinal plan, and a side wall extending from said bottom wall orthogonally to said longitudinal plan, said bottom wall and said side wall defining at least one internal space called “reception space” , said at least one reception space being configured for receiving at least one magnetic element for transferring electrical energy of an alternating current into electrical energy of a direct current, the heatsink module comprising a cooling channel formed at least inside the side wall.
  • Such cooling channel allows in particular evacuating the heat produced by a magnetic assembly mounted in the at least one reception space of the heatsink module.
  • the heatsink module comprises at least one circuit element configured for connecting to a complementary circuit element of a cooling circuit, said at least one circuit element being configured to allow a cooling fluid to flow through the heatsink module.
  • the at least one circuit element allows advantageously for connecting a plurality of heatsink modules in order to build a scalable charger.
  • the at least one circuit element extends orthogonally to the longitudinal plan.
  • the heatsink module comprises a first circuit element and a second circuit element and the cooling channel is configured to allow a cooling fluid to flow from said first circuit element to said second circuit element.
  • the circuit element is a tube.
  • the bottom wall being located on a bottom face of the heatsink module, the at least one circuit element extends from said bottom face of the heatsink module, allowing therefore in particular to connect the heatsink module with another heatsink module located below said heatsink module.
  • the at least one circuit element extends from a top face of the heatsink module, opposite to the bottom face, allowing therefore to connect the heatsink module with another heatsink module located above said heatsink module.
  • the heatsink module comprises at least one extension portion extending from the side wall and the at least one circuit element is a part of said extension portion, allowing therefore to connect easily the heatsink module to the cooling circuit.
  • the heatsink module is a one-piece element, i.e. the at least one circuit element, the bottom wall and the side wall originate from the same material, e.g. by molding a material.
  • Such one-piece element is thus easy to build and resistant.
  • such one-piece element does not have any contact interface between different parts, reducing therefore the thermal resistance of the heatsink module.
  • the one-piece element is made of a metal material, allowing therefore the side wall of the heatsink module to be arranged close to the magnetic elements mounted in the heatsink module, improving thus the cooling efficiency of said heatsink module.
  • the metal material is aluminum.
  • the heatsink module comprises at least one magnetic element, mounted in the at least one reception space, for transferring electrical energy of an alternating current into electrical energy of a direct current.
  • each of the at least one reception space is configured for receiving a single magnetic element.
  • the heatsink module comprises at least two reception spaces separated by a separation wall.
  • Such separation wall allows evacuating the heat generated by the at least two magnetic elements toward the cooling channel.
  • the invention also relates to a battery charger, in particular for use in an electrical or hybrid vehicle, said battery charger comprising at least one conversion unit configured for converting an alternating phase current into a direct current, said at least one conversion unit comprising a heatsink module as previously described and at least one magnetic element (e.g. a transformer, an inductor...) arranged in the at least one reception space of said heatsink module.
  • a battery charger in particular for use in an electrical or hybrid vehicle, said battery charger comprising at least one conversion unit configured for converting an alternating phase current into a direct current, said at least one conversion unit comprising a heatsink module as previously described and at least one magnetic element (e.g. a transformer, an inductor...) arranged in the at least one reception space of said heatsink module.
  • the battery charger comprises a housing, the at least one conversion unit being mounted in said housing.
  • the heatsink module constitutes the housing of the battery charger.
  • the heatsink may be a separate element.
  • the battery charger extending along a longitudinal plan
  • the bottom wall comprises at least one wall element extending orthogonally with respect to said longitudinal plan and the cooling channel is formed at least in said at least one wall element.
  • the battery charger further comprises at least one support wall mounted on the at least one wall element for supporting at least one electronic component.
  • the at least one support wall is mounted on a top edge of the at least one wall element, said top edge extending in parallel with respect to the bottom wall, and the electronic component is mounted on a side surface of said support wall.
  • the at least one conversion unit comprises at least one circuit board extending in parallel to the bottom wall, said circuit board comprising an opening through which the at least one support wall extends, at least one electronic component mounted on the at least one support wall having pins electrically connected to said at least one circuit board.
  • At least one electronic component is mounted on the external face of the side wall, opposite to the internal face of the side wall delimitating the at least one reception space.
  • the at least one conversion unit comprises a circuit board, the heatsink module being mounted onto said circuit board.
  • the battery charger comprises one conversion unit.
  • the battery charger comprises a plurality of conversion units connected through their respective circuit elements.
  • the conversion units are stacked one above the others in the housing.
  • the conversion units are electrically connected.
  • the conversion units are connected in a single-phase configuration.
  • This allows advantageously the battery charger to be scalable as several conversion units may be connected in parallel, making the design of the battery charger very easy.
  • the power of the battery charger may therefore be defined by the number of connected conversion units arranged in the housing. For example, if the power of a conversion unit is 3.5 kW, the connection in parallel of three conversion units provides a 10.5 kW charger.
  • the conversion units are connected in a three-phase configuration.
  • the battery charger may comprise three conversion units connected through their respective circuit elements, each conversion unit working at a different phase current.
  • the invention also concerns an electrical or a hybrid vehicle comprising an onboard battery charger as previously described.
  • FIG. 1 illustrates a perspective front view of a first embodiment of the battery charger according to the invention
  • FIG. 2 illustrates a perspective bottom view of the battery charger of Figure 1;
  • FIG. 3 illustrates a top view of the battery charger of Figure 1;
  • FIG. 4 illustrates a perspective top view of the battery charger of Figure 1;
  • FIG. 5 illustrates a perspective top view of a phase unit according to the invention
  • FIG. 6 illustrates a perspective bottom view of the phase unit of Figure 5;
  • FIG. 7 illustrates a perspective bottom view of a heatsink module according to the invention
  • FIG. 8 illustrates a perspective top view of the heatsink module of Figure 7;
  • FIG. 9 illustrates a rear view of the heatsink module of Figure 7;
  • FIG. 10 illustrates a longitudinal horizontal cross section view of the heatsink module of Figure 7;
  • FIG. 11 illustrates a transversal cross section view of the heatsink module of Figure 7;
  • FIG. 12 illustrates a longitudinal vertical cross section view of the heatsink module of Figure 7;
  • FIG. 13 illustrates another longitudinal vertical cross section view of the heatsink module of Figure 7;
  • FIG. 14 illustrates a perspective top view of the heatsink module of Figure 7, a magnetic assembly being mounted onto said heatsink module;
  • Figure 15 illustrates a perspective top view of the magnetic assembly of Figure 14
  • Figure 16 illustrates a perspective bottom view of the magnetic assembly of Figure 14
  • FIG. 17 illustrates a perspective top view of the phase unit of Figure 5 further comprising connection tubes;
  • FIG. 19 illustrates a perspective partial left front view of the battery charger 1 of Figure 1 comprising one phase unit, the housing being transparent;
  • FIG. 20 illustrates a perspective partial left front view of the battery charger 1 of Figure 19 further comprising a first set of support columns;
  • FIG. 21 illustrates a perspective partial left front view of the battery charger 1 of Figure 20 further comprising a second phase unit
  • FIG. 22 illustrates a perspective partial left front view of the battery charger 1 of Figure 21 further comprising a second set of support columns;
  • FIG. 23 illustrates a perspective partial left front view of the battery charger 1 of Figure 22 further comprising a third phase unit
  • FIG. 24 illustrates a perspective partial left front view of the battery charger 1 of Figure 23 further comprising phase unit fixing screws, AC connector and DC connector;
  • FIG. 25 illustrates a perspective partial left front view of the battery charger 1 of Figure 24 further comprising a cover
  • FIG. 26 illustrates a perspective front view of a second embodiment of the battery charger according to the invention.
  • FIG. 27 illustrates a transversal cross section view of the battery charger of Figure 26
  • FIG. 28 illustrates a transversal cross section view of the housing of the battery charger of Figure 26;
  • FIG. 29 illustrates a top longitudinal cross section view of the battery charger of Figure 26;
  • FIG. 30 illustrates an embodiment of the method of assembling the battery charger of Figure 1 according to the invention.
  • FIG. 1 A first and a second embodiments of a battery charger according to the invention will now be described in reference respectively to Figures 1 to 25 and 26 to 29.
  • the battery charger is configured for being mounted onboard an electrical or hybrid vehicle.
  • the invention could apply to any type of electrical equipment, in particular any type of electrical equipment that allows charging, in particular any type of battery charger that allows charging a DC battery using an AC power supply source.
  • the battery charger is configured for charging a battery from an AC power supply source such as e.g. a domestic or public grid.
  • the battery charger is configured for receiving at least one AC current from an AC power supply source, converting said at least one AC current into a DC current, supplying said DC current to charge a battery.
  • the received at least one AC current may be a single-phase AC current or several multi-phase AC currents (e.g. three phase-shifted AC currents) .
  • the battery charger 1, 1’ comprises three conversion units (10-1, 10-2, 10-3 ; 10’-1, 10’-2, 10’-3) .
  • the battery charger 1, 1’ could comprise more or less than three conversion units 10 without limiting the scope of the present invention.
  • FIGS 1 to 4 illustrate a first embodiment of a battery charger 1 according to the invention.
  • the faces of any element of the battery charger 1 are defined in reference to Figures 1 and 2 as follows: top T face, bottom B face, front F face, rear K face, left L face and right R face. Any reference (top, bottom, front, rear, left or right) to a position of an element of the battery charger 1 will therefore be made hereafter using those definitions.
  • the battery charger 1 comprises a housing 2 for example made of a metal or a plastic material.
  • the housing 2 comprises a bottom wall 2A and a rectangular side wall 2B, coming as one-piece element, and a cover 2C, fixed on the side wall 2B using screws 2D in order to close said housing 2.
  • the battery charger 1 also comprises an AC connector 3 and a DC connector 4.
  • the AC connector 3 allows receiving the at least one AC current delivered by the power supply source (not shown) .
  • the DC connector 4 allows delivering the DC current generated by the battery charger 1 to a battery (not shown) .
  • a battery may be a high-voltage battery, i.e. greater than 60 V.
  • the battery charger 1 further comprises a signal connector 5 as it will described hereafter.
  • the bottom wall 2A and the rectangular side wall 2B of the housing 2 define an internal space configured for receiving the conversion units 10 (e.g. as shown on Figures 17 to 25) .
  • the bottom wall 2A comprises a plurality of support posts 2A1 (nine in the illustrated example of Figure 3) and two positioning posts 2A2 for supporting a circuit board 11 of a conversion unit 10.
  • Each positioning post 2A2 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a protruding end adapted to engage in a hole formed in the circuit board 11 for positioning said circuit board 11 on the support posts 2A1.
  • Each support post 2A1 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a hollow end adapted for receiving a tooth of a support column 20-1 as it will be described hereafter.
  • the support posts 2A1 and the positioning posts 2A2 may be formed in the bottom wall 2A of the housing 2 or may be insert pieces.
  • two apertures 2A3 are formed in the bottom wall 2A to allow the passage of two connection tubes 6 (as shown on Figure 2) configured for being connected to a cooling module (not shown) , for example a pump, allowing the circulation of a cooling fluid, e.g. such as water, for cooling the battery charger 1, as explained hereafter.
  • a cooling module for example a pump
  • an aperture 2B1 is formed on the front F face of the side wall 2B to receive a signal connector 5 of a conversion unit 10 (as shown on Figure 1) .
  • each conversion unit 10 comprises a circuit board 11, some capacitors elements 12, a heatsink module 13, a magnetic assembly 14 mounted onto said heatsink module 13, an input filter 15 and an output filter 16.
  • the circuit board 11 is a Printed Circuit Board (PCB) configured for electrically connecting the capacitors elements 12, the heatsink module 13, the magnetic assembly 14, the input filter 15, the output filter 16 and, if present, the signal connector 5.
  • PCB Printed Circuit Board
  • the signal connector 5 is optional and is configured for exchanging signals between the circuit board 11 and an external equipment (not shown) , e.g. such as a test or a control equipment.
  • the capacitors elements 12 are configured for stabilizing the internal DC link intermediate voltage.
  • the heatsink module 13 is configured for receiving the magnetic assembly 14. To this end, as illustrated on Figure 7, the heatsink module 13 comprises a bottom wall 13A extending along a longitudinal plan ⁇ and a side wall 13B extending from said bottom wall 13A orthogonally to said longitudinal plan ⁇ .
  • the heatsink module 13 comprises a first and second extension portions 13C-1, 13-C2 extending from the rear K face of the side wall 13B.
  • Each extension portion 13C-1, 13C-2 comprises a first circuit element 13C1 extending from the top T face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan ⁇ .
  • Each extension portion 13C-1, 13C-2 comprises a second circuit element 13C2 extending from the bottom B face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan ⁇ , said bottom B face being opposite to said top T face.
  • Each first circuit elements 13C1 is configured to fit into a second circuit elements 13C2 of an identical heatsink module 13, said first circuit element 13C1 and said second circuit element 13C2 being complementary portions and being fluidically connected.
  • the first circuit element 13C1 and the second circuit element 13C2 of a same extension portion 13C-1, 13C-2 are advantageously fluidically connected through a traversing opening 13C4 to allow the passage of a cooling fluid, e.g. such as water, throughout said extension portion 13C-1, 13C-2.
  • a cooling fluid e.g. such as water
  • the first circuit element 13C1 and the second circuit element 13C2 are part of a tube.
  • the first circuit element 13C1 is in the shape of a hollow shaft whereas, in reference to Figure 9, the second circuit element 13C2 comprises at its free end a chamfer (i.e. a bevel) 13C21 and, below said chamfer 13C21, a groove 13C22 forming with said chamfer 13C21 a shoulder 13C23.
  • a chamfer i.e. a bevel
  • a gasket joint may further be inserted into the groove 13C22 to seal the connection with a first circuit element 13C1 of a corresponding extension portion 13C-1, 13C-2 of another heatsink module 13.
  • the shape of the chamfer 13C21 and the flexibility created by the groove 13C22 allow inserting easily the second circuit element 13C2 into a first circuit element 13C1 of another heatsink module 13 while the shoulder 13C23 allows retaining said second circuit element 13C2 into said first circuit element 13C1.
  • the heatsink module 13 comprises also first fixing portions 13C3, protruding from the extension portions 13C-1, 13C-2 in parallel to the first circuit element 13C1, and second fixing portions 13D, extending from the side wall 13B.
  • a hole is formed on the protruding end of said first and second fixing portions 13C3, 13D for fixing the heatsink module 13 onto the bottom B face of the circuit board 11, as illustrated on Figures 5 and 6.
  • the heatsink module 13 also comprises some electronic components 13F, such as e.g. transistors or diodes, mounted on external side of the side wall 13B. These electronic components are maintained by a clamper 13G against the side wall 13B.
  • electronic components 13F such as e.g. transistors or diodes
  • the bottom wall 13A and the side wall 13B define two internal spaces called “reception spaces” 13E1, 13E2.
  • the first reception space 13E1 and the second reception space 13E2 are separated by a separation wall 13E3 in order to receive different electrical components of the magnetic assembly 14 as described hereafter.
  • a cooling channel 13B1 is formed inside the side wall 13B linking the traversing opening 13C4 of the first extension portion 13C-1 to the traversing opening 13C4 of the second extension portion 13C-2.
  • the cooling channel 13B1 is configured to receive a cooling fluid allowing the absorption of heat generated by the magnetic assembly 14 in the reception spaces 13E1, 13E2 and the by the electronic component 13F located on the external part of the side wall 13B.
  • the cooling channel 13B1 defines a cooling circuit allowing the flow F1 of a cooling fluid between the first extension portion 13C-1 and the second extension portion 13C-2.
  • the direction of the flow F1 as shown on Figures 10 and 13 could also be inverted without falling out of the scope of the present invention.
  • the magnetic assembly 14 comprises a support wall 14A and two magnetic elements 14B, 14C mounted on said support wall 14A.
  • the magnetic assembly 14 comprises an inductor element 14B and a transformer 14C.
  • the inductor element 14B is configured for correcting the power factor of the transformer 14C.
  • the transformer 14C is configured for transferring electrical energy of the at least one AC current received from the power source through the AC connector 3 into electrical energy of the DC current delivered through the DC connector 4, e.g. to a battery of a vehicle.
  • the input filter 15 is configured for filtering noise in the AC current signals received from the power source via the AC connector 3.
  • the output filter 16 is configured for filtering noise in the DC current signal, e.g. delivered to the battery of the vehicle via the DC connector 4.
  • the electrical connections between the conversion units 10-1, 10-2, 10-3 may be adapted depending on the configuration of the battery charger 1. For example, for a single-phase charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 are electrically connected together. For a three-phase charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 is connected respectively to phase a different phase (e.g. A, B and C) .
  • phase a different phase e.g. A, B and C
  • FIGS 26 to 29 illustrate a second embodiment a battery charger 1’ according to the invention.
  • the battery charger 1’ could be a single-phase charger or a three-phase charger, depending on the electrical connections as previously described.
  • the battery charger 1’ comprises a housing 2’ , an AC input connector 3’ , a DC output connector 4’ , a signal connector 5’ and two connection tubes 6’ for connecting the battery charger 1’ to a cooling module allowing the circulation of a cooling fluid.
  • the battery charger 1’ extends along a longitudinal plan ⁇ ’ .
  • the housing 2’ of the battery charger 1’ forms a heatsink comprising a cooling channel.
  • the heatsink may be a separate element (for example a one-piece element) that may be inserted in a housing with a flat bottom wall, similar to the housing 2 of the first embodiment.
  • the housing 2’ comprises a bottom wall 2’A and a side wall 2’B.
  • the bottom wall 2’A comprises wall elements 2’A1 extending orthogonally to the longitudinal plan ⁇ ’ and the cooling channel 2’ACC is formed in said wall elements 2’A1 and the side wall 2’B.
  • the wall elements 2’A1 and the side wall 2’B also define reception spaces 2’E1, 2’E2, 2’E3.
  • the battery charger 1’ comprises three conversion units 10’-1, 10’-2, 10’-3 mounted side by side in the housing 2’ .
  • Each conversion units 10’-1, 10’-2, 10’-3 comprises at least one magnetic element 14’B, 14’C such as inductors 14’B and transformers 14’C, mounted in the reception spaces 2’E1, 2’E2, 2’E3.
  • a cooling fluid flowing in the cooling channel 2’ACC allows therefore absorbing the heat generated by the transformers 14’C (or other magnetic elements) mounted in the reception spaces 2’E1, 2’E2, 2’E3.
  • the battery charger 1’ further comprises some support wall 2’F mounted on the wall elements 2’A1, orthogonally to the longitudinal plan ⁇ ’ , for supporting the at least one conversion unit.
  • Some electronic components 2’G are mounted on said support wall 2’F and may generate some heat. Particularly, these electronic components 2’G are mounted on side faces of the support wall 2’F.
  • the cooling channel 2’ACC allows also absorbing some of the heat generated by said electronic components 2’G.
  • the pins of the electronic components2’G are inserted into holes in the circuit board to be electrically connected with it.
  • the electronic components 2’G can be maintained by a clamper 13G against the side wall.
  • two connection tubes 6 are mounted on the second circuit elements 13C2 of a first conversion unit 10-1 so that said first conversion unit 10-1 may further be connected to a cooling module in a cooling circuit.
  • the first conversion unit 10-1 illustrated on Figure 18 is then placed in the housing 2 on the support posts 2A1 and the positioning posts 2A2 (not shown on Figures 19 to 25 for the sake of clarity) in a step S2 as illustrated on Figure 19.
  • a first set of support columns 20-1 is fixed on the circuit board 11 of the first conversion unit 10-1 in order to support a second conversion unit 10-2.
  • Each support column 20-1 comprises a bottom end having a tooth inserted into a corresponding hole formed in the circuit board 11 and a corresponding hollow end of a support post 2A1.
  • a second conversion unit 10-2 is mounted on the first set of columns 20-1 and the first conversion unit 10-1.
  • the second circuit elements 13C2 of the second conversion unit 10-2 are inserted into the first circuit elements 13C1 of the first conversion unit 10-1 in to order to connect their two heatsink modules 13.
  • circuit board 11 of the second conversion unit 10-2 is placed on the first set of support columns 20-1 and the second conversion unit 10-2 is electrically connected to the first conversion unit 10-1.
  • a second set of support columns 20-2 is fixed on the circuit board 11 of the second conversion unit 10-2 in order to support a third conversion unit 10-3.
  • the support columns 20-2 of the second set of support columns 20-2 are identical to the support columns 20-1 of the first set of support columns 20-1.
  • the tooth of the bottom end of each support column 20-1 is inserted, through a corresponding hole in the circuit board 11, in the corresponding hole of the top end of the support column 20-1 located under.
  • a third conversion unit 10-3 is arranged on the second set of columns 20-2 and electrically connected to the second conversion unit 10-2.
  • a signal connector 5 is mounted on the corresponding apertures 2B1 of the housing 2 to allow collecting signals from the circuit boards 11 of the first, the second and the third conversion units 10-1, 10-2, 10-3.
  • the first circuit elements 13C1 of the third conversion unit 10-3 are blocked, e.g. using adapted caps, in order to close the cooling circuit 13B1 running from the circuit element 6, the extension portions 13C-1, 13-C2 and the cooling channels of each of the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
  • the first circuit elements 13C1 of the third conversion unit 10-3 may be formed into the same material as the extension portions 13C-1, 13C-2 so that the third conversion unit 10-3 is ready to work as a closing element of the cooling circuit.
  • a step S7 some screws 25 are used to fix the circuit board 11 of the third conversion unit 10-3 to the second set of support columns 20-2 through corresponding holes of said circuit board 11, and a AC connector 3 and a DC connector 4 are mounted on the side wall 2B of the housing 2 and electrically connected to the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
  • the invention allows to electrically connect the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 in a single-phase configuration (i.e. the battery charger is a single-phase battery charger configured for being connected to a single-phase AC power supply source) or in a three-phase configuration (i.e. the battery charger is a three-phase battery charger configured for being connected to a three-phase AC power supply source) .
  • the battery charger is a single-phase battery charger configured for being connected to a single-phase AC power supply source
  • the battery charger is a three-phase battery charger configured for being connected to a three-phase AC power supply source
  • step S8 as illustrated on Figure 25, the cover 2C is screwed onto the side wall 2B using screws 2D and the battery charger 1 is ready to be mounted onboard a vehicle.
  • the heatsink module 13 allows therefore evacuating efficiently the heat generated by the magnetic components 14B, 14C mounted inside the reception spaces 13E1, 13E2 and the heat generated by the electronic component 13F mounted on the external part of the side wall 13B, avoiding therefore to damage the battery charger 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

The invention relates to a heatsink module (13), in particular for use in an battery charger (1), said heatsink module (13) comprising a bottom wall (13A) extending along a longitudinal plan (β) and a side wall (13B) extending from said bottom wall (13A) orthogonally to said longitudinal plan (β), said bottom wall (13A) and said side wall (13B) defining at least one internal space called "reception space" (13E1, 13E2), said at least one reception space (13E1, 13E2) being configured for receiving at least one magnetic element (14B, 14C) for transferring electrical energy of an alternating current into electrical energy of a direct current, the heatsink module (13) comprising a cooling channel (13B1) formed inside the side wall (13B).

Description

    A BATTERY CHARGER FOR USE IN AN ELECTRICAL OR HYBRID VEHICLE
  • FIELD OF ART
  • The present invention relates to a battery charger, in particular for use in an electrical or a hybrid vehicle, and relates more particularly to a heatsink module for a battery charger and a battery charger comprising such heatsink module.
  • The invention aims more precisely at providing a battery charger that is advantageously easily scalable in order to deliver different power levels depending on the intended use
  • STATE OF THE ART
  • In today’s existing electrical or hybrid vehicles, the propulsion system comprises a high-voltage power supply battery that delivers a supply voltage to an electrical motor for the propulsion of the vehicle. In order to charge said battery, the propulsion system comprises a battery charger called “On-Board Charger” (OBC) that is configured to be connected to an Alternating Current (AC) electrical network, such as e.g. a local or a national power grid.
  • Such On-Board Charger converts one or several alternating currents received from the AC electrical network into a direct current that allows charging the battery. To this end, the On-Board Charger comprises a plurality of internal components such as e.g. one or several transformers, one or several inductors, some diodes, some transistors, etc. These internal components are mounted on a PCB which is placed into a housing equipped with an AC input connector and a DC output connector and which may further be mounted onboard a vehicle. As some of the internal components may produce a lot of heat when the charger is running, in particular the at least one transformer, the charger may further comprise a heatsink module, which is arranged under said at least one transformer to cool the said at least one transformer down.
  • The On-Board Charger may be a single-phase or a three-phase charger for connecting respectively to a single-phase or a three-phase AC electrical power source. It is therefore necessary to design the charger, i.e. to select the number and type of internal components, depending on the power and the type of On-Board Charger (i.e. single-phase or three-phase) , prior to mounting the internal components onto the PCB. Such a charger may therefore be complex to design and costly as it is intended to work only with a specific predetermined type of AC electrical network. Furthermore, the heat generated by the internal components may not be evacuated properly, which may damage the On-Board Charger.
  • Therefore, there is a need for a battery charger solution that is easy to design and could also provide an efficient evacuation of the heat produced by the internal components.
  • SUMMARY
  • The present invention relates to a heatsink module, in particular for use in a battery charger, said heatsink module comprising a bottom wall, extending along a longitudinal plan, and a side wall extending from said bottom wall orthogonally to said longitudinal plan, said bottom wall and said side wall defining at least one internal space called “reception space” , said at least one reception space being configured for receiving at least one magnetic element for transferring electrical energy of an alternating current into electrical energy of a direct current, the heatsink module comprising a cooling channel formed at least inside the side wall.
  • Such cooling channel allows in particular evacuating the heat produced by a magnetic assembly mounted in the at least one reception space of the heatsink module.
  • In an embodiment, the heatsink module comprises at least one circuit element configured for connecting to a complementary circuit element of a cooling circuit, said at least one circuit element being configured to allow a cooling fluid to flow through the heatsink module. The at least one circuit element allows advantageously for connecting a plurality of heatsink modules in order to build a scalable charger.
  • In an embodiment, the at least one circuit element extends orthogonally to the longitudinal plan.
  • In an embodiment, the heatsink module comprises a first circuit element and a second circuit element and the cooling channel is configured to allow a cooling fluid to flow from said first circuit element to said second circuit element.
  • In a preferred embodiment, the circuit element is a tube.
  • In an embodiment, the bottom wall being located on a bottom face of the heatsink module, the at least one circuit element extends from said bottom face of the heatsink module, allowing therefore in particular to connect the heatsink module with another heatsink module located below said heatsink module.
  • In an embodiment, the at least one circuit element extends from a top face of the heatsink module, opposite to the bottom face, allowing therefore to connect the heatsink module with another heatsink module located above said heatsink module.
  • In an embodiment, the heatsink module comprises at least one extension portion extending from the side wall and the at least one circuit element is a part of said extension portion, allowing therefore to connect easily the heatsink module to the cooling circuit.
  • Advantageously, the heatsink module is a one-piece element, i.e. the at least one circuit element, the bottom wall and the side wall originate from the same material, e.g. by molding a material. Such one-piece element is thus easy to build and resistant. Moreover, unlike a multi-pieces element, such one-piece element does not have any contact interface between different parts, reducing therefore the thermal resistance of the heatsink module.
  • In a preferred embodiment, the one-piece element is made of a metal material, allowing therefore the side wall of the heatsink module to be arranged close to the magnetic elements mounted in the heatsink module, improving thus the cooling efficiency of said heatsink module. Preferentially, the metal material is aluminum.
  • According to an embodiment, the heatsink module comprises at least one magnetic element, mounted in the at least one reception space, for transferring electrical energy of an alternating current into electrical energy of a direct current.
  • In an embodiment, each of the at least one reception space is configured for receiving a single magnetic element.
  • Advantageously, the heatsink module comprises at least two reception spaces separated by a separation wall. Such separation wall allows evacuating the heat generated by the at least two magnetic elements toward the cooling channel.
  • The invention also relates to a battery charger, in particular for use in an electrical or hybrid vehicle, said battery charger comprising at least one conversion unit configured for converting an alternating phase current into a direct current, said at least one conversion unit comprising a heatsink module as previously described and at least one magnetic element (e.g. a transformer, an inductor…) arranged in the at least one reception space of said heatsink module.
  • According to an aspect of the present invention, the battery charger comprises a housing, the at least one conversion unit being mounted in said housing.
  • According to an embodiment, the heatsink module constitutes the housing of the battery charger.
  • Alternatively, the heatsink may be a separate element.
  • In an embodiment, the battery charger extending along a longitudinal plan, the bottom wall comprises at least one wall element extending orthogonally with respect to said longitudinal plan and the cooling channel is formed at least in said at least one wall element.
  • In an embodiment, the battery charger further comprises at least one support wall mounted on the at least one wall element for supporting at least one electronic component.
  • Advantageously, the at least one support wall is mounted on a top edge of the at least one wall element, said top edge extending in parallel with respect to the bottom wall, and the electronic component is mounted on a side surface of said support wall.
  • According to an aspect of the present invention, the at least one conversion unit comprises at least one circuit board extending in parallel to the bottom wall, said circuit board comprising an opening through which the at least one support wall extends, at least one electronic component mounted on the at least one support wall having pins electrically connected to said at least one circuit board.
  • In an embodiment, at least one electronic component is mounted on the external face of the side wall, opposite to the internal face of the side wall delimitating the at least one reception space.
  • According to an aspect of the present invention, the at least one conversion unit comprises a circuit board, the heatsink module being mounted onto said circuit board.
  • In an embodiment, the battery charger comprises one conversion unit.
  • In another embodiment, the battery charger comprises a plurality of conversion units connected through their respective circuit elements.
  • In a preferred embodiment, the conversion units are stacked one above the others in the housing.
  • Advantageously, the conversion units are electrically connected.
  • In a first embodiment, the conversion units are connected in a single-phase configuration. This allows advantageously the battery charger to be scalable as several conversion units may be connected in parallel, making the design of the battery charger very easy. The power of the battery charger may therefore be defined by the number of connected conversion units arranged in the housing. For example, if the power of a conversion unit is 3.5 kW, the connection in parallel of three conversion units provides a 10.5 kW charger.
  • In a first embodiment, the conversion units are connected in a three-phase configuration. For example, the battery charger may comprise three conversion units connected through their respective circuit elements, each conversion unit working at a different phase current.
  • The invention also concerns an electrical or a hybrid vehicle comprising an onboard battery charger as previously described.
  • The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the accompanying drawings:
  • - Figure 1 illustrates a perspective front view of a first embodiment of the battery charger according to the invention;
  • - Figure 2 illustrates a perspective bottom view of the battery charger of Figure 1;
  • - Figure 3 illustrates a top view of the battery charger of Figure 1;
  • - Figure 4 illustrates a perspective top view of the battery charger of Figure 1;
  • - Figure 5 illustrates a perspective top view of a phase unit according to the invention;
  • - Figure 6 illustrates a perspective bottom view of the phase unit of Figure 5;
  • - Figure 7 illustrates a perspective bottom view of a heatsink module according to the invention;
  • - Figure 8 illustrates a perspective top view of the heatsink module of Figure 7;
  • - Figure 9 illustrates a rear view of the heatsink module of Figure 7;
  • - Figure 10 illustrates a longitudinal horizontal cross section view of the heatsink module of Figure 7;
  • - Figure 11 illustrates a transversal cross section view of the heatsink module of Figure 7;
  • - Figure 12 illustrates a longitudinal vertical cross section view of the heatsink module of Figure 7;
  • - Figure 13 illustrates another longitudinal vertical cross section view of the heatsink module of Figure 7;
  • - Figure 14 illustrates a perspective top view of the heatsink module of Figure 7, a magnetic assembly being mounted onto said heatsink module;
  • - Figure 15 illustrates a perspective top view of the magnetic assembly of Figure 14; 
  • - Figure 16 illustrates a perspective bottom view of the magnetic assembly of Figure 14;
  • - Figure 17 illustrates a perspective top view of the phase unit of Figure 5 further comprising connection tubes;
  • - Figure 18 illustrates a perspective bottom view of the phase unit of Figure 17;
  • - Figure 19 illustrates a perspective partial left front view of the battery charger 1 of Figure 1 comprising one phase unit, the housing being transparent;
  • - Figure 20 illustrates a perspective partial left front view of the battery charger 1 of Figure 19 further comprising a first set of support columns;
  • - Figure 21 illustrates a perspective partial left front view of the battery charger 1 of Figure 20 further comprising a second phase unit;
  • - Figure 22 illustrates a perspective partial left front view of the battery charger 1 of Figure 21 further comprising a second set of support columns;
  • - Figure 23 illustrates a perspective partial left front view of the battery charger 1 of Figure 22 further comprising a third phase unit;
  • - Figure 24 illustrates a perspective partial left front view of the battery charger 1 of Figure 23 further comprising phase unit fixing screws, AC connector and DC connector;
  • - Figure 25 illustrates a perspective partial left front view of the battery charger 1 of Figure 24 further comprising a cover;
  • - Figure 26 illustrates a perspective front view of a second embodiment of the battery charger according to the invention;
  • - Figure 27 illustrates a transversal cross section view of the battery charger of Figure 26;
  • - Figure 28 illustrates a transversal cross section view of the housing of the battery charger of Figure 26;
  • - Figure 29 illustrates a top longitudinal cross section view of the battery charger of Figure 26;
  • - Figure 30 illustrates an embodiment of the method of assembling the battery charger of Figure 1 according to the invention.
  • DETAILED DESCRIPTION
  • A first and a second embodiments of a battery charger according to the invention will now be described in reference respectively to Figures 1 to 25 and 26 to 29. In these examples, the battery charger is configured for being mounted onboard an electrical or hybrid vehicle. However, the invention could apply to any type of electrical equipment, in particular any  type of electrical equipment that allows charging, in particular any type of battery charger that allows charging a DC battery using an AC power supply source.
  • In the preferred embodiments described hereafter, the battery charger is configured for charging a battery from an AC power supply source such as e.g. a domestic or public grid. In other words, the battery charger is configured for receiving at least one AC current from an AC power supply source, converting said at least one AC current into a DC current, supplying said DC current to charge a battery. The received at least one AC current may be a single-phase AC current or several multi-phase AC currents (e.g. three phase-shifted AC currents) .
  • In the exemplary embodiments illustrated on respectively Figures 1 to 25 and 26 to 29, the battery charger 1, 1’ comprises three conversion units (10-1, 10-2, 10-3 ; 10’-1, 10’-2, 10’-3) . However, in another embodiment, the battery charger 1, 1’ could comprise more or less than three conversion units 10 without limiting the scope of the present invention.
  • Figures 1 to 4 illustrate a first embodiment of a battery charger 1 according to the invention. In the present description, the faces of any element of the battery charger 1 are defined in reference to Figures 1 and 2 as follows: top T face, bottom B face, front F face, rear K face, left L face and right R face. Any reference (top, bottom, front, rear, left or right) to a position of an element of the battery charger 1 will therefore be made hereafter using those definitions.
  • The battery charger 1 comprises a housing 2 for example made of a metal or a plastic material. The housing 2 comprises a bottom wall 2A and a rectangular side wall 2B, coming as one-piece element, and a cover 2C, fixed on the side wall 2B using screws 2D in order to close said housing 2. The battery charger 1 also comprises an AC connector 3 and a DC connector 4. The AC connector 3 allows receiving the at least one AC current delivered by the power supply source (not shown) . The DC connector 4 allows delivering the DC current generated by the battery charger 1 to a battery (not shown) . For example, such battery may be a high-voltage battery, i.e. greater than 60 V. In this non-limitative example, the battery charger 1 further comprises a signal connector 5 as it will described hereafter.
  • In reference to Figures 3 and 4, the bottom wall 2A and the rectangular side wall 2B of the housing 2 define an internal space configured for receiving the conversion units 10 (e.g. as shown on Figures 17 to 25) . In this example, the bottom wall 2A comprises a plurality of support posts 2A1 (nine in the illustrated example of Figure 3) and two positioning posts 2A2 for supporting a circuit board 11 of a conversion unit 10.
  • Each positioning post 2A2 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a protruding end adapted to engage in a hole formed in the circuit board 11 for positioning said circuit board 11 on the support posts 2A1.
  • Each support post 2A1 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a hollow end adapted for receiving a tooth of a support column 20-1 as it will be described hereafter. The support posts 2A1 and the positioning posts 2A2 may be formed in the bottom wall 2A of the housing 2 or may be insert pieces.
  • As illustrated on Figure 3, two apertures 2A3 are formed in the bottom wall 2A to allow the passage of two connection tubes 6 (as shown on Figure 2) configured for being connected to a cooling module (not shown) , for example a pump, allowing the circulation of a cooling fluid, e.g. such as water, for cooling the battery charger 1, as explained hereafter.
  • As illustrated on Figure 4, an aperture 2B1 is formed on the front F face of the side wall 2B to receive a signal connector 5 of a conversion unit 10 (as shown on Figure 1) .
  • In the example illustrated on Figures 5 and 6, each conversion unit 10 comprises a circuit board 11, some capacitors elements 12, a heatsink module 13, a magnetic assembly 14 mounted onto said heatsink module 13, an input filter 15 and an output filter 16.
  • In this example, the circuit board 11 is a Printed Circuit Board (PCB) configured for electrically connecting the capacitors elements 12, the heatsink module 13, the magnetic assembly 14, the input filter 15, the output filter 16 and, if present, the signal connector 5.
  • The signal connector 5 is optional and is configured for exchanging signals between the circuit board 11 and an external equipment (not shown) , e.g. such as a test or a control equipment.
  • The capacitors elements 12 are configured for stabilizing the internal DC link intermediate voltage.
  • The heatsink module 13 is configured for receiving the magnetic assembly 14. To this end, as illustrated on Figure 7, the heatsink module 13 comprises a bottom wall 13A extending along a longitudinal plan β and a side wall 13B extending from said bottom wall 13A orthogonally to said longitudinal plan β.
  • In reference to Figures 7 and 8, the heatsink module 13 comprises a first and second extension portions 13C-1, 13-C2 extending from the rear K face of the side wall 13B. Each extension portion 13C-1, 13C-2 comprises a first circuit element 13C1 extending from the top T face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan β. Each  extension portion 13C-1, 13C-2 comprises a second circuit element 13C2 extending from the bottom B face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan β, said bottom B face being opposite to said top T face.
  • Each first circuit elements 13C1 is configured to fit into a second circuit elements 13C2 of an identical heatsink module 13, said first circuit element 13C1 and said second circuit element 13C2 being complementary portions and being fluidically connected.
  • In this preferred embodiment, as shown on Figures 10 and 13, the first circuit element 13C1 and the second circuit element 13C2 of a same extension portion 13C-1, 13C-2 are advantageously fluidically connected through a traversing opening 13C4 to allow the passage of a cooling fluid, e.g. such as water, throughout said extension portion 13C-1, 13C-2. In this example, the first circuit element 13C1 and the second circuit element 13C2 are part of a tube.
  • In order to allow a liquid tight (i.e. leak proof) connection, in reference to Figure 8, the first circuit element 13C1 is in the shape of a hollow shaft whereas, in reference to Figure 9, the second circuit element 13C2 comprises at its free end a chamfer (i.e. a bevel) 13C21 and, below said chamfer 13C21, a groove 13C22 forming with said chamfer 13C21 a shoulder 13C23.
  • A gasket joint may further be inserted into the groove 13C22 to seal the connection with a first circuit element 13C1 of a corresponding extension portion 13C-1, 13C-2 of another heatsink module 13.
  • The shape of the chamfer 13C21 and the flexibility created by the groove 13C22 allow inserting easily the second circuit element 13C2 into a first circuit element 13C1 of another heatsink module 13 while the shoulder 13C23 allows retaining said second circuit element 13C2 into said first circuit element 13C1.
  • As illustrated on Figure 8, the heatsink module 13 comprises also first fixing portions 13C3, protruding from the extension portions 13C-1, 13C-2 in parallel to the first circuit element 13C1, and second fixing portions 13D, extending from the side wall 13B. A hole is formed on the protruding end of said first and second fixing portions 13C3, 13D for fixing the heatsink module 13 onto the bottom B face of the circuit board 11, as illustrated on Figures 5 and 6.
  • In reference to Figure 5 and 6, the heatsink module 13 also comprises some electronic components 13F, such as e.g. transistors or diodes, mounted on external side of the side wall 13B. These electronic components are maintained by a clamper 13G against the side wall 13B.
  • In this example, the bottom wall 13A and the side wall 13B define two internal spaces called “reception spaces” 13E1, 13E2. The first reception space 13E1 and the second reception space 13E2 are separated by a separation wall 13E3 in order to receive different electrical components of the magnetic assembly 14 as described hereafter.
  • As illustrated on Figures 10 to 13, a cooling channel 13B1 is formed inside the side wall 13B linking the traversing opening 13C4 of the first extension portion 13C-1 to the traversing opening 13C4 of the second extension portion 13C-2. The cooling channel 13B1 is configured to receive a cooling fluid allowing the absorption of heat generated by the magnetic assembly 14 in the reception spaces 13E1, 13E2 and the by the electronic component 13F located on the external part of the side wall 13B. In other words, the cooling channel 13B1 defines a cooling circuit allowing the flow F1 of a cooling fluid between the first extension portion 13C-1 and the second extension portion 13C-2. We shall note that the direction of the flow F1 as shown on Figures 10 and 13 could also be inverted without falling out of the scope of the present invention.
  • As illustrated on Figures 15 and 16, the magnetic assembly 14 comprises a support wall 14A and two magnetic elements 14B, 14C mounted on said support wall 14A.
  • In this example, the magnetic assembly 14 comprises an inductor element 14B and a transformer 14C. The inductor element 14B is configured for correcting the power factor of the transformer 14C. The transformer 14C is configured for transferring electrical energy of the at least one AC current received from the power source through the AC connector 3 into electrical energy of the DC current delivered through the DC connector 4, e.g. to a battery of a vehicle. The input filter 15 is configured for filtering noise in the AC current signals received from the power source via the AC connector 3. The output filter 16 is configured for filtering noise in the DC current signal, e.g. delivered to the battery of the vehicle via the DC connector 4.
  • The electrical connections between the conversion units 10-1, 10-2, 10-3 may be adapted depending on the configuration of the battery charger 1. For example, for a single-phase charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 are electrically connected together. For a three-phase charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 is connected respectively to phase a different phase (e.g. A, B and C) .
  • Figures 26 to 29 illustrate a second embodiment a battery charger 1’ according to the invention. In this embodiment, the battery charger 1’ could be a single-phase charger or a three-phase charger, depending on the electrical connections as previously described.
  • As illustrated on Figure 26, the battery charger 1’ comprises a housing 2’ , an AC input connector 3’ , a DC output connector 4’ , a signal connector 5’ and two connection tubes 6’ for connecting the battery charger 1’ to a cooling module allowing the circulation of a cooling fluid. The battery charger 1’ extends along a longitudinal plan β’ .
  • In this second embodiment, the housing 2’ of the battery charger 1’ forms a heatsink comprising a cooling channel. Alternatively, in another embodiment, the heatsink may be a separate element (for example a one-piece element) that may be inserted in a housing with a flat bottom wall, similar to the housing 2 of the first embodiment.
  • As illustrated on Figure 27, the housing 2’ comprises a bottom wall 2’A and a side wall 2’B. The bottom wall 2’A comprises wall elements 2’A1 extending orthogonally to the longitudinal plan β’ and the cooling channel 2’ACC is formed in said wall elements 2’A1 and the side wall 2’B. The wall elements 2’A1 and the side wall 2’B also define reception spaces 2’E1, 2’E2, 2’E3.
  • As illustrated on Figures 28 and 29, the battery charger 1’ comprises three conversion units 10’-1, 10’-2, 10’-3 mounted side by side in the housing 2’ . Each conversion units 10’-1, 10’-2, 10’-3 comprises at least one magnetic element 14’B, 14’C such as inductors 14’B and transformers 14’C, mounted in the reception spaces 2’E1, 2’E2, 2’E3.
  • A cooling fluid flowing in the cooling channel 2’ACC allows therefore absorbing the heat generated by the transformers 14’C (or other magnetic elements) mounted in the reception spaces 2’E1, 2’E2, 2’E3.
  • As illustrated on Figure 28, the battery charger 1’ further comprises some support wall 2’F mounted on the wall elements 2’A1, orthogonally to the longitudinal plan β’ , for supporting the at least one conversion unit. Some electronic components 2’G are mounted on said support wall 2’F and may generate some heat. Particularly, these electronic components 2’G are mounted on side faces of the support wall 2’F. In this case, the cooling channel 2’ACC allows also absorbing some of the heat generated by said electronic components 2’G.
  • The pins of the electronic components2’G are inserted into holes in the circuit board to be electrically connected with it. As explained in relation to figures 5 &6, the electronic components 2’G can be maintained by a clamper 13G against the side wall.
  • An exemplary embodiment of the method for assembling the battery charger 1 of the first embodiment will now be described, in particular in reference to Figure 30.
  • As illustrated on Figure 17, in a first step S1, two connection tubes 6 are mounted on the second circuit elements 13C2 of a first conversion unit 10-1 so that said first conversion unit 10-1 may further be connected to a cooling module in a cooling circuit.
  • The first conversion unit 10-1 illustrated on Figure 18 is then placed in the housing 2 on the support posts 2A1 and the positioning posts 2A2 (not shown on Figures 19 to 25 for the sake of clarity) in a step S2 as illustrated on Figure 19.
  • In a step S3, as illustrated on Figure 20, a first set of support columns 20-1 is fixed on the circuit board 11 of the first conversion unit 10-1 in order to support a second conversion unit 10-2. Each support column 20-1 comprises a bottom end having a tooth inserted into a corresponding hole formed in the circuit board 11 and a corresponding hollow end of a support post 2A1.
  • As illustrated on Figure 21, in a step S4, a second conversion unit 10-2 is mounted on the first set of columns 20-1 and the first conversion unit 10-1. To this end, the second circuit elements 13C2 of the second conversion unit 10-2 are inserted into the first circuit elements 13C1 of the first conversion unit 10-1 in to order to connect their two heatsink modules 13.
  • More precisely, the circuit board 11 of the second conversion unit 10-2 is placed on the first set of support columns 20-1 and the second conversion unit 10-2 is electrically connected to the first conversion unit 10-1.
  • In a step S5, as illustrated on Figure 22, a second set of support columns 20-2 is fixed on the circuit board 11 of the second conversion unit 10-2 in order to support a third conversion unit 10-3. In this example, the support columns 20-2 of the second set of support columns 20-2 are identical to the support columns 20-1 of the first set of support columns 20-1. In this case, the tooth of the bottom end of each support column 20-1 is inserted, through a corresponding hole in the circuit board 11, in the corresponding hole of the top end of the support column 20-1 located under.
  • As illustrated on Figure 23, in a step S6, a third conversion unit 10-3 is arranged on the second set of columns 20-2 and electrically connected to the second conversion unit 10-2. A signal connector 5 is mounted on the corresponding apertures 2B1 of the housing 2 to allow collecting signals from the circuit boards 11 of the first, the second and the third conversion units 10-1, 10-2, 10-3.
  • The first circuit elements 13C1 of the third conversion unit 10-3 are blocked, e.g. using adapted caps, in order to close the cooling circuit 13B1 running from the circuit element 6, the extension portions 13C-1, 13-C2 and the cooling channels of each of the first conversion  unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3. Alternatively, the first circuit elements 13C1 of the third conversion unit 10-3 may be formed into the same material as the extension portions 13C-1, 13C-2 so that the third conversion unit 10-3 is ready to work as a closing element of the cooling circuit.
  • In a step S7, some screws 25 are used to fix the circuit board 11 of the third conversion unit 10-3 to the second set of support columns 20-2 through corresponding holes of said circuit board 11, and a AC connector 3 and a DC connector 4 are mounted on the side wall 2B of the housing 2 and electrically connected to the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
  • Advantageously, the invention allows to electrically connect the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 in a single-phase configuration (i.e. the battery charger is a single-phase battery charger configured for being connected to a single-phase AC power supply source) or in a three-phase configuration (i.e. the battery charger is a three-phase battery charger configured for being connected to a three-phase AC power supply source) . In the latter configuration, each one of the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 convert a different AC current into a same DC current.
  • In a step S8, as illustrated on Figure 25, the cover 2C is screwed onto the side wall 2B using screws 2D and the battery charger 1 is ready to be mounted onboard a vehicle.
  • The heatsink module 13 according to the invention allows therefore evacuating efficiently the heat generated by the magnetic components 14B, 14C mounted inside the reception spaces 13E1, 13E2 and the heat generated by the electronic component 13F mounted on the external part of the side wall 13B, avoiding therefore to damage the battery charger 1.
  • Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure.
  • More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims (15)

  1. A heatsink module (13; 2’ ) , in particular for use in a battery charger (1; 1’ ) , said heatsink module (13; 2’ ) comprising a bottom wall (13A; 2’ A) , extending along a longitudinal plan (β, β’ ) , and a side wall (13B; 2’ B) extending from said bottom wall (13A; 2’A ) orthogonally to said longitudinal plan (β, β’ ) , said bottom wall (13A; 2’A ) and said side wall (13B; 2’ B) defining at least one internal space called “reception space” (13E1, 13E2; 2’ E1, 2’ E2, 2’ E3) , said at least one reception space (13E1, 13E2; 2’ E1, 2’ E2, 2’ E3) being configured for receiving at least one magnetic element (14B, 14C; 14’ B, 14’ C) for transferring electrical energy of an alternating current into electrical energy of a direct current, the heatsink module (13; 2’ ) comprising a cooling channel (13B1; 2’ACC) formed at least inside the side wall (13B; 2’ B) .
  2. A heatsink module (13) according to claim 1, wherein said heatsink module comprises at least one circuit element (13C1, 13C2) configured for connecting to a complementary circuit element of a cooling circuit, said at least one circuit element (13C1, 13C2) being configured to allow a cooling fluid to flow through the heatsink module (13) .
  3. A heatsink module (13) according to claim 2, wherein said heatsink module (13) comprises a first circuit element (13C1, 13C2) and a second circuit element (13C1, 13C2) and the cooling channel (13B1) is configured to allow a cooling fluid to flow from said first circuit element (13C1, 13C2) to said second circuit element (13C1, 13C2) .
  4. A heatsink module (13) according to any of the preceding claims, wherein said heatsink module (13) comprises at least one magnetic element (14B, 14C) mounted in the at least one reception space (13E1, 13E2) for transferring electrical energy of an alternating current into electrical energy of a direct current.
  5. A heatsink module (13) according to the preceding claim, wherein each of the at least one reception space (13E1, 13E2) is configured for receiving a single magnetic element (14B, 14C) .
  6. A heatsink module (13) according to the preceding claim, said heatsink module (13) comprising at least two reception spaces (13E1, 13E2) separated by a separation wall (13E3) .
  7. A battery charger (1; 1’ ) , in particular for use in an electrical or hybrid vehicle, said battery charger (1, 1’ ) comprising at least one conversion unit (10; 10-1, 10-2, 10-3; 10’ -1, 10’ -2, 10’ -3) configured for converting an alternating phase current into a direct current, said at least one conversion unit (10; 10-1, 1-2, 10-3; 10’ -1, 10’ -2, 10’ -3) comprising a heatsink module (13; 2’ ) , according to any of the preceding claims, and at least one magnetic element (14B, 14C, 14’ B, 14’ C) arranged in the at least one reception space (13E1, 13E2; 2’ E1, 2’ E2, 2’ E3) of said heatsink module (13; 2’ ) .
  8. A battery charger (1; 1’ ) according to the preceding claim, further comprising a housing (2, 2’ ) , the at least one conversion unit (10; 10-1, 10-2, 10-3 ; 10’ -1, 10’ -2, 10’ -3) being mounted in said housing (2; 2’ ) .
  9. A battery charger (1’ ) according to the preceding claim, wherein the heatsink module constitutes the housing (2’ ) of the battery charger (1’ ) .
  10. A battery charger (1’ ) according to any of the preceding claims 7to 9, said battery charger (1’ ) extending along a longitudinal plan (β’ ) , the bottom wall (13A; 2’A ) comprises at least one wall element (2’ A1) extending orthogonally with respect to said longitudinal plan (β’ ) and the cooling channel (2’ ACC) is formed at least in said at least one wall element (2’ A1) .
  11. A battery charger (1’ ) according to the preceding claim, wherein the battery charger (1’ ) further comprises at least one support wall (2’ F) mounted on the at least one wall element (2’ A1) for supporting at least one electronic component (2’ G) .
  12. A battery charger according to the preceding claim, wherein the at least one support wall (2F’ ) is mounted on a top edge (2’ A2) of the at least one wall element (2’ A1) , said top edge (2’ A2) extending in parallel with respect to the bottom wall (2’ A) , and the electronic component (2’ G) is mounted on a side surface of said support wall (2’ F) .
  13. A battery charger (1’ ) according to any of claims 11 or 12, wherein the at least one conversion unit comprises at least one circuit board (11’ ) extending in parallel to the bottom wall (2’ A ) , said circuit board (11’ ) comprising an opening through which the at least one support wall (2F’ ) extends, at least one electronic component (2’ G) mounted on the at least one support wall (2F’ ) having pins electrically connected to said at least one circuit board (11’ ) .
  14. A battery charger (1) according to any of claims 7 or 8, wherein at least one electronic component (13F) is mounted on the external face of the side wall (13B) , opposite to the internal face of the side wall (13B) delimitating the at least one reception space (13E1) .
  15. A battery charger (1) according to any of preceding claims 7, 8 or 14, wherein the at least one conversion unit comprises a circuit board (11) , the heatsink module (13) being mounted onto said circuit board (11) .
EP17904668.5A 2017-04-07 2017-04-07 A battery charger for use in an electrical or hybrid vehicle Pending EP3607604A4 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079750 WO2018184215A1 (en) 2017-04-07 2017-04-07 A battery charger for use in an electrical or hybrid vehicle

Publications (2)

Publication Number Publication Date
EP3607604A1 true EP3607604A1 (en) 2020-02-12
EP3607604A4 EP3607604A4 (en) 2020-09-09

Family

ID=63712401

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17904668.5A Pending EP3607604A4 (en) 2017-04-07 2017-04-07 A battery charger for use in an electrical or hybrid vehicle

Country Status (3)

Country Link
EP (1) EP3607604A4 (en)
CN (1) CN111133625B (en)
WO (1) WO2018184215A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021168705A1 (en) * 2020-02-26 2021-09-02 深圳欣锐科技股份有限公司 Magnetic element adapter apparatus and electric vehicle

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6528907B2 (en) * 2000-04-07 2003-03-04 Mirae Corporation Linear motor
CN101186194A (en) * 2006-11-17 2008-05-28 比亚迪股份有限公司 Cooling system and cooling method for vehicle mounted charger
CN201311956Y (en) * 2008-10-31 2009-09-16 比亚迪股份有限公司 Vehicular charger
JP4969669B2 (en) * 2010-04-01 2012-07-04 三菱電機株式会社 Liquid cooling system for electrical equipment
JP2013094023A (en) * 2011-10-27 2013-05-16 Hitachi Automotive Systems Ltd Electric power conversion apparatus
KR101329598B1 (en) * 2011-12-27 2013-11-14 주식회사 에이티티알앤디 A cooling apparatus
DE102012202673A1 (en) * 2012-02-22 2013-08-22 Siemens Aktiengesellschaft Power Electronics Module System
CN103296863B (en) * 2012-02-24 2017-03-01 台达电子企业管理(上海)有限公司 Power supply change-over device
US9066453B2 (en) * 2012-03-06 2015-06-23 Mission Motor Company Power electronic system and method of assembly
CN102593919A (en) * 2012-03-14 2012-07-18 重庆长安汽车股份有限公司 Vehicle-mounted charger
US9524820B2 (en) * 2012-11-13 2016-12-20 Raytheon Company Apparatus and method for thermal management of magnetic devices
FI11098U1 (en) * 2014-10-15 2016-01-19 Vacon Oy The power electronics unit
CN106160036B (en) * 2015-03-30 2019-02-01 南京德朔实业有限公司 The electric tool of charger, charging combination and battery pack
KR101615067B1 (en) * 2015-04-15 2016-04-25 엘에스산전 주식회사 Inductor assembly for obc of electric vehicle
CN204884782U (en) * 2015-08-28 2015-12-16 湘潭电机股份有限公司 Novel liquid cooling magnetic element pipeline layout structure
CN205793468U (en) * 2016-06-03 2016-12-07 苏州市嘉明机械制造有限公司 A kind of electromagnetic heater
CN206075992U (en) * 2016-08-30 2017-04-05 北京七星飞行电子有限公司 A kind of heat-dissipating casing of high-power transformer

Also Published As

Publication number Publication date
CN111133625B (en) 2021-07-16
WO2018184215A1 (en) 2018-10-11
EP3607604A4 (en) 2020-09-09
CN111133625A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
CN111316544B (en) Stacked electric vehicle inverter unit
US9362040B2 (en) Coldplate with integrated electrical components for cooling thereof
JP6032149B2 (en) Power converter
JP5457435B2 (en) Modular high power drive stack cooled by vaporizable dielectric fluid
JP4756935B2 (en) Inverter unit with capacitor
US11390175B2 (en) Accumulator
CN102651354A (en) Semiconductor device
DE112012004496T5 (en) DC / DC converter and power conversion device
JP5815063B2 (en) Power converter
JP6252457B2 (en) Car electronics
KR20150102722A (en) Power converter and motor vehicle
JP2016119816A (en) Electric power conversion device
WO2018184217A1 (en) Voltage converter for use in electrical or hybrid vehicle
WO2018184215A1 (en) A battery charger for use in an electrical or hybrid vehicle
US20210203244A1 (en) Power module with defined charge-reversal path and production method
JP6023565B2 (en) Power converter
CN103269169A (en) Thyristor rectifier module
WO2018184216A1 (en) A battery charger for use in an electrical or hybrid vehicle
JP7086844B2 (en) Assembly that forms the casing of electrical equipment
CN209096498U (en) A kind of two-side radiation integrating device for electric machine controller
CN214014071U (en) Motor control device, driving assembly and vehicle with optimized wiring
JP6111891B2 (en) Power supply
CN112600364A (en) Driving assembly and vehicle that radially are qualified for next round of competitions and connect
JP6583513B2 (en) Power converter
JP2021197831A (en) Electrical unit

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191004

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20200810

RIC1 Information provided on ipc code assigned before grant

Ipc: H02J 7/02 20160101ALI20200804BHEP

Ipc: H01M 10/42 20060101AFI20200804BHEP

Ipc: H02J 7/00 20060101ALI20200804BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ZHOU, HONGZHOU

Inventor name: LI, RONGHUI

Inventor name: BOBERG, OYVIND

Inventor name: SPANGBERG, ERIK

Inventor name: HE, CHEN

Inventor name: YANG, GANG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20231127