WO2018184217A1 - Voltage converter for use in electrical or hybrid vehicle - Google Patents

Voltage converter for use in electrical or hybrid vehicle Download PDF

Info

Publication number
WO2018184217A1
WO2018184217A1 PCT/CN2017/079752 CN2017079752W WO2018184217A1 WO 2018184217 A1 WO2018184217 A1 WO 2018184217A1 CN 2017079752 W CN2017079752 W CN 2017079752W WO 2018184217 A1 WO2018184217 A1 WO 2018184217A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion unit
voltage converter
support columns
reception
reception module
Prior art date
Application number
PCT/CN2017/079752
Other languages
French (fr)
Inventor
Hongzhou ZHOU
Ronghui Li
Gang Yang
Original Assignee
Valeo Siemens Eautomotive Shenzhen Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens Eautomotive Shenzhen Co., Ltd filed Critical Valeo Siemens Eautomotive Shenzhen Co., Ltd
Priority to PCT/CN2017/079752 priority Critical patent/WO2018184217A1/en
Priority to CN201780091674.9A priority patent/CN110959239B/en
Publication of WO2018184217A1 publication Critical patent/WO2018184217A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20927Liquid coolant without phase change
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/327Means for protecting converters other than automatic disconnection against abnormal temperatures

Definitions

  • the present invention relates to a voltage converter, in particular for use in an electrical or a hybrid vehicle, and relates more particularly to a voltage converter comprising at least a set of support columns, said voltage converter forming in particular a battery charger.
  • the invention aims more precisely at providing a voltage converter that is advantageously easily scalable, in particular in order to deliver different power levels depending on the intended use.
  • the propulsion system comprises a high-voltage power supply battery that delivers a supply voltage to an electrical motor for the propulsion of the vehicle.
  • the propulsion system comprises a voltage converter forming a battery charger called “On-Board Charger” (OBC) that is configured to be connected to an Alternating Current (AC) electrical network, such as e.g. a local or a national power grid.
  • OBC On-Board Charger
  • AC Alternating Current
  • the On-Board Charger converts one or several alternating currents received from the AC electrical network into a direct current that allows charging the battery.
  • the On-Board Charger comprises a plurality of internal components such as e.g. one or several transformers, one or several inductors, some diodes, some transistors, etc. These internal components are mounted on a PCB which is placed in a housing equipped with an AC input connector and a DC output connector and which may further be mounted onboard a vehicle.
  • the charger may further comprise a heatsink module, which is arranged under said at least one transformer to cool the said at least one transformer down.
  • the On-Board Charger may be a single-phase or a three-phase charger for connecting respectively to a single-phase or a three-phase AC electrical power source. It is therefore necessary to design the charger, i.e. to select the number and type of internal components, depending on the power and the type of On-Board Charger (i.e. single-phase or three-phase) , prior to mounting the internal components onto the PCB. Such a charger may therefore be complex to design and costly as it is intended to work only with a specific predetermined type of AC electrical network. Furthermore, the heat generated by the internal components may not be evacuated properly, which may damage the On-Board Charger.
  • the present invention relates to a voltage converter, in particular for use in an electrical or hybrid vehicle, said voltage converter comprising a housing, at least a first and a second conversion units, mounted in said housing and configured for converting an alternating phase current into a direct current, and at least one set of support columns mounted on said first conversion unit to support said second conversion unit.
  • the set of support columns allow advantageously stacking a plurality of conversion units, providing therefore a scalable charger which is easy to design and to assemble.
  • each of the at least first and second conversion units comprises a circuit board, the at least one set of support columns being mounted on the circuit board of the first conversion unit in order to support the circuit board of the second conversion unit.
  • each support column of the at least one set of support columns comprises a first end, said first end comprising a tooth (or a sprocket) inserted into a corresponding reception hole formed in the circuit board of the first conversion unit.
  • each support column of the at least one set of support columns comprises a second end, opposite to the first end, said second end comprising a flat portion.
  • the flat portion of the second end delimitates a central reception hole.
  • the central reception hole is configured for receiving a tooth of another support column for supporting another conversion unit or a screw for fixing the circuit of the second conversion unit or of a third conversion unit.
  • the at least one set of support columns comprises a plurality of support columns, preferentially at least four, even more preferentially at least eight, for efficiently supporting the second conversion unit.
  • the support columns of the at least one set of support columns are made of a metal material, such as e.g. nickel plating brass.
  • each of the at least first and second conversion units comprises a reception module, said reception module comprising a bottom wall extending along a longitudinal plan and a side wall extending from said bottom wall orthogonally to said longitudinal plan, said bottom wall and said side wall defining at least one internal space called “reception space” , said at least one reception space being configured for receiving at least one magnetic element for transferring electrical energy of an alternating current into electrical energy of a direct current.
  • the reception module is mounted onto the circuit board of the at least first or second conversion unit.
  • the reception module comprises at least one connection portion extending orthogonally to the longitudinal plan, the at least first and second conversion units being connected through their respective connection portions.
  • the at least one connection portion allows advantageously mounting the second conversion unit on the first conversion unit, one above the other, in particular in order to build a scalable charger.
  • the at least one connection portion is part of a tube. Connecting two reception modules together is therefore easy and fast.
  • the tube is a part of a cooling system and is configured to allow a cooling fluid to flow through the reception module.
  • a cooling channel is formed inside the side wall to allow a cooling fluid to flow from one connection portion to another connection portion of the reception module.
  • Such cooling channel allows evacuating the heat produced by at least one magnetic element mounted in the internal space of the reception module.
  • the bottom wall being located on a bottom face of the reception module, the at least one connection portion extends from said bottom face of the reception module, allowing therefore to connect the reception module with another reception module located below said reception module.
  • the at least one connection portion extends from a top face of the reception module, opposite to the bottom face, allowing therefore to connect the reception module with another reception module located above said reception module.
  • the reception module comprises at least one extension portion extending from the side wall, the at least one connection portion extending from said extension portion, allowing therefore to connect the reception module with another reception module while providing access to the internal space of the reception module.
  • the reception module comprises at least one first connection portion and at least one second connection portion extending from opposite faces of the at least one extension portion, allowing therefore to connect the reception module simultaneously with another reception module located above said reception module and with another reception module located below said reception module.
  • the reception module is a one-piece element, i.e. the at least one connection portion, the bottom wall and the side wall originate from the same material, e.g. by molding a plastic material.
  • Such one piece element is thus both easy to build and resistant.
  • the reception module comprises at least one magnetic element, mounted in the at least one reception space, for transferring electrical energy of an alternating current into electrical energy of a direct current.
  • the conversion units are electrically connected.
  • the voltage converter forms a battery charger, in particular for charging a battery on board a vehicle from an outer electrical network.
  • the conversion units are connected in a single-phase configuration.
  • the power of the battery charger may therefore be defined by the number of connected conversion units arranged in the housing. For example, if the power of a conversion unit is 3.5 kW, the connection in parallel of three conversion units provides a 10.5 kW charger.
  • the conversion units are connected in a three-phase configuration.
  • the battery charger may comprise three conversion units connected through their respective connection portions, each conversion unit working at a different phase current.
  • the invention also concerns an electrical or a hybrid vehicle comprising an onboard voltage converter as previously described.
  • FIG. 1 illustrates a perspective front view of an embodiment of the battery charger according to the invention
  • FIG. 2 illustrates a perspective bottom view of the battery charger of Figure 1;
  • FIG. 3 illustrates a top view of the housing of the battery charger of Figure 1;
  • Figure 4 illustrates a perspective top view of the housing of Figure 3;
  • FIG. 5 illustrates a perspective top view of an embodiment of a conversion unit according to the invention
  • FIG. 7 illustrates a perspective bottom view of a reception module of the conversion unit of Figure 6;
  • FIG. 8 illustrates a perspective top view of the reception module of Figure 7;
  • FIG. 9 illustrates a rear view of the reception module of Figure 7;
  • FIG. 10 illustrates a longitudinal horizontal cross section top view of the reception module of Figure 7;
  • FIG. 11 illustrates a perspective transversal cross section view of the reception module of Figure 7;
  • FIG. 12 illustrates a perspective longitudinal vertical cross section view of the reception module of Figure 7;
  • FIG. 13 illustrates another perspective longitudinal vertical cross section view of the reception module of Figure 7;
  • FIG. 14 illustrates a perspective top view of the reception module of Figure 7, a magnetic assembly being mounted into said reception module;
  • Figure 15 illustrates a perspective top view of the magnetic assembly of Figure 14
  • Figure 16 illustrates a perspective bottom view of the magnetic assembly of Figure 15;
  • FIG. 17 illustrates a perspective view of a support column
  • FIG. 18A illustrates a perspective top view of the conversion unit of Figure 5 further comprising connection tubes;
  • Figure 18B illustrates a perspective bottom view of the conversion unit of Figure 18A
  • FIG. 19 illustrates a perspective partial left front view of the battery charger 1 of Figure 1 comprising a first conversion unit, the housing being transparent;
  • FIG. 20 illustrates a perspective partial left front view of the battery charger 1 of Figure 19 further comprising a first set of support columns;
  • FIG. 21 illustrates a perspective partial left front view of the battery charger 1 of Figure 20 further comprising a second conversion unit
  • FIG. 22 illustrates a perspective partial left front view of the battery charger 1 of Figure 21 further comprising a second set of support columns;
  • FIG. 23 illustrates a perspective partial left front view of the battery charger 1 of Figure 22 further comprising a third conversion unit
  • FIG. 24 illustrates a perspective partial left front view of the battery charger 1 of Figure 23 further comprising conversion unit fixing screws, an AC connector and a DC connector;
  • FIG. 25 illustrates a perspective partial left front view of the battery charger 1 of Figure 24 further comprising a cover
  • the voltage converter is a battery charger configured for being mounted onboard an electrical or hybrid vehicle.
  • the invention could apply to any type of electrical equipment, in particular any type of voltage converter, in particular any type of battery charger that allows e.g. charging a DC battery using an AC power supply source.
  • the battery charger is configured for charging a battery from an AC power supply source such as e.g. a domestic or public grid.
  • the battery charger is configured for receiving at least one AC current from an AC power supply source, converting said at least one AC current into a DC current, supplying said DC current to charge a battery.
  • the received at least one AC current may be a single-phase AC current or several multi-phase AC currents (e.g. three phase-shifted AC currents) .
  • the battery charger 1 comprises three conversion units 10. In another embodiment, the battery charger 1 could comprise more or less than three conversion units 10 without limiting the scope of the present invention.
  • FIGS 1 to 4 illustrate an embodiment of battery charger 1 according to the invention.
  • the faces of any element of the battery charger 1 are defined in reference to Figures 1 and 2 as follows: top T face, bottom B face, front F face, rear K face, left L face and right R face. Any reference (top, bottom, front, rear, left or right) to a position of an element of the battery charger 1 will therefore be made hereafter using those definitions.
  • the battery charger 1 comprises a housing 2 for example made of a metal or a plastic material.
  • the housing 2 comprises a bottom wall 2A and a rectangular side wall 2B, coming as one-piece element, and a cover 2C, fixed on the side wall 2B using screws 2D in order to close said housing 2.
  • the battery charger 1 also comprises an AC connector 3 and a DC connector 4.
  • the AC connector 3 allows receiving the at least one AC current delivered by the power supply source (not shown) .
  • the DC connector 4 allows delivering the DC current generated by the battery charger 1 to a battery (not shown) .
  • a battery may be a high-voltage battery, i.e. greater than 60 V.
  • the battery charger 1 further comprises a signal connector 5 as it will described hereafter.
  • the bottom wall 2A and the rectangular side wall 2B of the housing 2 define an internal space configured for receiving the conversion units 10 (e.g. as shown on Figures 18A to 25) .
  • the bottom wall 2A comprises a plurality of support posts 2A1 (nine in the illustrated example of Figure 3) and two positioning posts 2A2 for supporting a circuit board 11 of a conversion unit 10.
  • Each positioning post 2A2 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a protruding end adapted to engage in a hole formed in the circuit board 11 for positioning said circuit board 11 on the support posts 2A1.
  • Each support post 2A1 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a hollow end adapted for receiving a tooth of a support column 20-1 as it will be described hereafter.
  • the support posts 2A1 and the positioning posts 2A2 may be formed in the bottom wall 2A of the housing 2 or may be insert pieces.
  • two apertures 2A3 are formed in the bottom wall 2A to allow the passage of two connection tubes 6 (as shown on Figure 2) configured for being connected to a cooling module (not shown) allowing the circulation of a cooling fluid, e.g. such as water, for cooling the battery charger 1, as explained hereafter.
  • a cooling fluid e.g. such as water
  • an aperture 2B1 is formed on the front F face of the side wall 2B to receive a signal connector 5 of a conversion unit 10 (as shown on Figure 1) .
  • each conversion unit 10 comprises a circuit board 11, some capacitors elements 12, a reception module 13, a magnetic assembly 14 mounted onto said reception module 13, an input filter 15 and an output filter 16.
  • the circuit board 11 is a Printed Circuit Board (PCB) configured for electrically connecting the capacitors elements 12, the reception module 13, the magnetic assembly 14, the input filter 15, the output filter 16 and, if present, the signal connector 5.
  • PCB Printed Circuit Board
  • the signal connector 5 is optional and is configured for exchanging signals between the circuit board 11 and an external equipment (not shown) , e.g. such as a test or a control equipment.
  • the capacitors elements 12 are configured for stabilizing the internal DC link intermediate voltage.
  • the reception module 13 is configured for receiving the magnetic assembly 14. To this end, as illustrated on Figure 7, the reception module 13 comprises a bottom wall 13A extending along a longitudinal plan ⁇ and a side wall 13B extending from said bottom wall 13A orthogonally to said longitudinal plan ⁇ .
  • the reception module 13 comprises a first and second extension portions 13C-1, 13-C2 extending from the rear K face of the side wall 13B.
  • Each extension portion 13C-1, 13C-2 comprises a first connection portion 13C1 extending from the top T face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan ⁇ .
  • Each extension portion 13C-1, 13C-2 comprises a second connection portion 13C2 extending from the bottom B face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan ⁇ , said bottom B face being opposite to said top T face.
  • Each first connection portions 13C1 is configured to fit into a second connection portions 13C2 of an identical reception module 13, said first connection portion 13C1 and said second connection portion 13C2 being complementary portions and being fluidically connected.
  • the first connection portion 13C1 and the second connection portion 13C2 of a same extension portion 13C-1, 13C-2 are advantageously fluidically connected through a traversing opening 13C4 to allow the passage of a cooling fluid, e.g. such as water, throughout said extension portion 13C-1, 13C-2.
  • a cooling fluid e.g. such as water
  • the first connection portion 13C1 and the second connection portion 13C2 are part of a tube.
  • the first connection portion 13C1 is in the shape of a hollow shaft whereas, in reference to Figure 9, the second connection portion 13C2 comprises at its free end a chamfer (i.e. a bevel) 13C21 and, below said chamfer 13C21, a groove 13C22 forming with said chamfer 13C21 a shoulder 13C23.
  • a chamfer i.e. a bevel
  • a gasket joint may further be inserted into the groove 13C22 to seal the connection with a first connection portion 13C1 of a corresponding extension portion 13C-1, 13C-2 of another reception module 13.
  • the shape of the chamfer 13C21 and the flexibility created by the groove 13C22 allow inserting easily the second connection portion 13C2 into a first connection portion 13C1 of another reception module 13 while the shoulder 13C23 allows retaining said second connection portion 13C2 into said first connection portion 13C1.
  • the reception module 13 comprises also first fixing portions 13C3, protruding from the extension portions 13C-1, 13C-2 in parallel to the first connection portion 13C1, and second fixing portions 13D, extending from the side wall 13B.
  • a hole is formed on the protruding end of said first and second fixing portions 13C3, 13D for fixing the reception module 13 onto the bottom B face of the circuit board 11, as illustrated on Figures 5 and 6.
  • the reception module 13 also comprises some electronic components 13F, such as e.g. transistors or diodes, mounted on external side of the side wall 13B. These electronic components are maintained by a clamper 13G against the side wall 13B.
  • electronic components 13F such as e.g. transistors or diodes
  • the bottom wall 13A and the side wall 13B define two internal spaces called “reception spaces” 13E1, 13E2.
  • the first reception space 13E1 and the second reception space 13E2 are separated by a separation wall 13E3 in order to receive different electrical components of the magnetic assembly 14 as described hereafter.
  • a cooling channel 13B1 is formed inside the side wall 13B linking the traversing opening 13C4 of the first extension portion 13C-1 to the traversing opening 13C4 of the second extension portion 13C-2.
  • the cooling channel 13B1 is configured to receive a cooling fluid allowing the absorption of heat generated by the magnetic assembly 14 in the reception spaces 13E1, 13E2 and the by the electronic component 13F located on the external part of the side wall 13B.
  • the cooling channel 13B1 defines a cooling circuit allowing the flow F1 of a cooling fluid between the first extension portion 13C-1 and the second extension portion 13C-2.
  • the direction of the flow F1 as shown on Figures 10 and 13 could also be inverted without falling out of the scope of the present invention.
  • the magnetic assembly 14 comprises a support wall 14A and two magnetic elements 14B, 14C mounted on said support wall 14A.
  • the magnetic assembly 14 comprises an inductor element 14B and a transformer 14C.
  • the inductor element 14B is configured for correcting the power factor of the transformer 14C.
  • the transformer 14C is configured for transferring electrical energy of the at least one AC current received from the power source through the AC connector 3 into electrical energy of the DC current delivered through the DC connector 4, e.g. to a battery of a vehicle.
  • the input filter 15 is configured for filtering noise in the AC current signals received from the power source via the AC connector 3.
  • the output filter 16 is configured for filtering noise in the DC current signal, e.g. delivered to the battery of the vehicle via the DC connector 4.
  • the electrical connections between the conversion units 10-1, 10-2, 10-3 may be adapted depending on the configuration of the battery charger 1. For example, for a single-phase battery charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 are electrically connected together. For a three-phase battery charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 is connected respectively to phase a different phase (e.g. A, B and C) .
  • phase a different phase e.g. A, B and C
  • the battery charger 1 further comprises a first set of support columns 20-1 mounted on the first conversion unit 10-1 to support the second conversion unit 10-2 and a second set of support columns 20-2 mounted on the second conversion unit 10-2 to support the third conversion unit 10-3.
  • the first set of support columns 20-1 also comprises nine support columns 20-1 and the second set of support columns 20-2 also comprises nine support columns 20-2.
  • a support column 20 comprises a cylindrical elongated body 20A extending along an axis X between a first end 20B and a second end 20C.
  • the transversal cross section of the body 20A is hexagonal, but any relevant shape could however be used, e.g. such as a circular cross section.
  • the first end 20B comprises a tooth (or sprocket) 20B1 extending along the X-axis and the second end 20C comprises a flat portion 20C1 extending orthogonally to the X-axis.
  • a central reception hole 20C2 is formed in the center of the flat portion 20C1.
  • Said central reception hole 20C2 is configured for receiving a tooth 20B1 of another identical support column 20 or a screw having substantially an identical diameter than said tooth 20B1.
  • the support columns of the at least one set of support columns may be made of a plastic material or, preferentially of a metal material, such as e.g. nickel plating brass.
  • a plurality of reception holes are formed in the circuit board 11 of the first conversion unit 10-1 and of the second conversion unit 10-2.
  • the tooth 20B1 of each support column 20-1 of the first set of support columns 20-1 is inserted into the corresponding reception hole formed in the circuit board 11 of the first conversion unit 10-1 and the hollow end of the corresponding support posts 2A1.
  • the tooth 20B1 of each support column 20-2 of the second set of support columns 20-2 is inserted into the corresponding reception hole formed in the circuit board 11 of the second conversion unit 10-2 into the central reception hole 20C2 of the second end 20C of the corresponding support columns 20-1 of the first set of support columns 20-1.
  • an identical number of reception holes 20C2 are formed in the circuit board 11 of the third conversion unit 10-3 to receive screws 25 for fixing the circuit board 11 of the third conversion unit 10-3 onto the support columns 20-2 of the second set of support columns 20-2 (i.e. the screws 25 being inserted into the central reception hole 20C2 of the second end 20C of the support columns 20-2 of the second set of support columns 20-2) .
  • two connection tubes 6 are mounted on the second connection portions 13C2 of a first conversion unit 10-1 so that said first conversion unit 10-1 may further be connected to a cooling module in a cooling circuit.
  • the first conversion unit 10-1 illustrated on Figure 18B is then placed in the housing 2 on the support posts 2A1 and the positioning posts 2A2 (not shown on Figures 19 to 25 for the sake of clarity) in a step S2 as illustrated on Figure 19.
  • a first set of support columns 20-1 is fixed on the circuit board 11 of the first conversion unit 10-1 in order to support a second conversion unit 10-2.
  • Each support column 20-1 comprises a bottom end having a tooth inserted into a corresponding hole formed in the circuit board 11 and a corresponding hollow end of a support post 2A1.
  • a second conversion unit 10-2 is mounted on the first set of columns 20-1 and the first conversion unit 10-1.
  • the second connection portions 13C2 of the second conversion unit 10-2 are inserted into the first connection portions 13C1 of the first conversion unit 10-1 in to order to connect their two reception modules 13.
  • circuit board 11 of the second conversion unit 10-2 is placed on the first set of support columns 20-1 and the second conversion unit 10-2 is electrically connected to the first conversion unit 10-1.
  • a second set of support columns 20-2 is fixed on the circuit board 11 of the second conversion unit 10-2 in order to support a third conversion unit 10-3.
  • the support columns 20-2 of the second set of support columns 20-2 are identical to the support columns 20-1 of the first set of support columns 20-1.
  • the tooth of the bottom end of each support column 20-1 is inserted, through a corresponding hole in the circuit board 11, in the corresponding hole of the top end of the support column 20-1 located under.
  • a third conversion unit 10-3 is arranged on the second set of columns 20-2 and electrically connected to the second conversion unit 10-2.
  • a signal connector 5 is mounted on the corresponding apertures 2B1 of the housing 2 to allow collecting signals from the circuit boards 11 of the first, the second and the third conversion units 10-1, 10-2, 10-3.
  • the first connection portions 13C1 of the third conversion unit 10-3 are blocked, e.g. using adapted caps, in order to close the cooling circuit running from the connection portion 6, the extension portions 13C-1, 13-C2 and the cooling channels 13B1 of each of the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
  • the first connection portions 13C1 of the third conversion unit 10-3 may be formed into the same material as the extension portions 13C-1, 13C-2 so that the third conversion unit 10-3 is ready to work as a closing element of the cooling circuit.
  • a step S7 some screws 25 are used to fix the circuit board 11 of the third conversion unit 10-3 to the second set of support columns 20-2 through corresponding holes of said circuit board 11, and a AC connector 3 and a DC connector 4 are mounted on the side wall 2B of the housing 2 and electrically connected to the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
  • the invention allows to electrically connect the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 in a single-phase configuration (i.e. the battery charger is a single-phase battery charger configured for being connected to a single-phase AC power supply source) or in a three-phase configuration (i.e. the battery charger is a three-phase battery charger configured for being connected to a three- phase AC power supply source) .
  • the battery charger is a single-phase battery charger configured for being connected to a single-phase AC power supply source
  • the battery charger is a three-phase battery charger configured for being connected to a three- phase AC power supply source
  • step S8 as illustrated on Figure 25, the cover 2C is screwed onto the side wall 2B using screws 2D and the battery charger 1 is ready to be mounted onboard a vehicle.
  • the reception module 13 allows therefore evacuating efficiently the heat generated by the magnetic components 14B, 14C mounted inside the reception spaces 13E1, 13E2 and the heat generated by the electronic component 13F mounted on the external part of the side wall 13B, avoiding therefore to damage the battery charger 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A voltage converter (1), in particular for use in an electrical or hybrid vehicle, comprises a housing (2), at least a first and a second conversion units (10-1, 10-2, 10-3), mounted in said housing (2) and configured for converting an alternating phase current into a direct current, and at least one set of support columns (20-1, 20-2) mounted on said first conversion unit (10-1, 10-2) to support said second conversion unit (10-2, 10-3).

Description

A VOLTAGE CONVERTER FOR USE IN AN ELECTRICAL OR HYBRID VEHICLE
FIELD OF ART
The present invention relates to a voltage converter, in particular for use in an electrical or a hybrid vehicle, and relates more particularly to a voltage converter comprising at least a set of support columns, said voltage converter forming in particular a battery charger.
The invention aims more precisely at providing a voltage converter that is advantageously easily scalable, in particular in order to deliver different power levels depending on the intended use.
STATE OF THE ART
In today’s existing electrical or hybrid vehicles, the propulsion system comprises a high-voltage power supply battery that delivers a supply voltage to an electrical motor for the propulsion of the vehicle. In order to charge said battery, the propulsion system comprises a voltage converter forming a battery charger called “On-Board Charger” (OBC) that is configured to be connected to an Alternating Current (AC) electrical network, such as e.g. a local or a national power grid.
Such On-Board Charger converts one or several alternating currents received from the AC electrical network into a direct current that allows charging the battery. To this end, the On-Board Charger comprises a plurality of internal components such as e.g. one or several transformers, one or several inductors, some diodes, some transistors, etc. These internal components are mounted on a PCB which is placed in a housing equipped with an AC input connector and a DC output connector and which may further be mounted onboard a vehicle. As some of the internal components may produce a lot of heat when the charger is running, in particular the at least one transformer, the charger may further comprise a heatsink module, which is arranged under said at least one transformer to cool the said at least one transformer down.
The On-Board Charger may be a single-phase or a three-phase charger for connecting respectively to a single-phase or a three-phase AC electrical power source. It is therefore necessary to design the charger, i.e. to select the number and type of internal components, depending on the power and the type of On-Board Charger (i.e. single-phase or three-phase) , prior to mounting the internal components onto the PCB. Such a charger may therefore be complex to design and costly as it is intended to work only with a specific  predetermined type of AC electrical network. Furthermore, the heat generated by the internal components may not be evacuated properly, which may damage the On-Board Charger.
Therefore, there is a need for a voltage converter solution, in particular a battery charger solution, that is easy to design and could also provide an efficient evacuation of the heat produced by the internal components.
SUMMARY
The present invention relates to a voltage converter, in particular for use in an electrical or hybrid vehicle, said voltage converter comprising a housing, at least a first and a second conversion units, mounted in said housing and configured for converting an alternating phase current into a direct current, and at least one set of support columns mounted on said first conversion unit to support said second conversion unit.
The set of support columns allow advantageously stacking a plurality of conversion units, providing therefore a scalable charger which is easy to design and to assemble.
In an embodiment, each of the at least first and second conversion units comprises a circuit board, the at least one set of support columns being mounted on the circuit board of the first conversion unit in order to support the circuit board of the second conversion unit.
In an embodiment, a plurality of reception holes are formed in the circuit board of the first conversion unit, each support column of the at least one set of support columns comprises a first end, said first end comprising a tooth (or a sprocket) inserted into a corresponding reception hole formed in the circuit board of the first conversion unit.
In an embodiment, each support column of the at least one set of support columns comprises a second end, opposite to the first end, said second end comprising a flat portion.
Advantageously, the flat portion of the second end delimitates a central reception hole.
In an embodiment, the central reception hole is configured for receiving a tooth of another support column for supporting another conversion unit or a screw for fixing the circuit of the second conversion unit or of a third conversion unit.
Advantageously, the at least one set of support columns comprises a plurality of support columns, preferentially at least four, even more preferentially at least eight, for efficiently supporting the second conversion unit.
According to an embodiment, the support columns of the at least one set of support columns are made of a metal material, such as e.g. nickel plating brass.
According to an embodiment, each of the at least first and second conversion units comprises a reception module, said reception module comprising a bottom wall extending along a longitudinal plan and a side wall extending from said bottom wall orthogonally to said longitudinal plan, said bottom wall and said side wall defining at least one internal space called “reception space” , said at least one reception space being configured for receiving at least one magnetic element for transferring electrical energy of an alternating current into electrical energy of a direct current.
In an embodiment, the reception module is mounted onto the circuit board of the at least first or second conversion unit.
In an embodiment, the reception module comprises at least one connection portion extending orthogonally to the longitudinal plan, the at least first and second conversion units being connected through their respective connection portions. The at least one connection portion allows advantageously mounting the second conversion unit on the first conversion unit, one above the other, in particular in order to build a scalable charger.
In an embodiment, the at least one connection portion is part of a tube. Connecting two reception modules together is therefore easy and fast.
Advantageously, the tube is a part of a cooling system and is configured to allow a cooling fluid to flow through the reception module.
In an embodiment, a cooling channel is formed inside the side wall to allow a cooling fluid to flow from one connection portion to another connection portion of the reception module. Such cooling channel allows evacuating the heat produced by at least one magnetic element mounted in the internal space of the reception module.
In an embodiment, the bottom wall being located on a bottom face of the reception module, the at least one connection portion extends from said bottom face of the reception module, allowing therefore to connect the reception module with another reception module located below said reception module.
In an embodiment, the at least one connection portion extends from a top face of the reception module, opposite to the bottom face, allowing therefore to connect the reception module with another reception module located above said reception module.
In an embodiment, the reception module comprises at least one extension portion extending from the side wall, the at least one connection portion extending from said extension portion, allowing therefore to connect the reception module with another reception module while providing access to the internal space of the reception module.
Advantageously, the reception module comprises at least one first connection portion and at least one second connection portion extending from opposite faces of the at least one extension portion, allowing therefore to connect the reception module simultaneously with another reception module located above said reception module and with another reception module located below said reception module.
Advantageously, the reception module is a one-piece element, i.e. the at least one connection portion, the bottom wall and the side wall originate from the same material, e.g. by molding a plastic material. Such one piece element is thus both easy to build and resistant.
According to an embodiment, the reception module comprises at least one magnetic element, mounted in the at least one reception space, for transferring electrical energy of an alternating current into electrical energy of a direct current.
Advantageously, the conversion units are electrically connected.
In an embodiment, the voltage converter forms a battery charger, in particular for charging a battery on board a vehicle from an outer electrical network.
In a first variant, the conversion units are connected in a single-phase configuration. This allows advantageously the battery charger to be scalable as several conversion units may be connected in parallel, making the design of the charger very easy. The power of the battery charger may therefore be defined by the number of connected conversion units arranged in the housing. For example, if the power of a conversion unit is 3.5 kW, the connection in parallel of three conversion units provides a 10.5 kW charger.
In a second variant, the conversion units are connected in a three-phase configuration. For example, the battery charger may comprise three conversion units connected through their respective connection portions, each conversion unit working at a different phase current.
The invention also concerns an electrical or a hybrid vehicle comprising an onboard voltage converter as previously described.
The details of one or more embodiments are set forth in the accompanying drawings and the description below. Other features will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
In the accompanying drawings:
- Figure 1 illustrates a perspective front view of an embodiment of the battery charger according to the invention;
- Figure 2 illustrates a perspective bottom view of the battery charger of Figure 1;
- Figure 3 illustrates a top view of the housing of the battery charger of Figure 1;
- Figure 4 illustrates a perspective top view of the housing of Figure 3;
- Figure 5 illustrates a perspective top view of an embodiment of a conversion unit according to the invention;
- Figure 6 illustrates a perspective bottom view of the conversion unit of Figure 5;
- Figure 7 illustrates a perspective bottom view of a reception module of the conversion unit of Figure 6;
- Figure 8 illustrates a perspective top view of the reception module of Figure 7;
- Figure 9 illustrates a rear view of the reception module of Figure 7;
- Figure 10 illustrates a longitudinal horizontal cross section top view of the reception module of Figure 7;
- Figure 11 illustrates a perspective transversal cross section view of the reception module of Figure 7;
- Figure 12 illustrates a perspective longitudinal vertical cross section view of the reception module of Figure 7;
- Figure 13 illustrates another perspective longitudinal vertical cross section view of the reception module of Figure 7;
- Figure 14 illustrates a perspective top view of the reception module of Figure 7, a magnetic assembly being mounted into said reception module;
- Figure 15 illustrates a perspective top view of the magnetic assembly of Figure 14;
- Figure 16 illustrates a perspective bottom view of the magnetic assembly of Figure 15;
- Figure 17 illustrates a perspective view of a support column;
- Figure 18A illustrates a perspective top view of the conversion unit of Figure 5 further comprising connection tubes;
- Figure 18B illustrates a perspective bottom view of the conversion unit of Figure 18A;
- Figure 19 illustrates a perspective partial left front view of the battery charger 1 of Figure 1 comprising a first conversion unit, the housing being transparent;
- Figure 20 illustrates a perspective partial left front view of the battery charger 1 of Figure 19 further comprising a first set of support columns;
- Figure 21 illustrates a perspective partial left front view of the battery charger 1 of Figure 20 further comprising a second conversion unit;
- Figure 22 illustrates a perspective partial left front view of the battery charger 1 of Figure 21 further comprising a second set of support columns;
- Figure 23 illustrates a perspective partial left front view of the battery charger 1 of Figure 22 further comprising a third conversion unit;
- Figure 24 illustrates a perspective partial left front view of the battery charger 1 of Figure 23 further comprising conversion unit fixing screws, an AC connector and a DC connector;
- Figure 25 illustrates a perspective partial left front view of the battery charger 1 of Figure 24 further comprising a cover;
- Figure 26 illustrates an embodiment of the method according to the invention.
DETAILED DESCRIPTION
An embodiment of a voltage converter according to the invention will now be described in reference to Figures 1 to 26. In this example, the voltage converter is a battery charger configured for being mounted onboard an electrical or hybrid vehicle. However, the invention could apply to any type of electrical equipment, in particular any type of voltage converter, in particular any type of battery charger that allows e.g. charging a DC battery using an AC power supply source.
In the preferred embodiment described hereafter, the battery charger is configured for charging a battery from an AC power supply source such as e.g. a domestic or public grid. In other words, the battery charger is configured for receiving at least one AC current from an AC power supply source, converting said at least one AC current into a DC current, supplying said DC current to charge a battery. The received at least one AC current may be a single-phase AC current or several multi-phase AC currents (e.g. three phase-shifted AC currents) .
In the exemplary embodiment illustrated on Figures 1 to 25, the battery charger 1 comprises three conversion units 10. In another embodiment, the battery charger 1 could comprise more or less than three conversion units 10 without limiting the scope of the present invention.
Figures 1 to 4 illustrate an embodiment of battery charger 1 according to the invention. In the present description, the faces of any element of the battery charger 1 are defined in reference to Figures 1 and 2 as follows: top T face, bottom B face, front F face, rear K face, left L face and right R face. Any reference (top, bottom, front, rear, left or right) to a position of an element of the battery charger 1 will therefore be made hereafter using those definitions.
The battery charger 1 comprises a housing 2 for example made of a metal or a plastic material. The housing 2 comprises a bottom wall 2A and a rectangular side wall 2B, coming as one-piece element, and a cover 2C, fixed on the side wall 2B using screws 2D in order to close said housing 2. The battery charger 1 also comprises an AC connector 3 and a DC connector 4. The AC connector 3 allows receiving the at least one AC current delivered by the power supply source (not shown) . The DC connector 4 allows delivering the DC current generated by the battery charger 1 to a battery (not shown) . For example, such battery may be a high-voltage battery, i.e. greater than 60 V. In this non-limitative example, the battery charger 1 further comprises a signal connector 5 as it will described hereafter.
In reference to Figures 3 and 4, the bottom wall 2A and the rectangular side wall 2B of the housing 2 define an internal space configured for receiving the conversion units 10 (e.g. as shown on Figures 18A to 25) . In this example, the bottom wall 2A comprises a plurality of support posts 2A1 (nine in the illustrated example of Figure 3) and two positioning posts 2A2 for supporting a circuit board 11 of a conversion unit 10.
Each positioning post 2A2 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a protruding end adapted to engage in a hole formed in the circuit board 11 for positioning said circuit board 11 on the support posts 2A1.
Each support post 2A1 is in the shape of an elongated element extending vertically from the bottom wall 2A and comprises a hollow end adapted for receiving a tooth of a support column 20-1 as it will be described hereafter. The support posts 2A1 and the positioning posts 2A2 may be formed in the bottom wall 2A of the housing 2 or may be insert pieces.
As illustrated on Figure 3, two apertures 2A3 are formed in the bottom wall 2A to allow the passage of two connection tubes 6 (as shown on Figure 2) configured for being connected to a cooling module (not shown) allowing the circulation of a cooling fluid, e.g. such as water, for cooling the battery charger 1, as explained hereafter.
As illustrated on Figure 4, an aperture 2B1 is formed on the front F face of the side wall 2B to receive a signal connector 5 of a conversion unit 10 (as shown on Figure 1) .
In the example illustrated on Figures 5 and 6, each conversion unit 10 comprises a circuit board 11, some capacitors elements 12, a reception module 13, a magnetic assembly 14 mounted onto said reception module 13, an input filter 15 and an output filter 16.
In this example, the circuit board 11 is a Printed Circuit Board (PCB) configured for electrically connecting the capacitors elements 12, the reception module 13, the magnetic assembly 14, the input filter 15, the output filter 16 and, if present, the signal connector 5.
The signal connector 5 is optional and is configured for exchanging signals between the circuit board 11 and an external equipment (not shown) , e.g. such as a test or a control equipment.
The capacitors elements 12 are configured for stabilizing the internal DC link intermediate voltage.
The reception module 13 is configured for receiving the magnetic assembly 14. To this end, as illustrated on Figure 7, the reception module 13 comprises a bottom wall 13A extending along a longitudinal plan β and a side wall 13B extending from said bottom wall 13A orthogonally to said longitudinal plan β.
In reference to Figures 7 and 8, the reception module 13 comprises a first and second extension portions 13C-1, 13-C2 extending from the rear K face of the side wall 13B. Each extension portion 13C-1, 13C-2 comprises a first connection portion 13C1 extending from the top T face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan β. Each extension portion 13C-1, 13C-2 comprises a second connection portion 13C2 extending from the bottom B face of said extension portion 13C-1, 13C-2 orthogonally to the longitudinal plan β, said bottom B face being opposite to said top T face.
Each first connection portions 13C1 is configured to fit into a second connection portions 13C2 of an identical reception module 13, said first connection portion 13C1 and said second connection portion 13C2 being complementary portions and being fluidically connected.
In this preferred embodiment, as shown on Figures 10 and 13, the first connection portion 13C1 and the second connection portion 13C2 of a same extension portion 13C-1, 13C-2 are advantageously fluidically connected through a traversing opening 13C4 to allow the passage of a cooling fluid, e.g. such as water, throughout said extension portion 13C-1, 13C-2. In this example, the first connection portion 13C1 and the second connection portion 13C2 are part of a tube.
In order to allow a liquid tight (i.e. leak proof) connection, in reference to Figure 8, the first connection portion 13C1 is in the shape of a hollow shaft whereas, in reference to Figure 9, the second connection portion 13C2 comprises at its free end a chamfer (i.e. a bevel) 13C21 and, below said chamfer 13C21, a groove 13C22 forming with said chamfer 13C21 a shoulder 13C23.
A gasket joint may further be inserted into the groove 13C22 to seal the connection with a first connection portion 13C1 of a corresponding extension portion 13C-1, 13C-2 of another reception module 13.
The shape of the chamfer 13C21 and the flexibility created by the groove 13C22 allow inserting easily the second connection portion 13C2 into a first connection portion 13C1 of another reception module 13 while the shoulder 13C23 allows retaining said second connection portion 13C2 into said first connection portion 13C1.
As illustrated on Figure 8, the reception module 13 comprises also first fixing portions 13C3, protruding from the extension portions 13C-1, 13C-2 in parallel to the first connection portion 13C1, and second fixing portions 13D, extending from the side wall 13B. A hole is formed on the protruding end of said first and second fixing portions 13C3, 13D for fixing the reception module 13 onto the bottom B face of the circuit board 11, as illustrated on Figures 5 and 6.
In reference to Figure 5 and 6, the reception module 13 also comprises some electronic components 13F, such as e.g. transistors or diodes, mounted on external side of the side wall 13B. These electronic components are maintained by a clamper 13G against the side wall 13B.
In this example, the bottom wall 13A and the side wall 13B define two internal spaces called “reception spaces” 13E1, 13E2. The first reception space 13E1 and the second reception space 13E2 are separated by a separation wall 13E3 in order to receive different electrical components of the magnetic assembly 14 as described hereafter.
As illustrated on Figures 10 to 13, a cooling channel 13B1 is formed inside the side wall 13B linking the traversing opening 13C4 of the first extension portion 13C-1 to the traversing opening 13C4 of the second extension portion 13C-2. The cooling channel 13B1 is configured to receive a cooling fluid allowing the absorption of heat generated by the magnetic assembly 14 in the reception spaces 13E1, 13E2 and the by the electronic component 13F located on the external part of the side wall 13B. In other words, the cooling channel 13B1 defines a cooling circuit allowing the flow F1 of a cooling fluid between the first extension portion 13C-1 and the second extension portion 13C-2. We shall note that the direction of the flow F1  as shown on Figures 10 and 13 could also be inverted without falling out of the scope of the present invention.
As illustrated on Figures 15 and 16, the magnetic assembly 14 comprises a support wall 14A and two  magnetic elements  14B, 14C mounted on said support wall 14A.
In this example, the magnetic assembly 14 comprises an inductor element 14B and a transformer 14C. The inductor element 14B is configured for correcting the power factor of the transformer 14C. The transformer 14C is configured for transferring electrical energy of the at least one AC current received from the power source through the AC connector 3 into electrical energy of the DC current delivered through the DC connector 4, e.g. to a battery of a vehicle. The input filter 15 is configured for filtering noise in the AC current signals received from the power source via the AC connector 3. The output filter 16 is configured for filtering noise in the DC current signal, e.g. delivered to the battery of the vehicle via the DC connector 4.
The electrical connections between the conversion units 10-1, 10-2, 10-3 may be adapted depending on the configuration of the battery charger 1. For example, for a single-phase battery charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 are electrically connected together. For a three-phase battery charger 1, the input of the circuit board 11 of each conversion unit 10-1, 10-2, 10-3 is connected respectively to phase a different phase (e.g. A, B and C) .
As illustrated on Figure 24, the battery charger 1 further comprises a first set of support columns 20-1 mounted on the first conversion unit 10-1 to support the second conversion unit 10-2 and a second set of support columns 20-2 mounted on the second conversion unit 10-2 to support the third conversion unit 10-3. In this non-limitative example, the first set of support columns 20-1 also comprises nine support columns 20-1 and the second set of support columns 20-2 also comprises nine support columns 20-2.
In reference to Figure 17, a support column 20 comprises a cylindrical elongated body 20A extending along an axis X between a first end 20B and a second end 20C. In this example, the transversal cross section of the body 20A is hexagonal, but any relevant shape could however be used, e.g. such as a circular cross section. The first end 20B comprises a tooth (or sprocket) 20B1 extending along the X-axis and the second end 20C comprises a flat portion 20C1 extending orthogonally to the X-axis. A central reception hole 20C2 is formed in the center of the flat portion 20C1. Said central reception hole 20C2 is configured for receiving a tooth 20B1 of another identical support column 20 or a screw having substantially an identical diameter than said tooth 20B1. The support columns of the at least one set of support columns  may be made of a plastic material or, preferentially of a metal material, such as e.g. nickel plating brass.
A plurality of reception holes are formed in the circuit board 11 of the first conversion unit 10-1 and of the second conversion unit 10-2. As illustrated on Figure 24, the tooth 20B1 of each support column 20-1 of the first set of support columns 20-1 is inserted into the corresponding reception hole formed in the circuit board 11 of the first conversion unit 10-1 and the hollow end of the corresponding support posts 2A1. Similarly, the tooth 20B1 of each support column 20-2 of the second set of support columns 20-2 is inserted into the corresponding reception hole formed in the circuit board 11 of the second conversion unit 10-2 into the central reception hole 20C2 of the second end 20C of the corresponding support columns 20-1 of the first set of support columns 20-1.
In this example, an identical number of reception holes 20C2 are formed in the circuit board 11 of the third conversion unit 10-3 to receive screws 25 for fixing the circuit board 11 of the third conversion unit 10-3 onto the support columns 20-2 of the second set of support columns 20-2 (i.e. the screws 25 being inserted into the central reception hole 20C2 of the second end 20C of the support columns 20-2 of the second set of support columns 20-2) .
An exemplary embodiment of the method for assembling the battery charger 1 will now be described in reference to Figures 18A to 26.
As illustrated on Figure 18A, in a first step S1, two connection tubes 6 are mounted on the second connection portions 13C2 of a first conversion unit 10-1 so that said first conversion unit 10-1 may further be connected to a cooling module in a cooling circuit.
The first conversion unit 10-1 illustrated on Figure 18B is then placed in the housing 2 on the support posts 2A1 and the positioning posts 2A2 (not shown on Figures 19 to 25 for the sake of clarity) in a step S2 as illustrated on Figure 19.
In a step S3, as illustrated on Figure 20, a first set of support columns 20-1 is fixed on the circuit board 11 of the first conversion unit 10-1 in order to support a second conversion unit 10-2. Each support column 20-1 comprises a bottom end having a tooth inserted into a corresponding hole formed in the circuit board 11 and a corresponding hollow end of a support post 2A1.
As illustrated on Figure 21, in a step S4, a second conversion unit 10-2 is mounted on the first set of columns 20-1 and the first conversion unit 10-1. To this end, the second connection portions 13C2 of the second conversion unit 10-2 are inserted into the first  connection portions 13C1 of the first conversion unit 10-1 in to order to connect their two reception modules 13.
More precisely, the circuit board 11 of the second conversion unit 10-2 is placed on the first set of support columns 20-1 and the second conversion unit 10-2 is electrically connected to the first conversion unit 10-1.
In a step S5, as illustrated on Figure 22, a second set of support columns 20-2 is fixed on the circuit board 11 of the second conversion unit 10-2 in order to support a third conversion unit 10-3. In this example, the support columns 20-2 of the second set of support columns 20-2 are identical to the support columns 20-1 of the first set of support columns 20-1. In this case, the tooth of the bottom end of each support column 20-1 is inserted, through a corresponding hole in the circuit board 11, in the corresponding hole of the top end of the support column 20-1 located under.
As illustrated on Figure 23, in a step S6, a third conversion unit 10-3 is arranged on the second set of columns 20-2 and electrically connected to the second conversion unit 10-2. A signal connector 5 is mounted on the corresponding apertures 2B1 of the housing 2 to allow collecting signals from the circuit boards 11 of the first, the second and the third conversion units 10-1, 10-2, 10-3.
The first connection portions 13C1 of the third conversion unit 10-3 are blocked, e.g. using adapted caps, in order to close the cooling circuit running from the connection portion 6, the extension portions 13C-1, 13-C2 and the cooling channels 13B1 of each of the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3. Alternatively, the first connection portions 13C1 of the third conversion unit 10-3 may be formed into the same material as the extension portions 13C-1, 13C-2 so that the third conversion unit 10-3 is ready to work as a closing element of the cooling circuit.
In a step S7, some screws 25 are used to fix the circuit board 11 of the third conversion unit 10-3 to the second set of support columns 20-2 through corresponding holes of said circuit board 11, and a AC connector 3 and a DC connector 4 are mounted on the side wall 2B of the housing 2 and electrically connected to the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3.
Advantageously, the invention allows to electrically connect the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 in a single-phase configuration (i.e. the battery charger is a single-phase battery charger configured for being connected to a single-phase AC power supply source) or in a three-phase configuration (i.e. the battery charger is a three-phase battery charger configured for being connected to a three- phase AC power supply source) . In the latter configuration, each one of the first conversion unit 10-1, the second conversion unit 10-2 and the third conversion unit 10-3 convert a different AC current into a same DC current.
In a step S8, as illustrated on Figure 25, the cover 2C is screwed onto the side wall 2B using screws 2D and the battery charger 1 is ready to be mounted onboard a vehicle.
The reception module 13 according to the invention allows therefore evacuating efficiently the heat generated by the  magnetic components  14B, 14C mounted inside the reception spaces 13E1, 13E2 and the heat generated by the electronic component 13F mounted on the external part of the side wall 13B, avoiding therefore to damage the battery charger 1.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure.
More particularly, various variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art. In particular, although the invention has been described in relation with the example of an on board battery charger, the invention also applies to a DC/DC converter configured to charge a low voltage battery from a high voltage battery on board a vehicle.

Claims (15)

  1. A voltage converter (1) , in particular for use in an electrical or hybrid vehicle, said voltage converter (1) comprising a housing (2) , at least a first and a second conversion units (10-1, 10-2, 10-3) , mounted in said housing (2) and configured for converting an alternating phase current into a direct current, and at least one set of support columns (20-1, 20-2) mounted on said first conversion unit (10-1, 10-2) to support said second conversion unit (10-2, 10-3) .
  2. A voltage converter (1) according to claim 1, wherein each of the at least first and second conversion units (10-1, 10-2, 10-3) comprises a circuit board (11) , the at least one set of support columns (20-1, 20-2) being mounted on the circuit board (11) of the first conversion unit (10-1, 10-2) in order to support the circuit board (11) of the second conversion unit (10-2, 10-3) .
  3. A voltage converter (1) according to any of the preceding claims, wherein a plurality of reception holes are formed in the circuit board (11) of the first conversion unit (10-1, 10-2) , each support column (20-1, 20-2) of the at least one set of support columns (20-1, 20-2) comprises a first end (20B) , said first end comprising a tooth (20B1) inserted into a corresponding reception hole formed in the circuit board (11) of the first conversion unit (10-1, 10-2) .
  4. A voltage converter (1) according to the preceding claim, wherein each support column (20-1, 20-2) of the at least one set of support columns (20-1, 20-2) comprises a second end (20C) , opposite to the first end (20B) , said second end (20C) comprising a flat portion (20C1) .
  5. A voltage converter (1) according to the preceding claim, wherein the flat portion (20C1) of the second end (20C) delimitates a central reception hole (20C2) .
  6. A voltage converter (1) according to the preceding claim, wherein the central reception hole (20C2) is configured for receiving a tooth of another support column (20-2) for supporting another conversion unit (10-3) or a screw for fixing the circuit of the second conversion unit (10-2) or of a third conversion unit (10-3) .
  7. A voltage converter (1) according to any of the preceding claims, wherein the at least one set of support columns (20-1, 20-2) comprises a plurality of support columns (20-1, 20-2) .
  8. A voltage converter (1) according to the preceding claim, wherein the at least one set of support columns (20-1, 20-2) comprises at least four support columns (20-1, 20-2) .
  9. A voltage converter (1) according to the preceding claim, wherein the at least one set of support columns (20-1, 20-2) comprises at least eight support columns (20-1, 20-2) .
  10. A voltage converter (1) according to any of the preceding claims, wherein the support columns (20-1, 20-2) of the at least one set of support columns (20-1, 20-2) are made of a metal material.
  11. A voltage converter (1) according to any of the preceding claims, wherein each of the at least first and second conversion units (10-1, 10-2, 10-3) comprises a reception module (13) , said reception module (13) comprising a bottom wall (13A) extending along a longitudinal plan (β) and a side wall (13B) extending from said bottom wall (13A) orthogonally to said longitudinal plan (β) , said bottom wall (13A) and said side wall (13B) defining at least one internal space called “reception space” (13E1, 13E2) , said at least one reception space (13E1, 13E2) being configured for receiving at least one magnetic element (14B, 14C) for transferring electrical energy of an alternating current into electrical energy of a direct current.
  12. A voltage converter (1) according to the preceding claim, wherein the reception module (13) is mounted onto the circuit board (11) of the at least first or second conversion unit (10-1, 10-2, 10-3) .
  13. A voltage converter (1) according to any of the claims 11 or 12, wherein the reception module (13) comprises at least one connection portion (13C1, 13C2) extending orthogonally to the longitudinal plan (β) , the at least first and second conversion units (10-1, 10-2, 10-3) being connected through their respective connection portions (13C1, 13C2) .
  14. A voltage converter (1) according to the preceding claim, wherein the at least one connection portion (13C1, 13C2) is part of a tube, said tube being a part of a cooling system and being configured to allow a cooling fluid to flow through the reception module (13) .
  15. A voltage converter (1) according to any of preceding claims, forming a battery charger, in particular for charging a battery on board a vehicle from an outer electrical network.
PCT/CN2017/079752 2017-04-07 2017-04-07 Voltage converter for use in electrical or hybrid vehicle WO2018184217A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/079752 WO2018184217A1 (en) 2017-04-07 2017-04-07 Voltage converter for use in electrical or hybrid vehicle
CN201780091674.9A CN110959239B (en) 2017-04-07 2017-04-07 Voltage converter for use in electric or hybrid vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/079752 WO2018184217A1 (en) 2017-04-07 2017-04-07 Voltage converter for use in electrical or hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2018184217A1 true WO2018184217A1 (en) 2018-10-11

Family

ID=63712028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/079752 WO2018184217A1 (en) 2017-04-07 2017-04-07 Voltage converter for use in electrical or hybrid vehicle

Country Status (2)

Country Link
CN (1) CN110959239B (en)
WO (1) WO2018184217A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220140582A1 (en) * 2020-10-30 2022-05-05 Lear Corporation Electrical component housing with cooling channels
EP4068934A1 (en) * 2021-03-29 2022-10-05 Sungrow Power Supply Co., Ltd. Liquid-cooling heat dissipation device and power module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026090A1 (en) * 2008-07-29 2010-02-04 Hitachi, Ltd. Power Conversion Apparatus and Electric Vehicle
CN102646999A (en) * 2011-02-17 2012-08-22 李尔公司 Sealed battery charger housing
CN103296863A (en) * 2012-02-24 2013-09-11 台达电子企业管理(上海)有限公司 Power converter
CN104205260A (en) * 2012-03-19 2014-12-10 三菱电机株式会社 Power conversion apparatus
CN104682457A (en) * 2013-11-26 2015-06-03 台达电子企业管理(上海)有限公司 Electronic device and automobile charging device
CN104682670A (en) * 2013-11-26 2015-06-03 台达电子企业管理(上海)有限公司 Power conversion device and power conversion board component thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134343B2 (en) * 2007-04-27 2012-03-13 Flextronics International Kft Energy storage device for starting engines of motor vehicles and other transportation systems
DE102010004713A1 (en) * 2010-01-11 2011-07-14 Dr. Ing. h.c. F. Porsche Aktiengesellschaft, 70435 Hybrid drive of a hybrid vehicle
CN104040865A (en) * 2012-03-28 2014-09-10 富士电机株式会社 Power conversion apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100026090A1 (en) * 2008-07-29 2010-02-04 Hitachi, Ltd. Power Conversion Apparatus and Electric Vehicle
CN102646999A (en) * 2011-02-17 2012-08-22 李尔公司 Sealed battery charger housing
CN103296863A (en) * 2012-02-24 2013-09-11 台达电子企业管理(上海)有限公司 Power converter
CN104205260A (en) * 2012-03-19 2014-12-10 三菱电机株式会社 Power conversion apparatus
CN104682457A (en) * 2013-11-26 2015-06-03 台达电子企业管理(上海)有限公司 Electronic device and automobile charging device
CN104682670A (en) * 2013-11-26 2015-06-03 台达电子企业管理(上海)有限公司 Power conversion device and power conversion board component thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220140582A1 (en) * 2020-10-30 2022-05-05 Lear Corporation Electrical component housing with cooling channels
EP4068934A1 (en) * 2021-03-29 2022-10-05 Sungrow Power Supply Co., Ltd. Liquid-cooling heat dissipation device and power module

Also Published As

Publication number Publication date
CN110959239B (en) 2021-09-14
CN110959239A (en) 2020-04-03

Similar Documents

Publication Publication Date Title
US9362040B2 (en) Coldplate with integrated electrical components for cooling thereof
JP5457435B2 (en) Modular high power drive stack cooled by vaporizable dielectric fluid
US11390175B2 (en) Accumulator
US20140247540A1 (en) Power distribution rack bus bar assembly and method of assembling the same
US10660229B2 (en) Electrical device and manufacturing method of the same
JP2007195292A (en) Power converter
CN111788709A (en) Mechanical and thermal system for a modular battery with power electronics
WO2018184217A1 (en) Voltage converter for use in electrical or hybrid vehicle
US10658907B2 (en) Compact architecture of electric power train for automotive vehicle
JP5931778B2 (en) Bus bar assembly for power conversion module connection
CN107026560B (en) Converter cabinet
JPWO2017006587A1 (en) Terminal connection structure and server power supply system having this structure
US11489453B2 (en) Power module with defined charge-reversal path and production method
WO2018184215A1 (en) A battery charger for use in an electrical or hybrid vehicle
JP5174936B2 (en) Power converter
CN103269169A (en) Thyristor rectifier module
WO2018184216A1 (en) A battery charger for use in an electrical or hybrid vehicle
CN112440705B (en) Power assembly
CN115176380A (en) Module layer and battery system constructed by same
JP2014103807A (en) Power conversion device
JP2015006112A (en) Power-supplying device
JP2015139344A (en) Electric power converter
JP2019103280A (en) Power conversion device
EP3493336B1 (en) A male electrical connector for a voltage converter
US20200280282A1 (en) Inverter for a photovoltaic plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17904520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17904520

Country of ref document: EP

Kind code of ref document: A1