JP5174936B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP5174936B2
JP5174936B2 JP2011111978A JP2011111978A JP5174936B2 JP 5174936 B2 JP5174936 B2 JP 5174936B2 JP 2011111978 A JP2011111978 A JP 2011111978A JP 2011111978 A JP2011111978 A JP 2011111978A JP 5174936 B2 JP5174936 B2 JP 5174936B2
Authority
JP
Japan
Prior art keywords
terminal
capacitor
semiconductor
module
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011111978A
Other languages
Japanese (ja)
Other versions
JP2011155838A (en
Inventor
欣也 中津
卓義 中村
隆一 斎藤
卓 須賀
裕樹 船戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2011111978A priority Critical patent/JP5174936B2/en
Publication of JP2011155838A publication Critical patent/JP2011155838A/en
Application granted granted Critical
Publication of JP5174936B2 publication Critical patent/JP5174936B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes

Landscapes

  • Inverter Devices (AREA)

Description

本発明は、入力電力を所定の電力に変換して出力する電力変換装置に関する。   The present invention relates to a power conversion device that converts input power into predetermined power and outputs the power.

電力変換装置に関する背景技術としては、例えば特許文献1に開示されたインバータ装置が知られている。特許文献1には、スイッチング素子パワーモジュール,平滑コンデンサ及び制御ユニットの順にそれらを基台を介してケース内に積み上げ配置し、インバータ装置の小型化を図る技術が開示されている。   As a background art related to a power conversion device, for example, an inverter device disclosed in Patent Document 1 is known. Patent Document 1 discloses a technique for reducing the size of an inverter device by stacking and arranging a switching element power module, a smoothing capacitor, and a control unit in a case via a base.

特開2003−199363号公報JP 2003-199363 A

近年、自動車に搭載されて車両駆動用電動機の駆動を制御する電力変換装置にはさらなる低コスト化が望まれている。これは、電力変換装置の低コスト化により、車両に搭載される電動駆動システムの低コスト化を図り、車両駆動の電動化をこれまで以上に普及させるためである。これにより、地球環境に及ぼす影響のさらなる低減,燃費のさらなる向上が図れる。   In recent years, there has been a demand for further cost reduction in power conversion devices that are mounted on automobiles and that control the driving of vehicle driving motors. This is to reduce the cost of the electric drive system mounted on the vehicle by reducing the cost of the power conversion device, and to make vehicle drive electrification more popular than ever. As a result, the influence on the global environment can be further reduced and the fuel consumption can be further improved.

電力変換装置の低コスト化を図る解決方法の1つとしては、電力変換装置を電動機の近傍、例えば電動機が搭載された変速機の筐体に取り付け、電力変換装置と電動機との間を電気的に接続する配線の削除が考えられる。これを実現するためには、例えば電力変換用主回路を構成する半導体モジュールの半導体チップを小型化して電力変換装置の小型化を図り、限られた車載スペースの中において電力変換装置を変速機の筐体に取り付けできるようにする必要がある。   As one of the solutions for reducing the cost of the power conversion device, the power conversion device is attached to the vicinity of the electric motor, for example, the housing of the transmission on which the electric motor is mounted, and the electric power between the power conversion device and the electric motor is electrically connected. It is conceivable to delete the wiring connected to. In order to realize this, for example, the semiconductor chip of the semiconductor module constituting the main circuit for power conversion is downsized to reduce the size of the power converter, and the power converter is installed in the transmission in a limited vehicle space. It needs to be able to be attached to the case.

しかしながら、半導体チップを小型化すると、半導体チップの発熱が増加する。これにより、半導体モジュールから電力変換装置の内部に放出される熱が増加して電力変換装置の内部温度が上昇する。このため、半導体モジュールを含む電力変換装置構成部品を1つのケース内に配置する電力変換装置では、半導体モジュール以外の電力変換装置構成部品に熱影響を与えると考えられる。また、前述した背景技術においてもそこまで考慮していない。従って、半導体チップの小型化による電力変換装置の小型化にあたっては、半導体モジュール以外の電力変換装置構成部品に半導体モジュールから与える熱影響の低減が必要である。   However, when the semiconductor chip is downsized, the heat generation of the semiconductor chip increases. Thereby, the heat released from the semiconductor module into the power converter increases, and the internal temperature of the power converter increases. For this reason, in the power converter device which arrange | positions the power converter device component containing a semiconductor module in one case, it is thought that it has a thermal influence on power converter device components other than a semiconductor module. In addition, the background art described above does not take that into consideration. Therefore, in reducing the size of the power conversion device by reducing the size of the semiconductor chip, it is necessary to reduce the thermal influence from the semiconductor module on the power conversion device components other than the semiconductor module.

また、半導体チップの発熱は半導体のスイッチング動作時の損失にも起因する。このようなことから、半導体のスイッチング動作時の損失をさらに低減して半導体チップからの発熱を抑えることにより、半導体チップの小型化を実現可能なものにできる。半導体のスイッチング動作時の損失をさらに低減するためには、半導体モジュールに電気的に接続されたコンデンサと半導体モジュールとの間の接続導体におけるインダクタンスをさらに低減することが重要である。従って、半導体チップの小型化による電力変換装置の小型化にあたっては、半導体のスイッチング動作時の損失を低減して半導体チップの発熱を抑えることにより、半導体モジュール以外の電力変換装置構成部品に半導体モジュールから与える熱影響の低減が必要である。   Further, the heat generation of the semiconductor chip is also caused by a loss during the semiconductor switching operation. For this reason, the semiconductor chip can be reduced in size by further reducing the loss during the semiconductor switching operation and suppressing the heat generation from the semiconductor chip. In order to further reduce the loss during the switching operation of the semiconductor, it is important to further reduce the inductance in the connection conductor between the capacitor electrically connected to the semiconductor module and the semiconductor module. Therefore, in reducing the size of the power conversion device by downsizing the semiconductor chip, by reducing the loss during semiconductor switching operation and suppressing the heat generation of the semiconductor chip, the power conversion device components other than the semiconductor module can be transferred from the semiconductor module. It is necessary to reduce the heat effect.

本発明は、半導体モジュール以外の構成部品に対して半導体モジュールから与える熱影響を低減できる電力変換装置を提供する。   The present invention provides a power conversion device that can reduce the thermal effect of a semiconductor module on components other than the semiconductor module.

ここに、本発明に係る電力変換装置は、直流電流を交流電流に変換する複数のパワー半導体素子を有する第1半導体モジュールと、直流電流を交流電流に変換する複数のパワー半導体素子を有する第2半導体モジュールと、前記直流電流を平滑化するコンデンサと、前記コンデンサから前記半導体モジュールへ前記直流電流を伝達するコンデンサ端子と、冷却冷媒が流れる流路を形成するとともに熱伝導性部材により形成された流路形成体と、を備え、前記第1半導体モジュール及び前記第2半導体モジュールは、前記流路形成体の一方側に配置されるとともに所定空間を介して並べて配置され、前記コンデンサは、前記流路形成体を介して前記半導体モジュールとは反対側に配置され、前記流路形成体は、前記第1及び第2半導体モジュールが配置された側の空間と前記コンデンサが配置された側の空間とを繋ぐ貫通孔を形成し、さらに当該貫通孔は前記所定の空間と対向する位置に形成され、前記第1半導体モジュールの直流端子は、前記貫通孔に最も近い前記第1半導体モジュールの辺側に配置され、前記第2半導体モジュールの直流端子は、前記貫通孔に最も近い前記第2半導体モジュールの辺側に配置され、前記コンデンサ端子は、前記貫通孔を通って前記コンデンサと前記半導体モジュールを電気的に接続する。   Here, the power conversion device according to the present invention includes a first semiconductor module having a plurality of power semiconductor elements for converting a direct current into an alternating current, and a second semiconductor module having a plurality of power semiconductor elements for converting a direct current into an alternating current. A semiconductor module, a capacitor for smoothing the direct current, a capacitor terminal for transmitting the direct current from the capacitor to the semiconductor module, a flow path through which a cooling refrigerant flows and a flow formed by a heat conductive member A path formation body, wherein the first semiconductor module and the second semiconductor module are disposed on one side of the flow path formation body and arranged side by side through a predetermined space, and the capacitor is disposed in the flow path The flow path forming body is disposed on the opposite side of the semiconductor module with a forming body interposed therebetween, and the flow path forming body includes the first and second semiconductor modules. A through hole connecting the space on the side where the capacitor is disposed and the space on the side where the capacitor is disposed, and the through hole is formed at a position facing the predetermined space, and the direct current of the first semiconductor module The terminal is disposed on the side of the first semiconductor module closest to the through hole, the DC terminal of the second semiconductor module is disposed on the side of the second semiconductor module closest to the through hole, and The capacitor terminal electrically connects the capacitor and the semiconductor module through the through hole.

本発明によれば、周壁が熱伝導性部材によって形成された冷却室に半導体モジュールを収納するようにしたので、半導体モジュールからの放熱が増加しても、その熱を冷却室の外部に放出することを抑制でき、少なくともコンデンサ及び制御回路に対する熱影響を低く抑えることができる。従って、本発明によれば、半導体モジュール以外の構成部品に対して半導体モジュールから与える熱影響を低減できる。   According to the present invention, the semiconductor module is accommodated in the cooling chamber whose peripheral wall is formed by the heat conductive member. Therefore, even if the heat radiation from the semiconductor module increases, the heat is released to the outside of the cooling chamber. This can be suppressed, and at least the thermal influence on the capacitor and the control circuit can be kept low. Therefore, according to the present invention, it is possible to reduce the thermal influence from the semiconductor module on the components other than the semiconductor module.

第1実施例のインバータ装置ユニットの構成を示す断面図。Sectional drawing which shows the structure of the inverter apparatus unit of 1st Example. 第1実施例のインバータ装置ユニットの構成を示す上部平面図。The upper top view which shows the structure of the inverter apparatus unit of 1st Example. 第1実施例のインバータ装置ユニットの構成を示す側面図。The side view which shows the structure of the inverter apparatus unit of 1st Example. 第1実施例のインバータ装置ユニットの構成を示す側面図。The side view which shows the structure of the inverter apparatus unit of 1st Example. 第1実施例のインバータ装置ユニットの構成を示す側面図。The side view which shows the structure of the inverter apparatus unit of 1st Example. 第1実施例のインバータ装置ユニットの構成を示す分解斜視図。The disassembled perspective view which shows the structure of the inverter apparatus unit of 1st Example. 第1実施例のインバータ装置ユニットの電気的な回路構成を示す回路図。The circuit diagram which shows the electrical circuit structure of the inverter apparatus unit of 1st Example. 第1実施例のインバータ装置ユニットが適用されるハイブリッド電気自動車の駆動システムの構成を示すブロック図。The block diagram which shows the structure of the drive system of the hybrid electric vehicle to which the inverter apparatus unit of 1st Example is applied. 第2実施例のインバータ装置ユニットの構成を示す断面図。Sectional drawing which shows the structure of the inverter apparatus unit of 2nd Example. 第3実施例のインバータ装置ユニットの構成を示す断面図。Sectional drawing which shows the structure of the inverter apparatus unit of 3rd Example. 第4実施例のインバータ装置ユニットの構成を示す断面図。Sectional drawing which shows the structure of the inverter apparatus unit of 4th Example. 第4実施例のインバータ装置ユニットが適用されるハイブリッド電気自動車の駆動システムの構成を示すブロック図。The block diagram which shows the structure of the drive system of the hybrid electric vehicle to which the inverter apparatus unit of 4th Example is applied.

以下、本発明の実施例を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下に説明する実施例では、本発明が適用される電力変換装置として、特に熱サイクルや動作的環境などが大変厳しい車載用インバータ装置を例に挙げて説明する。車載用インバータ装置は、車載電動機の駆動を制御する制御装置として車載電機システムに備えられており、車載電源を構成する車載バッテリから供給された直流電力を所定の交流電力に変換し、得られた交流電力を車載電動機に供給することにより、車載電動機の駆動を制御するものである。   In the embodiments described below, as an example of a power conversion device to which the present invention is applied, an in-vehicle inverter device with particularly severe thermal cycles and operating environments will be described as an example. The in-vehicle inverter device is provided in the in-vehicle electric system as a control device for controlling the driving of the in-vehicle motor, and is obtained by converting the DC power supplied from the in-vehicle battery constituting the in-vehicle power source into predetermined AC power. By supplying AC power to the in-vehicle motor, the driving of the in-vehicle motor is controlled.

尚、以下に説明する構成は、DC/DCコンバータや直流チョッパなどの直流−直流電力変換装置或いは交流−直流電力変換装置にも適用可能である。また、以下に説明する構成は、工場の設備を駆動する電動機の制御装置として用いられる産業用電力変換装置、或いは家庭の太陽光発電システムに用いられたり、家庭の電化製品を駆動する電動機の制御装置に用いられたりする家庭電力変換装置に対しても適用可能である。特に低コスト化及び小型化を狙った電力変換装置への適用が好ましい。   In addition, the structure demonstrated below is applicable also to DC / DC power converters, such as a DC / DC converter and a DC chopper, or AC-DC power converters. In addition, the configuration described below is used for industrial power conversion devices used as control devices for electric motors that drive factory equipment, or for control of electric motors that are used in household solar power generation systems, or for driving home appliances. The present invention can also be applied to a household power conversion device used in a device. In particular, application to a power conversion device aiming at cost reduction and miniaturization is preferable.

本発明の第1実施例を図1乃至図8に基づいて説明する。   A first embodiment of the present invention will be described with reference to FIGS.

まず、図8を用いて、本実施例のハイブリッド電気自動車について説明する。   First, the hybrid electric vehicle of the present embodiment will be described with reference to FIG.

本実施例のハイブリッド電気自動車(以下、「HEV」と記述する)は電動車両の一種であり、2つの駆動システムを備えている。その1つは、内燃機関であるエンジン104を動力源としたエンジンシステムである。エンジンシステムは、主としてHEVの駆動源として用いられる。もう1つは、モータジェネレータ130,140を動力源とした車載電機システムである。車載電機システムは、主としてHEVの駆動源及びHEVの電力発生源として用いられる。   The hybrid electric vehicle (hereinafter referred to as “HEV”) of this embodiment is a kind of electric vehicle and includes two drive systems. One of them is an engine system that uses an engine 104 that is an internal combustion engine as a power source. The engine system is mainly used as a drive source for HEV. The other is an in-vehicle electric machine system that uses motor generators 130 and 140 as power sources. The in-vehicle electric system is mainly used as an HEV drive source and an HEV power generation source.

車体(図示省略)のフロント部には前輪車軸102が回転可能に軸支されている。前輪車軸102の両端には1対の前輪101が設けられている。車体のリア部には、図示省略したが、両端に1対の後輪が設けられた後輪車軸が回転可能に軸支されている。本実施例のHEVでは、前輪101を、動力によって駆動される主輪、図示省略した後輪を、連れ回される従輪とする、いわゆる前輪駆動方式を採用しているが、この逆、すなわち後輪駆動方式を採用しても構わない。   A front wheel axle 102 is rotatably supported on a front portion of a vehicle body (not shown). A pair of front wheels 101 are provided at both ends of the front wheel axle 102. Although not shown, a rear wheel axle provided with a pair of rear wheels at both ends is rotatably supported at the rear portion of the vehicle body. The HEV of this embodiment employs a so-called front wheel drive system in which the front wheel 101 is a main wheel driven by power, and a rear wheel (not shown) is a driven wheel that is rotated. A wheel drive system may be adopted.

前輪車軸103の中央部には前輪側デファレンシャルギア(以下、「前輪側DEF」と記述する)103が設けられている。前輪車軸103は前輪側DEF103の出力側に機械的に接続されている。前輪側DEF103の入力側には変速機105の出力軸が機械的に接続されている。前輪側DEF103は、変速機105によって変速されて伝達された回転駆動力を左右の前輪車軸102に分配する差動式動力分配機構である。変速機105の入力側にはモータジェネレータ130の出力側が機械的に接続されている。モータジェネレータ130の入力側には動力分配機構150を介してエンジン104の出力側及びモータジェネレータ140の出力側が機械的に接続されている。   A front wheel differential gear (hereinafter referred to as “front wheel DEF”) 103 is provided at the center of the front wheel axle 103. The front wheel axle 103 is mechanically connected to the output side of the front wheel side DEF 103. The output shaft of the transmission 105 is mechanically connected to the input side of the front wheel side DEF103. The front wheel side DEF 103 is a differential power distribution mechanism that distributes the rotational driving force that is transmitted and transmitted by the transmission 105 to the left and right front wheel axles 102. The output side of the motor generator 130 is mechanically connected to the input side of the transmission 105. The output side of the engine 104 and the output side of the motor generator 140 are mechanically connected to the input side of the motor generator 130 via the power distribution mechanism 150.

尚、モータジェネレータ130,140及び動力分配機構150は、変速機150の筐体の内部に収納されている。   Motor generators 130 and 140 and power distribution mechanism 150 are housed inside the housing of transmission 150.

動力分配機構150は歯車151〜158から構成された差動機構である。ここで、歯車153〜156はかさ歯車である。歯車151,152,157,158は平歯車である。モータジェネレータ130の動力は変速機150に直接に伝達される。モータジェネレータ130の軸は歯車157と同軸になっている。これにより、モータジェネレータ130への駆動電力の供給が無い場合には、歯車157に伝達された動力がそのまま変速機150の入力側に伝達されることになる。エンジン104の作動によって歯車151が駆動されると、エンジン104の動力は歯車151から歯車152に、次に、歯車152から歯車154及び歯車156に、次に、歯車154及び歯車156から歯車158にそれぞれ伝達され、最終的には歯車157に伝達される。モータジェネレータ140の作動によって歯車153が駆動されると、モータジェネレータ140の回転は歯車153から歯車154及び歯車156に、次に、歯車154及び歯車156から歯車158のそれぞれに伝達され、最終的には歯車157に伝達される。   The power distribution mechanism 150 is a differential mechanism composed of gears 151 to 158. Here, the gears 153 to 156 are bevel gears. The gears 151, 152, 157, 158 are spur gears. The power of motor generator 130 is directly transmitted to transmission 150. The shaft of the motor generator 130 is coaxial with the gear 157. As a result, when no drive power is supplied to motor generator 130, the power transmitted to gear 157 is transmitted to the input side of transmission 150 as it is. When the gear 151 is driven by the operation of the engine 104, the power of the engine 104 is transferred from the gear 151 to the gear 152, then from the gear 152 to the gear 154 and the gear 156, and then from the gear 154 and the gear 156 to the gear 158. Each is transmitted and finally transmitted to the gear 157. When the gear 153 is driven by the operation of the motor generator 140, the rotation of the motor generator 140 is transmitted from the gear 153 to the gear 154 and the gear 156, and then from the gear 154 and the gear 156 to the gear 158, and finally. Is transmitted to the gear 157.

尚、動力分配機構150としては遊星歯車機構などの他の機構を用いても構わない。   As the power distribution mechanism 150, another mechanism such as a planetary gear mechanism may be used.

モータジェネレータ130は回転子に界磁用の永久磁石を備えた同期機であり、固定子の電機子コイルに供給される交流電力がインバータ装置110によって制御されることによりその駆動が制御される。モータジェネレータ140もモータジェネレータ130と同様の同期機であり、インバータ装置120によってその駆動が制御される。インバータ装置110,120にはバッテリ106が電気的に接続されており、バッテリ106からインバータ装置110,120への電力の供給、インバータ装置110,120からバッテリ106への電力の供給が可能である。   The motor generator 130 is a synchronous machine having a rotor with a permanent magnet for a field, and the drive is controlled by the AC power supplied to the armature coil of the stator being controlled by the inverter device 110. The motor generator 140 is a synchronous machine similar to the motor generator 130, and its drive is controlled by the inverter device 120. A battery 106 is electrically connected to the inverter devices 110 and 120, and power can be supplied from the battery 106 to the inverter devices 110 and 120, and power can be supplied from the inverter devices 110 and 120 to the battery 106.

本実施例では、モータジェネレータ130及びインバータ装置110からなる第1電動発電ユニットと、モータジェネレータ140及びインバータ装置120からなる第2電動発電ユニットとの2つを備え、運転状態に応じてそれらを使い分けている。すなわちエンジン104からの動力によって車両を駆動している場合において、車両の駆動トルクをアシストする場合には第2電動発電ユニットを発電ユニットとしてエンジン104の動力によって作動させて発電させ、その発電によって得られた電力によって第1電動発電ユニットを電動ユニットとして作動させる。また、同様の場合において、車両の車速をアシストする場合には第1電動発電ユニットを発電ユニットとしてエンジン104の動力によって作動させて発電させ、その発電によって得られた電力によって第2電動発電ユニットを電動ユニットとして作動させる。   In the present embodiment, the first motor generator unit composed of the motor generator 130 and the inverter device 110 and the second motor generator unit composed of the motor generator 140 and the inverter device 120 are provided, and they are selectively used according to the operating state. ing. That is, in the case where the vehicle is driven by the power from the engine 104, when assisting the driving torque of the vehicle, the second motor generator unit is operated by the power of the engine 104 as a power generation unit to generate power, and is obtained by the power generation. The first motor generator unit is operated as an electric unit by the generated electric power. In the same case, when assisting the vehicle speed of the vehicle, the first motor generator unit is operated by the power of the engine 104 as a power generation unit to generate electric power, and the second motor generator unit is generated by the electric power obtained by the power generation. Operate as an electric unit.

また、本実施例では、バッテリ106の電力によって第1電動発電ユニットを電動ユニットとして作動させることにより、モータジェネレータ130の動力のみによって車両の駆動ができる。   In this embodiment, the first motor generator unit is operated as an electric unit by the electric power of the battery 106, so that the vehicle can be driven only by the power of the motor generator 130.

さらに、本実施例では、第1電動発電ユニット又は第2電動発電ユニットを発電ユニットとしてエンジン104の動力或いは車輪からの動力によって作動させて発電させることにより、バッテリ106の充電ができる。   Further, in this embodiment, the battery 106 can be charged by generating power by operating the first motor generator unit or the second motor generator unit as the power generation unit by the power of the engine 104 or the power from the wheels.

次に、図7を用いて、本実施例のインバータ装置110,120の電気的な回路構成について説明する。   Next, the electrical circuit configuration of the inverter devices 110 and 120 of this embodiment will be described with reference to FIG.

本実施例のインバータ装置110,120は1つにまとまった形で1つのインバータ装置ユニットとして構成されている。インバータ装置ユニットには、インバータ装置110の半導体モジュール20と、インバータ装置120の半導体モジュール30と、コンデンサ50と、インバータ装置110の駆動回路基板70に実装された駆動回路92と、インバータ装置120の駆動回路基板71に実装された駆動回路94と、制御回路基板74に実装された制御回路と、コネクタ基板72に実装されたコネクタ73及びコンデンサ50の放電回路(図示省略)を駆動する駆動回路91と、電流センサ95,96が設けられている。   The inverter devices 110 and 120 of this embodiment are configured as one inverter device unit in a united form. The inverter device unit includes the semiconductor module 20 of the inverter device 110, the semiconductor module 30 of the inverter device 120, the capacitor 50, the drive circuit 92 mounted on the drive circuit board 70 of the inverter device 110, and the drive of the inverter device 120. A drive circuit 94 mounted on the circuit board 71, a control circuit mounted on the control circuit board 74, a drive circuit 91 for driving a connector 73 and a discharge circuit (not shown) of the capacitor 50 mounted on the connector board 72, and Current sensors 95 and 96 are provided.

尚、本実施例では、電源系と信号系との区別がし易いように、電源系を実線で、信号系を点線でそれぞれ図示している。   In this embodiment, the power supply system is indicated by a solid line and the signal system is indicated by a dotted line so that the power supply system and the signal system can be easily distinguished.

半導体モジュール20,30は、対応するインバータ装置110,120の電力変換用主回路を構成しており、複数のスイッチング用パワー半導体素子を備えている。半導体モジュール20,30は、対応する駆動回路92,94から出力された駆動信号を受けて動作し、高圧バッテリHBAら供給された直流電力を三相交流電力に変換し、その電力を対応するモータジェネレータ130,140の電機子巻線に供給する。主回路は3相ブリッジ回路であり、3相分の直列回路がバッテリ106の正極側と負極側との間に電気的に並列に接続されて構成されている。   The semiconductor modules 20 and 30 constitute a power conversion main circuit of the corresponding inverter devices 110 and 120, and include a plurality of switching power semiconductor elements. The semiconductor modules 20 and 30 operate in response to the drive signals output from the corresponding drive circuits 92 and 94, convert the DC power supplied from the high voltage battery HBA into three-phase AC power, and convert the power to the corresponding motor. This is supplied to the armature windings of the generators 130 and 140. The main circuit is a three-phase bridge circuit, and a series circuit for three phases is configured to be electrically connected in parallel between the positive electrode side and the negative electrode side of the battery 106.

直列回路はアームとも呼ばれ、上アーム側スイッチング用パワー半導体素子と下アーム側スイッチング用パワー半導体素子とが電気的に直列に接続されることにより構成されている。本実施例では、スイッチング用パワー半導体素子としてIGBT(絶縁ゲート型バイポーラトランジスタ)21を用いている。IGBT21は、コレクタ電極,エミッタ電極及びゲート電極の3つの電極を備えている。IGBT21のコレクタ電極とエミッタ電極との間にはダイオード38が電気的に接続されている。ダイオード38は、カソード電極及びアノード電極の2つの電極を備えており、IGBT21のエミッタ電極からコレクタ電極に向かう方向が順方向となるように、カソード電極がIGBT21のコレクタ電極に、アノード電極がIGBT21のエミッタ電極にそれぞれ電気的に接続されている。   The series circuit is also referred to as an arm, and is configured by electrically connecting an upper arm side switching power semiconductor element and a lower arm side switching power semiconductor element in series. In this embodiment, an IGBT (insulated gate bipolar transistor) 21 is used as a power semiconductor element for switching. The IGBT 21 includes three electrodes, a collector electrode, an emitter electrode, and a gate electrode. A diode 38 is electrically connected between the collector electrode and the emitter electrode of the IGBT 21. The diode 38 includes two electrodes, a cathode electrode and an anode electrode. The cathode electrode is the collector electrode of the IGBT 21 and the anode electrode is the IGBT 21 so that the direction from the emitter electrode to the collector electrode of the IGBT 21 is the forward direction. Each is electrically connected to the emitter electrode.

スイッチング用パワー半導体素子としてはMOSFET(金属酸化物半導体型電界効果トランジスタ)を用いてもよい。MOSFETは、ドレイン電極,ソース電極及びゲート電極の3つの電極を備えている。尚、MOSFETは、ソース電極とドレイン電極との間に、ドレイン電極からソース電極に向かう方向が順方向となる寄生ダイオードを備えているので、IGBTのように、別途、ダイオードを設ける必要がない。   A MOSFET (metal oxide semiconductor field effect transistor) may be used as the power semiconductor element for switching. The MOSFET includes three electrodes, a drain electrode, a source electrode, and a gate electrode. Note that the MOSFET includes a parasitic diode between the source electrode and the drain electrode in which the direction from the drain electrode to the source electrode is a forward direction, so that it is not necessary to provide a separate diode unlike the IGBT.

各相のアームはIGBT21のソース電極とIGBT21のドレイン電極が電気的に直列に接続されて構成されている。尚、本実施例では、各相の各上下アームのIGBTを1つしか図示していないが、複数のIGBTが電気的に並列に接続されて構成される場合もある。本実施例では、後述するように各相の各上下アームは3つのIGBTによって構成している。   The arm of each phase is configured by electrically connecting the source electrode of the IGBT 21 and the drain electrode of the IGBT 21 in series. In the present embodiment, only one IGBT of each upper and lower arm of each phase is illustrated, but a plurality of IGBTs may be configured to be electrically connected in parallel. In the present embodiment, as will be described later, each upper and lower arm of each phase is constituted by three IGBTs.

各相の各上アームのIGBT21のドレイン電極はバッテリ106の正極側に、各相の各下アームのIGBT21のソース電極はバッテリ106の負極側それぞれ電気的に接続されている。各相の各アームの中点(上アーム側IGBTのソース電極と下アーム側のIGBTのドレイン電極との接続部分)は、対応するモータジェネレータ130,140の対応する相の電機子巻線に電気的に接続されている。   The drain electrode of the IGBT 21 of each upper arm of each phase is electrically connected to the positive electrode side of the battery 106, and the source electrode of the IGBT 21 of each lower arm of each phase is electrically connected to the negative electrode side of the battery 106. The midpoint of each arm of each phase (the connection portion between the source electrode of the upper arm side IGBT and the drain electrode of the lower arm IGBT) is electrically connected to the armature winding of the corresponding phase of the corresponding motor generator 130, 140. Connected.

駆動回路92,94は、対応するインバータ装置110,120の駆動部を構成しており、制御回路93から出力された制御信号(制御値)に基づいて、IGBT21を駆動させるための駆動信号を発生する。それぞれの回路において発生した駆動信号は、対応する半導体モジュール20,30に出力される。駆動回路92,94は、各相の各上下アームに対応する複数の回路を1つの回路に集積した、いわゆる6in1タイプの集積回路により構成されたものである。各相の各上下アームに対応する回路としては、インターフェース回路,ゲート回路,異常検出回路などを備えている。   The drive circuits 92 and 94 constitute the drive units of the corresponding inverter devices 110 and 120, and generate drive signals for driving the IGBT 21 based on the control signals (control values) output from the control circuit 93. To do. The drive signal generated in each circuit is output to the corresponding semiconductor modules 20 and 30. The drive circuits 92 and 94 are constituted by so-called 6-in-1 type integrated circuits in which a plurality of circuits corresponding to the upper and lower arms of each phase are integrated into one circuit. As a circuit corresponding to each upper and lower arm of each phase, an interface circuit, a gate circuit, an abnormality detection circuit, and the like are provided.

制御回路93はインバータ装置110,120の制御部を構成しており、複数のスイッチング用パワー半導体素子を動作(オン・オフ)させるための制御信号(制御値)を演算するマイクロコンピュータによって構成されている。制御回路93には、上位制御装置からのトルク指令信号(トルク指令値),電流センサ95,96及びモータジェネレータ130,140に搭載された回転センサからの検知信号(センサ値)が入力されている。制御回路93はそれらの入力信号に基づいて制御信号(制御値)を演算し、駆動回路92,94に出力する。   The control circuit 93 constitutes a control unit of the inverter devices 110 and 120, and is constituted by a microcomputer that calculates a control signal (control value) for operating (turning on / off) a plurality of switching power semiconductor elements. Yes. The control circuit 93 receives a torque command signal (torque command value) from the host controller, and detection signals (sensor values) from the rotation sensors mounted on the current sensors 95 and 96 and the motor generators 130 and 140. . The control circuit 93 calculates a control signal (control value) based on these input signals and outputs it to the drive circuits 92 and 94.

コネクタ73はインバータ装置110,120の内部と外部の制御装置との間を電気的に接続するためのものである。   The connector 73 is for electrically connecting the inside of the inverter devices 110 and 120 and an external control device.

コンデンサ50は、IGBT21の動作によって生じる直流電圧の変動を抑制するための平滑回路を構成するためのものであり、半導体モジュール20,30の直流側に電気的に並列に接続されている。   The capacitor 50 is for constituting a smoothing circuit for suppressing fluctuations in DC voltage caused by the operation of the IGBT 21, and is electrically connected in parallel to the DC side of the semiconductor modules 20 and 30.

駆動回路91は、コンデンサ50に蓄積された電荷を放電するために設けられた放電回路(図示省略)を駆動するためのものである。   The drive circuit 91 is for driving a discharge circuit (not shown) provided for discharging the electric charge accumulated in the capacitor 50.

次に、図1乃至図6を用いて、前述したインバータ装置110,120の実際の構成を説明する。   Next, the actual configuration of the above-described inverter devices 110 and 120 will be described with reference to FIGS.

本実施例のインバータ装置ユニットは、下部ケース13の上に第2ベース12が、第2ベースの上に第1ベース11が、第1ベース11の上に上部ケース10がそれぞれ積み上げられることにより形成された筐体(インバータケース)を備えている。筐体は全体的に丸みを帯びた直方体状の容器である。筐体の構成部品は全てアルミニウム製の熱伝導性部材によって構成されている。   The inverter device unit of this embodiment is formed by stacking the second base 12 on the lower case 13, the first base 11 on the second base, and the upper case 10 on the first base 11. The housing (inverter case) is provided. The casing is a rounded rectangular parallelepiped container. All the components of the housing are made of a heat conductive member made of aluminum.

筐体の内部は、板状の第1ベース11と,パイ(π)型状の第2ベース12によって上下方向に2つに分離されており、熱伝導性部材によって全周(周壁,天井壁,底壁)が囲まれた2つの冷却室が形成されている。2つの冷却室の境界壁を形成する第1ベース11及び第2ベース12には冷媒(冷却水)を流すための2つの冷媒流路28が形成されている。以上のように筐体を構成することにより、2つの冷却室は熱的に隔てられ、一方の冷却室から他方の冷却室への熱影響を抑制できる。   The interior of the housing is separated into two in the vertical direction by a plate-like first base 11 and a pi (π) -shaped second base 12, and the entire circumference (peripheral wall, ceiling wall) by a heat conductive member , Bottom wall) are formed in the two cooling chambers. Two refrigerant flow paths 28 for flowing refrigerant (cooling water) are formed in the first base 11 and the second base 12 that form the boundary walls of the two cooling chambers. By configuring the housing as described above, the two cooling chambers are thermally separated, and the thermal influence from one cooling chamber to the other cooling chamber can be suppressed.

筐体の上部の冷却室には、筐体の長手方向に長く、短手方向に短いサイズの半導体モジュール20,30が筐体の短手方向に並設されるように、かつ冷媒流路28の上部に配置されるようにして収納されている。これにより、半導体モジュール20,30は冷媒流路28と熱的に接続され、IGBT21の動作によって発生した熱が冷媒によって冷却される。従って、半導体モジュール20,30から放出された熱が下部の冷却室に及ぼす影響を抑制できる。   In the cooling chamber at the top of the housing, the semiconductor modules 20 and 30 having a size that is long in the longitudinal direction of the housing and short in the lateral direction are juxtaposed in the lateral direction of the housing, and the refrigerant flow path 28. It is stored so that it may be arrange | positioned at the upper part of. Thereby, the semiconductor modules 20 and 30 are thermally connected to the refrigerant flow path 28, and the heat generated by the operation of the IGBT 21 is cooled by the refrigerant. Therefore, it is possible to suppress the influence of the heat released from the semiconductor modules 20 and 30 on the lower cooling chamber.

筐体の長手方向の一方側の側端面には、冷媒流路28の一方側と連通した入口配管15と、冷媒流路28の他方側と連通した出口配管16が設けられている。冷媒流路28の各々は筐体の長手方向の一方側から他方側に向かって平行に延びており、お互い筐体の長手方向の他方側の端部において連通している。すなわち冷媒流路28はU字状に形成されている。   An inlet pipe 15 that communicates with one side of the refrigerant flow path 28 and an outlet pipe 16 that communicates with the other side of the refrigerant flow path 28 are provided on one side end face in the longitudinal direction of the casing. Each of the refrigerant channels 28 extends in parallel from one side in the longitudinal direction of the housing toward the other side, and communicates with each other at the other end in the longitudinal direction of the housing. That is, the refrigerant flow path 28 is formed in a U shape.

第1ベース11の冷媒流路28が形成された部位のそれぞれには伝熱プレート28が設けられている。伝熱プレート28は冷媒流路28に沿って筐体の長手方向の一方側から他方側に向かって延びた長方形状のものであり、冷媒流路28の一面を構成する板状部材である。これにより、伝熱プレート23は、冷媒流路28を流れる冷媒によって直接冷却される。伝熱プレート23はアルミニウム製或いは銅製の熱伝導性部材により構成されており、冷媒流路28の内部に突出する冷却フィン(図示省略)がその冷媒流路28側の面に設けられている。これにより、冷媒による冷却面積が増加し、冷媒による冷却効果を向上できる。   A heat transfer plate 28 is provided at each of the portions of the first base 11 where the refrigerant flow paths 28 are formed. The heat transfer plate 28 is a rectangular member that extends from one side of the casing in the longitudinal direction toward the other side along the refrigerant flow path 28, and is a plate-like member that forms one surface of the refrigerant flow path 28. Thereby, the heat transfer plate 23 is directly cooled by the refrigerant flowing through the refrigerant flow path 28. The heat transfer plate 23 is made of a heat conductive member made of aluminum or copper, and cooling fins (not shown) protruding inside the refrigerant flow path 28 are provided on the surface on the refrigerant flow path 28 side. Thereby, the cooling area by a refrigerant | coolant increases and the cooling effect by a refrigerant | coolant can be improved.

伝熱プレート23のそれぞれの上面には、伝熱プレート23の外周縁に沿って立設するようにモジュールケース24が設けられている。モジュールケース24は筐体の長手方向に向かって伝熱プレート23の上面上の領域を3つの領域に分割して、IGBT21とダイオード38とを各相毎に収納する収納室を形成している。   A module case 24 is provided on each upper surface of the heat transfer plate 23 so as to stand along the outer peripheral edge of the heat transfer plate 23. The module case 24 divides the region on the upper surface of the heat transfer plate 23 into three regions in the longitudinal direction of the housing to form a storage chamber for storing the IGBT 21 and the diode 38 for each phase.

モジュールケース24の長手方向に延びる側壁であって、半導体モジュール20,30の対向側に位置する側壁には直流正極側モジュール端子26及び直流負極側モジュール端子33が収納室毎に対応して設けられている。直流正極側モジュール端子33及び直流負極側モジュール端子26はモジュールケース24の側壁から上方に突出している。直流正極側モジュール端子33及び直流負極側モジュール端子26の突出側とは反対側は収納室の内部に至り、その表面がモジュールケース24の表面に露出している。これにより、各収納室の内部には直流正極側モジュール電極36及び直流負極側モジュール電極37が形成される。   A DC positive-side module terminal 26 and a DC negative-side module terminal 33 are provided corresponding to each storage chamber on the side wall extending in the longitudinal direction of the module case 24 and located on the opposite side of the semiconductor modules 20 and 30. ing. The direct current positive side module terminal 33 and the direct current negative side module terminal 26 protrude upward from the side wall of the module case 24. The side opposite to the protruding side of the DC positive side module terminal 33 and the DC negative side module terminal 26 reaches the inside of the storage chamber, and the surface thereof is exposed on the surface of the module case 24. As a result, a DC positive module electrode 36 and a DC negative module electrode 37 are formed inside each storage chamber.

モジュールケース24の長手方向に延びる側壁であって、半導体モジュール20,30の対向側とは反対側に位置する側壁には交流モジュール端子27が収納室毎に対応して設けられている。交流モジュール端子27はモジュールケース24の側壁から上方に突出している。交流モジュール端子27の突出側とは反対側は収納室の内部に至り、その表面がモジュールケース24の表面に露出している。これにより、各収納室の内部には交流モジュール電極35が形成される。   An AC module terminal 27 is provided corresponding to each storage chamber on the side wall extending in the longitudinal direction of the module case 24 and located on the side opposite to the opposite side of the semiconductor modules 20 and 30. The AC module terminal 27 protrudes upward from the side wall of the module case 24. The side opposite to the protruding side of the AC module terminal 27 reaches the inside of the storage chamber, and the surface thereof is exposed on the surface of the module case 24. Thereby, the AC module electrode 35 is formed inside each storage chamber.

各収納室の伝熱プレート23の上面には2つの絶縁基板22が筐体の長手方向に並設されている。各絶縁基板22の上面には2つの板状の配線部材39が筐体の長手方向に並設されている。各収納室の2つの絶縁基板22の一方側に設けられた配線部材39の一方側は直流正極側モジュール電極36と電気的に接続されている。各収納室の2つの絶縁基板22の他方側に設けられた配線部材39の一方側は直流負極側モジュール電極37と電気的に接続されている。各収納室の2つの絶縁基板22に設けられた配線部材39の他方側は交流モジュール電極35と電気的に接続されている。これらの電気的な接続は導電性のワイヤ29によって行われる。   Two insulating substrates 22 are juxtaposed in the longitudinal direction of the casing on the upper surface of the heat transfer plate 23 of each storage chamber. Two plate-like wiring members 39 are arranged on the upper surface of each insulating substrate 22 in the longitudinal direction of the housing. One side of the wiring member 39 provided on one side of the two insulating substrates 22 in each storage chamber is electrically connected to the DC positive side module electrode 36. One side of the wiring member 39 provided on the other side of the two insulating substrates 22 in each storage chamber is electrically connected to the DC negative electrode module electrode 37. The other side of the wiring member 39 provided on the two insulating substrates 22 in each storage chamber is electrically connected to the AC module electrode 35. These electrical connections are made by a conductive wire 29.

各収納室の2つの絶縁基板22に設けられた配線部材39の一方側の上面には、筐体の長手方向に並べられたIGBT21とダイオード38とが筐体の短手方向に3つ並設されて実装されている。これにより、各相の上下アームがそれぞれ構成される。IGBT21とダイオード38は、交流モジュール電極35と電気的に接続された配線部材39に電気的に接続されている。IGBT21のゲート電極はコネクタ25に電気的に接続されている。これらの電気的な接続は導電性のワイヤ29によって行われる。コネクタ25はモジュールケース24の伝熱プレート23の上面の3の領域を形成する4つの側壁にそれぞれ設けられている。   Three IGBTs 21 and diodes 38 arranged in the longitudinal direction of the casing are arranged in parallel in the lateral direction of the casing on the upper surface on one side of the wiring member 39 provided on the two insulating substrates 22 of each storage chamber. Has been implemented. Thereby, the upper and lower arms of each phase are configured. The IGBT 21 and the diode 38 are electrically connected to a wiring member 39 that is electrically connected to the AC module electrode 35. The gate electrode of the IGBT 21 is electrically connected to the connector 25. These electrical connections are made by a conductive wire 29. The connector 25 is provided on each of four side walls forming three regions on the upper surface of the heat transfer plate 23 of the module case 24.

モジュールケース24の上部には板状のモジュールケース蓋34が設けられている。モジュールケース蓋34は、モジュールケース24の上部開口部を覆って収納室を塞ぐ天井壁を構成しており、モジュールケース24と同じ絶縁樹脂から成形されている。モジュールケース蓋34の上面には、配線シート31と、配線シード31に電気的に接続された配線コネクタ32が設けられている。配線シート31は、モジュールケース蓋34に設けられた貫通孔から上方に突出したコネクタ25と電気的に接続されている。配線コネクタ32は、図示省略した配線によって駆動回路基板70,71の駆動回路92,94と電気的に接続されている。   A plate-like module case lid 34 is provided on the upper part of the module case 24. The module case lid 34 forms a ceiling wall that covers the upper opening of the module case 24 and closes the storage chamber, and is formed from the same insulating resin as the module case 24. On the upper surface of the module case lid 34, a wiring sheet 31 and a wiring connector 32 electrically connected to the wiring seed 31 are provided. The wiring sheet 31 is electrically connected to the connector 25 protruding upward from the through hole provided in the module case lid 34. The wiring connector 32 is electrically connected to the drive circuits 92 and 94 of the drive circuit boards 70 and 71 by wires not shown.

筐体の下部の冷却室内にはコンデンサ50、駆動回路基板70,71,制御基板74及びコネクタ基板72が収納されている。   A capacitor 50, drive circuit boards 70 and 71, a control board 74, and a connector board 72 are housed in a cooling chamber at the bottom of the housing.

コンデンサ50は、半導体モジュール20,30の直流側と近接配置されるように、第2ベース12の中央(πの2本足によって囲まれた領域)の下方側に配置されている。コンデンサ50は、筐体の高さ方向の断面形状が長丸形状の4つの電解コンデンサから構成されている。4つの電解コンデンサはその長手方向が筐体の長手方向と同じ方向を向くように、筐体の長手方向と短手方向に2つずつ並設され、保持バンド52を介してコンデンサケース51の内部に収納されている。コンデンサケース51は上部が開放した熱伝導性容器であって、ケース上部のフランジ部と第2ベース12のπの2本の足の下端部が接触している。これにより、コンデンサ50と冷媒流路28とを熱的に接続でき、コンデンサ50を冷媒によって冷却できる。   The capacitor 50 is disposed below the center of the second base 12 (a region surrounded by two legs of π) so as to be disposed close to the DC side of the semiconductor modules 20 and 30. The capacitor 50 is composed of four electrolytic capacitors whose cross-sectional shape in the height direction of the housing has an oval shape. The four electrolytic capacitors are arranged side by side in the longitudinal direction and the short direction of the casing so that the longitudinal direction thereof is the same as the longitudinal direction of the casing, and the inside of the capacitor case 51 is interposed via the holding band 52. It is stored in. The capacitor case 51 is a thermally conductive container having an open top, and the flange portion at the top of the case is in contact with the lower ends of the two legs π of the second base 12. Thereby, the capacitor | condenser 50 and the refrigerant | coolant flow path 28 can be connected thermally, and the capacitor | condenser 50 can be cooled with a refrigerant | coolant.

各電解コンデンサは、コンデンサケース53の上部の開口部を塞ぐコンデンサ蓋54を貫通した正極側コンデンサ端子57及び負極側コンデンサ端子56を備えている。正極側コンデンサ端子57及び負極側コンデンサ端子56は板状のものであり、短手方向に面するように対向しており、コンデンサ蓋54と一体形成された板状の絶縁部材55を短手方向から挟み込んでいる。コンデンサ端子は、コンデンサケース53に4つの電解コンデンサを収納した際、短手方向に隣り合うもの同士の長手方向の位置が異なるように設けている。   Each electrolytic capacitor includes a positive-side capacitor terminal 57 and a negative-side capacitor terminal 56 that pass through a capacitor lid 54 that closes the upper opening of the capacitor case 53. The positive-side capacitor terminal 57 and the negative-side capacitor terminal 56 are plate-shaped, facing each other so as to face the short direction, and the plate-shaped insulating member 55 formed integrally with the capacitor lid 54 is disposed in the short direction. Is sandwiched between. The capacitor terminals are provided such that when four electrolytic capacitors are accommodated in the capacitor case 53, the positions in the longitudinal direction of those adjacent in the lateral direction are different.

駆動回路基板70は、半導体モジュール20側の第2ベース12の下方側であって、πの足の片方と第2ベース12のフランジ部によって囲まれた領域に配置されている。駆動回路基板71は、半導体モジュール30側の第2ベース12の下方側であって、πの足の他方と第2ベース12のフランジ部によって囲まれた領域に配置されている。駆動回路基板70,71は第2ベース12と熱的に接続されている。これにより、冷媒流路28と駆動回路基板70,71とを熱的に接続することができ、駆動回路基板70,71を冷媒によって冷却できる。   The drive circuit board 70 is disposed on the lower side of the second base 12 on the semiconductor module 20 side and in a region surrounded by one of the legs of π and the flange portion of the second base 12. The drive circuit board 71 is disposed below the second base 12 on the semiconductor module 30 side and in a region surrounded by the other leg of π and the flange portion of the second base 12. The drive circuit boards 70 and 71 are thermally connected to the second base 12. Thereby, the refrigerant flow path 28 and the drive circuit boards 70 and 71 can be thermally connected, and the drive circuit boards 70 and 71 can be cooled by the refrigerant.

制御回路基板74はコンデンサケース53の短手方向の一方側(半導体モジュール30側)の側面と対向するように設けている。制御回路基板74は第2ベース12と熱的に接続されている。これにより、冷媒流路28と制御回路基板74とを熱的に接続することができ、制御回路基板74を冷媒によって冷却できる。   The control circuit board 74 is provided so as to face the side surface on one side (semiconductor module 30 side) of the capacitor case 53 in the short direction. The control circuit board 74 is thermally connected to the second base 12. Thereby, the refrigerant flow path 28 and the control circuit board 74 can be thermally connected, and the control circuit board 74 can be cooled by the refrigerant.

コネクタ基板72はコンデンサケース53の短手方向の他方側(半導体モジュール20側)の側面と対向するように設けている。コネクタ基板72は第2ベース12と熱的に接続されている。これにより、冷媒流路28とコネクタ基板72とを熱的に接続することができ、コネクタ基板72を冷媒によって冷却できる。コネクタ73は筐体の長手方向の他方側の側端面から外部に突出している。   The connector substrate 72 is provided so as to face the side surface of the other side (semiconductor module 20 side) of the capacitor case 53 in the short direction. The connector board 72 is thermally connected to the second base 12. Thereby, the refrigerant | coolant flow path 28 and the connector board | substrate 72 can be thermally connected, and the connector board | substrate 72 can be cooled with a refrigerant | coolant. The connector 73 protrudes to the outside from the side end surface on the other side in the longitudinal direction of the housing.

コンデンサ50と半導体モジュール20,30は直流側接続導体40によって電気的に接続される。直流側接続導体40は、第1ベース11の中央部及び第2ベースの中央部に設けられ長孔(筐体の長手方向に長い孔)であって、筐体の高さ方向に貫通した貫通孔を介して上下の冷却室に延びている。   The capacitor 50 and the semiconductor modules 20 and 30 are electrically connected by the DC side connection conductor 40. The DC side connection conductor 40 is a long hole (a hole long in the longitudinal direction of the housing) provided in the central portion of the first base 11 and the central portion of the second base, and penetrates in the height direction of the housing. It extends to the upper and lower cooling chambers through the holes.

直流側接続導体40は、筐体の長手方向に延びる板状の直流正極側バスバー45と、筐体の長手方向に延びる板状の直流負極側バスバー44とを絶縁シート43を介して筐体の短手方向に積層し、直流正極側モジュール端子42と正極側コンデンサ端子46とを直流正極側バスバー45に一体に形成し、かつ直流負極側モジュール端子41と負極側コンデンサ端子47とを直流負極側バスバー44に一体に形成したラミネート構造の配線部材である。このような構造によれば、半導体モジュール20,30とコンデンサ50との間を低インダクタンスにでき、IGBT21のスイッチング動作時の損失による発熱を抑制できる。   The DC-side connection conductor 40 includes a plate-like DC positive electrode-side bus bar 45 extending in the longitudinal direction of the housing and a plate-like DC negative electrode-side bus bar 44 extending in the longitudinal direction of the housing via an insulating sheet 43. The DC positive side module terminal 42 and the positive side capacitor terminal 46 are integrally formed on the DC positive side bus bar 45, and the DC negative side module terminal 41 and the negative side capacitor terminal 47 are connected to the DC negative side. The wiring member has a laminate structure formed integrally with the bus bar 44. According to such a structure, the inductance between the semiconductor modules 20 and 30 and the capacitor 50 can be reduced, and heat generation due to loss during the switching operation of the IGBT 21 can be suppressed.

直流正極側モジュール端子42は、直流正極側モジュール端子33がモジュールケース24から上方に突出する位置において直流正極側バスバー45の上部から上方に向かって延びて、筐体の短手方向に面するように直流正極側モジュール端子33と対向して直流正極側モジュール端子33にねじ等の固定手段によって固定されることにより、直流正極側モジュール端子33と電気的に接続されている。直流負極側モジュール端子41は、直流負極側モジュール端子26がモジュールケース24から上方に突出する位置において直流負極側バスバー44の上部から上方に向かって延びて、筐体の短手方向に面するように直流負極側モジュール端子26と対向して直流負極側モジュール端子26にねじ等の固定手段によって固定されることにより、直流負極側モジュール端子26と電気的に接続されている。   The DC positive-side module terminal 42 extends upward from the upper part of the DC positive-side bus bar 45 at a position where the DC positive-side module terminal 33 protrudes upward from the module case 24 so as to face the short direction of the casing. The DC positive module terminal 33 is electrically connected to the DC positive module terminal 33 by being fixed to the DC positive module terminal 33 by a fixing means such as a screw. The DC negative-side module terminal 41 extends upward from the upper part of the DC negative-side bus bar 44 at a position where the DC negative-side module terminal 26 protrudes upward from the module case 24 so as to face the short side of the housing. The DC negative side module terminal 26 is electrically connected to the DC negative side module terminal 26 by being fixed to the DC negative side module terminal 26 by a fixing means such as a screw.

正極側コンデンサ端子46及び負極側コンデンサ端子47は、コンデンサ端子が突出する位置において直流正極側バスバー45及び直流負極側バスバー44の下部から下方に延びて、筐体の短手方向に面してコンデンサ端子を筐体の短手方向から挟み込み、同極のコンデンサ端子と対向して同極のコンデンサ端子にねじ等の固定手段によって固定されることにより、同極のコンデンサ端子と電気的に接続されている。このような配線構造によれば、直流正極側バスバー45及び直流負極側バスバー44から各コンデンサ端子に至る配線部分も正極側と負極側とを対向させることができ、さらなる低インダクタンス化を図った配線部材が得られ、IGBT21のスイッチング動作時の損失による発熱をさらに抑制できる。   The positive electrode side capacitor terminal 46 and the negative electrode side capacitor terminal 47 extend downward from the lower portions of the DC positive electrode side bus bar 45 and the DC negative electrode side bus bar 44 at the position where the capacitor terminal protrudes, and face the short side of the casing. The terminal is sandwiched from the short side of the case and fixed to the capacitor terminal of the same polarity opposite to the capacitor terminal of the same polarity by fixing means such as screws, so that it is electrically connected to the capacitor terminal of the same polarity. Yes. According to such a wiring structure, the wiring portions extending from the DC positive electrode side bus bar 45 and the DC negative electrode side bus bar 44 to the respective capacitor terminals can also be opposed to the positive electrode side and the negative electrode side, thereby further reducing the inductance. A member is obtained, and heat generation due to loss during the switching operation of the IGBT 21 can be further suppressed.

筐体の長手方向の他方側端部には直流端子80が設けられている。直流端子80は、直流正極側外部端子82と、直流負極側外部端子81と、直流正極側接続端子86と、直流負極側接続端子85と、直流正極側外部端子82と直流正極側接続端子86とを接続する直流正極側バスバー84と、直流負極側外部端子81と直流負極側接続端子85とを接続する直流負極側バスバー83とを備えたものである。   A DC terminal 80 is provided at the other end portion in the longitudinal direction of the housing. The DC terminal 80 includes a DC positive external terminal 82, a DC negative external terminal 81, a DC positive connection terminal 86, a DC negative connection terminal 85, a DC positive external terminal 82, and a DC positive connection terminal 86. Are connected to the DC positive electrode side bus bar 84, and the DC negative electrode side external terminal 81 and the DC negative electrode side connection terminal 85 are connected to the DC negative electrode side bus bar 83.

直流正極側外部端子82及び直流負極側外部端子81は、筐体の長手方向の他方側の側端面に設けられた貫通孔17に装着されるコネクタを介して延びる外部ケーブルと電気的に接続される。直流正極側バスバー84と直流負極側バスバー83は筐体の短手方向に面して対向するように、半導体モジュール20,30側に延びている。直流正極側接続端子86は直流正極側モジュール端子33,42に、直流負極側接続端子85は直流負極側モジュール端子26,41にそれぞれ電気的に接続されている。   The DC positive electrode external terminal 82 and the DC negative electrode external terminal 81 are electrically connected to an external cable extending through a connector attached to a through hole 17 provided on the other side end surface in the longitudinal direction of the housing. The The direct current positive electrode side bus bar 84 and the direct current negative electrode side bus bar 83 extend toward the semiconductor modules 20 and 30 so as to face each other in the short direction of the housing. The DC positive side connection terminal 86 is electrically connected to the DC positive side module terminals 33 and 42, and the DC negative side connection terminal 85 is electrically connected to the DC negative side module terminals 26 and 41.

上部ケース10の上面に設けられた孔18は、直流正極側外部端子82及び直流負極側外部端子81と外部ケーブルとの接続作業に用いられるものであり、作業時以外は蓋で塞がれている。   The hole 18 provided in the upper surface of the upper case 10 is used for connecting the DC positive external terminal 82 and the DC negative external terminal 81 and the external cable, and is closed with a lid except during the operation. Yes.

筐体の内部の短手方向の両端のそれぞれには3相分の交流バスバー60が配置されている。交流バスバー60は、第1ベース11及び第2ベース12の筐体の短手方向の端部に設けられた上下方向(筐体の高さ方向)の貫通孔を介して下部の冷却室から上部の冷却室に延びている。上部の冷却室にある交流バスバー60の一端側には交流側モジュール端子61が形成されており、筐体の短手方向に面して交流側モジュール端子27と対向し、交流側モジュール端子27にねじ等の固定手段によって固定されることにより、交流側モジュール端子27に電気的に接続されている。下部の冷却室にある交流バスバー60の他端側には、モータジェネレータ130,140に至る外部ケーブルとの外部接続端子62が形成され、端子ホルダー63によって保持されている。   AC bus bars 60 for three phases are arranged at both ends in the short direction inside the housing. The AC bus bar 60 is connected to the upper part from the lower cooling chamber through a through-hole in the vertical direction (the height direction of the casing) provided at the end in the short direction of the casing of the first base 11 and the second base 12. Extends into the cooling chamber. An AC side module terminal 61 is formed on one end side of the AC bus bar 60 in the upper cooling chamber. The AC side module terminal 61 faces the AC side module terminal 27 so as to face the short side of the casing. It is electrically connected to the AC side module terminal 27 by being fixed by fixing means such as a screw. On the other end side of the AC bus bar 60 in the lower cooling chamber, an external connection terminal 62 with an external cable reaching the motor generators 130 and 140 is formed and held by a terminal holder 63.

尚、符号14は、インバータ装置ユニットの筐体を変速機105の筐体或いはエンジン104及び変速機105の筐体に固定するための取り付け足であり、SUSなどの剛体を採用して強度を確保している。また、変速機15及びエンジン104からの振動を抑制するようにベンド形状とし弾性を持たせている。   Reference numeral 14 denotes an attachment foot for fixing the casing of the inverter unit unit to the casing of the transmission 105 or the casing of the engine 104 and the transmission 105, and a rigid body such as SUS is used to secure the strength. doing. The bend shape is made elastic so as to suppress vibrations from the transmission 15 and the engine 104.

以上説明した本実施例では、インバータ装置ユニットの筐体内に、熱伝導性部材によって全周が取り囲まれた冷却室を形成し、半導体モジュール20,30をその部屋の中に収納するようにしたので、IGBT21の小型化によってIGBT21の発熱が増加しても半導体モジュール20,30からの放熱が増加しても、その熱を冷却室の外部に放出されることを抑制でき、コンデンサ50などの他のインバータ装置の構成部品に対する熱影響を低く抑えることができる。   In the present embodiment described above, the cooling chamber surrounded by the heat conductive member is formed in the casing of the inverter unit, and the semiconductor modules 20 and 30 are accommodated in the chamber. Even if the heat generation of the IGBT 21 increases due to the miniaturization of the IGBT 21 or the heat dissipation from the semiconductor modules 20 and 30 increases, the heat can be prevented from being released to the outside of the cooling chamber. The thermal effect on the components of the inverter device can be kept low.

本発明の第2実施例を図9に基づいて説明する。   A second embodiment of the present invention will be described with reference to FIG.

本実施例は第1実施例の改良例であり、同じ構成には同じ符号を付してその説明を省略する。   The present embodiment is an improved example of the first embodiment, and the same components are denoted by the same reference numerals and the description thereof is omitted.

本実施例と第1実施例の異なる部分は、半導体モジュール20,30が収納された冷却室の上部に上部ケース10と第2の上部ケース19によって全周が取り囲まれた第3の冷却室を形成し、その中に、駆動回路基板と制御回路基板とコネクタ基板を一つにした基板97を収納したものである。   The difference between the present embodiment and the first embodiment is that a third cooling chamber whose entire circumference is surrounded by the upper case 10 and the second upper case 19 at the upper portion of the cooling chamber in which the semiconductor modules 20 and 30 are accommodated. It is formed and a board 97 in which a drive circuit board, a control circuit board, and a connector board are combined is housed therein.

半導体モジュール20,30の配線シート31と基板97は配線部材98によって電気的に接続されている。   The wiring sheet 31 and the substrate 97 of the semiconductor modules 20 and 30 are electrically connected by a wiring member 98.

コンデンサ50のコンデンサーケースは省略され、第2ベース12のπの足がその代わりをしている。このため、第2ベース12のπの足は下部ケース13の底まで延びるように形成されている。   The capacitor case of the capacitor 50 is omitted, and the π foot of the second base 12 takes its place. For this reason, the π legs of the second base 12 are formed to extend to the bottom of the lower case 13.

また、取り付け足14を中空構造とし、その中に、交流外部端子62に電気的に接続された電力ケーブル64を通し、変速機105の筐体内に導くようにしている。このようにすることにより、電力ケーブル64を変速機105の筐体内に容易に導いて、電力ケーブル64をモータジェネレータ130,140に接続できる。   Further, the mounting foot 14 has a hollow structure, and a power cable 64 electrically connected to the AC external terminal 62 is passed through the mounting foot 14 so as to be guided into the housing of the transmission 105. By doing so, it is possible to easily guide the power cable 64 into the housing of the transmission 105 and connect the power cable 64 to the motor generators 130 and 140.

本実施例においても、前例と同様に、IGBT21の小型化によってIGBT21の発熱が増加しても半導体モジュール20,30からの放熱が増加しても、その熱を冷却室の外部に放出されることを抑制でき、コンデンサ50などの他のインバータ装置の構成部品に対する熱影響を低く抑えることができる。   Also in the present embodiment, as in the previous example, even if heat generation of the IGBT 21 increases due to downsizing of the IGBT 21 or heat dissipation from the semiconductor modules 20 and 30 increases, the heat is released to the outside of the cooling chamber. And the thermal influence on the components of other inverter devices such as the capacitor 50 can be kept low.

本発明の第3実施例を図10に基づいて説明する。   A third embodiment of the present invention will be described with reference to FIG.

本実施例は第1実施例の改良例であり、同じ構成には同じ符号を付してその説明を省略する。   The present embodiment is an improved example of the first embodiment, and the same components are denoted by the same reference numerals and the description thereof is omitted.

本実施例と第1実施例の異なる部分は、半導体モジュール20,30が収納された冷却室の中に駆動回路基板70,71と、交流バスバー60と,端子ホルダ63とを一緒に収納している。   The difference between this embodiment and the first embodiment is that the drive circuit boards 70, 71, the AC bus bar 60, and the terminal holder 63 are housed together in a cooling chamber in which the semiconductor modules 20, 30 are housed. Yes.

また、半導体モジュール20,30が収納された冷却室の下方に第2ベース12によって第2冷却室を形成し、さらにその下方に第2ベース12によって2つの第3冷却室を形成している。第2冷却室にはコンデンサ50を、第3冷却室の一方には制御回路基板74を、第3冷却室の他方にはコネクタ基板72をそれぞれ収納している。コンデンサ50は横置きになって筐体の短手方向に2つに分かれて収納されている。これにより、直流側接続導体40も半導体モジュール20側と半導体モジュール30側とに分かれて構成されている。尚、直流側接続導体40の構成は第1実施例と同様であるが、各端子の曲げ方が一部変わっている。また、直流側接続導体40には、直流正極側外部端子82と直流負極側外部端子81が一体に形成されている。   Further, a second cooling chamber is formed by the second base 12 below the cooling chamber in which the semiconductor modules 20 and 30 are housed, and two third cooling chambers are formed by the second base 12 below the second cooling chamber. The capacitor 50 is stored in the second cooling chamber, the control circuit board 74 is stored in one of the third cooling chambers, and the connector board 72 is stored in the other of the third cooling chambers. The capacitor 50 is horizontally placed and stored in two in the short direction of the housing. As a result, the DC side connection conductor 40 is also divided into the semiconductor module 20 side and the semiconductor module 30 side. The configuration of the DC side connection conductor 40 is the same as that of the first embodiment, but the way of bending each terminal is partially changed. Further, the DC side connecting conductor 40 is integrally formed with a DC positive side external terminal 82 and a DC negative side external terminal 81.

尚、符号99は、駆動回路基板70,71と配線シート31とを電気的に接続するコネクタ配線である。   Reference numeral 99 denotes a connector wiring that electrically connects the drive circuit boards 70 and 71 and the wiring sheet 31.

本実施例においても、前例と同様に、IGBT21の小型化によってIGBT21の発熱が増加しても半導体モジュール20,30からの放熱が増加しても、その熱を冷却室の外部に放出されることを抑制でき、コンデンサ50などの他のインバータ装置の構成部品に対する熱影響を低く抑えることができる。   Also in the present embodiment, as in the previous example, even if heat generation of the IGBT 21 increases due to downsizing of the IGBT 21 or heat dissipation from the semiconductor modules 20 and 30 increases, the heat is released to the outside of the cooling chamber. And the thermal influence on the components of other inverter devices such as the capacitor 50 can be kept low.

本発明の第4実施例を図11及び図12に基づいて説明する。   A fourth embodiment of the present invention will be described with reference to FIGS.

本実施例は第1実施例の変形例であり、同じ構成には同じ符号を付してその説明を省略する。   The present embodiment is a modification of the first embodiment, and the same components are denoted by the same reference numerals and description thereof is omitted.

本実施例と第3実施例の異なる部分は、後輪201もモータジェネレータ160によって駆動するようにしたものである。このため、本実施例では、1ユニットのインバータ装置150を備えている。モータジェネレータ160の動力は減速機204によって減速されて後輪側デファレンシャルギア203に伝達され、後輪側デファレンシャルギア203から後輪車軸202に伝達されるようになっている。すなわち本実施例では、四輪駆動式のハイブリッド自動車を構成している。インバータ装置150はバッテリ106に接続されている。モータジェネレータ160を電動機として用いる場合には、バッテリ106からインバータ装置150に電力が供給され、発電機として用いる場合にはインバータ装置150からバッテリ106に電力が供給される。   The difference between this embodiment and the third embodiment is that the rear wheel 201 is also driven by the motor generator 160. For this reason, in this embodiment, one unit of the inverter device 150 is provided. The power of the motor generator 160 is decelerated by the speed reducer 204 and transmitted to the rear wheel side differential gear 203, and is transmitted from the rear wheel side differential gear 203 to the rear wheel axle 202. That is, in this embodiment, a four-wheel drive hybrid vehicle is configured. The inverter device 150 is connected to the battery 106. When motor generator 160 is used as an electric motor, electric power is supplied from battery 106 to inverter device 150, and when used as a generator, electric power is supplied from inverter device 150 to battery 106.

インバータ装置150の構成は、第3実施例のインバータ装置ユニットを筐体の短手方向中央において切断して得られた左半分側の構成とすると共に、第2実施例のインバータ装置ユニットのように、第3冷却室を、導体モジュール30を収納した冷却室の上部に形成し、その中に、駆動回路基板と制御回路基板とコネクタ基板を一つにした基板97を収納したものである。   The configuration of the inverter device 150 is the same as the configuration of the left half side obtained by cutting the inverter device unit of the third embodiment at the center in the short direction of the housing, and like the inverter device unit of the second embodiment. The third cooling chamber is formed in the upper part of the cooling chamber in which the conductor module 30 is accommodated, and the substrate 97 including the drive circuit board, the control circuit board, and the connector board is accommodated therein.

また、電力ケーブル64は、第2実施例のインバータ装置ユニットのように、中空構造の取り付け足14を通して、変速機105の筐体内に導くようにしている。   Further, the power cable 64 is guided into the housing of the transmission 105 through the mounting foot 14 having a hollow structure like the inverter device unit of the second embodiment.

また、インバータ装置150の構成としては、第1乃至3実施例のインバータ装置ユニットを筐体の短手方向中央において切断して得られた左半分側或いは右半分側の構成をそのまま用いてもよい。   Further, as the configuration of the inverter device 150, the configuration on the left half side or the right half side obtained by cutting the inverter device unit of the first to third embodiments at the center in the short side direction of the housing may be used as it is. .

本実施例においても、前例と同様に、IGBT21の小型化によってIGBT21の発熱が増加しても半導体モジュール20,30からの放熱が増加しても、その熱を冷却室の外部に放出されることを抑制でき、コンデンサ50などの他のインバータ装置の構成部品に対する熱影響を低く抑えることができる。   Also in the present embodiment, as in the previous example, even if heat generation of the IGBT 21 increases due to downsizing of the IGBT 21 or heat dissipation from the semiconductor modules 20 and 30 increases, the heat is released to the outside of the cooling chamber. And the thermal influence on the components of other inverter devices such as the capacitor 50 can be kept low.

20,30…半導体モジュール、50…コンデンサ、70,71…駆動回路基板、74…制御回路基板、110,120,160…インバータ装置。   20, 30 ... Semiconductor module, 50 ... Capacitor, 70, 71 ... Drive circuit board, 74 ... Control circuit board, 110, 120, 160 ... Inverter device.

Claims (7)

直流電流を交流電流に変換する複数のパワー半導体素子を有する第1半導体モジュールと、
直流電流を交流電流に変換する複数のパワー半導体素子を有する第2半導体モジュールと、
前記直流電流を平滑化するコンデンサと、
前記コンデンサから前記半導体モジュールへ前記直流電流を伝達するコンデンサ端子と、
冷却冷媒が流れる流路を形成するとともに熱伝導性部材により形成された流路形成体と、を備え、
前記第1半導体モジュール及び前記第2半導体モジュールは、前記流路形成体の一方側に配置されるとともに所定空間を介して並べて配置され、
前記コンデンサは、前記流路形成体を介して前記半導体モジュールとは反対側に配置され、
前記流路形成体は、前記第1及び第2半導体モジュールが配置された側の空間と前記コンデンサが配置された側の空間とを繋ぐ貫通孔を形成し、さらに当該貫通孔は前記所定の空間と対向する位置に形成され、
前記第1半導体モジュールの直流端子は、前記貫通孔に最も近い前記第1半導体モジュールの辺側に配置され、
前記第2半導体モジュールの直流端子は、前記貫通孔に最も近い前記第2半導体モジュールの辺側に配置され、
前記コンデンサ端子は、前記貫通孔を通って前記コンデンサと前記半導体モジュールを電気的に接続する電力変換装置。
A first semiconductor module having a plurality of power semiconductor elements for converting a direct current into an alternating current;
A second semiconductor module having a plurality of power semiconductor elements for converting a direct current into an alternating current;
A capacitor for smoothing the direct current;
A capacitor terminal for transmitting the direct current from the capacitor to the semiconductor module;
Forming a flow path through which the cooling refrigerant flows, and a flow path forming body formed by a heat conductive member,
The first semiconductor module and the second semiconductor module are arranged on one side of the flow path forming body and arranged side by side through a predetermined space,
The capacitor is disposed on the opposite side of the semiconductor module via the flow path forming body,
The flow path forming body forms a through hole that connects a space on the side where the first and second semiconductor modules are disposed and a space on the side where the capacitor is disposed, and the through hole further includes the predetermined space. Is formed at a position opposite to
The DC terminal of the first semiconductor module is disposed on the side of the first semiconductor module closest to the through hole,
The DC terminal of the second semiconductor module is disposed on the side of the second semiconductor module closest to the through hole,
The capacitor terminal is a power converter that electrically connects the capacitor and the semiconductor module through the through hole.
請求項1に記載された電力変換装置であって、
前記流路形成体は、前記流路と繋がる第1開口及び第2開口を前記第1及び第2半導体モジュールが配置された側に形成し、
前記第1半導体モジュールは、絶縁部材を介して前記パワー半導体素子を実装する第1金属製ベース板を有し、
前記第2半導体モジュールは、絶縁部材を介して前記パワー半導体素子を実装する第2金属製ベース板を有し、
前記第1金属製ベース板は、前記第1開口を塞ぐことにより前記冷却冷媒と直接接触し、
前記第2金属製ベース板は、前記第2開口を塞ぐことにより前記冷却冷媒と直接接触する電力変換装置。
The power conversion device according to claim 1,
The flow path forming body forms a first opening and a second opening connected to the flow path on a side where the first and second semiconductor modules are disposed,
The first semiconductor module has a first metal base plate for mounting the power semiconductor element via an insulating member,
The second semiconductor module has a second metal base plate for mounting the power semiconductor element via an insulating member,
The first metal base plate is in direct contact with the cooling refrigerant by closing the first opening;
The power conversion device in which the second metal base plate is in direct contact with the cooling refrigerant by closing the second opening.
請求項1又は2に記載のいずれかの電力変換装置であって、
前記コンデンサは、前記流路形成体に接触された状態で、前記流路形成体の他方側に配置される電力変換装置。
The power conversion device according to claim 1 or 2,
The power conversion device, wherein the capacitor is disposed on the other side of the flow path forming body in a state of being in contact with the flow path forming body.
請求項1ないし3に記載のいずれかの電力変換装置であって、
前記コンデンサ端子は、板状の正極側コンデンサ端子と、前記正極側コンデンサ端子と対向する板状の負極側コンデンサ端子と、当該正極側コンデンサ端子と当該負極側コンデンサ端子の間に配置される絶縁部材と、により構成される電力変換装置。
The power conversion device according to any one of claims 1 to 3,
The capacitor terminal includes a plate-shaped positive-side capacitor terminal, a plate-shaped negative-side capacitor terminal facing the positive-side capacitor terminal, and an insulating member disposed between the positive-side capacitor terminal and the negative-side capacitor terminal. And a power conversion device configured by.
請求項4に記載の電力変換装置であって、
前記第1及び第2半導体モジュールは、板状の正極側モジュール端子と、板状の負極側モジュール端子と、をそれぞれ有し、
前記正極側コンデンサ端子及び前記負極側コンデンサ端子は、前記貫通孔から前記半導体モジュールが配置された空間まで突出しており、
前記正極側モジュール端子は、前記正極側コンデンサ端子の突出方向に沿って形成され、かつ当該正極側コンデンサ端子と接続され、
前記負極側モジュール端子は、前記負極側コンデンサ端子の突出方向に沿って形成され、かつ当該負極側コンデンサ端子と接続される電力変換装置。
The power conversion device according to claim 4,
The first and second semiconductor modules each have a plate-like positive-side module terminal and a plate-like negative-side module terminal,
The positive-side capacitor terminal and the negative-side capacitor terminal protrude from the through hole to a space where the semiconductor module is disposed,
The positive module terminal is formed along the protruding direction of the positive capacitor terminal and connected to the positive capacitor terminal;
The negative electrode module terminal is formed along the protruding direction of the negative capacitor terminal and connected to the negative capacitor terminal.
請求項1ないし5に記載のいずれかの電力変換装置であって、
前記第1及び第2半導体モジュールを収納する収納空間及び開口部を形成するケースを備え、
前記ケースの開口部は、前記流路形成体により塞がれる電力変換装置。
The power conversion device according to any one of claims 1 to 5,
A housing space for housing the first and second semiconductor modules and a case for forming an opening;
An opening of the case is a power conversion device that is closed by the flow path forming body.
請求項6に記載の電力変換装置であって、
前記パワー半導体素子の駆動を制御する制御回路を実装した制御回路基板を備え、
前記制御回路基板は、前記ケースの収納空間の外側に配置される電力変換装置。
The power conversion device according to claim 6,
A control circuit board on which a control circuit for controlling driving of the power semiconductor element is mounted;
The said control circuit board is a power converter device arrange | positioned outside the storage space of the said case.
JP2011111978A 2011-05-19 2011-05-19 Power converter Expired - Fee Related JP5174936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011111978A JP5174936B2 (en) 2011-05-19 2011-05-19 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011111978A JP5174936B2 (en) 2011-05-19 2011-05-19 Power converter

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006009154A Division JP4848187B2 (en) 2006-01-17 2006-01-17 Power converter

Publications (2)

Publication Number Publication Date
JP2011155838A JP2011155838A (en) 2011-08-11
JP5174936B2 true JP5174936B2 (en) 2013-04-03

Family

ID=44541342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011111978A Expired - Fee Related JP5174936B2 (en) 2011-05-19 2011-05-19 Power converter

Country Status (1)

Country Link
JP (1) JP5174936B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10199804B2 (en) * 2014-12-01 2019-02-05 Tesla, Inc. Busbar locating component
JP6451591B2 (en) * 2015-10-23 2019-01-16 株式会社デンソー Power converter
US11239762B2 (en) * 2017-11-02 2022-02-01 Hitachi Astemo, Ltd. Power converter
CN113330679A (en) * 2019-02-18 2021-08-31 日产自动车株式会社 Power conversion device
JP2021015911A (en) * 2019-07-12 2021-02-12 トヨタ自動車株式会社 Electric device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002095109A (en) * 2000-09-08 2002-03-29 Toshiba Transport Eng Inc High-frequency power supply unit for vehicle
JP3975394B2 (en) * 2001-12-27 2007-09-12 アイシン・エィ・ダブリュ株式会社 Electric drive control unit
JP2004266973A (en) * 2003-03-04 2004-09-24 Nichicon Corp Inverter arrangement

Also Published As

Publication number Publication date
JP2011155838A (en) 2011-08-11

Similar Documents

Publication Publication Date Title
JP4848187B2 (en) Power converter
JP4305537B2 (en) Power converter
US10291148B2 (en) Power conversion apparatus
JP5508357B2 (en) Power converter
JP4751810B2 (en) Power converter
WO2010050428A1 (en) Power conversion device
JP2015092827A (en) Power conversion device
JP2010035345A (en) Power conversion device and electric vehicle
JP5622658B2 (en) Power converter
JP5373150B2 (en) Capacitor module
JP5802629B2 (en) Power converter
JP5174936B2 (en) Power converter
JP2014113053A (en) Power converter
JP2014087124A (en) Power conversion device
JP5932605B2 (en) Power converter
JP2013220029A (en) Power conversion apparatus
JP2013183540A (en) Inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

LAPS Cancellation because of no payment of annual fees