EP3604988B1 - Appareil de réfrigération avec une pluralité de zones de température - Google Patents

Appareil de réfrigération avec une pluralité de zones de température Download PDF

Info

Publication number
EP3604988B1
EP3604988B1 EP19180899.7A EP19180899A EP3604988B1 EP 3604988 B1 EP3604988 B1 EP 3604988B1 EP 19180899 A EP19180899 A EP 19180899A EP 3604988 B1 EP3604988 B1 EP 3604988B1
Authority
EP
European Patent Office
Prior art keywords
evaporator
blow
temperature
cooling device
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19180899.7A
Other languages
German (de)
English (en)
Other versions
EP3604988A1 (fr
Inventor
Emanuele Diana
Christian Schropp
Adrian Bachmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
V-Zug AG
Original Assignee
V-Zug AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by V-Zug AG filed Critical V-Zug AG
Publication of EP3604988A1 publication Critical patent/EP3604988A1/fr
Application granted granted Critical
Publication of EP3604988B1 publication Critical patent/EP3604988B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • F25D17/065Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators with compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • F25B2341/062Capillary expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/052Compression system with heat exchange between particular parts of the system between the capillary tube and another part of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/067Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by air ducts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • F25D2700/123Sensors measuring the inside temperature more than one sensor measuring the inside temperature in a compartment

Definitions

  • the invention relates to a cooling device with several temperature zones and a method for operating it according to the preamble of the main claims.
  • US 2009/0188262 describes a cooling device whose cooling space is divided into several temperature zones with different target temperatures.
  • a cooling air duct is provided in which air is sucked in from the top temperature zone. The air is guided along the evaporator and returned to the temperature zones via several connection openings.
  • Air flaps are provided at the connection openings and are individually controlled. By appropriately controlling these air flaps, the temperature in the temperature zones is regulated.
  • WO2006049354 shows a cooling device with an air duct arranged at the rear, in which an evaporator is arranged.
  • US1642015 and WO9510742 show a cooling device in which the refrigerant flows from bottom to top within the evaporator.
  • EP2988077 discloses a cooling device in which a valve at the inlet of the evaporator is controlled depending on measured temperatures and pressures.
  • the task is to provide a cooling device of this type or a method for controlling it with improved temperature control.
  • the compressor is designed to convey the cooling medium from bottom to top through the first evaporator.
  • this flow direction of the cooling medium there is significantly more liquid cooling medium in a lower region of the first evaporator than in the upper region. Since the liquid cooling medium removes more heat from its surroundings when it evaporates than the medium that has already evaporated, this leads to a relatively strong, vertical temperature gradient in the first evaporator. Accordingly, the air that flows through the various blow-back openings is cooled to different degrees.
  • the control of the device is designed to control the amount of liquid medium in the first evaporator depending on the target temperatures and the actual temperatures in the temperature zones.
  • the upper limit of the liquid cooling medium in the first evaporator depends on the amount of liquid medium, it can be controlled in this way how strongly the air that flows through the blow-back openings arranged at different heights is cooled .
  • control can be designed to set the upper limit of the liquid cooling medium in the first evaporator depending on the target temperatures and the actual temperatures in the temperature zones above or below at least one first blow-back opening. If this upper limit is below this first blow-back opening, the air conveyed through this first blow-back opening is cooled less than if the upper limit is above the first blow-back opening.
  • At least one second blow-back opening is provided below (i.e. deeper than) the first blow-back opening.
  • the controller also controls the fan's delivery capacity depending on the target temperatures and the actual temperatures.
  • the delivery rate to be relatively high, for example, the outlet temperature at the blow-back openings can be increased, in particular at the blow-back openings that are lower than the upper limit of the liquid cooling medium.
  • the delivery capacity of the compressor is also a good control parameter. Accordingly, the control can be designed to control the delivery capacity of the compressor depending on the target temperatures and the actual temperatures in the temperature zones.
  • the present technique it is possible to control the temperatures at the blowback openings without placing controlled closure means, such as air flaps, at the blowback openings.
  • controlled closure means such as air flaps
  • the invention can also be used in combination with such controlled closure means for the blow-back openings, in which case the temperatures can be regulated even better and/or with higher efficiency.
  • At least two throttles can be arranged between the condenser and the first evaporator, and a changeover valve can be provided in order to vary the flow ratio of cooling medium between the two throttles.
  • the ratio of the flows through the two chokes can be with the Switching valve can be varied.
  • the switching valve can guide the cooling medium either through one or the other throttle, or the ratio can also be set variably.
  • the control can be designed to control the amount of liquid medium in the first evaporator at least via the changeover valve.
  • At least one second evaporator can be provided in addition to the first evaporator.
  • the first of the throttles leads cooling medium from the compressor past the second evaporator to the first evaporator.
  • the second of the throttles leads cooling medium from the compressor to the second evaporator.
  • more or less cooling medium can be passed through the second evaporator via the switching valve, whereby the amount of liquid cooling medium and the evaporation temperature in the first evaporator can be varied.
  • overheating of the refrigerant in the first evaporator can result in a higher resulting air temperature.
  • the invention also relates to a method for operating such a cooling device.
  • the amount of liquid cooling medium in the first evaporator is controlled depending on the target temperatures and the actual temperatures in the temperature zones.
  • the delivery rate of the compressor and/or the delivery rate of the fan can also be controlled depending on the target temperatures and the actual temperatures in the temperature zones.
  • the cooling device is advantageously a refrigerator and/or a freezer, in particular a household appliance. However, it can also be a cooling device for other applications, e.g. a cooling device for medication or other refrigerated goods.
  • top, bottom, horizontal and vertical refer to the intended orientation of the device, in which the door runs vertically.
  • An “insulation material” is a body with a thermal conductivity of less than 0.1 W/mK, in particular less than 0.05 W/mK. With vacuum insulation panels, the value can even be below 0.01 W/mK, e.g. 0.003 - 0.006 W/mK.
  • Fig. 1 and 2 show a refrigerator as an example of a cooling device, with the door not being shown.
  • the refrigerator has a housing 1, inside of which there is a usable space 2 for holding food to be stored.
  • the useful space 2 In a section in the vertical direction, the useful space 2 has an approximately rectangular cross section.
  • a rear wall element 3 is arranged on the rear wall 2a of the usable space, which in Fig. 2 highlighted with a bold outline.
  • the usable space is divided into two temperature zones 2a, 2b.
  • An intermediate wall 11 is arranged between the two temperature zones 2a, 2b, which can have the shape of a tray or drawer lid, for example.
  • the intermediate wall 11 is designed so that it allows an exchange of air between the two temperature zones 2a, 2b.
  • the intermediate wall can have an insulating material.
  • the temperature zones 2a, 2b are assigned different target temperatures.
  • the target temperatures advantageously increase from bottom to top, i.e. the lowest target temperature is assigned to the lowest temperature zone 2a.
  • the rear wall element 3 is in Fig. 3 - 7 from front and back and in Fig. 8 shown in a vertical section.
  • It has a substantially rectangular outline and is plate-shaped. It has a molded body 4 made of an insulating material, for example expanded polystyrene.
  • a cover plate 5 is attached to the front of the shaped body 4. It consists of a material of higher strength than the molded body 4. It preferably consists of plastic.
  • the front cover plate 5 preferably extends over the entire wall element 3 or at least over the entire molded body 4.
  • the rear wall element 3 preferably has a first section 3a (cf. Fig. 7 , 8th ) and a second section 3b.
  • the fan 10 is arranged in section 3a.
  • the rear wall element 3 is thicker in the front-to-back direction than in the second section 3b. This takes into account the fact that in section 3a the two parts 6a, 6b of the cooling air duct overlap, while this is not the case in section 3b. This design means that the rear wall element 3 takes up less volume.
  • the exact design of the rear wall element 3 is of minor importance in the present case.
  • it can also have a simpler plate shape.
  • Cooling air duct
  • a cooling air channel 6 can be formed in or on the rear wall element 3 (or elsewhere in the device). It is used to guide cooling air past an evaporator.
  • An exemplary structure of the cooling air duct is described in more detail below.
  • a first part 6a of the cooling air duct is designed on the front of the molded body 4, namely between the molded body 4 and the cover plate 5. This first part is the best Fig. 4 and 10 visible.
  • the cooling air duct has several suction openings 7a - 7i.
  • suction openings 7a - 7i open on the side edges 8a, 8b of the rear wall element 3, in particular in the upper quarter of the side edges 8a, 8b, and the rest on the upper edge 8c.
  • the suction openings 7a - 7i form channel sections which are formed between recesses 9a, 9b, 9c... in the molded body 3 and the cover plate 5 and which lead to a fan 10.
  • the fan 10 is arranged at an opening 12 extending from front to back through the molded body and in Fig. 9 presented in detail.
  • the fan 10 shown has a rigid frame 14 in which a fan wheel 15 and its drive are arranged.
  • the frame 14 can be attached to the shaped body 4 via a damping element 16.
  • the damping element 16 can in turn be attached to the shaped body 4 in a suitable manner. The best way to do this is to look at it in summary Fig. 6, 7 and 9 can be seen, in the present embodiment a holding frame 18 is provided. The damping element 16 is clamped between a shoulder 20 of the shaped body 4 and the holding frame 18.
  • the holding frame 18 is inserted into a recess in the molded body 4 and is preferably snapped there into undercuts 24 so that it can only be removed under deformation.
  • the holding frame 18 has rearwardly projecting projections 26, which, when the rear wall element 3 is installed as intended, are supported against the front of the rear wall 30, which is located behind the rear wall element 3 and forms a counter bearing 32.
  • the second part 6b of the cooling air duct adjoins the opening 10 at the rear, cf. Fig. 6 , 9 , 10 .
  • the shaped body 4 has one or more recesses 34 on its back, which form or form the front area of the part 6b of the cooling air duct.
  • the recess 34 extends from the area of the fan 10 towards the bottom, namely to the lower end of the shaped body 4.
  • the shaped body 4 can form at least two lateral boundaries 36 for the recess 34, which touch the rear wall 30 in the assembled state of the wall element 3 and thus laterally limit the cooling air duct.
  • One or preferably both of these boundaries 36 has or have recessed areas which do not touch the rear wall and which form a plurality of laterally arranged, first blow-back openings 38a - 38m of the cooling air duct on the side edges 8a, 8b of the rear wall element 3.
  • the first blow-back openings 38a - 38m lead into the first temperature zone 2a.
  • the rear wall further forms laterally arranged, second blow-back openings 38n. These lead into the second temperature zone 2b.
  • the molded body 4 shown forms an upper boundary 39a of the recess 34, which touches the rear wall 30 in the assembled state of the wall element 3. This advantageously completely closes off the second part 6b of the cooling air duct at the top.
  • the molded body 4 shown forms a lower boundary 39b of the recess 34.
  • the lower boundary 39b has one or more recessed areas, which do not touch the rear wall 30 and thus one or more lower, second blow-back openings 43 for forms or forms the cooling air channel on the lower edge 8d of the rear wall element 3.
  • the lower second blow-back openings 43 also lead into the second temperature zone 2b.
  • the shaped body 4 can form spacers 37, which support the recess 34 against the rear wall.
  • spacers 37 can also be used as air guiding elements.
  • the recess 34 is advantageously not the same depth everywhere. In particular, it has an upper, deeper area 34a and a lower, less deep area 34b. This configuration allows the air flow in the cooling air duct to be brought into a desired ratio according to the requirements.
  • the evaporator 40 of a heat pump is arranged in the rear wall 30 of the cooling device. It is thermally connected to a wall plate 42, which forms the inside of the rear wall 30, ie the side facing the usable space 2.
  • the present embodiment of the refrigerator has two evaporators, which is why the evaporator 40 is sometimes referred to below as the “first evaporator 40”.
  • the terms “first” and “second” evaporator are merely used Enumeration does not use or describe the flow order of the evaporators.
  • the cold medium preferably flows first through the second and then through the first evaporator.
  • an insulation element 44 in particular a vacuum insulation panel, is arranged.
  • the area of the cooling air channel 6a, 6b, which is in contact with the evaporator 40, is referred to as the cooling section 13.
  • blowback openings 38a - 38n and 43 are arranged along the cooling section 13 at different, vertically spaced positions.
  • the fan 10 conveys the air from front to back, i.e. it sucks in the air through the suction openings 7a - 7i, conveys it through the first part 6a of the cooling air duct, through the opening 12, through the second part 6b of the cooling air duct and to the blowback openings 38a - 38n and 43.
  • the air is cooled by the evaporator 40 as it passes through the second part 6b of the cooling air duct.
  • the air runs essentially from top to bottom through the cooling air duct and sweeps past the cooling element or evaporator 40 from top to bottom.
  • the cooling element i.e. the evaporator 40
  • the wall plate 42 can also be arranged in the cooling air duct itself and, for example, have cooling air flow around it on both sides.
  • the evaporator is of minor importance in the present context.
  • it can be foamed in or freely arranged in the air flow. It can be, for example, one Tube, roll bond or finned heat exchanger.
  • FIG. 11 shows the most important components of the device's cooling system.
  • the cooling device has a heat pump with a compressor 50, a condenser 52, a switching valve 54, several throttles 56a, 56b (which in the present case are designed as capillaries), the first evaporator 40 and a second evaporator 58.
  • the components of the cooling device are controlled by a controller 60. This can also communicate with sensors that measure the current state of the device, such as a first temperature sensor 62a for measuring the temperature in the first temperature zone 2a and a second temperature sensor 62b for measuring the temperature in the second temperature zone 2b.
  • sensors that measure the current state of the device, such as a first temperature sensor 62a for measuring the temperature in the first temperature zone 2a and a second temperature sensor 62b for measuring the temperature in the second temperature zone 2b.
  • the compressor 50 has a variable speed, i.e. it can be operated by the controller 60 with several different speeds > 0.
  • the switching valve 54 is controlled by the controller 60.
  • the flow of coolant between the throttles or capillaries 56a, 56b can be switched.
  • the first capillary 56a leads from the switching valve 54 to the inlet of the first evaporator 40 already described.
  • the second capillary 56b leads from the switching valve 54 to the inlet of the second evaporator 58.
  • the second evaporator 58 is assigned to a freezer compartment 64 in the present embodiment. This is thermally separated from the usable space 2 and is usually operated at a lower temperature than the usable space 2, e.g. at a target temperature of -25°C to -10°C.
  • the cooling device can be operated in at least two operating modes, depending on the type of switching valve 54.
  • the switching valve 54 In a first operating mode, the switching valve 54 is set so that the cooling medium flows through the second capillary 56b. It therefore first passes through the second evaporator 58, where it can at least partially evaporate (depending on the temperature conditions). It then reaches the first evaporator 40 via a connecting line 66.
  • the switching valve 54 is set so that the cooling medium flows through the first capillary 56a. It therefore bypasses the second evaporator 58 and enters directly into the first evaporator 40.
  • the cooling medium enters the second evaporator 40 from below.
  • the liquid phase of the cooling medium will thus accumulate in the lowest area of the evaporator 40.
  • the upper limit of the liquid cooling medium is in Fig. 11 for example shown under reference number 68.
  • the cooling effect of the first evaporator 40 is stronger below this upper limit 68 than above it.
  • the cooling medium returns to the compressor 50 via a return line 70.
  • the return flow line 70 can be coupled to the throttles or capillaries 56a, 56b via a heat exchanger 72. This improves the efficiency of the device.
  • the basic principle of operation of the device is shown schematically 12 and 13 illustrated. These figures show the usable space 2 with the first and second temperature zones 2a, 2b. The rear wall element 3 and the first evaporator 40 are also shown.
  • the cooling air duct is generally designated by the reference number 6.
  • the fan is not shown.
  • the cooling air which flows through the suction openings into the cooling air duct 6a, 6b and from there through the blow-back openings 37a - 38n, 43 back into the usable space 2, is illustrated with arrows.
  • the cooling air is drawn in from the first temperature zone 2a (arrows 72a). It flows downwards through the cooling air duct 6. In particular, it runs from top to bottom through the cooling section 13 on the first evaporator 40.
  • the cooling air enters the blow-back openings 38a - 38n, 43 at various vertical positions.
  • the air is conveyed upwards into the first temperature zone 2a through one or more gaps or openings 74 in the area of the intermediate wall 11.
  • the cooling effect of the first evaporator 40 depends on where the upper limit 68 of the liquid cooling medium lies.
  • this upper limit is 68 relatively high (as in Fig. 12 shown under reference number 68a), at least part of the cooling air is cooled before it flows back into the first temperature zone 2a through the upper ("first") blow-back openings 38a - 38m. A relatively strong cooling of the first temperature zone 2a can therefore be achieved.
  • Another important operating parameter of the cooling device is the delivery capacity of the fan 10.
  • the air stays longer in the cooling section 13 and is noticeably cooled by the evaporator 40.
  • the lower or both temperature zones 2a, 2b can be cooled.
  • the delivery capacity of the fan 10 is very low, the air is cooled down significantly, but its cooling capacity is low due to the small volume flow.
  • T1 and T2 denote the current temperatures in the first and second temperature zones 2a, 2b and Tisoll or T2soll their target temperatures.
  • a “high liquid level” in the evaporator 40 refers to a state in which the upper limit 68 of the liquid cooling medium in the evaporator 40 is above at least the lowest first blow-back opening 38m, preferably above at least half of the first blow-back openings 38a - 38n, in particular above all of them first blow-back openings 38a - 38n.
  • a “low liquid level” in the evaporator 40 refers to a condition in which the upper limit 68 of the liquid cooling medium in the evaporator 40 is below the lowest first blow-back opening 38m, but in particular above a part, preferably all, of the second blow-back openings 38n, 43. Possible measures for influencing this the upper limit 68 are described above.
  • T1 ⁇ Tisoll and T2 ⁇ T2soll The controller 60 controls the device so that at most the low liquid level is set in the evaporator 40 in order to achieve this Reduce cooling performance.
  • the upper limit 68 is advantageously set so low that at least some of the second blow-back openings 38n, 43 lie above the upper limit 68.
  • the controller 60 can increase the delivery capacity of the fan 10 at least temporarily. Both measures reduce the cooling of the air in the cooling air duct 6.
  • T1 ⁇ Tisoll and T2 > T2soll The controller 60 controls the device so that the low liquid level is set in the evaporator 40, so that primarily only the air flowing into the second temperature zone 2b is cooled. At the same time, if necessary, the delivery capacity of the fan can be reduced at least temporarily in order to greatly cool the air entering the second temperature zone 2b.
  • T1 > Tisoll and T2 ⁇ T2soll The controller 60 controls the device so that the high liquid level is set in the evaporator 40, so that the air flowing into the first temperature zone 2a is also cooled.
  • the delivery rate of the fan is preferably chosen to be so high at least at times that the air in the air duct 6a, 6b does not have time to cool down significantly, so that its temperature when passing through the second blow-back openings 38n, 43 has a temperature greater than T2setpoint.
  • T1 > Tisoll and T2 > T2soll The controller 60 controls the device so that the high liquid level is set in the evaporator 40, so that the air flowing into the first temperature zone 2a is also cooled.
  • the delivery rate of the fan is chosen to be so low, at least at times, that the air in the air duct has enough time to cool down so much that its temperature when it passes through the second blow-back openings 38n, 43 has a temperature lower than T2setpoint, and that its temperature upon passage has a temperature lower than Tisoll through at least part of the first blow-back openings 38a - 38m.
  • Another manipulated variable is the speed or delivery capacity of the compressor 50.
  • the speed By increasing the speed, the cooling capacity can be increased and the evaporation temperature can be reduced at the same time. Conversely, by reducing the speed, the cooling capacity can be reduced and the evaporation temperature can be increased.
  • the first temperature zone 2a is advantageously a cooling compartment with a target temperature Tisoll between 0 ° and 10 ° C, in particular between 2 and 7 ° C.
  • the second temperature zone 2b is a cold storage compartment with a target temperature T2soll between -2° and 3°C, in particular between 0° and 3°C.
  • the difference Tisoll - T2soll is advantageously a maximum of 10°C, in particular a maximum of 5°C, e.g. in order to keep the formation of condensation in the cold areas to a minimum.
  • the delivery capacity of the fan 10 should be controllable within a range sufficient to carry out the above measures.
  • a delivery rate in the range of 10 to 30 m 3 /h has proven to be useful, for example.
  • Other funding services are conceivable. They depend, among other things, on the size of the usable space 2 and the operating parameters of the heat pump and can be determined experimentally or mathematically.
  • two temperature zones 2a, 2b are provided. However, more than two temperature zones can also be provided.
  • the temperature zones are advantageously arranged one above the other and/or separated from one another by horizontal partitions 11.
  • the at least one suction opening 7a - 7i is arranged higher than the blow-back openings 38a - 38n, 43, or with the fan 10 the air is guided from top to bottom through the cooling section 13, so that the strong temperature gradient in the evaporator 40 is efficiently Temperature control can be used.
  • At least one of the suction openings 7a - 7i opens into the first temperature zone 2a.
  • all suction openings 7a - 7i open into the first temperature zone.
  • at least one suction opening also opens into the second temperature zone 2b.
  • the air is advantageously conveyed from bottom to top using the fan 10, i.e. the air passes from the lower, second temperature zone 2b into the upper, first temperature zone 2a.
  • the cooling device can also be designed, for example, as a freezer or wine cooler or for other cooled goods, and/or it can be a combination device with several cooling zones for different temperatures.
  • the cooling air duct can also be arranged at least partially or completely elsewhere in the device, for example in a side wall.
  • the freezer compartment 64 is, as mentioned, optional.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Claims (13)

  1. Dispositif de refroidissement avec
    un espace utilisable (2) avec des différentes zones de température (2a, 2b),
    une pompe à chaleur (50, 52, 56a, 56b, 40, 58) comprenant un compresseur (50) pour le transport d'un liquide de refroidissement, un condenseur (52) et au moins un premier évaporateur (40),
    un conduit d'air de refroidissement (6a, 6b), qui est relié à l'espace utilisable (2) par au moins une ouverture d'aspiration (7a - 7i) et plusieurs ouvertures de soufflage (38a - 38n, 43), dans lequel le premier évaporateur (40) est disposé le long d'une section de refroidissement (13) du conduit d'air de refroidissement (6a, 6b) et dans lequel les ouvertures de soufflage (38a - 38n, 43) sont disposées le long de la section de refroidissement (13) à différentes positions verticales espacées les unes des autres,
    un ventilateur (10) pour transporter de l'air dans le conduit d'air de refroidissement (6a, 6b) à partir de l'ouverture d'aspiration (7a - 7i) jusqu'aux ouvertures de soufflage (38a - 38n, 43), et
    une unité de commande (60) adaptée pour maintenir différentes températures de consigne dans les différentes zones de température (2a, 2b),
    caractérisé en ce que le compresseur (50) est adapté pour transporter le liquide de refroidissement de bas en haut le long du premier évaporateur (40) et
    en ce que l'unité de commande (60) est adaptée pour contrôler une quantité de fluide liquide dans le premier évaporateur (40) en fonction des températures de consigne et des températures réelles dans les zones de température (2a, 2b).
  2. Dispositif de refroidissement selon l'une des revendications précédentes, dans lequel l'unité de commande (60) est adaptée pour fixer une limite supérieure (68) de liquide de refroidissement dans le premier évaporateur (40) en fonction des températures de consigne et des températures réelles dans les zones de température (2a, 2b) au-dessus ou au-dessous d'au moins une première ouverture de soufflage (38a - 38m).
  3. Dispositif de refroidissement selon la revendication 2, dans lequel une deuxième ouverture de soufflage (38n, 43) est plus basse que la première ouverture de soufflage (38a - 38m).
  4. Dispositif de refroidissement selon l'une des revendications 2 ou 3 avec une première zone de température (2a) et une deuxième zone de température (2b), dans lequel la première ouverture de soufflage (38a - 38m) débouche dans la première zone de température (2a) et la deuxième ouverture de soufflage (38n, 43) débouche dans la deuxième zone de température (2b).
  5. Dispositif de refroidissement selon l'une des revendications précédentes, dans lequel l'unité de commande (60) est adaptée pour commander un débit du ventilateur (10) en fonction des températures de consigne et des températures réelles dans les zones de température (2a, 2b).
  6. Dispositif de refroidissement selon les revendications 4 et 5, dans lequel l'unité de commande (60) est adaptée pour commander le dispositif de refroidissement en fonction de la température T1 dans la première zone de température (2a), de la température de consigne T1set dans la première zone de température (2a), de la température T2 dans la deuxième zone de température (2b) et de la température de consigne T2set dans la deuxième zone de température (2b) de telle sorte que
    à T1 < T1set et T2 < T2set, l'évaporateur (40) présente tout au plus un faible niveau de liquide et, en particulier, le débit du ventilateur (10) est réduit au moins temporairement, et/ou
    à T1 < T1set et T2 > T2set, un faible niveau de liquide est établi dans l'évaporateur (40), et en particulier le débit du ventilateur (10) est réduit au moins temporairement, et/ou
    à T1 > T1set et T2 < T2set, un niveau élevé de liquide est établi dans l'évaporateur (40), et en particulier le débit du ventilateur (10) est au moins temporairement si élevé que l'air circulant à travers la deuxième ouverture de soufflage (38n, 43) a une température supérieure à T2set, et/ou
    à T1 > T1set et T2 > T2set, le niveau élevé de liquide est fixé dans l'évaporateur (40), et en particulier le débit du ventilateur (10) est au moins temporairement si faible que l'air passant par la deuxième ouverture de soufflage (38n, 43) a une température inférieure à T2set et par la première ouverture de soufflage (38a - 38m) a une température inférieure à T1set,
    dans lequel le "niveau élevé de liquide" décrit un état dans lequel une limite supérieure (68) de liquide de refroidissement dans le premier évaporateur (40) est au-dessus d'au moins une première ouverture de soufflage (38m) la plus basse, de préférence au-dessus d'au moins la moitié des premières ouvertures de soufflage (38a - 38m), en particulier au-dessus de toutes les premières ouvertures de soufflage (38a - 38m), et
    dans lequel le "faible niveau de liquide" décrit un état dans lequel la limite supérieure (68) du liquide de réfroidissement dans le premier évaporateur (40) est inférieure à la première ouverture de soufflage la plus basse (38m), mais en particulier au-dessus d'une partie, de préférence de la totalité, des deuxièmes ouvertures de soufflage (38n, 43), et
    dans lequel T2set < T1set.
  7. Dispositif de refroidissement selon l'une des revendications précédentes, dans lequel aucun moyen de fermeture contrôlé n'est associé aux ouvertures de soufflage (38a - 38n, 43).
  8. Dispositif de refroidissement selon l'une des revendications précédentes, dans lequel au moins deux étranglements (56a, 56b) sont disposés entre le condenseur (52) et le premier évaporateur (40), et dans lequel une vanne de commutation (54) est prévue pour faire varier un débit relatif entre les deux étranglements (56a, 56b), et
    dans lequel l'unité de commande (60) est adaptée pour contrôler la quantité de fluide liquide dans le premier évaporateur (40) au moins par l'intermédiaire de la vanne de commutation (54).
  9. Dispositif de refroidissement selon la revendication 8, dans lequel au moins un deuxième évaporateur (58) est fourni, et dans lequel un premier des étranglements guide le liquide de refroidissement du compresseur (50) au-delà du deuxième évaporateur (58) vers le premier évaporateur (40) et un deuxième des étranglements guide le liquide de refroidissement du compresseur (50) vers le deuxième évaporateur (58),
    et en particulier dans lequel le dispositif de refroidissement comporte un compartiment de congélation (64) en plus de l'espace utilisable (2), et dans lequel le deuxième évaporateur (58) est associé au compartiment de congélation (64).
  10. Dispositif de refroidissement selon l'une des revendications précédentes, dans lequel l'unité de commande (60) est adaptée pour contrôler un débit du compresseur (50) en fonction des températures de consigne et des températures réelles dans les zones de température (2a, 2b).
  11. Dispositif de refroidissement selon l'une des revendications précédentes, dans lequel l'ouverture d'aspiration (7a - 7i) est disposée plus haut que les ouvertures de soufflage (38a - 38n, 43), et en particulier dans lequel l'ouverture d'aspiration (7a - 7i) est disposée au-dessus du premier évaporateur (40).
  12. Dispositif de refroidissement selon l'une des revendications précédentes, dans lequel l'air peut être transporté par le ventilateur (10) de bas en haut à travers les zones de température (2a, 2b).
  13. Procédé de fonctionnement du dispositif de refroidissement selon l'une des revendications précédentes, dans lequel la quantité de liquide de refroidissement dans le premier évaporateur (40) est contrôlée en fonction des températures de consigne et des températures réelles dans les zones de température,
    et en particulier dans lequel un débit du compresseur (50) et/ou un débit du ventilateur (10) est contrôlé en fonction des températures de consigne et des températures réelles dans les zones de température (2a, 2b) .
EP19180899.7A 2018-08-02 2019-06-18 Appareil de réfrigération avec une pluralité de zones de température Active EP3604988B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00948/18A CH715229A1 (de) 2018-08-02 2018-08-02 Kühlgerät mit mehreren Temperaturzonen.

Publications (2)

Publication Number Publication Date
EP3604988A1 EP3604988A1 (fr) 2020-02-05
EP3604988B1 true EP3604988B1 (fr) 2024-03-27

Family

ID=66998155

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19180899.7A Active EP3604988B1 (fr) 2018-08-02 2019-06-18 Appareil de réfrigération avec une pluralité de zones de température

Country Status (2)

Country Link
EP (1) EP3604988B1 (fr)
CH (1) CH715229A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020207648A1 (de) * 2020-06-22 2021-12-23 BSH Hausgeräte GmbH Kältegerät mit einem Saugrohr-Wärmetauscher und Verfahren zum Betrieb eines Kältegeräts mit einem Saugrohr-Wärmetauscher

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1642015A (en) * 1921-06-04 1927-09-13 Delco Light Co Refrigerating apparatus
US5509272A (en) * 1991-03-08 1996-04-23 Hyde; Robert E. Apparatus for dehumidifying air in an air-conditioned environment with climate control system
US5711159A (en) * 1994-09-07 1998-01-27 General Electric Company Energy-efficient refrigerator control system
US6931870B2 (en) * 2002-12-04 2005-08-23 Samsung Electronics Co., Ltd. Time division multi-cycle type cooling apparatus and method for controlling the same
JP4303062B2 (ja) * 2003-08-29 2009-07-29 日立アプライアンス株式会社 冷蔵庫
ATE513172T1 (de) * 2004-11-02 2011-07-15 Lg Electronics Inc Kühlschrank
US8056360B2 (en) * 2006-11-22 2011-11-15 Paul Neilson Unmack Absorption refrigeration protective controller
DE102008016926A1 (de) 2008-01-30 2009-08-06 Liebherr-Hausgeräte Ochsenhausen GmbH Verfahren zum Betreiben eines Kühl- und/oder Gefriergerätes sowie nach einem solchen Verfahren betriebenes Kühl- und/oder Gefriergerät
US20160047595A1 (en) * 2014-08-18 2016-02-18 Paul Mueller Company Systems and Methods for Operating a Refrigeration System
CH709751B1 (de) * 2015-11-09 2019-06-28 V Zug Ag Kühlgerät mit einem Nutzraum mit mehreren Temperaturzonen.

Also Published As

Publication number Publication date
CH715229A1 (de) 2020-02-14
EP3604988A1 (fr) 2020-02-05

Similar Documents

Publication Publication Date Title
EP3601906B1 (fr) Appareil frigorifique et procédé de fonctionnement associé
EP2976583B1 (fr) Appareil frigorifique et soupape de distribution d&#39;air pour celui-ci
WO2015074894A1 (fr) Appareil de froid à un seul circuit
WO2016041791A1 (fr) Appareil de réfrigération pourvu d&#39;une pluralité de compartiments de stockage
DE10331518A1 (de) Wärmetauscher zum Kühlen von Luft
EP3604988B1 (fr) Appareil de réfrigération avec une pluralité de zones de température
DE4008012A1 (de) Lueftungsanordnung fuer ein kuehlgeraet
WO2007062952A1 (fr) Appareil frigorifique pourvu d&#39;un reservoir a eau
CH713485A2 (de) Kühlgerät mit aktiv gekühltem Maschinenraum.
EP3608607B1 (fr) Appareil frigorifique doté d&#39;au moins deux évaporateurs
EP2467656B1 (fr) Réfrigérateur avec canal d&#39;eau de décongélation et siphon
EP2642224B1 (fr) Appareil de réfrigération et/ou de congélation
DE102015117850A1 (de) Kühleinrichtung und Verfahren zum Betreiben einer Kühleinrichtung
DE102010055726A1 (de) Kühl- und/oder Gefriergerät
DE202021100693U1 (de) Kühlmöbel, Computerprogrammprodukt sowie Steuereinheit
CH710088A1 (de) Kühlgerät mit wählbaren Geräuschemissionen.
DE2909860C2 (fr)
DE102017005226A1 (de) Sockelkonzept
EP2691711B1 (fr) Appareil frigorifique à ventilateur axial
DE102019202649A1 (de) Kältegerät
DE102018212209A1 (de) Einkreis-Kältegerät
DE102012012103A1 (de) Kühl- und/oder Gefriergerät
CH711098B1 (de) Kühlgerät mit asymmetrisch ausgestalteter Kaltseite.
WO2019081221A1 (fr) Appareil réfrigérant pourvu d&#39;un évaporateur vertical traversé par de l&#39;air
EP4265985A1 (fr) Appareil frigorifique ménager pourvu de deux évaporateurs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200804

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20211125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230926

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231227

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019010877

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR