WO2018184216A1 - A battery charger for use in an electrical or hybrid vehicle - Google Patents

A battery charger for use in an electrical or hybrid vehicle Download PDF

Info

Publication number
WO2018184216A1
WO2018184216A1 PCT/CN2017/079751 CN2017079751W WO2018184216A1 WO 2018184216 A1 WO2018184216 A1 WO 2018184216A1 CN 2017079751 W CN2017079751 W CN 2017079751W WO 2018184216 A1 WO2018184216 A1 WO 2018184216A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception module
battery charger
connection portion
conversion unit
reception
Prior art date
Application number
PCT/CN2017/079751
Other languages
French (fr)
Inventor
Ronghui Li
Chen HE
Hongzhou ZHOU
Gang Yang
Original Assignee
Valeo Siemens Eautomotive Shenzhen Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens Eautomotive Shenzhen Co., Ltd filed Critical Valeo Siemens Eautomotive Shenzhen Co., Ltd
Priority to CN201780091680.4A priority Critical patent/CN111066378B/en
Priority to PCT/CN2017/079751 priority patent/WO2018184216A1/en
Publication of WO2018184216A1 publication Critical patent/WO2018184216A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/1422Printed circuit boards receptacles, e.g. stacked structures, electronic circuit modules or box like frames
    • H05K7/1427Housings
    • H05K7/1432Housings specially adapted for power drive units or power converters
    • H05K7/14322Housings specially adapted for power drive units or power converters wherein the control and power circuits of a power converter are arranged within the same casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a battery charger, in particular for use in an electrical or a hybrid vehicle, and relates more particularly to a reception module for a battery charger and a battery charger comprising such reception module.
  • the invention aims more precisely at providing a battery charger that is advantageously easily scalable, in particular in order to deliver different power levels depending on the intended use.
  • the propulsion system comprises a high-voltage power supply battery that delivers a supply voltage to an electrical motor for the propulsion of the vehicle.
  • the propulsion system comprises a battery charger called “On-Board Charger” (OBC) that is configured to be connected to an Alternating Current (AC) electrical network, such as e.g. a local or a national power grid.
  • OBC On-Board Charger
  • AC Alternating Current
  • the On-Board Charger converts one or several alternating currents received from the AC electrical network into a direct current that allows charging the battery.
  • the On-Board Charger comprises a plurality of internal components such as e.g. one or several transformers, one or several inductors, some diodes, some transistors, etc. These internal components are mounted on a PCB which is placed in a housing equipped with an AC input connector and a DC output connector and which may further be mounted onboard a vehicle.
  • the charger may further comprise a heatsink module, which is arranged under said at least one transformer to cool the said at least one transformer down.
  • the On-Board Charger may be a single-phase or a three-phase charger for connecting respectively to a single-phase or a three-phase AC electrical power source. It is therefore necessary to design the charger, i.e. to select the number and type of internal components, depending on the power and the type of On-Board Charger (i.e. single-phase or three-phase) , prior to mounting the internal components onto the PCB. Such a charger may therefore be complex to design and costly as it is intended to work only with a specific predetermined type of AC electrical network. Furthermore, the heat generated by the internal components may not be evacuated properly, which may damage the On-Board Charger.
  • the present invention relates to a reception module, in particular for use in a battery charger, said reception module comprising a bottom wall extending along a longitudinal plan and a side wall extending from said bottom wall orthogonally to said longitudinal plan, said bottom wall and said side wall defining at least one internal space called “reception space” , said at least one reception space being configured for receiving at least one magnetic element for transferring electrical energy of an alternating current into electrical energy of a direct current, said reception module comprising at least one connection portion extending orthogonally to said longitudinal plan and being configured to fit into at least one complementary connection portion of an identical reception module.
  • the at least one connection portion allows advantageously stacking a plurality of reception modules in order to build a scalable charger.
  • the reception module is a one-piece element, i.e. the at least one connection portion, the bottom wall and the side wall originate from the same material, e.g. by molding a material.
  • Such one piece element may thus be both easy to build and resistant.
  • such one-piece element does not have any contact interface between different parts, reducing therefore the thermal resistance of the reception module.
  • the one-piece element is made of a metal material, allowing therefore the side wall of the reception module to be arranged close to the magnetic elements mounted in the reception module, improving thus the cooling efficiency of said reception module.
  • the metal material is aluminum.
  • the at least one connection portion is part of a tube. Connecting two reception modules together is therefore easy and fast.
  • the tube is a part of a cooling system and is configured to allow a cooling fluid to flow through the reception module.
  • a cooling channel is formed inside the side wall to allow a cooling fluid to flow from one connection portion to another connection portion of the reception module.
  • Such cooling channel allows evacuating the heat produced by at least one magnetic element mounted in the internal space of the reception module.
  • the bottom wall being located on a bottom face of the reception module, the at least one connection portion extends from said bottom face of the reception module, allowing therefore to connect the reception module with another reception module located below said reception module.
  • the at least one connection portion extends from a top face of the reception module, opposite to the bottom face, allowing therefore to connect the reception module with another reception module located above said reception module.
  • the reception module comprises at least one extension portion extending from the side wall, the at least one connection portion extending from said extension portion, allowing therefore to connect the reception module with another reception module while providing access to the internal space of the reception module.
  • the reception module comprises at least one first connection portion and at least one second connection portion extending from opposite faces of the at least one extension portion, allowing therefore to connect the reception module simultaneously with another reception module located above said reception module and with another reception module located below said reception module.
  • the reception module comprises at least one magnetic element, mounted in the at least one reception space, for transferring electrical energy of an alternating current into electrical energy of a direct current.
  • the invention also relates to a battery charger, in particular for use in an electrical or hybrid vehicle, said battery charger comprising at least one conversion unit configured for converting an alternating phase current into a direct current, said at least one conversion unit comprising a reception module as previously described and at least one magnetic element (e.g. a transformer, an inductor...) arranged in the at least one reception space of said reception module.
  • a battery charger comprising at least one conversion unit configured for converting an alternating phase current into a direct current, said at least one conversion unit comprising a reception module as previously described and at least one magnetic element (e.g. a transformer, an inductor...) arranged in the at least one reception space of said reception module.
  • the at least one conversion unit comprises a circuit board, the reception module being mounted onto said circuit board.
  • the battery charger comprises a housing, the at least one conversion unit being mounted in said housing.
  • the battery charger comprises one conversion unit.
  • the battery charger comprises a plurality of conversion units connected through their respective connection portions.
  • the conversion units are stacked one above the others in the housing.
  • the conversion units are electrically connected.
  • the conversion units are connected in a single-phase configuration.
  • This allows advantageously the battery charger to be scalable as several conversion units may be connected in parallel, making the design of the charger very easy.
  • the power of the battery charger may therefore be defined by the number of connected conversion units arranged in the housing. For example, if the power of a conversion unit is 3.5 kW, the connection in parallel of three conversion units provides a 10.5 kW charger.
  • the conversion units are connected in a three-phase configuration.
  • the battery charger may comprise three conversion units connected through their respective connection portions, each conversion unit working at a different phase current.
  • the invention also concerns an electrical or a hybrid vehicle comprising an onboard battery charger as previously described.
  • FIG. 1 illustrates a perspective front view of an embodiment of the battery charger according to the invention
  • FIG. 2 illustrates a perspective bottom view of the battery charger of Figure 1;
  • FIG. 3 illustrates a top view of the housing of the battery charger of Figure 1;
  • Figure 4 illustrates a perspective top view of the housing of Figure 3;
  • FIG. 5 illustrates a perspective top view of an embodiment of a conversion unit according to the invention
  • FIG. 7 illustrates a perspective bottom view of a reception module of the conversion unit of Figure 6;
  • FIG. 8 illustrates a perspective top view of the reception module of Figure 7;
  • FIG. 9 illustrates a rear view of the reception module of Figure 7;
  • FIG. 10 illustrates a longitudinal horizontal cross section top view of the reception module of Figure 7;
  • FIG. 11 illustrates a perspective transversal cross section view of the reception module of Figure 7;
  • FIG. 12 illustrates a perspective longitudinal vertical cross section view of the reception module of Figure 7;
  • FIG. 13 illustrates another perspective longitudinal vertical cross section view of the reception module of Figure 7;
  • FIG. 14 illustrates a perspective top view of the reception module of Figure 7, a magnetic assembly being mounted into said reception module;
  • Figure 15 illustrates a perspective top view of the magnetic assembly of Figure 14
  • Figure 16 illustrates a perspective bottom view of the magnetic assembly of Figure 15;
  • FIG. 17 illustrates a perspective top view of the conversion unit of Figure 5 further comprising connection tubes;
  • FIG. 19 illustrates a perspective partial left front view of the battery charger 1 of Figure 1 comprising a first conversion unit, the housing being transparent;
  • FIG. 20 illustrates a perspective partial left front view of the battery charger 1 of Figure 19 further comprising a first set of support columns;
  • FIG. 21 illustrates a perspective partial left front view of the battery charger 1 of Figure 20 further comprising a second conversion unit
  • FIG. 22 illustrates a perspective partial left front view of the battery charger 1 of Figure 21 further comprising a second set of support columns;
  • FIG. 23 illustrates a perspective partial left front view of the battery charger 1 of Figure 22 further comprising a third conversion unit
  • FIG. 24 illustrates a perspective partial left front view of the battery charger 1 of Figure 23 further comprising conversion unit fixing screws, an AC connector and a DC connector;
  • FIG. 25 illustrates a perspective partial left front view of the battery charger 1 of Figure 24 further comprising a cover
  • the battery charger is configured for being mounted onboard an electrical or hybrid vehicle.
  • the invention could apply to any type of electrical equipment, in particular any type of electrical equipment that allows charging, in particular any type of battery charger that allows charging a DC battery using an AC power supply source.
  • the battery charger is configured for charging a battery from an AC power supply source such as e.g. a domestic or public grid.
  • the battery charger is configured for receiving at least one AC current from an AC power supply source, converting said at least one AC current into a DC current, supplying said DC current to charge a battery.
  • the received at least one AC current may be a single-phase AC current or several multi-phase AC currents (e.g. three phase-shifted AC currents) .
  • the battery charger 1 comprises three conversion units 10. In another embodiment, the battery charger 1 could comprise more or less than three conversion units 10 without limiting the scope of the present invention.
  • FIGS 1 to 4 illustrate an embodiment of battery charger 1 according to the invention.
  • the faces of any element of the battery charger 1 are defined in reference to Figures 1 and 2 as follows: top T face, bottom B face, front F face, rear K face, left L face and right R face. Any reference (top, bottom, front, rear, left or right) to a position of an element of the battery charger 1 will therefore be made hereafter using those definitions.
  • the battery charger 1 comprises a housing 2 for example made of a metal or a plastic material.
  • the housing 2 comprises a bottom wall 2A and a rectangular side wall 2B, coming as one-piece element, and a cover 2C, fixed on the sidewall 2B using screws 2D in order to close said housing 2.
  • the battery charger 1 also comprises an AC connector 3 and a DC connector 4.
  • the AC connector 3 allows receiving the at least one AC current delivered by the power supply source (not shown) .
  • the DC connector 4 allows delivering the DC current generated by the battery charger 1 to a battery (not shown) .
  • a battery may be a high-voltage battery, i.e.greater than 60 V.
  • the battery charger 1 further comprises a signal connector 5 as it will be described hereafter.
  • the bottom wall 2A and the rectangular side wall 2B of the housing 2 define an internal space configured for receiving the conversion units 10 (e.g. as shown on Figures 17 to 25) .
  • the bottom wall 2A comprises a plurality of support posts 2A1 (nine in the illustrated example of Figure 3) and two positioning posts 2A2 for supporting a circuit board 11 of a conversion unit 10.
  • Each positioning post 2A2 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a protruding end adapted to engage in a hole formed in the circuit board 11 for positioning said circuit board 11 on the support posts 2A1.
  • Each support post 2A1 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a hollow end adapted for receiving a tooth of a support column 20-1 as it will be described hereafter.
  • the support posts 2A1 and the positioning posts 2A2 may be formed in the bottom wall 2A of the housing 2 or may be insert pieces.
  • two apertures 2A3 are formed in the bottom wall 2A to allow the passage of two connection tubes 6 (as shown on Figure 2) configured for being connected to a cooling module (not shown) allowing the circulation of a cooling fluid, e.g. such as water, for cooling the battery charger 1, as explained hereafter.
  • a cooling fluid e.g. such as water
  • an aperture 2B1 is formed on the front F face of the side wall 2B to receive a signal connector 5 of a conversion unit 10 (as shown on Figure 1) .
  • each conversion unit 10 comprises a circuit board 11, some capacitors elements 12, a reception module 13, a magnetic assembly 14 mounted onto said reception module 13, an input filter 15 and an output filter 16.
  • the circuit board 11 is a Printed Circuit Board (PCB) configured for electrically connecting the capacitors elements 12, the reception module 13, the magnetic assembly 14, the input filter 15, the output filter 16 and, if present, the signal connector 5.
  • PCB Printed Circuit Board
  • the signal connector 5 is optional and is configured for exchanging signals between the circuit board 11 and an external equipment (not shown) , e.g. such as a test or a control equipment.
  • the capacitors elements 12 are configured for stabilizing the internal DC link intermediate voltage.
  • the reception module 13 is configured for receiving the magnetic assembly 14. To this end, as illustrated on Figure 7, the reception module 13 comprises a bottom wall 13A extending along a longitudinal plan ⁇ and a side wall 13B extending from said bottom wall 13A orthogonally to said longitudinal plan ⁇ .
  • the reception module 13 comprises a first and second extension portions 13C-1, 13-C2 extending from the rear K face of the side wall 13B.
  • Each extension portion 13C-1, 13C-2 comprises a first connection portion 13C1 extending from the top T face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan ⁇ .
  • Each extension portion 13C-1, 13C-2 comprises a second connection portion 13C2 extending from the bottom B face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan ⁇ , said bottom B face being opposite to said top T face.
  • Each first connection portions 13C1 is configured to fit into a second connection portions 13C2 of an identical reception module 13, said first connection portion 13C1 and said second connection portion 13C2 being complementary portions and being fluidically connected.
  • the first connection portion 13C1 and the second connection portion 13C2 of a same extension portion 13C-1, 13C-2 are advantageously fluidically connected through a traversing opening 13C4 to allow the passage of a cooling fluid, e.g. such as water, throughout said extension portion 13C-1, 13C-2.
  • a cooling fluid e.g. such as water
  • the first connection portion 13C1 and the second connection portion 13C2 are part of a tube.
  • the first connection portion 13C1 is in the shape of a hollow shaft whereas, in reference to Figure 9, the second connection portion 13C2 comprises at its free end a chamfer (i.e. a bevel) 13C21 and, below said chamfer 13C21, a groove 13C22 forming with said chamfer 13C21 a shoulder 13C23.
  • a chamfer i.e. a bevel
  • a gasket joint may further be inserted into the groove 13C22 to seal the connection with a first connection portion 13C1 of a corresponding extension portion 13C-1, 13C-2 of another reception module 13.
  • the shape of the chamfer 13C21 and the flexibility created by the groove 13C22 allow inserting easily the second connection portion 13C2 into a first connection portion 13C1 of another reception module 13 while the shoulder 13C23 allows retaining said second connection portion 13C2 into said first connection portion 13C1.
  • the reception module 13 comprises also first fixing portions 13C3, protruding from the extension portions 13C-1, 13C-2 in parallel to the first connection portion 13C1, and second fixing portions 13D, extending from the side wall 13B.
  • a hole is formed on the protruding end of said first and second fixing portions 13C3, 13D for fixing the reception module 13 onto the bottom B face of the circuit board 11, as illustrated on Figures 5 and 6.
  • the reception module 13 also comprises some electronic components 13F, such as e.g. transistors or diodes, mounted on external side of the side wall 13B. These electronic components are maintained by a clamper 13G against the side wall 13B.
  • electronic components 13F such as e.g. transistors or diodes
  • the bottom wall 13A and the side wall 13B define two internal spaces called “reception spaces” 13E1, 13E2.
  • the first reception space 13E1 and the second reception space 13E2 are separated by a separation wall 13E3 in order to receive different electrical components of the magnetic assembly 14 as described hereafter.
  • a cooling channel 13B1 is formed inside the side wall 13B linking the traversing opening 13C4 of the first extension portion 13C-1 to the traversing opening 13C4 of the second extension portion 13C-2.
  • the cooling channel 13B1 is configured to receive a cooling fluid allowing the absorption of heat generated by the magnetic assembly 14 in the reception spaces 13E1, 13E2 and the by the electronic component 13F located on the external part of the side wall 13B.
  • the cooling channel 13B1 defines a cooling circuit allowing the flow F1 of a cooling fluid between the first extension portion 13C-1 and the second extension portion 13C-2.
  • the direction of the flow F1 as shown on Figures 10 and 13 could also be inverted without falling out of the scope of the present invention.
  • the magnetic assembly 14 comprises a support wall 14A and two magnetic elements 14B, 14C mounted on said support wall 14A.
  • the magnetic assembly 14 comprises an inductor element 14B and a transformer 14C.
  • the inductor element 14B is configured for correcting the power factor of the transformer 14C.
  • the transformer 14C is configured for transferring electrical energy of the at least one AC current received from the power source through the AC connector 3 into electrical energy of the DC current delivered through the DC connector 4, e.g. to a battery of a vehicle.
  • the input filter 15 is configured for filtering noise in the AC current signals received from the power source via the AC connector 3.
  • the output filter 16 is configured for filtering noise in the DC current signal, e.g. delivered to the battery of the vehicle via the DC connector 4.
  • the electrical connections between the conversion units 10-1, 10-2, 10-3 may be adapted depending on the configuration of the batterycharger 1. For example, for a single-phase battery charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 are electrically connected together. For a three-phase batterycharger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 is connected respectively to phase a different phase (e.g. A, B and C) .
  • phase a different phase e.g. A, B and C
  • two connection tubes 6 are mounted on the second connection portions 13C2 of a first conversion unit 10-1 so that said first conversion unit 10-1 may further be connected to a cooling module in a cooling circuit.
  • the first conversion unit 10-1 illustrated on Figure 18 is then placed in the housing 2 on the support posts 2A1 and the positioning posts 2A2 (not shown on Figures 19 to 25 for the sake of clarity) in a step S2 as illustrated on Figure 19.
  • a first set of support columns 20-1 is fixed on the circuit board 11 of the first conversion unit 10-1 in order to support a second conversion unit 10-2.
  • Each support column 20-1 comprises a bottom end having a tooth inserted into a corresponding hole formed in the circuit board 11 and a corresponding hollow end of a support post 2A1.
  • a second conversion unit 10-2 is mounted on the first set of columns 20-1 and the first conversion unit 10-1.
  • the second connection portions 13C2 of the second conversion unit 10-2 are inserted into the first connection portions 13C1 of the first conversion unit 10-1 in to order to connect their two reception modules 13.
  • circuit board 11 of the second conversion unit 10-2 is placed on the first set of support columns 20-1 and the second conversion unit 10-2 is electrically connected to the first conversion unit 10-1.
  • a second set of support columns 20-2 is fixed on the circuit board 11 of the second conversion unit 10-2 in order to support a third conversion unit 10-3.
  • the support columns 20-2 of the second set of support columns 20-2 are identical to the support columns 20-1 of the first set of support columns 20-1.
  • the tooth of the bottom end of each support column 20-1 is inserted, through a corresponding hole in the circuit board 11, in the corresponding hole of the top end of the support column 20-1 located under.
  • a third conversion unit 10-3 is arranged on the second set of columns 20-2 and electrically connected to the second conversion unit 10-2.
  • a signal connector 5 is mounted on the corresponding apertures 2B1 of the housing 2 to allow collecting signals from the circuit boards 11 of the first, the second and the third conversion units 10-1, 10-2, 10-3.
  • the first connection portions 13C1 of the third conversion unit 10-3 are blocked, e.g. using adapted caps, in order to close the cooling circuit running from the connection portion 6, the extension portions 13C-1, 13-C2 and the cooling channels 13B1 of each of the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
  • first connection portions 13C1 of the third conversion unit 10-3 may be formed into the same material as the extension portions 13C-1, 13C-2 so that the third conversion unit 10-3 is ready to work as a closing element of the cooling circuit.
  • a step S7 some screws 25 are used to fix the circuit board 11 of the third conversion unit 10-3 to the second set of support columns 20-2 through corresponding holes of said circuit board 11, and a AC connector 3 and a DC connector 4 are mounted on the side wall 2B of the housing 2 and electrically connected to the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
  • the invention allows to electrically connect the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 in a single-phase configuration (i.e. the battery charger is a single-phase battery charger configured for being connected to a single-phase AC power supply source) or in a three-phase configuration (i.e. the battery charger is a three-phase battery charger configured for being connected to a three-phase AC power supply source) .
  • each one of the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 convert a different AC current into a same DC current.
  • step S8 as illustrated on Figure 25, the cover 2C is screwed onto the side wall 2B using screws 2D and the battery charger 1 is ready to be mounted onboard a vehicle.
  • the reception module 13 allows therefore evacuating efficiently the heat generated by the magnetic components 14B, 14C mounted inside the reception spaces 13E1, 13E2 and the heat generated by the electronic component 13F mounted on the external part of the side wall 13B, avoiding therefore to damage the battery charger 1.

Abstract

A reception module (13), in particular for use in a battery charger (1). The reception module (13) comprises a bottom wall (13A) extending along a longitudinal plan (β) and a side wall (13B) extending from said bottom wall (13A) orthogonally to said longitudinal plan (β), said bottom wall (13A) and said side wall (13B) defining at least one internal space called "reception space". The at least one reception space is configured for receiving at least one magnetic element for transferring electrical energy of an alternating current into electrical energy of a direct current, said reception module (13) comprising at least one connection portion (13C2) extending orthogonally to said longitudinal plan (β) and being configured to fit into at least one complementary connection portion of an identical reception module (13).

Description

A BATTERY CHARGER FOR USE IN AN ELECTRICAL OR HYBRID VEHICLE
FIELD OF ART
The present invention relates to a battery charger, in particular for use in an electrical or a hybrid vehicle, and relates more particularly to a reception module for a battery charger and a battery charger comprising such reception module.
The invention aims more precisely at providing a battery charger that is advantageously easily scalable, in particular in order to deliver different power levels depending on the intended use.
STATE OF THE ART
In today’s existing electrical or hybrid vehicles, the propulsion system comprises a high-voltage power supply battery that delivers a supply voltage to an electrical motor for the propulsion of the vehicle. In order to charge said battery, the propulsion system comprises a battery charger called “On-Board Charger” (OBC) that is configured to be connected to an Alternating Current (AC) electrical network, such as e.g. a local or a national power grid.
Such On-Board Charger converts one or several alternating currents received from the AC electrical network into a direct current that allows charging the battery. To this end, the On-Board Charger comprises a plurality of internal components such as e.g. one or several transformers, one or several inductors, some diodes, some transistors, etc. These internal components are mounted on a PCB which is placed in a housing equipped with an AC input connector and a DC output connector and which may further be mounted onboard a vehicle. As some of the internal components may produce a lot of heat when the charger is running, in particular the at least one transformer, the charger may further comprise a heatsink module, which is arranged under said at least one transformer to cool the said at least one transformer down.
The On-Board Charger may be a single-phase or a three-phase charger for connecting respectively to a single-phase or a three-phase AC electrical power source. It is therefore necessary to design the charger, i.e. to select the number and type of internal components, depending on the power and the type of On-Board Charger (i.e. single-phase or three-phase) , prior to mounting the internal components onto the PCB. Such a charger may therefore be complex to design and costly as it is intended to work only with a specific predetermined type of AC electrical network. Furthermore, the heat generated by the internal components may not be evacuated properly, which may damage the On-Board Charger.
Therefore, there is a need for a battery charger solution that is easy to design and could also provide an efficient evacuation of the heat produced by the internal components.
SUMMARY
The present invention relates to a reception module, in particular for use in a battery charger, said reception module comprising a bottom wall extending along a longitudinal plan and a side wall extending from said bottom wall orthogonally to said longitudinal plan, said bottom wall and said side wall defining at least one internal space called “reception space” , said at least one reception space being configured for receiving at least one magnetic element for transferring electrical energy of an alternating current into electrical energy of a direct current, said reception module comprising at least one connection portion extending orthogonally to said longitudinal plan and being configured to fit into at least one complementary connection portion of an identical reception module.
The at least one connection portion allows advantageously stacking a plurality of reception modules in order to build a scalable charger.
Advantageously, the reception module is a one-piece element, i.e. the at least one connection portion, the bottom wall and the side wall originate from the same material, e.g. by molding a material. Such one piece element may thus be both easy to build and resistant. Moreover, unlike a multi-pieces element, such one-piece element does not have any contact interface between different parts, reducing therefore the thermal resistance of the reception module.
In a preferred embodiment, the one-piece element is made of a metal material, allowing therefore the side wall of the reception module to be arranged close to the magnetic elements mounted in the reception module, improving thus the cooling efficiency of said reception module. Preferentially, the metal material is aluminum.
In an embodiment, the at least one connection portion is part of a tube. Connecting two reception modules together is therefore easy and fast.
Advantageously, the tube is a part of a cooling system and is configured to allow a cooling fluid to flow through the reception module.
In an embodiment, a cooling channel is formed inside the side wall to allow a cooling fluid to flow from one connection portion to another connection portion of the reception module. Such cooling channel allows evacuating the heat produced by at least one magnetic element mounted in the internal space of the reception module.
In an embodiment, the bottom wall being located on a bottom face of the reception module, the at least one connection portion extends from said bottom face of the reception module, allowing therefore to connect the reception module with another reception module located below said reception module.
In an embodiment, the at least one connection portion extends from a top face of the reception module, opposite to the bottom face, allowing therefore to connect the reception module with another reception module located above said reception module.
In an embodiment, the reception module comprises at least one extension portion extending from the side wall, the at least one connection portion extending from said extension portion, allowing therefore to connect the reception module with another reception module while providing access to the internal space of the reception module.
Advantageously, the reception module comprises at least one first connection portion and at least one second connection portion extending from opposite faces of the at least one extension portion, allowing therefore to connect the reception module simultaneously with another reception module located above said reception module and with another reception module located below said reception module.
According to an embodiment, the reception module comprises at least one magnetic element, mounted in the at least one reception space, for transferring electrical energy of an alternating current into electrical energy of a direct current.
The invention also relates to a battery charger, in particular for use in an electrical or hybrid vehicle, said battery charger comprising at least one conversion unit configured for converting an alternating phase current into a direct current, said at least one conversion unit comprising a reception module as previously described and at least one magnetic element (e.g. a transformer, an inductor…) arranged in the at least one reception space of said reception module.
According to an aspect of the present invention, the at least one conversion unit comprises a circuit board, the reception module being mounted onto said circuit board.
According to an aspect of the present invention, the battery charger comprises a housing, the at least one conversion unit being mounted in said housing.
In an embodiment, the battery charger comprises one conversion unit.
In another embodiment, the battery charger comprises a plurality of conversion units connected through their respective connection portions.
In a preferred embodiment, the conversion units are stacked one above the others in the housing.
Advantageously, the conversion units are electrically connected.
In a first embodiment, the conversion units are connected in a single-phase configuration. This allows advantageously the battery charger to be scalable as several conversion units may be connected in parallel, making the design of the charger very easy. The power of the battery charger may therefore be defined by the number of connected conversion units arranged in the housing. For example, if the power of a conversion unit is 3.5 kW, the connection in parallel of three conversion units provides a 10.5 kW charger.
In a second embodiment, the conversion units are connected in a three-phase configuration. For example, the battery charger may comprise three conversion units connected through their respective connection portions, each conversion unit working at a different phase current.
The invention also concerns an electrical or a hybrid vehicle comprising an onboard battery charger as previously described.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings:
- Figure 1 illustrates a perspective front view of an embodiment of the battery charger according to the invention;
- Figure 2 illustrates a perspective bottom view of the battery charger of Figure 1;
- Figure 3 illustrates a top view of the housing of the battery charger of Figure 1;
- Figure 4 illustrates a perspective top view of the housing of Figure 3;
- Figure 5 illustrates a perspective top view of an embodiment of a conversion unit according to the invention;
- Figure 6 illustrates a perspective bottom view of the conversion unit of Figure 5;
- Figure 7 illustrates a perspective bottom view of a reception module of the conversion unit of Figure 6;
- Figure 8 illustrates a perspective top view of the reception module of Figure 7;
- Figure 9 illustrates a rear view of the reception module of Figure 7;
- Figure 10 illustrates a longitudinal horizontal cross section top view of the reception module of Figure 7;
- Figure 11 illustrates a perspective transversal cross section view of the reception module of Figure 7;
- Figure 12 illustrates a perspective longitudinal vertical cross section view of the reception module of Figure 7;
- Figure 13 illustrates another perspective longitudinal vertical cross section view of the reception module of Figure 7;
- Figure 14 illustrates a perspective top view of the reception module of Figure 7, a magnetic assembly being mounted into said reception module;
- Figure 15 illustrates a perspective top view of the magnetic assembly of Figure 14;
- Figure 16 illustrates a perspective bottom view of the magnetic assembly of Figure 15;
- Figure 17 illustrates a perspective top view of the conversion unit of Figure 5 further comprising connection tubes;
- Figure 18 illustrates a perspective bottom view of the conversion unit of Figure 17;
- Figure 19 illustrates a perspective partial left front view of the battery charger 1 of Figure 1 comprising a first conversion unit, the housing being transparent;
- Figure 20 illustrates a perspective partial left front view of the battery charger 1 of Figure 19 further comprising a first set of support columns;
- Figure 21 illustrates a perspective partial left front view of the battery charger 1 of Figure 20 further comprising a second conversion unit;
- Figure 22 illustrates a perspective partial left front view of the battery charger 1 of Figure 21 further comprising a second set of support columns;
- Figure 23 illustrates a perspective partial left front view of the battery charger 1 of Figure 22 further comprising a third conversion unit;
- Figure 24 illustrates a perspective partial left front view of the battery charger 1 of Figure 23 further comprising conversion unit fixing screws, an AC connector and a DC connector;
- Figure 25 illustrates a perspective partial left front view of the battery charger 1 of Figure 24 further comprising a cover;
- Figure 26 illustrates an embodiment of the method according to the invention.
DETAILED DESCRIPTION
An embodiment of a battery charger according to the invention will now be described in reference to Figures 1 to 26. In this example, the battery charger is configured for  being mounted onboard an electrical or hybrid vehicle. However, the invention could apply to any type of electrical equipment, in particular any type of electrical equipment that allows charging, in particular any type of battery charger that allows charging a DC battery using an AC power supply source.
In the preferred embodiment described hereafter, the battery charger is configured for charging a battery from an AC power supply source such as e.g. a domestic or public grid. In other words, the battery charger is configured for receiving at least one AC current from an AC power supply source, converting said at least one AC current into a DC current, supplying said DC current to charge a battery. The received at least one AC current may be a single-phase AC current or several multi-phase AC currents (e.g. three phase-shifted AC currents) .
In the exemplary embodiment illustrated on Figures 1 to 25, the battery charger 1 comprises three conversion units 10. In another embodiment, the battery charger 1 could comprise more or less than three conversion units 10 without limiting the scope of the present invention.
Figures 1 to 4 illustrate an embodiment of battery charger 1 according to the invention. In the present description, the faces of any element of the battery charger 1 are defined in reference to Figures 1 and 2 as follows: top T face, bottom B face, front F face, rear K face, left L face and right R face. Any reference (top, bottom, front, rear, left or right) to a position of an element of the battery charger 1 will therefore be made hereafter using those definitions.
The battery charger 1 comprises a housing 2 for example made of a metal or a plastic material. The housing 2 comprises a bottom wall 2A and a rectangular side wall 2B, coming as one-piece element, and a cover 2C, fixed on the sidewall 2B using screws 2D in order to close said housing 2. The battery charger 1 also comprises an AC connector 3 and a DC connector 4. The AC connector 3 allows receiving the at least one AC current delivered by the power supply source (not shown) . The DC connector 4 allows delivering the DC current generated by the battery charger 1 to a battery (not shown) . For example, such battery may be a high-voltage battery, i.e.greater than 60 V. In this non-limitative example, the battery charger 1 further comprises a signal connector 5 as it will be described hereafter.
In reference to Figures 3 and 4, the bottom wall 2A and the rectangular side wall 2B of the housing 2 define an internal space configured for receiving the conversion units 10 (e.g. as shown on Figures 17 to 25) . In this example, the bottom wall 2A comprises a plurality of support posts 2A1 (nine in the illustrated example of Figure 3) and two positioning posts 2A2 for supporting a circuit board 11 of a conversion unit 10.
Each positioning post 2A2 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a protruding end adapted to engage in a hole formed in the circuit board 11 for positioning said circuit board 11 on the support posts 2A1.
Each support post 2A1 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a hollow end adapted for receiving a tooth of a support column 20-1 as it will be described hereafter. The support posts 2A1 and the positioning posts 2A2 may be formed in the bottom wall 2A of the housing 2 or may be insert pieces.
As illustrated on Figure 3, two apertures 2A3 are formed in the bottom wall 2A to allow the passage of two connection tubes 6 (as shown on Figure 2) configured for being connected to a cooling module (not shown) allowing the circulation of a cooling fluid, e.g. such as water, for cooling the battery charger 1, as explained hereafter.
As illustrated on Figure 4, an aperture 2B1 is formed on the front F face of the side wall 2B to receive a signal connector 5 of a conversion unit 10 (as shown on Figure 1) .
In the example illustrated on Figures 5 and 6, each conversion unit 10 comprises a circuit board 11, some capacitors elements 12, a reception module 13, a magnetic assembly 14 mounted onto said reception module 13, an input filter 15 and an output filter 16.
In this example, the circuit board 11 is a Printed Circuit Board (PCB) configured for electrically connecting the capacitors elements 12, the reception module 13, the magnetic assembly 14, the input filter 15, the output filter 16 and, if present, the signal connector 5.
The signal connector 5 is optional and is configured for exchanging signals between the circuit board 11 and an external equipment (not shown) , e.g. such as a test or a control equipment.
The capacitors elements 12 are configured for stabilizing the internal DC link intermediate voltage.
The reception module 13 is configured for receiving the magnetic assembly 14. To this end, as illustrated on Figure 7, the reception module 13 comprises a bottom wall 13A extending along a longitudinal plan β and a side wall 13B extending from said bottom wall 13A orthogonally to said longitudinal plan β.
In reference to Figures 7 and 8, the reception module 13 comprises a first and second extension portions 13C-1, 13-C2 extending from the rear K face of the side wall 13B. Each extension portion 13C-1, 13C-2 comprises a first connection portion 13C1 extending from the top T face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan β.  Each extension portion 13C-1, 13C-2 comprises a second connection portion 13C2 extending from the bottom B face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan β, said bottom B face being opposite to said top T face.
Each first connection portions 13C1 is configured to fit into a second connection portions 13C2 of an identical reception module 13, said first connection portion 13C1 and said second connection portion 13C2 being complementary portions and being fluidically connected.
In this preferred embodiment, as shown on Figures 10 and 13, the first connection portion 13C1 and the second connection portion 13C2 of a same extension portion 13C-1, 13C-2 are advantageously fluidically connected through a traversing opening 13C4 to allow the passage of a cooling fluid, e.g. such as water, throughout said extension portion 13C-1, 13C-2. In this example, the first connection portion 13C1 and the second connection portion 13C2 are part of a tube.
In order to allow a liquid tight (i.e. leak proof) connection, in reference to Figure 8, the first connection portion 13C1 is in the shape of a hollow shaft whereas, in reference to Figure 9, the second connection portion 13C2 comprises at its free end a chamfer (i.e. a bevel) 13C21 and, below said chamfer 13C21, a groove 13C22 forming with said chamfer 13C21 a shoulder 13C23.
A gasket joint may further be inserted into the groove 13C22 to seal the connection with a first connection portion 13C1 of a corresponding extension portion 13C-1, 13C-2 of another reception module 13.
The shape of the chamfer 13C21 and the flexibility created by the groove 13C22 allow inserting easily the second connection portion 13C2 into a first connection portion 13C1 of another reception module 13 while the shoulder 13C23 allows retaining said second connection portion 13C2 into said first connection portion 13C1.
As illustrated on Figure 8, the reception module 13 comprises also first fixing portions 13C3, protruding from the extension portions 13C-1, 13C-2 in parallel to the first connection portion 13C1, and second fixing portions 13D, extending from the side wall 13B. A hole is formed on the protruding end of said first and second fixing portions 13C3, 13D for fixing the reception module 13 onto the bottom B face of the circuit board 11, as illustrated on Figures 5 and 6.
In reference to Figure 5 and 6, the reception module 13 also comprises some electronic components 13F, such as e.g. transistors or diodes, mounted on external side of the  side wall 13B. These electronic components are maintained by a clamper 13G against the side wall 13B.
In this example, the bottom wall 13A and the side wall 13B define two internal spaces called “reception spaces” 13E1, 13E2. The first reception space 13E1 and the second reception space 13E2 are separated by a separation wall 13E3 in order to receive different electrical components of the magnetic assembly 14 as described hereafter.
As illustrated on Figures 10 to 13, a cooling channel 13B1 is formed inside the side wall 13B linking the traversing opening 13C4 of the first extension portion 13C-1 to the traversing opening 13C4 of the second extension portion 13C-2. The cooling channel 13B1 is configured to receive a cooling fluid allowing the absorption of heat generated by the magnetic assembly 14 in the reception spaces 13E1, 13E2 and the by the electronic component 13F located on the external part of the side wall 13B. In other words, the cooling channel 13B1 defines a cooling circuit allowing the flow F1 of a cooling fluid between the first extension portion 13C-1 and the second extension portion 13C-2. We shall note that the direction of the flow F1 as shown on Figures 10 and 13 could also be inverted without falling out of the scope of the present invention.
As illustrated on Figures 15 and 16, the magnetic assembly 14 comprises a support wall 14A and two  magnetic elements  14B, 14C mounted on said support wall 14A.
In this example, the magnetic assembly 14 comprises an inductor element 14B and a transformer 14C. The inductor element 14B is configured for correcting the power factor of the transformer 14C. The transformer 14C is configured for transferring electrical energy of the at least one AC current received from the power source through the AC connector 3 into electrical energy of the DC current delivered through the DC connector 4, e.g. to a battery of a vehicle.
The input filter 15 is configured for filtering noise in the AC current signals received from the power source via the AC connector 3. The output filter 16 is configured for filtering noise in the DC current signal, e.g. delivered to the battery of the vehicle via the DC connector 4.
The electrical connections between the conversion units 10-1, 10-2, 10-3 may be adapted depending on the configuration of the batterycharger 1. For example, for a single-phase battery charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 are electrically connected together. For a three-phase batterycharger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 is connected respectively to phase a different phase (e.g. A, B and C) .
An exemplary embodiment of the method for assembling the battery charger 1 will now be described in reference to Figures 17 to 26.
As illustrated on Figure 17, in a first step S1, two connection tubes 6 are mounted on the second connection portions 13C2 of a first conversion unit 10-1 so that said first conversion unit 10-1 may further be connected to a cooling module in a cooling circuit.
The first conversion unit 10-1 illustrated on Figure 18 is then placed in the housing 2 on the support posts 2A1 and the positioning posts 2A2 (not shown on Figures 19 to 25 for the sake of clarity) in a step S2 as illustrated on Figure 19.
In a step S3, as illustrated on Figure 20, a first set of support columns 20-1 is fixed on the circuit board 11 of the first conversion unit 10-1 in order to support a second conversion unit 10-2. Each support column 20-1 comprises a bottom end having a tooth inserted into a corresponding hole formed in the circuit board 11 and a corresponding hollow end of a support post 2A1.
As illustrated on Figure 21, in a step S4, a second conversion unit 10-2 is mounted on the first set of columns 20-1 and the first conversion unit 10-1. To this end, the second connection portions 13C2 of the second conversion unit 10-2 are inserted into the first connection portions 13C1 of the first conversion unit 10-1 in to order to connect their two reception modules 13.
More precisely, the circuit board 11 of the second conversion unit 10-2 is placed on the first set of support columns 20-1 and the second conversion unit 10-2 is electrically connected to the first conversion unit 10-1.
In a step S5, as illustrated on Figure 22, a second set of support columns 20-2 is fixed on the circuit board 11 of the second conversion unit 10-2 in order to support a third conversion unit 10-3.
In this example, the support columns 20-2 of the second set of support columns 20-2 are identical to the support columns 20-1 of the first set of support columns 20-1. In this case, the tooth of the bottom end of each support column 20-1 is inserted, through a corresponding hole in the circuit board 11, in the corresponding hole of the top end of the support column 20-1 located under.
As illustrated on Figure 23, in a step S6, a third conversion unit 10-3 is arranged on the second set of columns 20-2 and electrically connected to the second conversion unit 10-2. A signal connector 5 is mounted on the corresponding apertures 2B1 of the housing 2 to allow  collecting signals from the circuit boards 11 of the first, the second and the third conversion units 10-1, 10-2, 10-3.
The first connection portions 13C1 of the third conversion unit 10-3 are blocked, e.g. using adapted caps, in order to close the cooling circuit running from the connection portion 6, the extension portions 13C-1, 13-C2 and the cooling channels 13B1 of each of the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
Alternatively, the first connection portions 13C1 of the third conversion unit 10-3 may be formed into the same material as the extension portions 13C-1, 13C-2 so that the third conversion unit 10-3 is ready to work as a closing element of the cooling circuit.
In a step S7, some screws 25 are used to fix the circuit board 11 of the third conversion unit 10-3 to the second set of support columns 20-2 through corresponding holes of said circuit board 11, and a AC connector 3 and a DC connector 4 are mounted on the side wall 2B of the housing 2 and electrically connected to the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
Advantageously, the invention allows to electrically connect the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 in a single-phase configuration (i.e. the battery charger is a single-phase battery charger configured for being connected to a single-phase AC power supply source) or in a three-phase configuration (i.e. the battery charger is a three-phase battery charger configured for being connected to a three-phase AC power supply source) .
In the latter configuration, each one of the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 convert a different AC current into a same DC current.
In a step S8, as illustrated on Figure 25, the cover 2C is screwed onto the side wall 2B using screws 2D and the battery charger 1 is ready to be mounted onboard a vehicle.
The reception module 13 according to the invention allows therefore evacuating efficiently the heat generated by the  magnetic components  14B, 14C mounted inside the reception spaces 13E1, 13E2 and the heat generated by the electronic component 13F mounted on the external part of the side wall 13B, avoiding therefore to damage the battery charger 1.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and  embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure.
More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.

Claims (15)

  1. A reception module (13) , in particular for use in a battery charger (1) , said reception module (13) comprising a bottom wall (13A) extending along a longitudinal plan (β) and a side wall (13B) extending from said bottom wall (13A) orthogonally to said longitudinal plan (β) , said bottom wall (13A) and said side wall (13B) defining at least one internal space called “reception space” (13E1, 13E2) , said at least one reception space (13E1, 13E2) being configured for receiving at least one magnetic element (14B, 14C) for transferring electrical energy of an alternating current into electrical energy of a direct current, said reception module (13) comprising at least one connection portion (13C1, 13C2) extending orthogonally to said longitudinal plan (β) and being configured to fit into at least one complementary connection portion (13C2, 13C1) of an identical reception module (13) .
  2. A reception module (13) according to claim 1, wherein the reception module (13) is a one-piece element.
  3. A reception module (13) according to any of the preceding claims, wherein the at least one connection portion (13C1, 13C2) is part of a tube.
  4. A reception module (13) according to the preceding claim, wherein the tube is a part of a cooling system and is configured to allow a cooling fluid to flow through the reception module (13) .
  5. A reception module (13) according to any of the preceding claims, wherein a cooling channel (13B1) is formed inside the side wall (13B) to allow a cooling fluid to flow from one connection portion (13C1, 13C2) to another connection portion (13C1, 13C2) of the reception module (13) .
  6. A reception module (13) according to any of the preceding claims, wherein, the bottom wall (13A) being located on a bottom face of the reception module (13) , the at least one connection portion (13C1, 13C2) extends from said bottom face of the reception module (13) .
  7. A reception module (13) according to any of the preceding claims, wherein the at least one connection portion extends (13C1, 13C2) from a top face of the reception module (13) , opposite to the bottom face.
  8. A reception module (13) according to any of the preceding claims, further comprising at least one extension portion (13C-1, 13C-2) extending from the side wall (13B) and the at least one connection portion (13C1, 13C2) extends from said extension portion (13C-1, 13C-2) .
  9. A reception module (13) according to any of the preceding claims, further comprising at least one first connection portion (13C1) and at least one second connection portion (13C2) extending from opposite faces of the at least one extension portion (13C-1, 13C-2) .
  10. A reception module (13) according to any of the preceding claims, further comprising at least one magnetic element (14B, 14C) , mounted in the at least one reception space (13E1, 13E2) , for transferring electrical energy of an alternating current into electrical energy of a direct current.
  11. A battery charger (1) , in particular for use in an electrical or hybrid vehicle, said battery charger (1) comprising at least one conversion unit (10; 10-1, 10-2, 10-3) configured for converting an alternating phase current into a direct current, said at least one conversion unit (10; 10-1, 10-2, 10-3) comprising a reception module (13) , according to any of the preceding claims, and at least one magnetic element  (14B, 14C) arranged in the at least one reception space (13E1, 13E2) of said reception module (13) .
  12. A battery charger (1) according to the preceding claim, wherein the at least one conversion unit (10; 10-1, 10-2, 10-3) comprises a circuit board (11) , the reception module (13) being mounted onto said circuit board (11) .
  13. A battery charger (1) according to any of the preceding claims 11 and 12, further comprising a housing (2) , the at least one conversion unit (10; 10-1, 10-2, 10-3) being mounted in said housing (2) .
  14. A battery charger (1) according to any of the preceding claims 11 to 13, said battery charger (1) comprising a plurality of conversion units (10-1, 10-2, 10-3) electrically connected in a single-phase configuration.
  15. A battery charger (1) according to any of the preceding claims 11 to 13, said battery charger (1) comprising a plurality of conversion units (10-1, 10-2, 10-3) electrically connected in a three-phase configuration.
PCT/CN2017/079751 2017-04-07 2017-04-07 A battery charger for use in an electrical or hybrid vehicle WO2018184216A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780091680.4A CN111066378B (en) 2017-04-07 2017-04-07 Accommodating module and battery charger
PCT/CN2017/079751 WO2018184216A1 (en) 2017-04-07 2017-04-07 A battery charger for use in an electrical or hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079751 WO2018184216A1 (en) 2017-04-07 2017-04-07 A battery charger for use in an electrical or hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2018184216A1 true WO2018184216A1 (en) 2018-10-11

Family

ID=63712381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079751 WO2018184216A1 (en) 2017-04-07 2017-04-07 A battery charger for use in an electrical or hybrid vehicle

Country Status (2)

Country Link
CN (1) CN111066378B (en)
WO (1) WO2018184216A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090251851A1 (en) * 2008-04-03 2009-10-08 Mcgill Sr Terrence Michael Telecom power distribution unit with integrated filtering and telecom shelf cooling mechanisms
JP2013094023A (en) * 2011-10-27 2013-05-16 Hitachi Automotive Systems Ltd Electric power conversion apparatus
US20130235527A1 (en) * 2012-03-06 2013-09-12 Mission Motor Company Power electronic system and method of assembly
CN104604354A (en) * 2012-08-29 2015-05-06 三菱电机株式会社 In-vehicle power conversion apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4215041C3 (en) * 1991-05-22 1997-09-25 Siemens Ag Electronic control unit
FI961735A0 (en) * 1996-04-22 1996-04-22 Control Ab Oy Ensto Moduluppbyggd kaopa
JP2006216303A (en) * 2005-02-02 2006-08-17 Denso Corp Cooling structure of heat radiating unit
CA2666014C (en) * 2009-05-15 2016-08-16 Ruggedcom Inc. Open frame electronic chassis for enclosed modules
CN102467206B (en) * 2010-11-10 2013-09-18 英业达股份有限公司 Server system
CN204887839U (en) * 2015-07-23 2015-12-16 中兴通讯股份有限公司 Veneer module level water cooling system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090251851A1 (en) * 2008-04-03 2009-10-08 Mcgill Sr Terrence Michael Telecom power distribution unit with integrated filtering and telecom shelf cooling mechanisms
JP2013094023A (en) * 2011-10-27 2013-05-16 Hitachi Automotive Systems Ltd Electric power conversion apparatus
US20130235527A1 (en) * 2012-03-06 2013-09-12 Mission Motor Company Power electronic system and method of assembly
CN104604354A (en) * 2012-08-29 2015-05-06 三菱电机株式会社 In-vehicle power conversion apparatus

Also Published As

Publication number Publication date
CN111066378A (en) 2020-04-24
CN111066378B (en) 2021-10-29

Similar Documents

Publication Publication Date Title
US9362040B2 (en) Coldplate with integrated electrical components for cooling thereof
JP5457435B2 (en) Modular high power drive stack cooled by vaporizable dielectric fluid
US9578790B2 (en) Power conversion apparatus
JP6032149B2 (en) Power converter
CN103907278B (en) DC DC converter apparatus and power inverter
JP4848187B2 (en) Power converter
CN102651354A (en) Semiconductor device
US11390175B2 (en) Accumulator
US10660229B2 (en) Electrical device and manufacturing method of the same
JP2014113053A (en) Power converter
JP2016119816A (en) Electric power conversion device
WO2018184217A1 (en) Voltage converter for use in electrical or hybrid vehicle
US11489453B2 (en) Power module with defined charge-reversal path and production method
WO2018184215A1 (en) A battery charger for use in an electrical or hybrid vehicle
JP6023565B2 (en) Power converter
CN103269169A (en) Thyristor rectifier module
WO2018184216A1 (en) A battery charger for use in an electrical or hybrid vehicle
JP6136651B2 (en) Power converter
JP2011155838A (en) Power converter
CN214014071U (en) Motor control device, driving assembly and vehicle with optimized wiring
JP6111891B2 (en) Power supply
CN115176380A (en) Module layer and battery system constructed by same
CN112600364A (en) Driving assembly and vehicle that radially are qualified for next round of competitions and connect
JP2013046468A (en) Bus bar module and power conversion apparatus
JP2021197831A (en) Electrical unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 31/01/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17904989

Country of ref document: EP

Kind code of ref document: A1